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Flickering as an early warning signal
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Abstract Most work on generic early warning signals for
critical transitions focuses on indicators of the phenomenon
of critical slowing down that precedes a range of catastroph-
ic bifurcation points. However, in highly stochastic environ-
ments, systems will tend to shift to alternative basins of
attraction already far from such bifurcation points. In fact,
strong perturbations (noise) may cause the system to “flick-
er” between the basins of attraction of the system’s alterna-
tive states. As a result, under such noisy conditions, critical
slowing down is not relevant, and one would expect its
related generic leading indicators to fail, signaling an
impending transition. Here, we systematically explore how
flickering may be detected and interpreted as a signal of an
emerging alternative attractor. We show that—although the
two mechanisms differ—flickering may often be reflected in
rising variance, lag-1 autocorrelation and skewness in ways
that resemble the effects of critical slowing down. In partic-
ular, we demonstrate how the probability distribution of a
flickering system can be used to map potential alternative
attractors and their resilience. Thus, while flickering sys-
tems differ in many ways from the classical image of critical
transitions, changes in their dynamics may carry valuable
information about upcoming major changes.

Keywords Resilience . Critical transition . Critical slowing
down . Alternative stable states . Regime shift . Stochasticity

Introduction

Theory predicts that, close to tipping points, the return to
equilibrium upon small perturbations will slow down
(Wissel 1984; Strogatz 1994; Scheffer et al. 2009). In sto-
chastic environments, this will tend to be reflected in higher
temporal autocorrelation and variance of the fluctuations in
the state of a system (Held and Kleinen 2004; Carpenter and
Brock 2006; Scheffer et al. 2009). However, this picture of a
critically slowed down world prior to a transition could be
the exception rather than the rule. As most systems are
embedded in highly stochastic environments, they may start
to “flicker” between the basins of attraction of their potential
alternative states far before bifurcation points at which crit-
ical transitions occur. Under such noisy conditions, one
should therefore fail to observe the gradual climax of critical
slowing down and would not expect its related generic
leading indicators, signaling the approaching transition
(Contamin and Ellison 2009; Scheffer et al. 2009; Carpenter
and Brock 2010; Perretti and Munch 2012).

Indeed, many studies that provide empirical evidence of
critical slowing down have been derived from controlled
experiments in the lab where a system was studied under
almost noise-free conditions. In these cases, a system was
slowly pushed towards a tipping point, and critical slowing
down was identified either directly by perturbation experi-
ments (Veraart et al. 2012, Fig. 1a), or indirectly by estimat-
ing generic indicators, such as increased variance and
autocorrelation, while comparing them to a control treat-
ment (Drake and Griffen 2010, Fig. 1b). Such noise-free
time series, however, are rare when derived from empirical
observations or from field experiments. For example, paleo-
reconstructed isotope data of abrupt shifts between warming
and cooling episodes in the past 60,00 years, known as
Dansgaard–Oeschgaard events (DO event, Dansgaard et al.
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1993), have been hypothesized to represent stochastically
induced jumps between alternative attractors (Ganopolski and
Rahmstorf 2002; Ditlevsen and Johnsen 2010, Fig. 1c). In
addition, a whole-lake manipulation experiment (Carpenter et
al. 2011) suggested that planktivorous fish abundance
exhibited short excursions to the alternative state a year before
the final shift to piscivore dominance (Fig. 1d).

Although such behavior (Fig. 1c, d) would prevent the
detection of critical slowing before an approaching transition
(Scheffer et al. 2009), it will also affect indicators such as
temporal autocorrelation and variance. Not surprisingly, vari-
ance will rise as flickering occurs (Carpenter and Brock 2006;
Carpenter et al. 2008; Wang et al. 2012). However, temporal
autocorrelation may either increase (Dakos et al. 2012a;
Lenton et al. 2012) or decrease when resolution of the time
series is low (Wang et al. 2012). Moreover, under extremely
stochastic conditions or even chaotic dynamics (Hastings and
Wysham 2010), neither variance nor autocorrelation may
signal approaching transitions (Contamin and Ellison 2009;
Cimatoribus et al. 2012; Perretti and Munch 2012). In a recent
summary of available methods for detecting critical transitions
in time series, Dakos et al. (2012a) have demonstrated that, for
highly stochastic systems, upcoming transitions may be better

detected using nonparametric models (Carpenter and Brock
2011) or threshold time-varying autoregressive models (Ives
and Dakos 2012). Overall, however, the consequences of
flickering on the detection of critical transitions are still not
completely resolved.

