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Preface

The motivation of this volume stems from our experience on plant development
using bottom-up system biology approaches, as well as our investigations in several
human health processes. We aim at integrating both types of research experiences
in the hope of contributing to understanding the mechanisms involved in the
emergence and progression of complex degenerative diseases, such as cancer,
diabetes, and atopic dermatitis, among others. These diseases constitute a significant
health problem, consuming considerable parts of the national budgets for health care
in both rich, developed countries and in poorer developing countries.

Shortly after the Human Genome Project, several causal links could be estab-
lished between individual genetic components (mutations, polymorphisms) and
diseases with a simple genetic basis. These stories of success opened the promise
that more complex human health conditions, such as chronic degenerative diseases,
could be understood, prevented, and cured with similar approaches. Nonetheless, as
high-throughput data accumulate at the genomic, transcriptomic, proteomic, or even
metabolomic levels, it has become clear that systems-level approaches are required
to complete this task, and that these efforts need to go beyond the simple enumer-
ation of parts, and rather should aim at attaining a more profound understanding
of the structural and functional characteristics of the systems involved, including
details about the underlying interactions. Such systems imply many components
and also nonlinear interactions (for example, positive and negative feedback loops)
and are, therefore, considered to be complex. Further, these nonlinear interactions
among network components are responsible for the emergence of healthy or disease
characteristics and behaviors at different levels of organization (from genetic and
non-genetic molecular components to networks, from these to aggregates of cellular
networks and tissue patterns, and from these to three-dimensional structures, organs,
or functional systems or whole organisms, in interaction with the environment)
that cannot be explained on the basis of detailed functional studies of the isolated
components.

Such genetic approaches and molecular studies, however, in conjunction with
epidemiological data, have been useful to show that a large proportion of the cases
of complex diseases are modulated or elicited by a combination of environmental
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viii Preface

and genetic factors, rather than by single genetic causes. Furthermore, both types
of causal factors should be studied in the context of the complex systems in which
they participate. It remains a challenge to pinpoint the exact contribution of envi-
ronmental and genetic factors in the emergence of complex diseases, to characterize
their early and asymptomatic stages for a better prognosis and prevention, and to
design treatment regimens that successfully revert the symptoms using different
combinations and doses of the available drugs. Despite this complexity, some large-
scale studies are starting to suggest that chronic degenerative diseases may be
modulated by the lifestyle of the individual. Thus, while genetic variation among
individuals can affect susceptibility or propensity to develop complex disease
conditions, these genetic factors are not sufficient to trigger the onset of pathogenic
processes. It remains to be elucidated how exactly so-called lifestyle factors, such as
diet, smoking or drinking habits, and exercise habits, among others, affect disease
emergence, progression, prevention, and reversion.

Up to now, mainly statistical analyses have been used to establish correlations
between environmental lifestyle factors and complex chronic degenerative diseases.
However, systems biology approaches are required to understand the mechanisms
underlying the correlations or statistical trends between lifestyle and complex
disease prevalence, as well as to contribute to a scientific approach to complex
disease prevention and treatment. These allow the analysis of complex diseases
from an integrative, quantitative, and dynamic perspective. The basic building block
of such systems biology approaches are dynamical mathematical models of the
regulatory complex networks of genetic and non-genetic components underlying
complex diseases which are iteratively constructed and validated with experimental
and clinical data. Eventually, such models can be developed for all the implied
levels of organization, including the environmental factors involved and even the
socioeconomic conditions of people. This is an enormous task that we do not pretend
to cover with the volume at hand. Our aim is much more humble and limited,
although we consider the approach summarized here to be a starting point towards
this larger endeavor.

With this volume we propose a systems biology approach to biomedicine that
implies integrating well-curated functional data on molecular genetic components
and interactions, mainly of transcriptional factors and signal transduction pathways,
into dynamical regulatory networks. We present the basic tools, concepts, and
methodologies that are used to construct, validate and analyze these mathematical
models, and illustrate our approach with three biomedical examples. We envision
this approach as a first necessary building block of a larger and multi-level endeavor
in systems biology biomedicine.

The approach put forward here constitutes a first step to explore, with a rigorous
and formal basis that explicitly considers a complex systems approach, why and how
the modulation of the environment or, more broadly, the lifestyle of an individual,
may impact the emergence and progression, and eventually the cure, of complex
diseases.

We sustain that the approach that we propose is a necessary first step to envision
novel approaches in health care policy that may aid diminishing the budgetary
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burden implied by the ever-increasing prevalence of these types of human health
conditions. Also, the proposed approach may help determine the nature of the
socioeconomic structural basis of the human suffering implied in the increase of
these types of diseases in both underdeveloped poor countries and more developed
and rich ones, despite the tremendous technological advances in biomedicine.

Distrito Federal, Mexico María Elena Álvarez-Buylla Roces
Distrito Federal, Mexico Juan Carlos Martínez-García
Cambridge, MA, USA José Dávila-Velderrain
Morelia, Mexico Elisa Domínguez-Hüttinger
Distrito Federal, Mexico Mariana Esther Martínez-Sánchez
February 2018
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Introduction

During the last decades, data on the molecular genetic components implied in
human-health and human-disease have accumulated. This trend has posed the
challenge of creating a systemic approach to integrate and analyze such data, and to
incorporate non-genetic components to further understand the mechanisms involved
in the transition from healthy to pre-clinical and eventually to diseased human
conditions. We are particularly interested in contributing to understanding and
preventing complex chronic degenerative diseases such as cancer. These diseases
remain a public health challenge even in developed, rich countries.

Our aim in this volume is to propose and exemplify a bottom-up approach for
biomedical systems biology. We focus on a network-based modeling approach
to integrate data on genetic and non-genetic data on the complex regulatory
interactions that underlie the transitions of cell states involved in the emergence
and progression of complex diseases. We and other researchers have claimed
that such diseases emerge from the same systems-level mechanisms that underlie
normal developmental processes (i.e., cell differentiation and morphogenesis). Such
systemic mechanisms involve, as a first building block, complex intracellular
regulatory networks and signal transduction mechanisms that mediate cell response
to microenvironmental factors.

