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Abstract— Transmission rates in epidemic outbreaks
vary over time depending on the societal and government
response to infections and mortality data, as evidenced
in the course of the COVID-19 pandemic. Following a
mean field approach that models individuals like particles
in a well-mixed solution, I derive a modified SIR model
in which the contacts between susceptible and infected
population are reduced based on the known infection
levels. This approach yields a time-varying reproduction
number that is continuously adjusted, based on infection
information through a negative-feedback term that is simi-
lar to Michaelis-Menten and Hill functions in chemistry
and molecular biology. This feedback-adjustment of the
transmission rate causes a structural reduction in infection
peak, and simulations indicate that such reduction persists
even in the presence of information delays. Simulations also
show that a distancing policy based on infection data may
substantially extend the duration of an epidemic. The main
advantage of this model is that it adds a single parameter to
the original SIR, making it useful to illustrate the effects of
social distancing enforced based on awareness of infections.

I. INTRODUCTION

Compartment models are the simplest and most
established approach to modeling epidemic outbreaks.
Like mean-field models in physics and chemical reac-
tion networks governed by the law of mass action,
compartment models assume a well-mixed population in
which individuals have average interaction and recovery
patterns. The population is binned in categories, and
at a minimum include those susceptible to disease (S),
those who become infected (I), and those who recover
and/or die (R), which are included in the well-known
SIR model by Kermack and McKendrick [12].

Taking inspiration from models widely adopted in
molecular biology, I examine a variant of the SIR model
in which the transmission rate is not constant, rather
it changes based on information of current infections
through a Hill-type function: the number of reported
infections causes a reduction of the transmission rate,
thereby reducing the likelihood of additional infections.
Because infection information is available to policy-
makers and to a large number of individuals through
apps or websites that track contagion information [5],

[18], [17], it is reasonable (not to mention desirable) to
assume that individuals react to knowledge of infections
by self-isolating, using personal protective equipment,
or increasing hygiene standards [4]. Because this model
includes an explicit feedback loop, I will refer to it as
feedback SIR (fSIR).

Similar models have been adopted to model how
awareness of infections modifies social habits and trans-
mission rates. For instance, Bootsma and Ferguson
included a Hill-type term to capture the effects of
awareness of deaths (rather than infections) on social
interactions within the 1918 influenza epidemic in the
United States [2]. Previous models in the literature have
examined how infection awareness reduces the suscep-
tible fraction of the population [14], [7], in particular
by increasing vaccination rates [3]. The reduction of
transmission and contact rates achieved by awareness
programs has also been evaluated within SIS models [9],
[19]. I am not aware of studies focusing on the direct
effects of infection information on epidemic transmis-
sion rates, a scenario that has become plausible in the
COVID-19 pandemic thanks to the widespread social
connectivity and rapid access to media and news reports
of most individuals [5], [18]. The question of whether
testing information can be used successfully to regu-
late distancing policies is important in the COVID-19
pandemic, and it has been recently investigated consider-
ing a time-varying control function of transmission rate
that depends on the number of daily tests [4].

Analysis and simulations of the fSIR model show
that a reduction of the transmission rate that depends
on the level of detected infections has the following
effects: 1) the peak size of the infection is structurally
reduced, and this peak mitigation persists even in the
presence of infection information delay of several days;
2) the peak of infections is moderately delayed; 3) the
duration of the epidemic, measured as the time for which
infections persist, may significantly increase. Further, the
fSIR model can capture historical infection data for the
COVID-19 pandemic.

The main contribution of this report is that it repur-
poses a well-known epidemic model to capture soci-
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etal responses to epidemic information with only one
parameter in addition to the reproduction number. The
fSIR model may be helpful as an illustrative yet rigor-
ous framework to examine alternative scenarios for the
epidemic spread depending on the strictness of social
distancing. Further, this model supports social distancing
guidelines as it clearly shows that the infection curve can
be flattened without postponing the peak, a misleading
(and demotivating) scenario suggested by models that
use a constant transmission rate. At the same time, the
model highlights that policies relying exclusively on
infection data to regulate social distancing can majorly
extend the time required to reach a disease-free equilib-
rium [4].