Here, we systematically explore how flickering affects
the performance of generic early warning signals for critical
transitions. We compare variance, autocorrelation, and
skewness estimated in situations with flickering versus sit-
uations with critical slowing down prior to a transition. In
particular, we show how patterns in generic indicators and
probability distributions shaped by flickering can be suitable
search images when looking for fingerprints of approaching
critical transitions in ecological time series derived from
observations in the field.

Methods

Model description

We used a minimal model that describes the shift of a lake
from an oligotrophic to a eutrophic state (Carpenter et al.
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Fig. 1 Typical time series that provided empirical evidence of critical
slowing down are derived from controlled experiments under a prac-
tically noise-free setting: a critical slowing down was identified direct-
ly by a perturbation experiment in a plankton chemostat (Veraart et al.
2012); b generic indicators, variance, autocorrelation and skewness,
were compared to a control treatment in a zooplankton experiment
(Drake and Griffen 2010). Instead, empirical observations or field

experiments appear more like sudden occasional jumps between alter-
native attractors: c paleo-reconstructed isotope data of abrupt shifts
between warming and cooling episodes in the past 60,00 years, known
as Dansgaard–Oeschgaard events (Svensson et al. 2008); d induced
trophic cascade in a lake experiment (Carpenter et al. 2011) exhibited
rapid short excursions of planktivore fish to the alternative state before
the shift
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1999). The model has been previously used to study critical
transitions and their precursors (Guttal and Jayaprakash
2008; Dakos et al. 2010). In the model (Eq. 1), phosphorus
dynamics P are determined by gains from the surround-
ing catchment with input rate α and by losses to the lake
sediment and flushing with rate s. At low phosphorus
input rates, the lake remains oligotrophic, but when input
loading increases, phosphorus is recycled strongly from
the sediment back to the water column with maximum
rate r and the lake may suddenly become eutrophic.
Thus, the model reads:

dP ¼ a � sP þ r
P8

P8 þ 1

� �
dt þ σPdW ð1Þ

where to the deterministic processes, we also added
stochastic disturbances in the form of white noise dW
with magnitude σ. In particular, we scaled this magnitude
to the actual level of phosphorus concentration P. This
means that disturbances to phosphorus dynamics were
proportional to the levels of phosphorus in the lake, an
assumption that reflects a real case scenario. This formu-
lation also does not specify the sources of disturbances
(be either through input to the lake, recycling or purely
unrelated stochastic events). Technically, this multiplica-
tive noise prevents the model from reaching unrealistic
negative phosphorus concentrations due to a strong noise
regime and increases the probability of the system to
escape to the alternative attractor even at parameter
ranges far from the transition where the same level of
additive noise would not suffice to incur flickering.

Analysis

We explored two flickering scenarios, and we compared
them to a critical slowing down scenario. In the critical
slowing down scenario, environmental conditions are grad-
ually changing while the noise magnitude σ is constant and
relatively weak. We defined weak noise as the level of noise
that makes the system (a) to fluctuate around its determin-
istic oligotrophic equilibrium (red line in Fig. 2, upper left
panel) and (b) to shift to the alternative attractor only very
close to the actual fold bifurcation.

Contrary to the critical slowing down case, under flick-
ering, noise is strong enough to allow the system occasion-
ally to escape to the alternative basin of attraction (Fig. 2,
upper middle panel). At the same time, the likelihood of
occasional excursions to the alternative basin and back in-
creases because environmental conditions gradually change
and cause the basin of attraction of the low equilibrium to
shrink towards the transition (Fig. 2b). In addition, the
chances of shifting from the high to the low alternative state
also increase as environmental conditions change, due to the

fact that disturbances are proportional to the actual levels of P
in the lake. Therefore, we refer to this “flickering” behavior as
driver-mediated flickering. Under this scenario, the shift to the
alternative attractor no longer coincides with the threshold of
the fold bifurcation (Guttal and Jayaprakash 2007).