We have organized this book in three chapters. In the first one, we summarize
the conceptual framework that guides us. In order to understand the emergence and
progression of complex human diseases, it is crucial to understand how genes map
unto such phenotypic states or conditions. Such mapping necessarily implies the
existence of developmental mechanisms underlying cell differentiation and those
that rule how such cells organize in space and time to form tissues and three-
dimensional organs or structures during morphogenesis. To understand how these
processes are altered in the transition from healthy to preclinical and to diseased
states, rather than focusing on the role of isolated components, we are interested
in a systems biology approach. Top-down systemic approaches have focused on
gathering information on as many components as possible to infer the structure and
function of the systems involved in the disease emergence and progression based on
several sophisticated statistical and large data-set analyses. In contrast, we focus on
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integrating small well-curated are complex intracellular networks that been involved
in the emergence and progression of chronic degenerative diseases.

In this volume, focus on a system level bottom-up approach, where we aim to
determine, which sets of components and to those that have been empirically shown
to correspond to:

• healthy,
• preclinical,
• and diseased conditions.

So our aim is to uncover relatively small although complex networks that map geno-
types unto a space of phenotypical states (healthy, preclinical, and disease). Such
networks are studied using dynamical system models grounded on well-curated
functional data. Such networks also enable us to study the critical restrictions
for recovering time-ordered transition patterns from one state to another, and to
systematically assess the role of perturbations, such as genetic and environmental
risk factors, but also different treatments, on the progression, reversion, and
prevention of the disease process. Our systemic approach to study several aspects
of plant development, as well as some specific medical conditions, serves as a
methodological and theoretical basis to apply our bottom-up systems-level modeling
approach to study the emergence and progression of complex diseases presented in
this volume.

In the first chapter, we use a non-formal language to summarize the key concepts
and approaches to be developed in the rest of the book. We identify what we
refer to as “core regulatory network modules”, which correspond to particularly
thoroughly characterized sets of components and interactions in particular cell
differentiation and/or morphogenetic processes. Several of such processes are
altered during the emergence and progression of particular diseases. We aim at
contributing to understand such transitions, and how they are modulated by genetic
and environmental risk factors or different treatments to converge or deviate from
pathological states.

Based on our own and other researchers’ work we argue that a combination of
Boolean network modeling with differential equations, the latter ones used in cases
where experimental data is available to calibrate quantitative models, can be used in
biomedical bottom-up studies to answer several clinically relevant questions, such
as:

• What is the role of individual genetic or environmental risk factors, alone or in
combination, in triggering the onset of disease?

• What is the most effective strategy to prevent disease progression in high-risk
patient cohorts?

• What is the minimal treatment dose that effectively reverses the disease?

The important and constructive role of stochastic fluctuations in the context
of complex nonlinear systems underlying cell differentiation and morphogenesis
under both healthy and disease conditions is also discussed. To this end, we explain
different formalization and quantification approaches to address the transitions
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among cell types in the context of Waddington’s epigenetic landscape. Hence,
relevant concepts on deterministic as well as stochastic modeling are discussed and
we exemplify how single-cell models can be expanded to models of populations
of cells attaining different fates independently of each other, or in a concerted
manner once cell–cell communication mechanisms are also considered. Likewise,
we discuss phenotypic plasticity and cellular reprogramming, which are crucial
in several complex biomedical conditions. Furthermore, we emphasize the key
role of feedback mechanisms both in intracellular networks and between intra and
extracellular components and mechanisms, as well as the richness of dynamical
behaviors that emerge from the coupling of processes that occur at different time-
scales.

The technical, computational, and mathematical techniques and concepts are
formalized and detailed in the second chapter of this volume. For this, we provide
graphical as well as relatively simple examples to clarify the tools described. We
also provide sources of code and actual programming resources that the reader
can access to be able to use the proposed modeling approach to other examples
or conditions under study. The focus is on what we call a first building block of
a modeling bottom-up approach to (clinical) biomedical systems biology: the inte-
gration of conserved or robust gene regulatory network modules, mainly composed
by transcriptional regulators, and their link to key signal transduction pathways that
dynamically connect such intracellular modules to microenvironmental conditions.

Finally, in the third chapter we present three examples of systems that are
involved in different types of human complex diseases or health conditions. We
first present our modeling contributions to integrated data on molecular compo-
nents (from processes such as epithelial and mesenchymal cell differentiation,
inflammation, and cell-cycle regulation) that have been associated to the emergence
and progression of epithelial cancer and in vitro spontaneous immortalization that
imply the transition from normal epithelial cells to mesenchymal cells. In this case,
we present a single-cell regulatory network model in its discrete and continuous
specification and incorporate epigenetic landscape modeling to test if the proposed
core regulatory network module is not only important to understand how the
different cell types involved emerge (normal epithelial cells, altered cells under
chronic inflammation and mesenchymal cells), but if the restrictions proposed in
the regulatory network model under study also underlie the most probable time-
ordered cellular transition pattern, that has been observed in vitro and in vivo during
epithelial cancer progression: normal epithelial cells, altered cells after chronic
inflammation, and mesenchymal cells.

As a second example, we put forward a network model that has shown to
be an important component of the systemic mechanisms implied in one of the
main cellular processes of the immune system: differentiation and plasticity of
CD4+T cells that underlie chronic inflammation. The proposed module includes
transcription factors, but also signaling molecules and cytokines. In this case we
analyze and experimentally validate, using both normal and altered genetic and non-
genetic conditions, the proposed Boolean network model. Also, we approximate the
discrete model to a continuous model that enables us to address how changes in
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the decay rates of each one of the components reshapes the epigenetic landscape
(multidimensional quasi-potential that restricts the transitions from one network
stable state to others) that emerges from the proposed network, and hence we are
able to address which nodes within the proposed networks are more important to
explain or predict state transitions in the system under analyses. With this kind of
extension of the networks models, we are able to analyze how normal CD4+T cell
differentiation and plasticity may be altered under different health conditions. In
particular, we have explored the role of inflammatory molecules (i.e., cytokines)
and hyperinsulinemia conditions.

Finally, in the last example, we present a model to study the onset and progression
of atopic dermatitis. In this case, we use with time-scale separation models and to
explore how disease emerges from dysregulation of the complex interplay between
intracellular mechanisms that shape phenotypic decisions at the cellular level
tissue-level processes controlling epidermal homeostasis, immune responses, and
infection. Specifically, we systematically assess how different genetic (mutations,
polymorphisms) and environmental (pollution, pathogen load) risk factors, alone or
in combination, affect the onset and then the progression of the disease. Also, we
show how such a model can be used to devise effective treatment strategies that can
prevent or revert the disease dynamics, using minimal doses and durations of drugs.
We also illustrate how the feedback with clinicians and the validation of the model
with clinical data significantly enriches the bottom-up system biology approach that
we propose to biomedicine.