II. BACKGROUND: QUALITATIVE ANALYSIS OF THE
NON-DIMENSIONAL SIR MODEL

The SIR model is the simplest compartment model
that can qualitatively capture the evolution of an
epidemic at the population level. The model assumes
well-mixed population that remains constant (without
birth and death processes) and has two key parameters:
1) the transmission coefficient β, which depends on
the social interactions among individuals (average daily
contacts) and on the viral infection characteristics; the
transmission rate is generally thought as the product of
the average frequency of contacts between infected and
susceptible and the likelihood that infection occurs given
a contact; 2) the recovery coefficient γ, which captures
the average time for recovery (or death) of infected
individuals. The inverse 1/γ is also known as duration
of infectiousness. Assuming the total population is N ,
the original SIR model is:

dS

dt
= −β S

N
I, (1)

dI

dt
= β

S

N
I − γI, (2)

dR

dt
= γI. (3)

Because r = N − i − s, the model can be reduced
to two ODEs. Further, the variables can be normalized
by the total population setting s = S/N , i = I/N
(and r = R/N ); by rescaling time as τ = tγ, the
SIR model becomes non-dimensional, with a single
coefficientR0 = β/γ, the well known reproduction ratio
or reproduction number [1].

ds

dτ
= −R0si, (4)

di

dτ
= (R0s− 1)i. (5)

It is well-known that the solutions are positive and
satisfy the conservation law s + i + r = 1 [11], and
exact expressions have been computed [10]. If there are

no infected individuals (i0 = 0), the system remains in
the disease-free equilibrium E0 = (s0, 0, 0) because all
derivatives are identically zero. For any initial value of
infections i0 > 0, the solutions s(t) and i(t) are bounded
and evolve in the invariant set P = {s ≤ s0, i ≤ 1, r ≤
1}. This follows from the fact that ds/dτ ≤ 0, so s(τ) ≤
s0, ∀τ ≥ τ0. The solutions and the admissible equilibria
depend on the value of R0 and on the initial value of
the susceptible population s0.

IfR0s0 < 1, the infected population is non-increasing
because di/dτ ≤ 0, thus the epidemic does not start (the
system reaches a disease-free equilibrium Ẽ = (s̃, 0, r̃)).

If R0s0 > 1, then di/dτ initially increases, reaches
a peak when s = scrit = 1/R0 ≤ s0, and finally
decreases to zero. The equilibrium in this case is E =
(s̄, 0, r̄). Because s0 ≤ 1, R0s0 > 1⇒ R0 > 1. For any
positive i0 and R0s0 > 1, the relation between suscepti-
ble and infected can be computed exactly from the ratio
of di/dτ and ds/dτ (directional derivative) [11]:

di

ds
=
R0s− 1

−R0s
= −1 +

1

R0s
⇒ di = −ds+

ds

R0s
.

Integrating we obtain the relation between i(τ) and s(τ):

i(τ) = i0 + s0 − s(τ)− 1

R0
log

s0

s(τ)
. (6)

The peak of infections occurs when s = s∗ = 1/R0

(s = s∗ yields di/dτ = 0). Substituting s∗ we find:

imax = i0 + s0 −
1

R0
(1 + log(s0R0)) , (7)

with log(s0R0) > 0 because s0R0 > 1. From
expression (6), by setting ī = 0, we can also derive
an implicit equation to find the equilibrium value of the
recovered population:

log
s0

s̄
= R0(1− s̄),

which has one positive root (because s̄ < s0 ≤ 1 and
R0 > 1). In other words, the equilibrium susceptible
population is positive (not all the population has become
infected), unless R0 is extremely large.