Noise-mediated flickering is another way of incurring
occasional jumps between alternative basins of attraction.
In the noise-mediated flickering, though, such jumps are
caused only by the perturbations themselves, while environ-
mental conditions remain constant (Fig. 2, upper right pan-
el). This means that it is not the driver that changes the
stability of the current basin of attraction to allow the system
to cross the boundary of the two basins. Instead, for a static
basin of attraction, it is the increasing noise magnitude that
can tip the system back and forth between the basins of the
two alternative attractors (Fig. 2, c1).

In all three scenarios, we derived generic leading indica-
tors from (a) stationary distributions and (b) transient simu-
lation experiments. Stationary distribution experiments
allow the estimation of the indicators along a gradient of
constant conditions. For each level of environmental condi-
tions, we simulated the model after discarding transients so
that the sampled time series are deviations around the un-
derlying deterministic equilibrium for the particular level of
environmental conditions. Transient simulation experiments
represent a more realistic situation of time series measured
in the field: We changed environmental conditions at the
same rate with time, and we monitored the resulting time
series of P concentration in the lake. Every time step in the
time series corresponds to a different environmental level,
which represents a realistic scenario where transients are
inevitable.

Stationary distributions experiments

In the critical slowing down and driver-mediated flickering
scenarios, we estimated stationary distributions in a 100-
step gradient of the driver (phosphorus input rate α) ranging
from 0.25 (where the oligotrophic state is the only possible
equilibrium) to 0.75 (where the eutrophic state is the only
possible equilibrium). At each level of the driver, we ran the
model for 250 time steps. We discarded the first 50 time
steps to minimize transient effects, and we used the last 200
points to calculate leading indicators: standard deviation,
autocorrelation at-lag-1, and skewness. We used a noise
intensity σ of 0.05 (weak) for the critical slowing down
scenario and σ of 0.25 (strong) for the driver-mediated
flickering scenario.

In the noise-mediated flickering scenario, as we were
interested in flickering caused by noise and not by a shrink-
ing attraction basin, we chose a specific level of phosphorus
input halfway in the bistability region (α=0.52528), and at
that level, we estimated leading indicators for a 100-step
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gradient of noise intensity σ ranging from 0.05 to 0.5. Like
in the driver-mediated scenario, we discarded the first 50
time steps to minimize transient effects and used only the
last 200 points to calculate the indicators. For all three
scenarios, we obtained stationary distributions by repeating
experiments for 200 Monte Carlo simulations. We reported
results as 5, 50, and 95 percentiles for the estimates of the
indicators. To check whether the phosphorus input rate at
which we performed the analysis affects our results, we re-
peated the above experiment before the bistability region
(phosphorus input rate α=0.25) and at the onset of bistability
(α=0.3887).

Transient simulations experiments

In the transient simulations experiments, we changed con-
ditions at the same rate with time. In the critical slowing

down and driver-mediated scenarios, this meant that we
started simulations from the oligotrophic state, and we mon-
itored phosphorus concentration as the input rate progres-
sively increased from 0.25 to 0.75 in 2,000 time steps. In the
noise-mediated scenario, we started simulations from the
oligotrophic state for the same three above-mentioned levels
of phosphorus input rate, and without discarding transients,
we monitored phosphorus concentration as the noise inten-
sity progressively increased from 0.05 to 0.5 in 2,000 time
steps. In all scenarios, we repeated the same experiment 200
times, and we reported results as 5, 50, and 95 percentiles of
the leading indicators. We estimated leading indicators with-
in sliding windows of 200 points. Although it has been
shown that trends in critical slowing down indicators de-
rived from moving windows depend upon detrending and
window-size choices (Dakos et al. 2008, 2012a; Thompson
and Sieber 2010; Lenton et al. 2012), we chose a relative
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Fig. 2 Critical slowing down
vs flickering. In the critical
slowing down scenario, the
system state stays within the
basin of attraction of the current
state under weak disturbances
(upper left panel), while in the
flickering scenarios, stronger
disturbances can push the
system state across the basin of
attraction when the basin of
attraction shrinks (driver-
mediated flickering middle
panel) or when noise intensity
increases (noise-mediated
flickering left panel). An
example of a typical time series
derived from transient
simulations under critical
slowing down (a), driver-
mediated flickering (b), and
noise-mediated flickering (c)
scenarios. Generic leading
indicators [variance measured
as standard deviation (a1, b1,
c1), autocorrelation at-lag-1
(AR1, a2, b2, c2), and
skewness (a3, b3, c3)] were
estimated for each scenario
within sliding windows of 200
points across the time series
(solid red lines denote stable
equilibria, dotted red lines
unstable equilibria, and red
dash dot lines the threshold at
which the critical transition to
the eutrophic state would occur
in the deterministic case)
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small window (10 % of time series) that enables to track the
slow change of the driver or noise magnitude, even though it
may produce more erratic patterns in the trends of the in-
dicators (Lenton et al. 2012).