In the closing section of this book, we enlist several challenges and important
next steps that include multilevel frameworks with explicit spatial modeling, as
well as the importance of hybrid models that have been proposed before in other
studies. Such modeling approaches will enable more detailed considerations of
systems-level mechanisms involved in the tissue and organ levels of organization
involved in phenotypic transitions from healthy to pre-clinical and ill conditions. In
the present volume we have focused on the first building block, which implies the
assemblage of complex regulatory intracellular networks formed by transcription
factors and their feedback interactions with signal transduction pathways that
respond to microenvironmental factors and tissue-level processes.
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Chapter 1
Medical Systems Biology

1.1 Introduction

The aim of this volume is to encourage the use of systems-level methodologies to
contribute to the improvement of human health. We intend to motivate biomedical
researchers to complement their current theoretical and empirical practice with
up-to-date systems biology conceptual approaches. Our perspective is based on
deep understanding of the key biomolecular regulatory mechanisms that underlie
health, as well as the emergence and progression of human disease. We strongly
believe that the contemporary systems biology perspective opens the door to
the effective development of novel methodologies to prevention. This requires
a deeper and integrative understanding of the involved underlying systems-level
mechanisms. To explain our proposal in a simple way, in this chapter we privilege
the conceptual exposition of our chosen framework over formal considerations. The
formal exposition of our proposal will be expanded and discussed later in the next
chapters.

Our holistic and integrative perspective rests on the fact that human disease is
basically due to the disruption of the regulatory systemic processes that ensure the
normal functionality of:

• cells,
• tissues,
• organs,
• and the human body as a whole,

as well as their feedback with environmental factors. Henceforth, we consider
human health as the dynamical manifestation of a complex interplay between
the large set of biological systems that constitute the body and the associated
environment. Such manifestation occurs at the micro and the macro spatiotemporal
scales as a consequence of alterations of systems-level developmental mechanisms.
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Biological systems, including developmental ones, are physical systems which
exchange and process exchanges of matter, energy, and information. We intro-
duce mathematical and computer-based formal modeling tools to describe and
to understand the behavior of complex regulatory networks, which include both
molecular and non-molecular components, and which underlie important aspects of
the function of biological systems. Because of this, our conceptual approach belongs
to the contemporary emergent systems biology scientific domain of research. And,
since we are concerned by medical issues (i.e., we look for the improvement of
human-health), our proposal belongs to what is currently known as the theoretical
framework of medical systems biology. This domain of research constitutes an
emergent field of biomedical scientific research. Because of its novelty, medical
systems biology, sometimes also known as systems biomedicine (see for instance
[281]), has not yet achieved a consensual definition. For our current purposes,
we shall consider medical systems biology as the application of the conceptual
framework of systems biology to the specific context of medicine.

We must point out that as a novel approach to deal with medical issues, the
theoretical framework of medical systems biology can be applied any medical
condition. In this volume, nonetheless, we are concerned only by a particular
class of human diseases: the chronic degenerative diseases. The main reason that
justifies our conscious choice is the systems-level relationship that intimately links
chronic degenerative diseases with biological development. Our understanding
of biological systems comes from both the theoretical and experimental study
of the complex regulatory mechanisms that underlie developmental processes in
multicellular organisms in time and space:

• Cell proliferation
• Cell differentiation
• Morphogenesis

Our aim is then to project our current knowledge on developmental systems-level
mechanisms to the deep understanding of the emergence and progression of chronic
degenerative diseases. With this, our main goal is to provide useful answers to
questions such as:

• What leads to an altered cellular behavior or differentiation path?
• Why and how is tissue integrity lost?

We are motivated by using systems-biology approaches to eventually reinforce
therapeutic strategies based on a preventive approach in medicine and public health.
The rest of this chapter is organized as follows.

In Sect. 1.2 we overview the burden of chronic degenerative diseases (related
to the complex interplay between synergistic risk factors and the human health
state), and we justify why a systems-level approach is required to tackle them. In
Sect. 1.3 we deal with the important issue concerning the synergistic interactions
between risk factors that underlie physiological processes in health and disease, and
how combined risk factors work through the disruption of regulation. Section 1.4
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explores prevention as a therapeutic strategical choice, and we point out the
limitations of classical pharmacological treatments.

We dedicate Sect. 1.5 to the key role that transcriptional core regulatory network
modules play in cell fate processes. Having the emergence and progression of
medical conditions in mind, we present there our main postulate:

To understand how different components of regulatory networks (genetic and
non-genetic, including random fluctuations, and intra- or extra-organismal
environmental factors) shape healthy versus unhealthy conditions, both a
biological developmental approach and a perspective based on complex
systems must be taken into account.

This postulate is supported by the well-established connection between disrupted
regulation and the consequent alteration of the genotype–phenotype mapping and
altered cellular behaviors and identities. We also discuss the sources of cellular
disruptions, and how the interplay between the gene regulatory networks (that
underly cell–fate) with extra-cellular signals elicited by alterations in the cell’s
microenvironments, give rise to emergent transitions from normal to pathological
phenotypes. In that section we also explain how our experience with models of
plant systems guided us to uncover of some important generic processes that char-
acterize biological development in multicellular organisms, and how the bottom-up
systems-level understanding of these generic processes eases the uncovering of
the dynamical phenomena underlying chronic degenerative diseases. We finish that
section with an overview of the epigenetic landscape formalism, which structures in
a formal way our medical systems biology bottom-up perspective by linking cell-
level models with those that consider the temporal (and eventually spatial) patterns
with which a particular cell type transits to different types or behaviors.

In Sect. 1.6 we justify why a systems-level state-based perspective (for the
understanding of human health) allows the uncovering of the consequences of
disrupted regulation in the onset of medical conditions. Moreover, we argue there
how therapeutic strategies can be tackled in terms of goal-oriented regulated
dynamics.

Finally, we conclude this chapter with a brief synthesis.

1.2 The Burden of Chronic Degenerative Diseases

According to the World Health Organization (WHO), chronic degenerative dis-
eases, such as:

• cancer
• chronic respiratory diseases
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• cardiovascular disease
• diabetes

affect up to 70% of the world populations and claimed around 50% of fatalities just
in Latin America in 2012. These kinds of human diseases are characterized by:

1. The gradual aggravation of their symptoms, attributable to the continuous
deterioration of affected tissues. This implies the loss of structural and systemic
integrity.

