
Nucleic Acids Research, 2019 1
doi: 10.1093/nar/gkz1088

TFregulomeR reveals transcription factors’
context-specific features and functions
Quy Xiao Xuan Lin 1, Denis Thieffry 2, Sudhakar Jha 1,3 and Touati Benoukraf 1,4,*

1Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore,
2Computational Systems Biology Team, Institut de Biologie de l’École Normale Supérieure (IBENS), CNRS,
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ABSTRACT

Transcription factors (TFs) are sequence-specific
DNA binding proteins, fine-tuning spatiotemporal
gene expression. Since genomic occupancy of
a TF is highly dynamic, it is crucial to study TF
binding sites (TFBSs) in a cell-specific context.
To date, thousands of ChIP-seq datasets have
portrayed the genomic binding landscapes of
numerous TFs in different cell types. Although
these datasets can be browsed via several plat-
forms, tools that can operate on that data flow
are still lacking. Here, we introduce TFregulomeR
(https://github.com/benoukraflab/TFregulomeR),
an R-library linked to an up-to-date compendium of
cistrome and methylome datasets, implemented with
functionalities that facilitate integrative analyses. In
particular, TFregulomeR enables the characteriza-
tion of TF binding partners and cell-specific TFBSs,
along with the study of TF’s functions in the context
of different partnerships and DNA methylation levels.
We demonstrated that TFs’ target gene ontologies
can differ notably depending on their partners and,
by re-analyzing well characterized TFs, we brought
to light that numerous leucine zipper TFBSs derived
from ChIP-seq experiments documented in current
databases were inadequately characterized, due to
the fact that their position weight matrices were
assembled using a mixture of homodimer and
heterodimer binding sites. Altogether, analyses
of context-specific transcription regulation with
TFregulomeR foster our understanding of regulatory
network-dependent TF functions.

INTRODUCTION

Transcription factors (TFs) are the key components that
regulate spatiotemporal gene transcription (1). Aberrant
TF activities result in gene dysregulation, which is associ-
ated with several disorders such as cancer (2). A TF usually
recognizes a 3–15 bp DNA sequence, e.g. 3 bp for c-JUN
monomer (3) and 15 bp for CTCF (4), within proximal (pro-
moter) or distal (enhancer) cis-regulatory elements. In the
past decades, in vitro and in vivo techniques have been estab-
lished to uncover TF sequence binding preferences. Protein-
binding microarray (PBM) (5), bacterial one-hybrid (B1H)
(6) and systematic evolution of ligands by exponential en-
richment (SELEX) (7) are widely adopted in vitro ap-
proaches to identify TF binding sites (TFBSs) in high-
throughput scales (1,8). However, although these methods
have uncovered the DNA binding motifs for thousands of
TFs, the characterization of TFBS on a naked DNA envi-
ronment neglects key in vivo conditions that influence bind-
ing sites, such as chromatin structure, TF cooperativity and
DNA modification, and thus may reveal only one facet
of TF–DNA interaction (9). The current gold standard
method to determine in vivo TF binding sequences is chro-
matin immunoprecipitation followed by high-throughput
sequencing (ChIP-seq) (10). This technique allows to enrich
chromatin fragments that interact with a TF of interest and,
with the help of in silico procedures, compute a DNA bind-
ing motif (11,12). Nonetheless, these chromatin fragments
usually cover ∼100–500 bp, while the actual TFBS size
ranges from 3–15 bp, which challenges the depiction of the
exact TF binding locus. To overcome this issue, Rhee and
Pugh have developed a refined ChIP-protocol including a
DNA trimming step to cleave DNA fragments unprotected
by DNA binding proteins (13). This method, called ChIP-
exo (ChIP exonuclease), has greatly enhanced the map-
ping resolution of TF binding sites (14,15). Nonetheless,
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the majority of TFs bind to DNA with other TF partners
across a cluster of TFBSs, also termed cis-regulatory mod-
ule (CRM) (16). Consequently, in spite of the great improve-
ment made by ChIP-exo, DNA regions bound by transcrip-
tional complexes cannot be split into individual TF binding
sites by exonuclease, which still obscures the delimitation of
the precise binding site for a TF of interest (17). In other
words, current in vivo protocols may generate TF DNA
binding motifs that are generally biased by the presence
of co-factors. For example, Starick et al. observed a much
lower occurrence of glucocorticoid receptor (GR) binding
motif but a higher fraction of GATA-related binding sites
in the peaks derived from K562 GR ChIP-exo, compared to
other cell types such as IMR90 and U2OS. They speculated
a cell-specific tethering recruitment of GR onto DNA se-
quences in K562 (14). In addition, Cohen et al. have recently
described that variations in CEBPB motif were context-
dependent (15). In their study, they described higher preser-
vation of canonical CEBPB motif in the cell-type indepen-
dent context compared to cell-type specific contexts. Hence,
a straightforward analysis of DNA binding motif derived
from ChIP-based methods may not be sufficient to predict
the actual TF binding site. For some TFs, additional sys-
tematic analyses are required to precisely delineate the TF
recognition site, taking the presence of co-factors into ac-
count. Overall, cooperative binding of multiple TFs in the
CRM enables high binding specificity and fine-tuning in
gene regulation (18). Hence, it is of great importance to
understand TF binding behaviours collectively instead of
individually.