We also used potential analysis (Livina et al. 2010) to
reconstruct the potential of the system using the time series
only from transient simulations. The idea is based on the
stationary probability distribution ps(x) of a stochastic sys-
tem f(x) (Horsthemke and Lefever 2006):

psðxÞ ¼ N exp �2
V ðxÞ
σ2

� �
ð2Þ

where N is a normalization constant, σ the noise intensity,
and V(x) the probabilistic potential given by:

V ðxÞ ¼ �
Zx

f ðzÞ
g2ðzÞdz� n

σ2

2
ln gðxÞ

2
4

3
5 ð3Þ

From Eq. 3, it is clear that, if noise is additive (g(x)=1),
the probabilistic potential simply coincides with the deter-
ministic potential of the system and is approximated by
V(x)∝−log p(x) (Ridolfi et al. 2011). We estimated the
probabilistic potential by fitting a sliding smoothing kernel
function along a time series (Hirota et al. 2011).

All simulations and statistical analyses were performed in
MATLAB (v. 7.0.1) and by following the Early Warning
Signals Toolbox (http://www.early-warning-signals.org/).
We solved the stochastic equations using an Euler–
Murayama integration method with Ito calculus in 36 inte-
gration steps.

Results

Typically, in a time series where a driver pushed the lake to a
eutrophic state (Fig. 2a), critical slowing down caused stan-
dard deviation to smoothly rise (Fig. 2, a1), autocorrelation
at-lag-1 to increase prior to the transition (Fig. 2, a2), and
skewness to peak at the shift (Fig. 2, a3). Comparing these
trends to flickering (Fig. 2b, c), the evolution of the in-
dicators estimated within the sliding window was less
smooth. Only standard deviation increased slowly before
flickering for both driver-mediated (Fig. 2, b1) and noise-
mediated scenarios (Fig. 2c1), whereas autocorrelation and
skewness jumped to high values after the system started to
flicker (Fig. 2, b2, b3, c2, c3).

At first sight, little information could be derived when
looking at the indicators estimated within sliding windows
from single examples of flickering time series (Fig. 2). The
irregular trends, however, become clearer when looking at
total results from the 200 Monte Carlo realizations (Fig. 3).
In the case of the driver-mediated flickering, an increase in
phosphorus input rate up to the start of flickering (around

800 time steps) caused a clear rise in standard deviation
(Fig. 3, b1), while no apparent change was observed in
autocorrelation at-lag-1 (Fig. 3, b2) or in skewness (Fig. 3,
b3). After the onset of flickering, the strongest rise in all
indicators was documented (Fig. 3, b1–b3). Following the
steep rise, all indicators declined mainly due to the disap-
pearance of the lower attractor. The system was not anymore
trapped in two distinct basins but wandered around the
upper equilibrium: Thus, standard deviation retreated to a
lower value, autocorrelation plummeted, and skewness
reached values close to 0 (no asymmetry in distributions).
Interestingly, skewness peaked and decreased, while vari-
ance kept rising similarly to spatial variance and skewness
found by Guttal & Jayaprakash (2009), which suggests that
combinations of patterns in the indicators may be more
informative for signaling flickering than critical slowing
down. Indeed, in the critical slowing down scenario, all
indicators clearly increased prior to the transition (Fig. 3,
a1–a3). Only autocorrelation decreased at the beginning of
the time series due to the increasing noise within the sliding
window. This decrease, though, was not observed in the
case of the stationary distribution experiments (Fig. A1a2,
A2a2, see Electronic Supplementary Material, ESM 1).