2. The lack of effective treatments that can induce remission or achieve prevention.
Once a chronic disease is present, it is a formidable challenge to cure it.

3. The negative side effects of current treatments. Pharmacological treatments
intended to deal with chronic degenerative diseases are frequently designed to
treat symptoms, not causes, and may even be detrimental for the organism.

These three main characteristics of chronic degenerative diseases are responsible
for a substantial part of the global social and economic burden that these diseases
currently represent. They are manifested through the increase of the treatments costs
and efforts, as well as human suffering. Consequently, considerable scientific and
technological research efforts are being currently devoted to try to shed light on the
complex mechanisms underlying:

• onset,
• progression,
• treatment,
• and prevention

of these diseases. In this sense, research has mainly focused on elucidating how a
given specific chronic degenerative disease arises from individual disturbances on
the intricate cellular and biochemical machinery regulating normal physiological
functions. These disturbances include disruptions of components of the involved
regulatory networks as well as alterations of the interactions between components.
From such research it has become clear that most complex chronic degenerative
diseases can be caused by several different factors such as:

• Chronic inflammation [308].
• Alterations of microbiome [54].
• Modulation of lifestyle [321].
• Genetic mutations or polymorphisms [286].
• Pollutants and other nocive environmental factors (e.g., ultraviolet irradiation)

[170].
• Toxic substances (e.g., organophosphorus pesticides in fresh vegetables, see for

instance [509]).

Furthermore, it has been stated that disease can be triggered by different combina-
tions of risk factors (synergism), with different severities, and with a differential role
depending on the stage of the concerned disease [4, 135, 483]. Thus, it is difficult
to pinpoint individual pathogenic triggers that are responsible for the onset and pro-
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gression of complex chronic degenerative diseases. Instead, it is becoming clear that
chronic degenerative diseases emerge from complex interplays between different
possible genetic, non-genetic intracellular and extracellular but intra-organismal, as
well as environmental (extra-organismal) risk factors [57, 263]. Synergism must be
taken very seriously. Even if particular risk factors are accessible to intervention, it
does not necessarily mean that the provoked detrimental consequences can be easily
erased or reverted.

We can visualize human health and disease as a collection of specific well-
differentiated states that characterizes the concerned physiological state disease
or medical condition. The concept of state, associated to a given system, is
the perceived condition of that system at a specific given time. Thus, a disease
can be described enunciating the corresponding states (i.e., the time-dependent
circumstances that define the disease under analysis). Thinking in terms of states,
describing specific time-dependent phenomena in terms of state trajectories is then
an intuitive cognitive task. Therefore, a state trajectory is a time-indexed collection
of health conditions. In the same way that we say that a physical particle motions
in a physical space (where the trajectory of the particle, resulting from the action of
forces, can be described by a time-dependent collection of coordinates including
positions and velocities with respect to a given inertial frame), we can say that
the health of a given person motions in a health state-space. As we shall see in
a later chapter, the conceptual framework proposed here can be enunciated in a
formal quantitative manner. At this stage of the volume we shall avoid formalization,
however.

Before presenting the discussion turning around how the concept of state can be
applied in order to organize a systems-level treatment of human-health phenomena,
we shall be more specific in what follows on the interplay between risk factors and
human disease.

1.3 Risk Factors of Human-Disease

Synergistic Interactions Between Risk Factors

Synergistic interactions between risk factors result from the high spatiotemporal
interdependence between the:

• biochemical,
• cellular and
• tissue-level

reactions that underlie the physiological processes in health and disease (see
Fig. 1.1). In order to clarify this statement, let us consider, in what follows, two
well-known illustrative chronic degenerative disease examples, colorectal cancer
and diabetes:
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Fig. 1.1 Risk factors. Chronic degenerative diseases emerge from a dynamical complex interplay
between genetic, physicochemical, stochastic, environmental, and microenvironmental risk factors.
This interplay blurs the distinction between cause and effect because of the presence of feedback-
based dynamics

Colorectal Cancer and atopic diseases: It has been hypothesized that the onset
of colorectal cancer can be associated to the contact of altered intestinal
microbiota with epithelial cells bearing a mutation in the mucus-encoding
Muc2 gene [409]. Thus, at least both the genetic and the environmental factor
must be present to initiate the uncontrolled proliferation of epithelial cells that
characterizes the early phases of this cancer. The presence of either the mutation
or the environmental factor is not enough to trigger this disease phenotype state,
because the intercellular signaling networks controlling the progression of the
cell-cycle have intricate and robust regulatory structures that can buffer out single
but not co-occurring perturbations [426]. Such an increase in the susceptibility to
environmental risk factors, in the presence of genetic alterations, also seems to
underlie the onset and progression of allergic diseases, such as atopic dermatitis,
asthma, and inflammatory bowel disease (see [122, 366, 411]). It is due to:

• The dynamic interplays that exist between the epithelial barrier function
(epidermis, airway epithelium and intestinal epithelium, respectively).
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• The environmental stress factors to which these tissues are exposed
(pathogens, pollutants, or food components).
and:

• The resulting immune responses that are naturally triggered by the excessive
disruption of epithelial tissues by environmental aggressors (see [132, 299,
458]).

Diabetes: The elevated levels of glucose are associated to the disruption of
inflammatory processes. The increase of the rate of inflammation desensitize the
insulin response to glucose in pancreatic cells, further increasing the glucose
levels [78] (this phenomenon is discussed later in this volume). This complex
interplay between glucose levels and inflammatory processes shapes a negative
feedback loop. The detrimental consequences can be further aggravated by a
myriad of different genetic conditions [154, 178].

These couple of examples illustrate that a given chronic degenerative disease in
fact emerges from altered complex networks including both genetic and non-genetic
components.

Remark 1.1 (Cause and Effect Distinction Blurred by the Existence of Feedback-
Based Dynamics) As pointed out by the previous illustrative examples, the exis-
tence of feedback-based interdependencies blurs the distinction between causes and
effects. Bottom-up approaches of medical systems biology addresses the elucidation
of the dynamical significance of feedback-based interactions between genetic and
non-genetic components, avoiding simplistic (and dangerous) quests for a single
cause of a given complex disease.

To understand how the different combinations of risk factors contribute to the
development of cellular disease-characteristic phenotypes, it is therefore crucial
to understand how they are functionally connected to the regulatory networks
controlling tissue function. Let us now proceed to tackle this issue.