Integrated with DNA methylation profiles, our recently
launched cell-specific TF-binding profile database, Meth-
Motif, has clearly showed that cell context influences TFBS
at both sequence and epigenetic levels (19). DNA methy-
lation information is therefore an additional layer to take
into consideration for a comprehensive TF binding analy-
sis, in order to delineate precise DNA sequence affinity and
uncover TF function in a specific cell context. Neverthe-
less, although numerous cistrome databases and tools fa-
cilitating the prediction of CRMs and cofactors of a TF
of interest are available (20–22), an environment connect-
ing a large compendium of TF binding sites and respective
DNA methylation profiles is still lacking. To fill this gap,
we have established a large collection of standard ChIP-seq
and Whole Genome Bisulfite Sequencing (WGBS) datasets
derived from the GTRD repository (23) and MethMotif
database (19). This information can be browsed, analyzed
and compared to other data sources via TFregulomeR, an
R package that contains processing and visualization func-
tions. To our knowledge, TFregulomeR is the first platform
enabling the query and the analysis of context-specific TF
modules according to cell type, tissue origin and disease
state. This is also the first computational tool allowing a
standard integration of TF module binding sites with their
respective DNA methylation profiles (Supplementary Ta-
ble S1). In essence, TFregulomeR facilitates the analysis
of context-specific transcription regulation and fosters our
understanding of regulatory network-dependent TF func-
tions.

MATERIALS AND METHODS

Cistrome and methylome data in TFregulomeR

TF motif position weight matrices (PWM) recorded in the
TFregulomeR compendium are compiled from the Meth-
Motif database (19) and GTRD (23). MethMotif includes a
comprehensive collection of TF motifs complemented with
methylation information. Briefly, relying on the Irrepro-
ducibility Discovery Rate (IDR) (24), ChIP-seq peaks were
standardly called using MACS2 (25), followed by a motif de
novo enrichment analysis with MEME-ChIP (11), focusing
on regions defined by a ±100 bp window around peak sum-
mits. Subsequently, DNA methylation profiles were inferred
using whole genome bisulfite sequencing (WGBS) datasets
in all peak regions and predicted TFBSs.

GTRD is a large collection of publicly available ChIP-
seq experiments which serves as an important complemen-
tary source to enlarge the PWM pool in TFregulomeR.
ChIP-seq peaks identified by MACS peak caller from
the untreated experiments were downloaded from GTRD
database. Following the same pipeline in the MethMotif,
centrally enriched TF motifs were localized using MEME-
ChIP with the default settings in a 200 bp range surround-
ing peak centres. In TFregulomeR compendium, highly and
centrally enriched motifs were selected and compared with
the existing TF-binding profile databases, such as JASPAR
(26) and HOCOMOCO (27). In some ChIP-seq, the signif-
icantly enriched motifs did not correspond to the motifs of
ChIP’ed TFs. Among 1468 PWM records in TFregulomeR,
we identified 91 motifs different from those reported in TF-
binding profile databases. Furthermore, 136 motif matri-
ces were not recorded for their corresponding TFs in these
databases. In order to verify that these 227 motifs do not de-
rive from the use of a specific motif discovery algorithm, we
used another motif discovery tool, HOMER (28), based on
different algorithm hypergeometric enrichment, to perform
an additional de novo motif discovery. The motifs obtained
with HOMER were compared with those obtained with
MEME-ChIP, and their similarities were measured by nor-
malized Pearson correlation coefficient using the compare-
matrices function in RSAT (29) with the formula: Ncor =
cor * w / w smaller, where cor is raw Pearson correlation
coefficient, w is the alignment width of two matrices from
MEME-ChIP and HOMER (the minimum value of w was
set as 5), and w smaller is the width of smaller motifs from
MEME-ChIP and HOMER.

Each PWM has its own unique ID, which
keeps track of the source, species, cell type and
TF (e.g. ‘MM1 HSA K562 CEBPB’ and ‘GTRD-
EXP010975 HSA Ishikawa CEBPB’). Since TF binding
preferences are obviously dependent on the context, all
obtained TFBS datasets have been thoroughly annotated
in terms of species, organ, sample type, cell or tissue origin,
disease state and experiment source.

TFregulomeR functionalities

TFregulomeR provides functionalities to ease data access,
retrieval, integration and analysis. These functionalities en-
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able browsing of curated datasets in TFregulomeR data
compendium (dataBrowser), plotting motif logo (or Meth-
Motif logo if DNA methylation is available, plotLogo),
loading peak regions (loadPeaks), exporting motif PWM
and DNA methylation matrix (exportMMPFM), obtain-
ing context in/dependent peaks (commonPeaks and exclu-
sivePeaks), forming a peak intersection matrix for cofactor
and TF interaction studies (intersectPeakMatrix), generat-
ing a cofactor report automatically along with DNA methy-
lation and read enrichment scores (cofactorReport), profil-
ing TFBS distribution (motifDistrib), annotating peak loca-
tions and functions (genomeAnnotate and greatAnnotate),
and converting the PWM in TFregulomeR into an R object
compatible with TFBSTools (toTFBSTools) (30). All these
functionalities are implemented in a public R-library pack-
age (https://github.com/benoukraflab/TFregulomeR).