A. Flattening the curve: a low reproduction number
reduces and delays the infection peak

The SIR model has been used to illustrate how a low
reproduction number R0 (or a low transmission rate
β) has the effect of “flattening the (infection) curve”,
i.e. reducing the infection peak while lengthening the
duration of the epidemic. The simulations in Fig. 1
compare the SIR solutions for values of R0 = 2.5,
which is close to recent estimates for the COVID-19
outbreak [16], and R0 = 1.5. The infection peak is
clearly reduced when R0 = 1.5, however the infection
peak is also significantly delayed.



0 10 20 30

Time (non dimensional)

0

0.2

0.4

0.6

0.8

1
R0  =2.5

Susceptible
Infected
Recovered

0 10 20 30

Time (non dimensional)

0

0.2

0.4

0.6

0.8

1
R0  =1.5

Fig. 1. Illustrative numerical simulations showing the SIR dynamics
for different values of (constatn) transmission rate β. The right plot
illustrates how a lower value of β “flattens the curve” while also
significantly delaying the infection peak. This illustration may be
misleading to the public because the introduction of social distancing
causes the transmission rate β to vary in time. Further, this picture
suggests that social distancing measures may have to be imposed
for a very long time to be effective, but with a time-varying β this
may not be necessary. This manuscript describes an SIR model in
which distancing depends on the (known) infection levels, introducing
feedback that changes the reproduction number as a function of time.

The problem with assuming a low, constant reproduc-
tion number R0 is that it is misleading to the public and
to policymakers. A time-dependent reproduction number
R(τ) captures better a societal response in which disease
awareness, social habits, and government policies may
fluctuate over time. During the COVID-19 epidemic,
enormous research efforts are dedicated to a continuous
estimation and forecasting of the reproduction number
as a function of social distancing measures [1], [15].
Here I report the derivation of a simple candidate model
for R(τ) that is based on a mean field model of social
distancing, and may be helpful for illustrative purposes,
to compare alternative scenarios of collective response,
or to model and compare regional epidemic data.

III. THE FEEDBACK SIR (FSIR) MODEL

Social distancing policies suggested or officially
imposed by government agencies typically depend on
the reported infections or deaths. With fast spread of
information about testing results [5], [18], [17], knowl-
edge of infections may be more helpful in containing
epidemics (the average time to death for COVID-19
patients, for example, is 17 days [20], which means
average lethality information of an epidemic may be
available with a significant delay).

We can model the average effects of social distancing
by thinking about individuals and their interactions as
molecules in a well mixed solution, and using the law of
mass action in chemistry. A contagion may occur when
a susceptible individual (S) and an infected individual
(I) are in spatial proximity for some time (associated
or contact state C); this encounter may then result in
two infected individuals. This can be modeled using the

equivalent reactions:

S + I
ρ+−−⇀↽−−
ρ−

C
φ−−⇀ 2I,

where ρ+ and ρ− are the rates of association and
dissociation of a susceptible and an infected individual,
and we can associate φ with the probability that infection
occurs. The law of mass action yields an ODE for the
density of individuals in the associated state C (the
ODE is written in terms of non-dimensional variables
normalized to the total population, all in lowercase
letters):

dc

dt
= ρ+s · i− (ρ− + φ)c.

Because contacts occur on an hourly or daily basis,
which is much faster than timescale of the epidemic, it is
sensible to assume dc/dt = 0 and derive an expression
for the equilibrium level of associated individuals:

c̄ =
ρ+

ρ− + φ
s · i.

This value of c̄ is intended to represent a dynamic
equilibrium at the population level, so it indicates the
average number of contacts per day. With this definition,
the transmission rate β introduced in model (1) is:

β = φ
ρ+

ρ− + φ
,

where φ is the probability of infection per contact, and
ρ+/(ρ−+φ) is the average number of contacts per day,
a definition consistent with the literature. a The corre-
sponding (non-dimensional) reproduction coefficient can
be computed as earlier R0 = β/γ.