Interconnectivity of Risk Factors

Many of the current clinical challenges in the field of chronic degenerative diseases
are a direct consequence of the strong functional interconnectivity between risk
factors, requiring integrative, quantitative, and dynamic approaches, in order to:

• Elucidate how disturbances elicited by risk factors combinations propagate
across regulatory networks underlying cell behavior and tissue integrity.

• How this propagation of perturbations leads to a gradual deterioration of the
health-state (i.e., disease condition).

• How early and pre-clinical phases can be identified from network properties.
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Fig. 1.2 Cellular plasticity. Different phenotypes of individual cells correspond to different states
of activation of complex biochemical interaction networks. Genetic and (micro)environmental
factors can drive changes in the phenotype of cells by interfering with these complex biochemical
interaction networks

• How a systems-level and quantitative framework can be used to design optimal
treatment intervention strategies for halting or reverting the progression of a
particular disease.

The first consequence of the strong functional interconnectivity between risk
factors is the synergism between them, as was pointed out previously. This
can be attributed to the specific properties of biological regulatory networks
that tend to be able to compensate single perturbations [10, 72, 161, 226, 227]
but are often vulnerable to combinatorial attacks [121, 363, 425]. Further, due
to the connectivity among the regulatory network components, several differ-
ent combinations of risk factors can converge to a phenotypic transition from
healthy to disease states with conserved symptoms [122, 316]. We hypothesize
that such convergent or generic patterns emerge from the modulation of core
regulatory networks that underlie the cellular transitions in both normal and
ill conditions in response to various perturbations, including genetic alterations
[112, 217, 370, 371] (Fig. 1.2). This issue will be discussed in detail throughout
this volume.

Remark 1.2 (Combined Risk Factors Work Through the Disruption of Regulation)
A systems biology approach, which explicitly considers the regulatory network
mediating the interplay between the many potential targets for genetic and environ-
mental risk factors, is essential to systematically characterize the role of different
combinations of risk factors on the onset and progression of disease. Robustness
against single perturbations is a common property of regulatory networks, but
fragility of regulatory networks is also common when simultaneous risk factors are
present or specific components with particular positions within such networks are
altered. The balance between fragility and robustness is maintained in health but
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lost in disease conditions and such systems-level behaviors are an important focus
of systems biology research.

The second consequence of the strong interactions among the different genetic
players (physicochemical components underlying tissue function) is the gradual
deterioration of the disease phenotype. It occurs through the regulatory logic that
mediates the interplays between the phenotypes of cells in the tissue and the
microenvironment they are embedded in. While microenvironmental conditions can
modulate cellular phenotypes [26], the distributions of cellular phenotypes within
a tissue in turn alter the microenvironment. Hence, while this interplay between
cellular phenotypes and microenvironments ensures a coherent adaptation of both
microenvironments and cellular phenotypes, alterations in this feedback structure,
for example by genetic or environmental factors, can trigger a rapid progression of
the disease with fatal consequences. The following examples illustrate this complex
process:

Fibrotic Diseases: During the wound healing process, epithelial cells trans-
differentiate to a mesenchymal phenotype in response to increased levels of the
TGFβ cytokine, which is released as part of the inflammatory response to tissue
damage [230]. The accumulating pool of mesenchymal cells secrete additional
TGFβ, potentiating the induction of the epithelial-to-mesenchymal transition
[348, 497]. Indeed, alterations in this positive feedback affected by mutations,
polymorphisms, tissue-damaging drugs [174, 508], and many other factors, can
lead to fibrotic diseases including:

• Cirrhosis
• Pulmonary fibrosis carcinomas
• [394].

Induction of Blood Vessel Formation by Growing Tumors: Hypoxic stress
can be generated by the uncontrolled growth of tumor cells that move away
from the nearest blood vessel as they continue dividing. This low oxygen
condition triggers an adaptation of these cells, from a high-proliferative state
to a more aggressive cell phenotype that is motile and resistant to chemotherapy
[94]. Simultaneously, hypoxic conditions induce the production of new blood
vessels via the release of the growth factor VEGF [261], and the eventual
restoration of normoxic conditions [27]. As a consequence, although tumor cells
can re-differentiate back into a less malignant state, also their high proliferative
potential is restored, and they can invade new organs by the newly formed blood
vessels [94, 455].

Progression of Atopic Dermatitis: This disease can occur as a consequence of
repeated rises in the cytokine levels in response to pathogens that have invaded
the viable layers of the epidermis. Increased cytokine levels weaken the epithelial
tissue, leading to a further colonization of viable epidermal layers by infiltrating
pathogens and with that, a gradual deterioration of epidermal function [122, 123]
(this example will be extensively discussed ahead).
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Fig. 1.3 Microenvironmental factors. Complex interplays between cellular phenotypes microen-
vironmental factors can lead to the gradual aggravation of the disease

Remark 1.3 (The Key Role of Microenvironment) As illustrated by the previous
examples, a systems biology framework to understand the complex interplay
between cellular phenotypes and their microenvironment is important to elucidate
the mechanisms for onset and progression of complex diseases. Furthermore, the
transition between the different disease stages can be viewed as an aberrant develop-
mental process, in which the progression from a healthy, pre-clinical state to a severe
disease phenotype emerges from the complex interactions between the cellular
phenotype and the associated microenvironment (see Fig. 1.3). Systems biology
approaches allow then the systematic analysis of the environment-phenotype inter-
actions, as well as the effects of genetic and environmental perturbations on this
regulatory structure, from an integrative, mechanistic, and dynamical perspective.