S4 classes in TFregulomeR

In order to efficiently store multiple data sets, several S4
classes have been created for different purposes. MethMotif
object is a basic class to record TFBS PWM model and,
if available, DNA methylation levels. During the context
independent peak analysis (commonPeaks function), Com-
monPeaksMM has been designed to store the percentage of
common peaks, common peak regions, the DNA methyla-
tion profiles in a ±100 bp window around common peak
summits and the de novo generated MethMotif object rep-
resenting the TFBS features in the common peak regions.
Similarly, the class ExclusivePeaksMM has been designed
for the output of context dependent peak analysis (ex-
clusivePeaks function). Moreover, the IntersectPeakMatrix
class was built to store the outputs of pair-wise peak inter-
section analyses (intersectPeakMatrix function), including
the inherited MethMotif object, percentage of intersected
peaks, as well as DNA methylation states and read enrich-
ment scores in the overlapping peak regions.

Common and exclusive peak analysis

TFregulomeR provides functionalities to perform context
in/dependent peak analysis. The peak sets can be directly
derived from the TFregulomeR compendium or customized
by users. The context in/dependent peak regions are re-
turned, together with de novo generated Motif logos (Meth-
Motif logos if DNA methylation is available) and DNA
methylation states. Particularly, the logo-plotting function
in TFregulomeR uses the package ggseqlogo (31), to gener-
ate high quality (Meth)Motif logos in vector format.

Peak intersection matrix analysis for cofactor and TF inter-
action study

TFregulomeR allows the users to conduct pair-wise com-
parison analyses between collections of peak sets. This func-
tionality enables the profiling of TF cofactors or interac-
tome in a cell type. Two lists of peak sets, X and Y (x and
y peak sets in peak list X and Y respectively), are input to
form x × y intersect matrix table, with each table cell denot-
ing pair-wise comparison from list X and Y. The peak sets in
both lists can be obtained from the TFregulomeR data com-
pendium or self-provided. An intersection matrix denoting

the percentage of the intersected peak for each pair of peak
sets will be returned, and simultaneously the de novo gener-
ated (Meth)Motif logo as well as DNA methylation status
and read enrichment scores for each set of intersected peaks
will be also approachable.

Peak genomic location and functional annotations

We incorporated generic functions to annotate peak ge-
nomic locations and functions to enable TFregulomeR to
serve as an all-inclusive TFBS toolbox. Location annota-
tion follows the order starting from promoter, transcrip-
tion termination site (TTS), 5′ untranslated region (UTR)
exon, 3′ UTR exon, intron to intergenic region. By de-
fault, the promoter is defined in the region from 1000 bp
upstream to and 100bp downstream of the transcription
start site (TSS), while TTS covers from 100 bp upstream
to and 1000 bp downstream of the actual TTS. These two
settings can be easily modified by users. Functional annota-
tion was achieved using rGREAT, a GREAT analysis API
(32). Since GREAT server doesn’t support hg38 assembly,
liftOver has been implemented to automatically perform a
genomic conversion from hg38 to hg19. Both annotation
functions generate intuitive HTML reports.

TFregulomeR compendium maintenance

MethMotif and GTRD are the main sources for the
cistrome and methylome data in TFregulomeR com-
pendium. Since its launch, MethMotif database has been
updated actively, while GTRD has been also regularly
maintained. In the future, TF motif records along with
DNA methylation in TFregulomeR will be updated accord-
ingly to offer up-to-date PWM collections for the research
community.

RESULTS

TFregulomeR, a comprehensive toolbox to study TF binding
dynamics

The study of TF context-specific binding preferences heav-
ily relies on comprehensive knowledge on TF cell-specific
binding sites and chromatin status (1,19,33). We thus com-
piled this information by integrating PWM collections de-
rived from GTRD, a database encompassing publicly avail-
able ChIP-seq data (23), with the resources from our Meth-
Motif database, which couples TFBSs with DNA methyla-
tion status (19) (Figure 1A). To date, our compendium in-
cludes 1468 PWMs and, in contrast to current available re-
sources, we manually curated our datasets in order to match
cistrome with methylome data in a cell type-specific fashion,
and organized them according to cell type, tissue of origin,
disease state and experiment source (Table 1 and Supple-
mentary Table S1).

It is important to note that, in some ChIP-seq datasets,
the highly enriched motif (labeled as binding motif of the
TF of interest in TFregulomeR compendium) does not nec-
essarily resemble the canonical motif of the ChIP’ed TF.
This is presumably due to the fact that in the given cell type,
the ChIP’ed TF is mostly recruited by other TFs instead of
directly binding to DNA, and/or that the high presence of
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Figure 1. TFregulomeR key functionalities. (A) TFregulomeR consists of a toolbox linked to a large timely updated compendium of motif PWMs along
with DNA methylation derived from MethMotif and GTRD. Users are also allowed to include their own genomic regions (e.g. ChIP-seq peaks) in TFreg-
ulomeR for peak meta-analysis. The PWM annotations recorded in TFregulomeR data compendium have been manually curated regarding species, organ,
sample type, cell or tissue origin, disease state and data source. (B) TFregulomeR supports query of context in/dependent cistrome, TF interactome as well
as cis-regulatory module (CRM). (C) Its functionalities allow (i) the study of TF co-factors along with DNA methylation and read enrichments, (ii) the
characterization of context-specific binding sites and (iii) context-specific genomic and functional annotations. (D) Furthermore, TFregulomeR enables
a direct conversion of newly generated PWM models to objects compatible with TFBSTools. These PWM models can also be exported to MEME and
TRANSFAC formatted files for further downstream analyses using third-party resources such as RSAT.
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Table 1. TFBSs in TFregulomeR compendium