In the presence of infection awareness or policies
that discourage or prevent association of individuals,
the level of individuals in associated state C should
decrease. A sensible “continuum” approximation of this
phenomenon is to model an additional dissociation
process that depends on the known infection levels:

C
ψI−−⇀ S + I

With this model for dissociation, individuals in state c
evolve according to the ODE:

dc

dt
= ρ+s · i− (ρ− + φ)c− ψi · c,

which equilibrates to:

c̄ =

(
ρ+

ρ− + φ

)
1

1 + κi
s · i, κ =

ψ

ρ− + φ
.

aThis definition of β can be verified by using the law of mass action
to write the ODEs of s and i. For example

ds

dt
= −ρ+s · i− ρ−c,

in which c has to be replaced by its equilibrium value c̄.



With this equilibrium value for the average contacts, we
derive a time-varying expression for the reproduction
number that depends on the infection levels:

R(i) = R0
1

1 + κi
. (8)

The coefficient κ is in units of /time/individual (or
fraction of individuals, the equivalent of “copy number”
or molar in chemical reaction networks). Thus R(i) is
non-dimensional like R0.

Expression (8) resembles Michaelis-Menten/Hill
functions in chemical kinetics, and indicates that under
a policy in which social distancing depends on average
on the infection levels, the reproduction number R(i)
decreases as the infection numbers raise. One can think
about the feedback term 1/(1 + κi) as a reduction of
either the duration or frequency of infectious contacts
(social distancing) or of the likelihood of infection
through the use of personal protective equipment, which
effectively reduces the level of infectiousness of a
contact.
R(i) decreases monotonically as a function of i, and

it decreases more steeply for large values of κ, as
illustrated in Fig. 2. The larger κ, the smaller the value of
i that induces a significant reduction in R0 (i.e. “social
distancing” occurs in response to a very small known
infection level). For example, a value of κ = 2 results
in R(i) = R0/2 when i = 0.5; a value of κ = 10 cuts
in half R0 much sooner, when i = 0.1.

0 0.2 0.4 0.6 0.8 1

Fraction of infected population

0

0.2

0.4

0.6

0.8

1

R(t)/R0

=0

=0.5

=1

=2

=5
=10
=50

Fig. 2. The infection-dependent coefficient λ(i) = 1/(1+κi) reduces
the reproduction number (8) for any choice of κ ≥ 0.

With this definition, the non-dimensional fSIR model
is:

ds

dτ
= −R0

1

1 + κi
si = −R(i)si (9)

di

dτ
=

(
R0

1

1 + κi
s− 1

)
i = (R(i)s− 1)i (10)

The coefficient κ models the average population
response to knowledge of current infection numbers, in
relation to typical interaction patterns; this coefficient
could also be used to model the collective “trust” in

infection information. For κ = 0, i.e. there is no reac-
tion/policy, nor trust on infection data, then R(i(τ)) =
R0. (Similarly, if there are no infections and i(τ) = 0,
then for any value of κ we have no change in R(i(τ)) =
R0).

The time varying reproduction number R(i) intro-
duces a negative feedback loop in the epidemic model,
because captures the fact that society decreases interac-
tions in response to an increase of infections, thereby
reducing the reproduction number. The model captures
also the fact that a society is expected to return to typical
interaction patterns when infections are not present.

IV. STRUCTURAL PROPERTIES OF THE FSIR MODEL

A. Analysis of equilibria

The fSIR model (9) inherits the equilibrium properties
of the original SIR model. If i0 = 0 (r0 = 0), the system
remain at the disease-free equilibrium E0 = (s0, 0, 0)
because all derivatives are identically zero. For any i0 >
0, the solutions are bounded and evolve in the invariant
set P = {s ≤ s0, i ≤ 1, r ≤ 1}. If R0s0 ≤ 1 + κi0, the
infected population is non-increasing because di/dτ ≤
0, the epidemic does not start and the system reaches
the disease-free equilibrium Ẽ = (s̃, 0, r̃). Like in the
SIR model, because s0 ≤ 1, for the epidemic to start it
is necessary that R0 > 1 + κi0.