Since the interplay between the environment and biological regulatory networks
underlie functional plasticity, medical therapeutic strategies can be developed in
order to modulate the interplay between environment and regulation. Therefore,
prevention therapeutic strategies intended to modulate the interplay between the
environment and the (disrupted) regulatory processes are a sensible choice. In what
follows we shall discuss this issue.
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1.4 Prevention as a Therapeutic Strategy

Early Warning Signals

In terms of finding effective prevention strategies, it is also natural to view as
a dynamical process the progression of chronic degenerative diseases. Finding
effective prevention strategies then corresponds to halting the natural progression
from a healthy state to a susceptible but pre-clinical stage, and from this to a
disease phenotype (see Fig. 1.4). In this sense, the first challenge is to be able
to identify and characterize the high-risk patients, who do not present symptoms
but would strongly benefit from early intervention strategies that can effectively
halt the incipient onset and progression of disease. In other words, to prevent the
progression of degenerative chronic disease it is important to find early markers or
signs that distinguish cohorts of vulnerable patients while they are still at a healthy
or a pre-clinical stage. Since such patients are still asymptomatic, it has been hard for
medical practitioners to find early bio-markers in the form of individual molecular
species that effectively predict an incipient onset of a severe disease. Recent work
in the field of systems biology has shown that such early warning signals in general
do not depend on individual genes or proteins, but can be determined from:

1. The global network properties that can be obtained from high-dimensional
profiles of gene expression [84].

2. Subtle quantitative changes in the dynamical behavior of the underlying regula-
tory networks [149, 449, 450].

3. Increased variance and decreased recovery rate of some regulatory network
components [122].

Fig. 1.4 Modulation of pathology. Pathology as dynamical process that can be modulated by
treatment and prevention strategies
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Finding early bio-markers for the identification of vulnerable patient cohorts can
thus be seen as an essential challenge in understanding and preventing chronic
degenerative diseases, and which can fortunately be tackled from the networks-
based perspective of systems biology.

Unwanted Side Effects of Pharmacological Treatments

A current clinical problem in treating chronic degenerative diseases is the unwanted
side effects of pharmacological treatments, which can occurs as a consequence of
the lack of target specificity [327], leading to the interference of the drug with
normal physiological processes [407]. This effect can be further aggravated by the
desensitization of the affected tissue exposed to the drug [199, 377], through which
increasing doses or variants of the drugs are required to relieve the symptoms as the
disease progresses.

Since drugs act on organisms through complex regulatory networks, pharmaco-
logical treatments are not free from risk. This clearly emphasizes the advantage
of preventive therapeutic strategies. Nonetheless, pharmacological treatments are
frequently unavoidable. Taking into account the risks, optimal treatment regimens
of minimal durations and minimal doses that minimize the unwanted side effects but
effectively induce remission are required. Designing such treatments, however, is a
challenging task that requires the consideration of the many regulatory interactions
between the molecular components underlying the healthy and disease phenotype,
many potential drugs combinations with different strengths and durations, and
the wide spectrum of possible triggers and states of the concerned disease (recall
Fig. 1.1).

Remark 1.4 (Risky Pharmacological Treatments) Pharmacological treatments can
also constitute by themselves a risk factor that can be taken into account. For
instance, a 52% increased risk of mortality associated with tiotropium mist inhaler
in patients with obstructive pulmonary diseases [13] has been reported. Also,
treatments with pioglitazone and rosiglitazone can produce adverse cardiovascular
events when being applied to patients with type 2 diabetes.

Thus, systems-level and dynamical approaches can help to circumvent the
conundrum resulting from the interplay between pharmacological treatments and
complex networks regulatory dynamics by providing mechanistic and quantitative
frameworks to which optimization algorithms can be applied. Indeed, recently,
such systems biology approaches have been successfully applied to find optimal
treatment strategies that stably revert:

• Prostate cancer [198–200, 407]
• Hepatocellular carcinoma [425]
• Atopic dermatitis [88]
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These recent results exemplify the therapeutic potentialities of medical systems
biology approaches.

We can at this level examine how the underlying genetic and non-genetic
components of the human system map unto phenotypes that correspond to healthy,
preclinical, and diseased conditions or states. This will lead us in what follows to
the consideration of a particular type of transcriptional regulatory network: core
regulatory modules.

1.5 Multistable Transcriptional Core Regulatory Network
Modules

Although medical conditions as the ones considered up to now are generally
characterized at the phenotypical level, a systems-level biological approach to
understand their emergence and progression necessarily implies the study of how
the underlying genetic and non-genetic components of the human system map
unto phenotypes that correspond to healthy, preclinical, and diseased conditions or
states. Gene regulatory networks composed mainly of transcriptional factors have
been shown to be particularly important in development and hence in mapping
mechanisms from genotypes to phenotypes. Such gene regulatory networks can
attain various steady-states that relate to different phenotypes and are hence
multistable dynamical systems. These may attain different states as a result of
alterations of their components, but also in response to environmental cues [5, 271].

Here, we refer to gene regulatory network modules that underlie cell transitions
that are key for particular developmental processes under health and disease as core
regulatory modules.

Genotype-to-Phenotype Mapping and the Emergence
and Progression of Medical Conditions

In order to understand how the genetic and non-genetic components of organisms
are implied in the emergence and progression of disease, it is important to
understand how different genetic or other types of molecular components, (e.g.,
transcripts, regulatory sequences, proteins, and metabolites), collectively function
at different levels of organization, such as:

• Coupled networks
• Cells
• Cellular microenvironment
• Tissues
• Organs
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In addition to the molecular, genetic, and non-genetic intra-organismal conditions,
recent studies are also documenting the key dynamical and fundamental role of
stochastic fluctuations (see for instance [215, 217, 304, 316, 372]), as well as extra-
organismal environmental factors that can be associated to the lifestyle (see for
instance [291] and [487]) and also to the exposure to geno-toxic factors (radiation,
toxic chemicals, etc.; see for instance [445]) that may or may not be related to a
person’s lifestyle (see for instance [119]).

A longstanding tradition in the biological developmental field of research has
focused on studying the concerted action of multiple genetic and non-genetic
components (i.e., physicochemical constraints), together with environmental factors
during cell differentiation and morphogenesis (see [240, 446, 457, 473], among
others). Such general perspective is applied here to specific biomedical cases using
a bottom-up approach to systems biology.

Remark 1.5 (Our Main Postulate) The main postulate of this volume is that in
order to understand the role of different types of components (genetic and non-
genetic, including random fluctuations, and intra- or extra-organismal) in underlying
healthy versus unhealthy medical conditions, both a biological developmental
approach and a perspective based on complex systems must be considered. As health
conditions emerge from the feedback-based interplay between intra-organismal
complex networks or systems and extra-organismal or environmental factors,
the role of genetic components (and/or environmental conditions) can only be
understood on the basis of their collective action in the context of highly nonlinear
and multistable dynamical regulatory networks (here multistability refers to the
property of a network having multiple circumstances of equilibrium). Moreover, the
fundamental role of noise or stochastic fluctuations can only be understood in the
context of such networks and the involved so-called stochastic resonance [307] that
emerges from the interaction among deterministic and non-deterministic dynamics
of the system. Additionally, feedback-based dynamics between developmental and
metabolic processes also shape genotype–phenotype interactions (see Fig. 1.5).