Item Count

PWM 1468
Unique TF 415
Species human
Organ stem cell, blood and lymph, connective tissue, colorectum, brain, bone, stomach, prostate, breast,

pancreas, skin, kidney, lung, eye, esophagus, heart, muscle, uterus, spleen, cervix, testis, liver,
adrenal gland, neck and mouth, pleura, ovary, thymus, fallopian, vagina

Sample type primary cells, cell line, tissue
Cell or tissue 414
Disease state normal, tumor, Simpson Golabi Behmel syndrome, progeria, metaplasia, unknown, immortalized,

premetastatic
Source GTRD, MethMotif

some non-targeted motifs repeatedly observed across ChIP-
seq datasets, also known as ‘zinger’ motifs, mask the mo-
tif enrichment of the ChIP’ed TF (34). In TFregulomeR
compendium, we identified 91 PWMs different from TF-
binding profile databases, such as JASPAR (26) and HOCO
MOCO (27). In order to verify that divergent motifs do not
derive from the use of a specific motif discovery algorithm
(in our case MEME-ChIP based on an expectation maxi-
mization approach), we used another algorithm, HOMER
(based on hypergeometric enrichment), to perform an ad-
ditional de novo motif discovery. Motif consistency details
have been compiled into the TFregulomeR compendium,
and divergent PWMs were flagged to allow users to inter-
pret their results with caution.

TFregulomeR compendium is accessible via an effec-
tive R-package application program interface (API), called
TFregulomeR. This API offers the required functions for
easy data access, analysis and integration in pipelines.
TFregulomeR facilitates (i) the recognition of context
in/dependent TF binding locations (cistrome); (ii) the iden-
tification of context-specific TF-interacting partners (inter-
actome); and (iii) the characterization of functionally ac-
tive cis-regulatory modules (CRM) (Figure 1B). As demon-
strated in the next sections, TFBS context-comparative
analysis enables the identification of novel TFBS features, in
particular the characterization of co-factors and their influ-
ence on TF functions. TFregulomeR also includes generic
functionalities such as TFBS genomic annotation, which
can be used to locate the genomic binding site landscapes
of a TF of interest depending on cell type and/or partner
combination (Figure 1C right). Interestingly, algorithms
implemented in our toolbox allow the detection and seg-
regation of multiple cofactor-derived motifs present in the
PWM directly computed from whole genome context (Fig-
ure 1C, middle, cf. detailed hereafter). In contrast to all
available tools (20–22), by integrating DNA methylome
datasets, TFregulomeR uniquely emphasizes the impact of
DNA modifications in TF-module recruitment and reveals
how DNA methylation can affect TF functions (Figure 1C,
left and Supplementary Table S1). At last, objects generated
by the TFregulomeR package are compatible with third-
party packages such as TFBSTools, which provides means
for TFBS matrix handling and motif scanning (30), and
rGREAT, for ontology analysis (32). These TFregulomeR
objects can be also exported for downstream analyses using
external servers like RSAT (29) (Figure 1D). In the follow-
ing case studies, we focus on CEBPB, MAFF and ATF3

binding data to demonstrate the capacity of TFregulomeR
to reveal co-factor partnership and perform motif deconvo-
lution.

Deconvolution of transcription factor motifs: the case of
CEBPB

Using an in vitro HT-SELEX approach, CEBPB specific
binding sequence has been characterized as a dimeric mo-
tif ATTGCGCAAT (35), where CAAT (or its reverse com-
plement ATTG) is the well-known DNA-binding motif of
all CEBP family members, and the CG dinucleotide is the
spacer between two coupled binding sites (36). However,
among the 16 CEBPB ChIP-seq experiments recorded in
the TFregulomeR compendium, only a few shows a mo-
tif enrichment fully consistent with the in vitro canoni-
cal sequence. Instead, most returned motif logos display
a conserved ATTG/CAAT half site along with the other
degenerated half motif that looks like a combination of
ATTG/CAAT and TCA/TGA, suggesting that the mo-
tif is composed by a mixture of homodimer and het-
erodimer binding sites (Supplementary Figure S1). Actu-
ally, this phenomenon has already been described previ-
ously for another CEBP family member. Indeed, Cai et al.
have shown that CEBPA binds novel genomic sites when it
dimerizes with AP-1 family members, which recognize the
motif TCA/TGA (37). More recently, by analyzing high-
throughput sequencing datasets, Cohen et al. have extended
this observation to CEBPB. In their study, they compared
the CEBPB binding sites across six cell types and showed
a higher occurrence of canonical CEBPB motif in the cell-
type shared regions compared to the cell-type specific loci
(15). TFregulomeR enabled the systematic validation of this
phenomenon in a bigger cohort encompassing 16 cell types
and, more importantly, provided a possible explanation for
motif variations depending on context.

After loading all binding sites present in our data com-
pendium, we segregated the K562 CEBPB binding loci ac-
cording to the number of cell types where they are enriched.
This analysis shows that less cell-specific are the K562
CEBPB peaks, less is the number of peaks, but higher is the
read enrichment within these loci (Supplementary Figure
S2A). In line with the study by Cohen et al., analysis with
TFregulomeR showed an increased enrichment of the ho-
modimer motif (ATTGCGCAAT) when the K562 CEBPB
peaks were less cell-specific, while a more degenerate motif
was over-represented across the K562-specific binding loci
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(Figure 2A and Supplementary Figure S2B). Such obser-
vation was not unique to K562 cells but a widespread phe-
nomenon across all other 15 cell types (Supplementary Fig-
ure S3).