If R0s0 > 1 + κi0, di/dτ > 0 until the susceptible
population decreases to the value s = scrit = (1 +
κimax)/R0 > R0 at which i(τ) = imax. As the
susceptible population continues to decrease, so does the
infected population and the system reaches the disease-
free equilibrium E = (s̄, 0, r̄).

Proposition 1 Assume R0s0 > 1 + κi0. The disease-
free equilibrium E = (s̄, 0, r̄) is structurally stable.

Proof The Jacobian of the fSIR model is:

J = R0

[
− ī

1+κī
− s̄

(1+κī)
ī

1+κī
s̄

(1+κī)2
− 1
R0

]
. (11)

At the disease-free equilibrium E = (s̄, 0, r̄), J is
identical to the Jacobian of the SIR model:

J0 =

[
0 −s̄
0 R0s̄− 1

]
,

which is a structurally stable matrix (at equilibrium
R0s̄ < 1). �

B. Analysis of the solutions

The peak of infections in the fSIR model is struc-
turally smaller than the infection peak for the SIR model,
for any κ > 0.

Problem 1 The fSIR model (9) with initial conditions
s0, i0, r0 and s0R0 > 1 + κi0 defines an initial value



problem (IVP) with non-negative solutions. We look for
properties of the solutions of this IVP when κ > 0
that hold for any R0 and are therefore structural. These
properties will be contrasted to the limit case κ = 0 that
corresponds to the IVP defined by the SIR model (4). The
solution for κ = 0 as well as its features will be denoted
with the superscript 0 (e.g. i(τ) = i0(τ) if κ = 0).

Proposition 2 In Problem 1, for any R0 and for any
κ > 0, we have:

imax < i0max.

Proof Following the same approach used to derive (7),
the peak of infection for the fSIR model can be estimated
from the directional derivative:

di

ds
= −1 +

1 + κi

R0s
.

We then obtain the infinitesimal expression:

di = −ds+
ds

R0s
+

κ

R0

i ds

s
, (12)

in which the last term cannot be easily integrated, but it
can be replaced by a simpler expression. We note that
dr = idτ , therefore di = −ds− idτ . At the same time
we just showed that:

di = −ds+
(1 + κi)

R0

ds

s
, (13)

which means

idτ =
(1 + κi)

R0

ds

s
.

Rearranging terms, we find that

1

R0

ds

s
= − i

1 + κi
dτ,

which can be substituted in equation (12):

di = −ds+
ds

R0s
− i κi

1 + κi
dτ,

thus we obtain the expression:

i(τ) = s0 + i0 − s+
1

R0
log

s

s0
−
∫ τ

0

i
κi

1 + κi
dσ,

(14)

The infection peak occurs at scrit = (1 + κimax)/R0,
which can be substituted in (14):

imax(τmax) = s0 + i0 −
1 + κimax
R0

+ (15)

+
1

R0
log

(
1 + κimax
R0s0

)
−
∫ τmax

0

i
κi

1 + κi
dσ.

When κ = 0 we recover the original SIR infection
peak expression (7). The difference between the peak
value (15) and the peak when κ = 0 (i0max) is:

imax − i0max = − 1

R0
(κimax − log(1 + κimax))−

−
∫ τmax

0

i
κi

1 + κi
dσ.

Because log(1 +x) < x for any x > 0, and because the
last integral is strictly positive, we conclude that imax <
i0max for any κ > 0. �

Corollary 1 In Problem 1, the time τmax at which the
peak of infection occurs is always larger than the peak
time τ0

max corresponding to κ = 0:

τmax > τ0
max. (16)

Proof We show that dτmax/dκ > 0 for any κ > 0,
which means that the peak time can only increase as
κ increases. First, recall that s(τmax) = scrit = (1 +
κimax)/R0. Then:

ds(τ)

dκ |τ=τmax
=

κ

R0

dimax
dκ

Using the chain rule ds/dκ = (ds/dτ)(dτ/dκ). At τ =
τmax, ds/dτ = −imax, therefore:

dτmax
dκ

= − κ

imaxR0

dimax
dκ

From Proposition 2, we know that dimax/dκ < 0 and
we conclude that dτmax/dκ > 0. �

Corollary 2 In Problem 1, the solution s(τ) is always
lower bounded by the solution s0(τ). In particular the
equilibrium satisfies s̄ > s̄0.