Similarly, in the case of the noise-mediated flickering
standard deviation gradually increased (Fig. 3, c1), autocor-
relation stayed almost constant (Fig. 3, c2), and skewness
rose (Fig. 3, c3) for low noise magnitudes. An increase in
autocorrelation was observed only when noise was strong
enough to push the system towards the unstable equilibrium
or even the alternative basin of attraction (around time step
500 when noise magnitude reached 0.16). After this point,
the system was clearly spending most of the time between
the two basins of attraction and all indicators rose strongly.
However, as noise increased further, only autocorrelation
decreased (Fig. 3, c2). Skewness remained at a high level
(Fig. 3, c3), and standard deviation kept increasing (Fig. 3,
c1) following, as expected, the increasing noise magnitude.
To a great extent, similar trends were obtained from the
stationary distributions (ESM 1 Fig. A1c, A2c).

While it was difficult to infer much over the proximity to
a transition from the indicators of a single transient in a
flickering system (Fig. 2b, c), potential analysis proved
more informative. The reconstructed potentials consistently
mapped the dominant underlying attractors (Fig. 4). In both
flickering scenarios, potential analysis accurately identified
the oligotrophic attractor. At the same time, it provided
evidence that the system was visiting the emerging alterna-
tive state as shown by the probability distributions comput-
ed along the transient time series (Fig. 4). Although the high
number of unstable and stable attractors implied a high
number of false potential attractors—especially in the
noise-mediated scenario (Fig. 4b, c)—the mapping con-
firmed the existence of at least one alternative eutrophic
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state. This, however, was possible only when the system
was well into the bistability region. Instead, when outside
the bistability region, the reconstructed potential could not
clearly map the existence of the alternative attractor (ESM 1
Fig. A3, A4).

Discussion

Our stationary and transient replicate simulation experi-
ments show that trends in the often used leading
indicators (temporal autocorrelation and variance)
caused by flickering may not be that different from
trends caused by critical slowing down. This confirms
that these metrics are indeed broad-spectrum indicators
that signal whether an important change may be
approaching (Scheffer et al. 2012a). On the other hand,
it implies that the leading indicators may not be easily
used to differentiate between critical slowing down and
flickering.

This appears to be especially true for variance, even when
estimated within moving windows in single time series
regardless of how flickering was induced (Fig. 2). Thus, in
flickering time series, contrary to the smooth trends of the
indicators under critical slowing down, only trends in
variance—and not the erratic and steep changes in autocor-
relation and skewness—can most likely be used as indica-
tors of upcoming transitions. Although these findings are in
line with earlier observations on the limited detection of
critical transitions under strong stochastic conditions
(Contamin and Ellison 2009; Perretti and Munch 2012), at
the same time, they imply that there may be a range in
indicator patterns produced by either critical slowing down,
flickering, or extreme stochastic regimes.

Nonetheless, perhaps the most distinct feature of flicker-
ing is the fact that it allows us to detect alternative attractors
and reconstruct a glimpse of their basins of attraction from
probability densities of states (Livina et al. 2010; Dakos et
al. 2012a; Scheffer et al. 2012a). By contrast critical slowing
down merely signals the loss of resilience in the current
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attractor. In both driver- and noise-mediated scenarios,
reconstructing the potential from probability distributions
along our simulated time series was an effective way for
mapping the presence and location of alternative attractors.
However, the identification of the alternative attractors in
this case was facilitated by our a priori knowledge of the two
underlying equilibria in the model we studied. In real case
scenarios, it will be more challenging to determine the
appearance of alternative attractors. Overall, combining
reconstructed potentials with divergent patterns in the ge-
neric leading indicators may be the best way to detect
flickering. For example, decreasing autocorrelation and
skewness and increasing variance accompanied by weak
bimodality in a low-resolution paleo-record prior to eutro-
phication of the Chinese lake Erhai has been interpreted as
evidence for flickering preceding the ultimate transition of
the lake to a eutrophic state (Wang et al. 2012).