This case study further illustrates how TFregulomeR
can be used to provide an explanation of the observa-
tions by Cohen et al. in terms of partnership and DNA
methylation levels. Indeed, one function implemented in
TFregulomeR has been designed for the characterization
of co-factors within the sub-ensembles of binding sites (e.g.
K562 CEBPB peaks shared by different number of cell
types, Figure 2B). Among all other 130 TFs profiled in
K562, CEBPD and ATF4 were characterized as the two
main recurrent CEBPB cofactors. Indeed, near than 37%
of CEBPB binding sites were co-occupied by CEBPD, a
member of CEBP family, and a third of CEBPB binding
sites were co-localized with ATF4, a member of activat-
ing transcription factor (ATF) family (Figure 2C). Inter-
estingly, the TFregulomeR context-specific analysis clearly
shows that CEBPD is overrepresented in CEBPB binding
loci shared across all cell types, whereas ATF4 co-binds
with CEBPB mainly in K562-specific CEBPB binding sites
(Figure 2B). To further confirm the connection between the
TCA motif and the ATF4 co-dimer, we computed the DNA
binding site motif of the intersection of ATF4 and CEBPB
binding loci within the K562-specific CEBPB peaks. As ex-
pected, the resulting motif logo is a clear CEBPB-ATF4
heterodimer (Figure 2D, left). Therefore, this observation
suggests that ATF4 is not merely a CEBPB co-factor, but
rather dimerizes with CEBPB, thereby corroborating with
a previous study by Jolma et al. using an in vitro approach
called consecutive affinity-purification systematic evolution
of ligands by exponential enrichment (CAP-SELEX) (38).
A similar analysis was performed on the K562 shared
CEBPB peaks and the prevalence of the homodimer-type
motif (ATTGCGCAAT) could be explained by the fact
that, within these loci, CEBPB principally dimerizes with
CEBPD, which shares the same recognition DNA bind-
ing site (ATTG/CAAT) (39) (Figure 2D, right). In addi-
tion, our TFregulomeR analysis also pointed to a link be-
tween CEBPB cofactors and the dinucleotide spacer com-
position. Remarkably, the homodimer-type motifs (CEBP-
CEBP) were clearly enriched with CG dinucleotide in the
spacers, while CA dinucleotides were more present in het-
erodimer motifs. Consequently, CEBP-CEBP binding loci
are more subjected to DNA methylation compared to het-
erodimer binding sites. More precisely, TFregulomeR re-
vealed a considerable portion of hypermethylated CGs as-
sociated with CEBPB-CEBPD partnership in the cell type-
independent regions, whereas the CGs around CEBPB-
ATF4 co-binding regions were prone to hypomethylation
(Figure 2C). In addition to connecting DNA methylation
profiles to context-specific TF binding sites, the TFregu-
lomeR compendium also includes read enrichment scores
to assess the binding strength of a given TF in the context
of different partners or DNA methylation profiles (Figure
2C).

The CEBPB TFBS motif is currently described as a mix-
ture of CEBPB and other cofactors in all main TF-binding
profile databases, including JASPAR (26), HOCOMOCO
(27) and MethMotif (19) (Figure 2E). Here, we have il-

lustrated how TFregulomeR can improve the accuracy of
PWM through the deconvolution of TFBS motifs and the
characterization of TF partners influencing DNA binding
sites at the sequence and methylation levels.

Deconvolution of binding partners: the case of MAFF

TFregulomeR compendium records MAFF ChIP-
seq experiments from three different cell types:
K562, HeLa-S3 and HepG2, extracted from the
MethMotif database (respective accession number:
MM1 HSA K562 MAFF, MM1 HSA HeLa-S3 MAFF
and MM1 HSA HepG2 MAFF). Surprisingly, MAFF
displays distinct cell-specific DNA binding preferences in
terms of DNA sequences and DNA methylation levels.
The inconsistence of MAFF binding motifs is also present
in other TF-binding profile databases (Figure 3A). These
binding sequences are composed by a common TCAGCA
motif and a TGA trinucleotide, which is highly enriched
in K562, moderately present in HeLa-S3, but absent in
HepG2 (Figure 3A). This observation was accentuated
when we focused only on MAFF cell-specific peaks (Figure
3B). The differences of motif enrichments across these
three cell types were also associated with varied DNA
methylation states. We observed a more hypomethylated
DNA profile within the MAFF peaks in K562, while a
considerable portion of CGs in HepG2 MAFF peaks were
hypermethylated (Figure 3A and B).