A complex systems approach requires mathematical and computational models
that enable analyses of the collective action of the implied components dynamically,
and also of how such collective action yields emergent systems-level structures and
behaviors. The sets of interactive genes, proteins, other biomolecular players, and
the cellular phenotypes and tissue-level properties they control, constitute complex
dynamical regulatory networks. Depending on the architecture (and nature) of
involved interactions, these networks can be plastic, resilient, and/or robust, which
are clinically important properties of the system that can be studied only from an
integrative and dynamical perspective.
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Fig. 1.5 Genotype-phenotype mapping. This schematic representation shows how the genotype
is mapped into the phenotype through developmental mechanisms, under the constraints imposed
by environmental feedback-based interactions. Therefore, cell differentiation and morphogenesis
result from the interplay between: developmental gene regulatory networks and the associated
epigenetic landscapes, cell proliferation dynamics, physico-chemical fields, and the dynamics
of metabolism. Phenotypic variation is influenced by environmental factors (e.g., temperature,
humidity, and stress)
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Looking for the Causes of Cellular Disruptions

In contrast to the genomic top-down approaches that exhaustively search for all the
components (transcripts, proteins, metabolites, etc.) and rely on descriptive, and
mostly static, as well as associative approaches (see for instance [59, 138, 275,
276, 391]; and for a general discussion see also [150, 246, 452]), we follow in this
volume a systems-level bottom-up approach. Such perspective implies integrating
from well-curated functional data for a set of components and their interactions.
These comprise core gene regulatory modules with the necessary and sufficient set
of restrictions required to recover observed stable configurations for the components
included. Each of such stable configurations are generally associated to different
cellular state or other level of phenotypic state. Such relatively small gene regulatory
network modules are analyzed dynamically to understand the systems-level mech-
anisms involved in both normal and altered states at the cellular, tissue, organ, and
organismic levels (see Fig. 1.6). In the context of medical systems biology, this class
of gene regulatory modules, comprising mostly transcriptional regulators, underlie
specific developmental processes that when altered, are implied in the emergence of
cellular states associated to the genesis and the progression of human diseases. Let
us now tackle this issue in a more detailed manner.

Core Regulatory Modules

We consider that the critical step in a bottom-up modeling effort implies deciding
which components and interactions to consider and when to propose a new core
regulatory module to be analyzed dynamically. Such task is generally easier for
well-characterized processes or cases of phenotypical alterations at the molecular
level. Bottom-up modeling is a recursive procedure, in which simulated stable states
and observed profiles of expression or activation of the components of consideration
are iteratively compared. Once a set of necessary and sufficient set of restrictions
have been integrated, we say that a robust dynamical gene regulatory network
module has been uncovered. During such recursive procedure, experimental holes
are uncovered and in the context of the proposed dynamical gene regulatory network
module, novel predictions of necessary interactions or even components can be
proposed and later searched for experimentally.

Transcriptional regulatory modules are particularly relevant for integrating vari-
ous signals and also concerting cellular decisions or fate decisions. In our previous
studies on plant development, we have shown that such transcriptional regulatory
cores or modules (see Fig. 1.6) are key shaping patterns that underlie:

• Cell–fate decisions.
• Tissue patterning.
• Morphogenesis.

(see for instance [28, 29, 141, 318–320]; for a review on this subject see [19]).
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Fig. 1.6 Core gene regulatory modules. Empirical evidence shows that transcriptional gene
regulatory networks are modularly structured. In networks regulating biological development we
are able to identify robust modules, which we call core regulatory modules (e.g., early mesoderm
development in Drosophila melanogaster [398]; mesoendoderm specification in mouse [48];
neural crest development in vertebrates [419]; flower development [141]; differentiation of retinal
pigmented epithelium [384]). Feedback-based interactions play a key role in core gene regulatory
modules (e.g., feedback circuits regulate the number and size of attractors, see for instance [31]
and the references therein)

Hence, such multistable regulatory cores are also very important in under-
standing why and when a genetic or non-genetic alteration yields a phenotypic
modification. A guide to finding relevant regulatory core modules comes from the
existence of conserved or generic patterns and behaviors. This suggests the existence
of underlying robust systems, that may be the regulatory modules. Uncovering such
modules from well-curated functional data is an important first step and contribution
to understanding the systems-level mechanisms that underlie both the conserved
and variable phenotypes under analysis, or the healthy and unhealthy medical
conditions.
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In this volume we propose to follow a similar approach to that used in plant
systems. We aim at uncovering relevant transcriptional regulatory modules or cores
that may underlie documented conserved or convergent patterns of cellular or tissue
behavior under normal and pathological conditions that suggest underlying robust
systems-level dynamical mechanisms. We propose that complex human unhealthy
conditions may emerge from alterations (genetic and non-genetic) of the same
multistable regulatory networks operating during normal development.

The regulatory cores of interest may be integrated from data under normal
conditions in humans and also from animal models used in experimental molecular
genetic studies; under the assumption (based on experimental data) that such
transcriptional modules are generally conserved among related species [244, 278,
392]. Such regulatory cores are important building blocks in the systems-level
mechanisms that underlie the emergence of aberrant cellular phenotypes.

Since biological systems are non-isolated from their surroundings, regulation
is necessary to modulate the interaction between the concerned cell systems and
the environment. Henceforth, as an evolutionary result, transcriptional regulatory
networks fulfill complementary tasks: regulation of the cell functional identity
overlapped with the regulation of the cell response to exogenous stimuli. These
modulatory tasks then condition the structural and functional properties of cell
regulatory networks, fixing specific functions for specific nodes (e.g., interconnec-
tivity of the network with the environment). Bottom-up medical systems biology
approaches lead to the development of systems dynamics methods that identify the
specific role of particular nodes. This is particularly appealing when looking for
the dynamical consequences of the interactions between transcriptional regulatory
networks and signal transduction processes (that mediate the interplay between the
regulatory networks and the environment).

Remark 1.6 (Cell-to-Cell Interactions) We must remember that in multicellular
organisms cells interact to fulfill collective tasks that drive tissue-level function. This
means that cell-to-cell interactions (mediated by extracellular signaling processes)
are also concerned by intracellular transcriptional regulation (and sometimes also at
the intercellular level (see for instance [159, 378]). The cell-to-cell communication
machinery allows the coordination of cellular communities, and the disruption
of this machinery may be also involved in the emergence and progression of
chronic degenerative diseases. The understanding of the phenotypic consequences
of disruptions of the complex couplings between intracellular regulatory networks
and extracellular structures and processes is an important target for medical systems
biology research.