Proof First note that ds/dτ is always negative. Then we
have that:

ds

dτ
= −R0

1

1 + κi
si > −R0s

0i0,

since the function 1
1+κi is strictly less than one for any

positive value of κ and i. Because this inequality holds
for arbitrary values of i, we can invoke the comparison
principle [13]:

ds0

dτ
<
ds

dτ
⇒ s0(τ) < s(τ).

In the limit for τ → ∞, the steady state values satisfy
s̄ > s̄0. �

This proposition shows that, relative to an epidemic
that lacks negative feedback, the fSIR model structurally
settles to a larger susceptible population in the disease-
free equilibrium. As a consequence, the equilibrium
recovered population satisfies r̄ < r̄0.



Corollary 3 The solution i(τ) in Problem 1 is upper
bounded by the solution i0(τ) for 0 < τ < τ0

max, where
τ0
max is the time at which the maximum i0max occurs.

Proof For 0 < τ < τmax we know that di/dτ > 0,
so i(τ) is monotonically increasing for any value of κ
including κ = 0. Due to Proposition 2, imax < i0max
for any value of κ > 0. Due to monotonicity of the
solutions, it must be that i(τ) < i0(τ) for all 0 <
τ < min(τmax, τ

0
max). Because Proposition 1 shows

that τ0
max < τmax for all κ > 0, we conclude that

i(τ) < i0(τ) for all 0 < τ < τ0
max. �

We conclude with a qualitative observation on the
fSIR solutions (Problem 1) when κ is very large, thus
κi � 1. In this case, the fSIR can be approximated by
the linear system:

dŝ

dτ
≈ −R0

κ
ŝ,

dî

dτ
≈ R0

κ
ŝ− î. (17)

The solution î(τ) can be found exactly:

î(τ) = i0e
−τ + s0

R0

κ−R0

(
e−τ − e−

R0
κ τ
)
.

This approximation shows that if R0/κ � 1 the
infection dynamics converge very slowly to the disease
free equilibrium î = 0 (convergence is dominated by the
constant R0/κ).

V. NUMERICAL ANALYSIS

A. Infection-aware distancing reduces the peak of infec-
tion and does not postpone the peak significantly

Fig. 3, top, shows the numerically integrated solution
of the fSIR model (9) with R0 = 2.5 as the parameter κ
is varied. (R0 = 2.5 corresponds to a choice of β = 0.25
and γ = 1/10, i.e. the average time to recovery or death
assumed to be 10 days; for comparison, the estimated
average time to recovery in the COVID-19 epidemic
is about 17 days for hospitalized patients [20]). These
simulations confirm that the peak of infections decreases
with a large κ, relative to the case κ = 0 (SIR without
feedback). Fig. 3, bottom, shows the temporal evolution
of the reproduction number in each simulation in the
top panel: when infections increase, R(τ) decreases and
adjusts to the nominal level (R0 = 2.5) when infections
are not present. These simulations also confirm the
results of Propositions 2, and 1, as the infection peak
is always reduced and delayed: Fig. 4 shows that a
feedback parameter κ = 2 (taken as an illustrative
example) the infection peak size can be reduced by
about 30%, but this also causes a 30% extension of the
time during which more than 2.5% of the population is
infected.
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Fig. 3. Numerically integrated solutions of the fSIR model. Top:
Susceptible (green), infected (red), and recovered (gray) individuals
when the parameter κ is varied (low to high, color shades from dark to
light). Bottom: Evolution of the reproduction number in time computed
from the simulations above; this can be interpreted as a qualitative
measure of the implemented social distancing policies.
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Fig. 4. Left: Peak time versus peak value of infections for different
values of the feedback parameter κ. This plot evidences that the peak
is not delayed as in models where the transmission rate is constant
and low. Right: The duration of infections is longer in the presence
of feedback; here it is measured as the time interval for which the
fraction of infected individuals is larger than 2.5% of the population.