As for our CEBPB analysis, we used TFregulomeR to
search for co-factors associated with these DNA sequence
variations and methylation differences across cell types.
Throughout MAFF peaks specific to K562 cells, TFregu-
lomeR highlighted several co-factors that were highly co-
bound with MAFF, including Nuclear Factor Erythroid
2 (NFE2) and Erythroid 2 Like 2 (NFE2L2), which are
known to bind an AP1-like binding site (TGA/TCA) and
thus explain the presence of this motif in MAFF’s K562
peaks (Figure 3C). In contrast, NFE2L2 was not detected
as MAFF’s co-factor across HeLa-S3 and HepG2 cell lines
(NFE2 ChIP-seq data are not available for the two cell
lines), supporting the fact that the TGA trinucleotide en-
richment in K562 MAFF binding loci coincides with the
presence of NFE2 and NFE2L2 (Figure 3C). Altogether,
these observations suggest that the TGA sub-motif in K562
context actually correspond to NFE2 and NFE2L2 bind-
ing sites. To further validate this hypothesis, we generated
the motif logo of MAFF K562-specific binding sites with-
out the binding loci shared with NFE2 and NFE2L2, which
encompass 517 regions. As expected, the resulting pattern
displays a significant decrease in TGA trinucleotide enrich-
ment (Figure 3D).

Although the MAFF-NFE2 binding complex has been
already described in the JAPSAR database (accession num-
ber: MA0501.1, Figure 3A), here we showed how TFregu-
lomeR is able to systematically discover cell type-specific in-
teractions between MAFF and other TFs influencing DNA
binding motifs. Furthermore, TFregulomeR adds an epige-
netic layer to the binding site information, thereby enhanc-
ing our understanding of the role of TF complexes in gene
regulation and chromatin modeling. In this particular ex-
ample, we observed a correlation between the number of
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Figure 2. Analysis of binding partners and motifs in K562 context-specific CEBPB peaks. (A) Among 7914 CEBPB peaks in K562, 9.11% of peaks were
unique to K562 while 1.14% of peaks were shared across all cell types. MethMotif logos display the motif enrichments along with DNA methylation
states in K562 shared and exclusive CEBPB peaks. The blue, orange and green bars stacked above motif logo denote the numbers of CpGs homogenously
unmethylated, homogenously methylated and heterogeneously methylated, respectively. (B) The heatmap shows the cofactor binding profiles in 16 sub-
ensembles of K562 CEBPB peaks segregated according to their number of cell types where they are enriched. Each row represents a TF, each column
denotes K562 CEBPB sub-ensemble peaks, and color intensity denotes a specified TF co-binding percentage within a given sub-ensemble of peaks. Here,
the TF with co-binding percentages <5% in all 16 sub-ensembles were excluded, and the heatmap underwent row-wise hierarchical clustering based on
Euclidean distance. (C) These three plots show, from the top to the bottom, the co-binding percentages, methylated CG percentages within the co-binding
peaks, as well as ChIP-seq read enrichment scores in the co-binding peaks for CEBPB-CEBPD (blue) and CEBPB-ATF4 combinations (red) across 16 K562
CEBPB sub-ensembles. In the middle plot, the overall methylated CG percentages across 16 K562 CEBPB sub-ensembles are further reported in black.
(D) The MethMotif logos display sequence preferences together with DNA methylation states enriched in the K562 shared CEBPB peaks with/without
CEBPD co-binding loci, and in the K562 exclusive CEBPB peaks with/without ATF4 co-binding loci. (E) CEBPB motif logos extracted from different
TF-binding profile databases.
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Figure 3. Analysis of MAFF binding partners and motifs in cell-specific peak regions. (A) MAFF motif logos from different TF-binding profile databases.
(B) The MethMotif logos display the MAFF motif enrichments along with the DNA methylation states in cell-specific peak regions of three cell types.
The blue, orange and green bars stacked above motif logo denote the numbers of CGs homogenously unmethylated, homogenously methylated and
heterogeneously methylated respectively. (C) MAFF co-binding factors in the cell-specific regions are reported in a heatmap for each cell type (shades
of red). DNA methylation states for the co-factors with more than 10% co-binding percentage are also portrayed in the regions (±100 bp around peak
summits) co-bound by MAFF with those factors as the heatmaps (shades of blue). In this DNA methylation heatmap, each row represents a co-factor,
while each column shows a methylation score interval. The color intensity implies the percentage of CGs with methylation scores in the given interval.
(D) The MethMotif logo on the left displays sequence and DNA methylation preferences in the K562 MAFF cell-specific binding regions without the
co-occurrences of NFE2 and NFE2L2. The right sides of this panel show the co-factor binding profiles in the regions, together with the DNA methylation
for each co-factor with more than 10% co-binding percentage.
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MAFF co-factors and DNA methylation states across dif-
ferent cell types. Indeed, in hypomethylated K562 unique
MAFF loci, we found evidence for being co-bound by mul-
tiple co-factors, in contrast with HepG2 exclusive MAFF
peaks, characterized by a great portion of hypermethylated
CG where only MAFK emerged as a co-factor (Figure 3C).
Our analysis shows that MAFF is able to bind methylated
DNA only in the absence of NFE2 and NFE2L2 (Figure 3),
suggesting distinct regulatory roles of MAFF conferred by
the presence of NFE2 and NFE2L2.