Prospect

Clearly, our understanding of these phenomena is still far
from complete and perhaps overly simplistic. Deviations
from the patterns presented here will be affected by the
exact model and the way flickering is induced. For example,
in Dakos et al. (2012a,b), flickering takes place in a model
that shifts from a high to a low alternative state and shows
that the directionality of the shift may have an effect on the
patterns in the generic indicators. Given that trends in lead-
ing indicators have been shown to depend on the way noise
affects dynamics in a system (Brock and Carpenter 2012;

Dakos et al. 2012b; Perreti and Munch 2012), it is worth-
while to explore the stochastic conditions at which our
conclusions about flickering and its symptoms may fail.
For instance, if we assume correlated stochastic conditions
affecting model dynamics (Perreti and Munch 2012), it may
be difficult to disentangle the effects on autocorrelation as a
resilience indicator caused by autocorrelated noise from the
effects caused by strong magnitude noise, as we applied
here. In such cases, alternative approaches may be useful,
like fitting jump-drift-diffusion nonparametric models
(Carpenter and Brock 2011) or including an autocorrelated
noise term in threshold autoregressive models (Ives and
Dakos 2012). Moreover, in addition to externally imposed
perturbations, many systems have internal mechanisms that
cause a tendency to display cyclic or chaotic dynamics. These
dynamics typically interact with external stochasticity to pro-
duce a wide range of behaviors (e.g., Wiesenfeld 1993;
Bjornstad et al. 2001; Ganopolski and Rahmstorf 2002). For
example, although increased variance associated to flickering
has been recently identified in high-frequency oscillating time
series in patients before the end of an epileptic seizure
(Kramer et al. 2012), we are still far from understanding
how this range of dynamics will be reflected in leading in-
dicators and reconstructed potentials as an alternative basin of
attraction is emerging. Lastly, it has been suggested that one
could interpret spatial data from a flickering perspective and in
that way identify alternative attractors in space as well (Hirota
et al. 2011; Scheffer et al. 2012b). Although much remains to
be explored here, some preliminary analysis in a spatially
extended model with flickering shows that flickering is
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Fig. 4 Reconstructed potential based on a transient simulation under
critical slowing down (a), driver-mediated flickering (b), and noise-
mediated flickering (c) scenarios. Dark gray-blue corresponds to
deeper points in the potential landscape, while light gray-blue marks
high regions. The lowest values are local minima of the reconstructed
potential representing stable attractors (gray dots), while the highest
values correspond to local maxima and represent unstable attractors [or
the boundaries between alternative basins of the identified local min-
ima (black dots)]. In the critical slowing scenario (a), the two

alternative attractors are clearly identified and match closely the deter-
ministic equilibria (solid red lines), as well as the onset of the transi-
tion. In the driver-mediated flickering scenario, the reconstructed
potential quite accurately maps the underlying attractors (b), whereas
in the noise-mediated flickering, strong noise creates multiple local
minima that are however not persistent (c) (solid red lines denote stable
equilibria; dotted red lines mark unstable equilibria of the deterministic
system)
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actually suppressed in space (ESM 1 Online Resource 2). We
found that, in strongly connected environments, strong distur-
bances do not lead to local flickering, but to a synchronized
behavior of shifting. Local flickering was possible only for
weakly connected systems that lead to gradual transitions
(ESM Fig. A6). These results indicate that it is not only the
level of disturbance but also the strength of connectivity that
determine the behavior of the system (van Nes and Scheffer
2005). The resulting patterns from the leading indicators,
however, are very similar to what has been observed in spatial
systems with only critical slowing down (Dakos et al. 2011).
At the same time, data from the same flickering spatial sys-
tems may reveal clearer trends in the leading indicators and in
the reconstructed potential than trends from flickering time
series. These observations imply that it may be easier than
expected to detect critical transitions or alternative attractors in
space even under strong stochastic regimes.

In conclusion, the distinction between flickering and
critical slowing down is clear in theory, but reality may
confront us with a more continuous and complex range of
situations. Nonetheless, changes in temporal autocorrela-
tion, variance, and skewness may be useful to alert us to a
wide range of phenomena associated to potential upcoming
transitions. For flickering systems in particular, exploring
probability densities and reconstructing stability landscapes
may be the best way for identifying upcoming attractors and
detecting approaching transitions.
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