B. Effects of delayed infection awareness

Here I examine whether a delay ∆ in obtaining
infection information can compromise the effects of
feedback. A delay is included in the transmission rate
expression:

ds

dτ
= −R(i)si, R(i) = R0

1

1 + κi(τ −∆)
, (18)

di

dτ
= (R(i)s− 1)i. (19)

For illustrative purposes, I choose a feedback param-
eter κ = 2 that remains fixed in these simulations, with
R0 = 2.5 (β = 0.25 and γ = 1/10). Fig. 5 shows
that a delay of up to 7 days increases the peak by less
than 10%, but a 14 day delay causes a 25% increase
in the peak, offsetting the peak reduction obtained by
introducing feedback (the simulated non-dimensional
delay is divided by the rescaling constant γ = 1/10).
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Fig. 5. Effects of delays on the peak size and duration. Left: Change
in peak size in the presence of delays, relative to the case in which
feedback is present without delay and κ = 2. Right: The amount of
time for which the fraction of infected population exceeds 2.5% is
slightly reduced when delays are between 0 and 14 days.

1) The fSIR model captures current COVID-19 infec-
tion trends: The fSIR model was fitted to COVID-
19 temporal series data for infections, recoveries, and
deaths available from the Johns Hopkins Github repos-
itory [6]. I selected data from six western democracies
(Italy, France, UK, Spain, Germany and the US) with
comparable infection and recovery reporting patterns.
In addition, in these countries strict social distancing
measures were not immediately enforced during the
early stages of the epidemic, thus it is reasonable to use a
compartment model. Further, the reported infections and
deaths in these countries have a similar doubling time
of 2-4 days in the early (exponential) stages [1]. Finally
infection, recovery, and deaths reports are unlikely to
have been systematically manipulated, although there
are substantial differences in the protocols for infection
and post-mortem testing. Because all these countries
enforced social distancing measures at different times
during the local evolution of the pandemic, the fSIR
model should capture these differences in the fitted

parameter κ. Yet, we should keep in mind that the popu-
lation of infected individuals is largely underestimated
(worldwide) due to lack of testing resources.

Fitting results are in Fig. 6. The data were processed
to compute active infections in a given day, and recov-
eries and deaths were summed and consolidated into
the “recovered” compartment. All data were normalized
by country population and thresholded to include only
data collected after infections exceed two per million.
Parameters were fitted with constraints β ∈ [0 0.6],
β ∈ [1/17 1/10], and κ ∈ [0 10 · 103]; in the
fitting score function, the infection prediction error was
assigned a 100-fold penalty relative to the recovery
data, with the expectation that recoveries may not be
accurately reported for non-hospitalized patients; as a
consequence, the fitted model reproduces infection data
much more closely than recovery data. (An SIR model
fits the same data very poorly, as it unrealistically
assumes a constant transmission rate β.)

If the fSIR model is fitted to data scaled by X-fold
(i.e. infections and recoveries are believed to be X-times
larger than reported), the fitted κ qualitatively scales
by a factor 1/X , while changes in fitted β and γ are
negligible.

The fitted value of κ can be interpreted as the inverse
of the infections observed when the reproduction number
is half its initial value. Thus, low fitted values of
κ indicate that a country enacted infection-dependent
social distancing late in the epidemic (higher infection
numbers). Unsurprisingly, among the countries consid-
ered here the highest κ is fitted for Germany, and the
lowest for the UK and the US. The fact that overall the
model fits poorly infection data from Germany points
to the fact that their management of R(t) may not be
based on mere infection numbers, and may have been
substantially different from other countries from the very
initial stages, resulting in lower infection levels and
lower mortality.