Change of TF functions depending on partnership

As we illustrated previously (19), a TF could play distinct
roles in different cell types. Moreover, the high occupancy
of heterotypic dimers across cell type-specific CEBPB bind-
ing loci encouraged us to speculate that TF cell-specific
regulatory roles may be partly attributed to binding part-
ners. Indeed, we observed the distinct ontologies of tar-
geted genes between CEBPB-CEBPD and CEBPB-ATF4 in
K562 cells (Supplementary Figure S4). It is known that the
collaborative interaction of TF across CRM contributes to
the context-specific gene expression (40). Here, we focus on
the case of ATF3 to demonstrate the capability of TFreg-
ulomeR to reveal partner-dependent roles across different
cell types. In HCT116 and K562, the bound loci were highly
enriched with a typical AP-1 type motif (TGA[G|C]TCA),
while a different motif was extracted from GM12878, H1-
hESC and HepG2 binding sites (GTCACGTG, Figure 4A).
The differences at the sequence level are associated with
different cofactors. JUN and FOSL1 were the predomi-
nant ATF3 co-factors in HCT116 and K562 cells, while
USF proteins were found to be the main ATF3 partners
in GM12878, H1-hESC and HepG2 (Figure 4B). Like-
wise, different partnerships lead to different binding loci.
ATF3–USF complex was more inclined to occupy gene pro-
moter regions, compared to the ATF3–JUN/FOSL1 com-
plex (Figure 4B). Interestingly, ∼70% of the regions bound
by the ATF3–USF complex were conserved with other cell
types (Figure 4C), suggesting a shared function. More pre-
cisely, 704 ATF3–USF bound loci shared across all cell
types were targeting genes involved in lysosome organiza-
tion, intracellular transport and transferrin transport (Fig-
ure 4D). In contrast, the majority of binding sites bound by
the ATF3–JUN/FOSL1 in HCT116 and K562 cells were
cell-type specific (Figure 4C), and revealed a distinct set of
biological functions (Figure 4D).

DISCUSSION

The dynamics of chromatin accessibility (41), epigenetic
states (42) and TF cooperativity (43) across different cell
types shape the genomic binding preference of a TF. Hence,
it is logical to study TF genomic regulatory properties in a
cell type-specific manner. In recent years, important efforts
were devoted to investigate cell-specific TF binding activi-
ties (19,44–45). ENCODE-DREAM in vivo Transcription
Factor Binding Site Prediction Challenge was established
to promote the development and assessment of cell type-
specific TF binding prediction tools, which were expected
to replace time-consuming and expensive biological exper-
iments such as ChIP-seq (44). However, performances of

the state-of-the-art approaches proved to be limited, imply-
ing the necessity of further experiments to infer high con-
fidence TFBS. Furthermore, a recent study has highlighted
cell specificity in TFBS by introducing a modified protein
binding microarray protocol, nextPBM (45). Interestingly,
in this new protocol, the replacement of purified or over-
expressed proteins with cell nuclear extracts enabled the
consideration of cell-specific TF post-translational modifi-
cations and cooperativity. Nonetheless, nextPBM overlooks
other important factors influencing TF binding, such as
DNA methylation (46). Hence, an approach based on an
in vivo and cell-specific framework is necessary to fully de-
cipher TF genomic preferences. Furthermore, the collab-
orative interaction among TF is a common phenomenon
across CRM at the genome scale, and such heterotypic com-
binations impact TF recognized DNA sequences. A system-
atic protein–protein interaction (PPI) analysis has provided
compelling evidence for the widely spread heterodimeriza-
tion across the bZIP family, which results in diversity of mo-
tif patterns (36). Therefore, it is appealing to study TF bind-
ing behaviors collectively instead of individually. In this re-
spect, TFregulomeR enables combinatorial analyses of TF
genomic binding propensities in an in vivo and cell-specific
fashion.

TFregulomeR is linked to a large and up-to-date pool
of TF cistrome derived from ChIP-seq experiments, along
with the methylome landscape inferred from WGBS. TFreg-
ulomeR includes efficient and ready-to-use functionalities
to ease the access, integration and analysis of large TFBS
datasets. These manually curated datasets and designed
functionalities together constitute a comprehensive toolbox
to study CRM and TF interactions. We showed that the
heterotypic dimerization of CEBPB with other bZIP fam-
ily members leads to a degenerate (half-site) binding motif,
which overall obscures the genome-wide motif pattern. Sim-
ilarly, MAFF partners impact on the binding motifs rec-
ognized in different cell types. Interestingly, while TFregu-
lomeR performs motif deconvolution by analyzing the TF-
BSs remaining in the context-specific peak regions, the sig-
nificance of such TFBSs enrichment within the correspond-
ing peak subsets was confirmed by de novo motif discov-
ery for all our case studies (Supplementary Table S2). Users
can therefore verify the statistical relevance of these novel
TFregulomeR-generated motifs by exporting peak subsets
and performing de novo motif discovery. Furthermore, sim-
ilar to the case studies focusing on CEBPB and MAFF,
in which ATF4 and NFE2 motifs were recovered in K562
CEBPB and MAFF peaks respectively, we were also able
to identify CEBPB and MAFF motifs in K562 ATF4 and
NFE2 peaks respectively (Supplementary Figure S5).