The data fitting reported here has largely an illus-
trative purpose, and is not meant to make predictions.
However, from this exercise it is clear that a protocol of
social distancing based on infection awareness (enforce
distancing when infections are high, relax distancing
when infections decrease) does reduce the peak of
infections, but it can also considerably lengthen the
duration of the epidemic as shown by the linear approx-
imation (17) and by simulations in Fig. 5. With this
in mind, in Fig. 7 we show a projection of infections
for Spain and Italy based on the fitted fSIR parameters.
Although the peak of infections appears near, infection
numbers may remain roughly constant for years to
come, consistently with the observations made on the
fSIR linear approximation (17). The computed repro-
duction number remains very close or slightly above



one throughout the projected simulation. This may be
or may not be a reasonable societal target, depending
on considerations that balance the sustainability of a
long-term lockdown with the emergence of therapeutic
advances and vaccines that may reduce mortality rates
and improve recovery time, making it possible for
a healthcare system to absorb a bounded number of
infections. Similar predictions highlighting the pitfalls
of relaxing social distancing are put forward by many
models that are more complex and accurate than the one
presented here [15], [8].

VI. CONCLUSION AND DISCUSSION

I have presented the derivation and structural analysis
of a modified SIR model, here named feedback SIR
(fSIR), in which the reproduction number is reduced
as a continuous function of infection levels generating
a negative feedback loop. The model is derived from
first principles assuming a well-mixed population and
assuming individuals reduce their contacts the more
infections are reported, and using a standard time-scale
separation argument the transmission rate function takes
the form of a Michaelis-Menten or Hill function that are
widely adopted in chemistry and biology. This model
requires only one additional parameter to capture the
effects of social distancing, and illustrates the tradeoffs
between reducing the infection peak while maintaining
a short epidemic course.

The reduction of infection peak and other structural
properties of the fSIR model presented here can be
extended to the case of feedback based on death infor-
mation, rather than infections [2]. This is trivial if we
assume a constant mortality rate, thus deaths are linearly
proportional to infections.

A Michaelis-Menten expression modifying transmis-
sion rates in a SEIR model was previously adopted
by Bootsma and Ferguson to model the 1918 influenza
epidemic in the United States [2], in which social inter-
actions were thought to be decreased due to awareness
of death numbers M(t) rather than infections:

λ(t) = β(t)
κm

κm +M(t)

The model by Bootsma and Ferguson and others [14],
[3], [9] introduce coefficient κm as a threshold before
societal reaction (reduction of contact rates), as opposed
to a scaling factor, which I believe is more convenient to
describe a top-down feedback policy. The limit κm →
∞ corresponds to κ = 0 (no feedback) in the model
presented here.

The fSIR model could be modified to assume a time-
varying κ, even with discrete variations, to better capture
enforced lockdown or distancing protocols that drasti-
cally change in time, as recently proposed by Casella [4];
the structural analysis presented here serves however to

clarify that any positive κ would reduce and postpone
the infection peak, as well as extend the epidemic.

Finally, it must be noted that the SIR model is not
suited to capture epidemics with a long incubation time,
a large population of asymptomatic individuals, and
high lethality. For these reasons, many SIR variants
with additional compartments have been developed and
tailored to model specific epidemic outbreaks [2], [8].
We conjecture that structural results similar to those
presented here may hold for other SIR variants modi-
fied to include negative feedback on infection or death
information.

VII. METHODS

Differential equations were integrated with a forward
Euler method in MATLAB using custom scripts, or
using MATLAB’s ode45. Data fitting was done using
MATLAB’s fmincon.
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Fig. 6. The fSIR model parameters β, γ, and κ were fitted to COVID-19 data of active infections as well as recoveries and deaths for six
different countries up to April 25, 2020. Data were obtained from the JHU Github repository [6]. A 100-fold fitting penalty was assigned to
infection data relative to recoveries. The model captures well most infection data with the exception of Germany, which presents the highest
fitted κ indicating a stronger distancing in relation to infection information. Results are discussed in Section V-B.1.
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