Even though efforts have been made to separate closely
positioned TFBSs, approaches to effectively deconvolute
motifs are still lacking. Although CSDeconv discriminates
TFBSs separated as few as 40 bp (47), this spacer resolu-
tion apparently fails to distinguish two motifs closely po-
sitioned (e.g. MAFF and NFE2 motifs are only 1 bp dis-
tance in K562) or even to dissect heterodimer binding mo-
tifs (e.g. ATF4-CEBPB heterodimer in K562). Other mo-
tif discovery approaches, such as Maskminent (48), which
enriches adjacent cofactor motifs by masking primary TF
binding sites or vice versa, and dyad analysis (49), which
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Figure 4. Analysis of ATF3 binding partners and functions. (A) Five MethMotif logos display the ATF3 sequence and DNA methylation preferences in
five different cell types. The blue, orange and green bars stacked above motif logo denote the numbers of CGs homogenously unmethylated, homogenously
methylated and heterogeneously methylated respectively. (B) The heatmaps represent the cofactor profiles around all ATF3 binding sites across five cell
types. Furthermore, for each cell type, a pie chart illustrates the genomic locations of ATF3 binding loci, while the density plot profiles the distribution of
distances between ATF3 peak summits and the nearest gene promoters. (C) The Venn diagrams denote the overlaps of ATF3 binding sites across different
cell types. (D) The bubble plots show the enriched ontologies of targeted genes by different ATF3 binding subsets. The bubble size is proportional to the
adjusted p-value, while the color intensity represents the number of targeted genes. Due to the long lists of gene ontology results from ATF3 binding loci
in HCT116 and K562 cells, some informative terms were selected.
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identifies two motifs separated by a spacer, cannot dissect
a degenerate part in a motif from a mixture of homo- and
hetero-dimers. This may be due to spacer conservation (for
example, we found high-level of CG dinucleotide in CEBP-
CEBP spacers), a feature that is ignored in current deconvo-
lution algorithms, which expect spacers as ‘non-relevant’ se-
quences. Altogether, in vivo cistrome data empowers TFreg-
ulomeR as a reliable tool to dissect different TFBSs from
a generally characterized PWM matrix. Several strategies
could be adopted to achieve motif deconvolution using
TFregulomeR. Firstly, it has been shown that main leucine
zipper factors usually directly dimerize with their partners.
Therefore, motif deconvolution can be done by selecting
the subsets of sequence binding sites exclusive to the TFs
and their partners (Supplementary Figure S5), or by remov-
ing overlapped peaks by co-factors (Figure 3D). Secondly,
given the fact that TF partners can be cell specific, motif
deconvolution thus can be done by selecting the subsets of
sequence binding sites from cell specific peaks of a TF of
interest (Figures 2 and 3B).

In addition, the methylome datasets encompassed by
TFregulomeR revealed distinct DNA methylation patterns
in different deconvoluted motifs, suggesting an interesting
correlation between binding partners and DNA methyla-
tion states for both CEBPB and MAFF (Figures 2 and 3).
The inclusion of generic annotation functions completes
TFregulomeR toolbox and thereby ease the study of TF
functions depending on partner combinations. Indeed, us-
ing TFregulomeR, we could characterize the cooperation of
ATF3 with different TF partners depending on cell types, as
well as the corresponding functions of targeted genes (Fig-
ure 4). Observed differences between target genes of a TF
depending on its partner across cell types could be due to
the distinct chromatin accessibility patterns.

In conclusion, combining a valuable compendium of
cistrome and methylome data with effective computational
tools, the current TFregulomeR release constitutes a com-
prehensive resource to characterize TF context-specific
binding partners and enriched motifs, uniquely taking into
account DNA methylation.

DATA AVAILABILITY

The TFregulomeR package (encoded in R) and a user man-
ual are available in GitHub, together with all the scripts used
in the reported analyses (https://github.com/benoukraflab/
TFregulomeR).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Berenguer,C., Brumbaugh,J., Stadhouders,R., Segura-Morales,C.,
Gut,M. et al. (2018) Transcription factors drive Tet2-Mediated
enhancer demethylation to reprogram cell fate. Cell Stem Cell, 23,
727–741.

43. Thanos,D. and Maniatis,T. (1995) Virus induction of human IFN�
gene expression requires the assembly of an enhanceosome. Cell, 83,
1091–1100.

44. Keilwagen,J., Posch,S. and Grau,J. (2019) Accurate prediction of cell
type-specific transcription factor binding. Genome Biol., 20, 9.

45. Mohaghegh,N., Bray,D., Keenan,J., Penvose,A., Andrilenas,K.K.,
Ramlall,V. and Siggers,T. (2019) NextPBM: a platform to study
cell-specific transcription factor binding and cooperativity. Nucleic
Acids Res., 47, e31.

46. Yin,Y., Morgunova,E., Jolma,A., Kaasinen,E., Sahu,B.,
Khund-Sayeed,S., Das,P.K., Kivioja,T., Dave,K., Zhong,F. et al.
(2017) Impact of cytosine methylation on DNA binding specificities
of human transcription factors. Science, 356, eaaj2239.

47. Lun,D.S., Sherrid,A., Weiner,B., Sherman,D.R. and Galagan,J.E.
(2009) A blind deconvolution approach to high-resolution mapping
of transcription factor binding sites from ChIP-seq data. Genome
Biol., 10, R142.

48. Lu,R., Mucaki,E.J. and Rogan,P.K. (2017) Discovery and validation
of information theory-based transcription factor and cofactor
binding site motifs. Nucleic Acids Res., 45, e27.

49. van Helden,J., Rios,A.F. and Collado-Vides,J. (2000) Discovering
regulatory elements in non-coding sequences by analysis of spaced
dyads. Nucleic Acids Res., 28, 1808–1818.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article-abstract/doi/10.1093/nar/gkz1088/5637590 by U

N
AM

 D
ireccion G

eneral de Bibliotecas user on 26 N
ovem

ber 2019