In what follows we discuss how extracellular signals and microenvironments
interact with (intracellular) regulatory networks, and how the disruption of the
involved coupling processes give rise to pathological dynamics.
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Extracellular Signals and Microenvironments

The feedback-based interactions with extracellular signals and microenvironments,
as well as the coupling with other cells within tissues, are fundamental (see for
instance [232] and [123]) to understand biological development and the correspond-
ing dynamics of chronic degenerative diseases.

While the state of the intracellular networks that couple transcriptional and
other types of regulation, including epigenetic mechanisms, with signal transduction
factors respond to microenvironmental factors, these are also affected by the cellular
states or types (see the example concerning atopic dermatitis in the corresponding
chapter). Hence, we aim at integrating such models of intracellular regulatory
network that are multistable and help understand the dynamics of:

• cell differentiation;
• cell reprogramming;
• or cell dedifferentiation,

implied in pathological processes, with mechanistic models that incorporate physic-
ochemical fields (see Fig. 1.7). This implies developing models that consider the
feedback with other cells, but also with:

• Extracellular signals
• Chemical and physical fields
• Extra-organismal environmental factors

As stated previously, we postulate that it is in fact from the feedback of the
intracellular systems and the environment that the different normal and pathological
phenotypes and their transitions emerge. Feedback-based interactions are funda-
mental for the robustness and plasticity dynamics that rule biological regulatory
processes and thus both healthy and diseased phenotypes.

Overall, we propose in this volume mathematical and computational approaches
that are useful to understand the emergence of observed conserved patterns at
different levels of organization during normal and pathological conditions. The
restrictions that underlie conserved, repetitive, or generic patterns emanate from
mutual interactions and feedback-based mechanisms at the genetic and non-genetic
levels, as well as across temporal and spatial scales as is explained ahead in
this book. These multi-level and multi-scale processes comprise the biological
mechanisms that underlie cell differentiation and cell reprogramming, which in turn
underlie tissue patterning and morphogenesis under both normal and pathological
conditions [19].
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Fig. 1.7 Cell-community. Transcriptional regulation coordinates the biomolecular interactions
that give rise and defines cell-identity. In multicellular organisms cell-identity strongly depends on
the cell-community to which it belongs. Cellular couplings, as well as cell-to-cell communication,
are conditioned by transcriptional regulation. Moreover, the interaction of the cells integrated
into a given cell community give rise to the emergence of physicochemical fields or constraints,
that also feedback to the intracellular networks dynamics and modulate the influence of external
environmental factors. The disruption of this complex feedback-based network can challenge
cellular identities, potentiating then the emergence of disease as previously described

Limits of Top-Down and Gene-Centric Approaches

We aim at an approach that complements top-down approaches that are becoming
particularly informative as single-cell and laser microdissection methods are being
used to characterize cell profiles and phenotypes under particular health conditions
at the level of transcripts, miRNAs, proteins, metabolites, and so on (see for instance
[53, 302, 311, 440] and the references therein). Such top-down approaches are also
aimed, beyond description of patterns encountered, to infer systems-level mecha-
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nisms involved. Using bottom-up approaches it may be possible to identify gene
regulatory network modules that dynamically underlie the configuration changes
uncovered in cells at different stages of a disease progression. It is the collective
action of the complete network’s interacting molecules in conjunction with non-
genetic components, such as physical and chemical fields and the associated
environment, that underlie normal and altered cell differentiation, pattern formation,
and morphogenesis. Nonetheless, the bottom-up approaches may aid at uncovering
some of the key modules of such interactomes.

In conclusion, the “top-down” and the “bottom-up” approaches complement each
other and increase the explanatory and predictive power of systems biology (see
[67]). A key aspect of the bottom-up systemic and mechanistic approach is that
it considers explicit and experimentally grounded nonlinear dynamical mapping
models at different levels of organization (e.g., gene interactions and circuits,
networks, cells, tissues, organs, etc.) incorporating both molecular-genetic (e.g.,
genes, proteins, miRNAs, etc.) and non-genetic (e.g., mechanical and elastic forces
and fields, chemical concentrations and gradients) components to understand the
genotype–phenotype mapping and to uncover systems-level behaviors and traits.
Such multistable dynamical models view cellular behavior and cell differentiation
as the inevitable manifestation of the intrinsic nonlinear and stochastic nature of
underlying networks of interacting components. Hence, we postulate that such an
endeavor implies uncovering the biological mechanisms of cell differentiation and
morphogenesis under disease and healthy states. In summary, in our view, bottom-up
systems biology is fundamental for a complex systems and dynamical mechanistic
approach to the understanding of health issues.

Nonlinearity and Stochasticity

The importance of the nonlinear and stochastic nature of biological systems has been
emphasized before (for example [240, 312, 401, 457]). More recently, dynamical
models have been validated for particular biological systems by integrating mech-
anistic data for the system’s components, their interactions, and their concerted
action, as well as the emergent structural and dynamical consequences of such
complex systems (see for instance [42, 69, 318]). In this volume we illustrate the
constructive role resulting from the inevitable interplay between feedback-based
interactions among genetic and non-genetic components and stochasticity in real
biomedical conditions. We must point out that the latter view has been previously
put forward in different terms by pioneer theoretical biologists and their application
to development and evolution (see [172, 241, 422, 473]).

Remark 1.7 (Avoiding Reductionism) Traditional cause–effect, reductionist or lin-
ear explanations in biology and biomedicine do not consider explicitly the con-
ditional role of each part on others, or the direct and indirect interactions among
components that altogether comprise the system (see, for example, discussions in
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[16, 211, 232]). We consider that a systems-level approach that explicitly considers
interactions and the nonlinear stochastic nature of underlying processes is required
to understand the emergence of the observed biological patterns. Hence, for the
purpose of this volume, by reductionist paradigm we refer to an explanatory view
in which the effect of interactions among components of interest (e.g., molecular
species) is (in)advertently ignored.

→ Plant Systems as Developmental Models for a Bottom-Up Systems
Biology Approach

It is important to explain here that part of our bottom-up systems biology approach
has been built on the study of plant biological development. Plants are very
useful model systems for experimentally grounding and validating theoretical
models. In fact, we have tested our proposal for over two decades of research on
complex network models applied to plant systems, mainly Arabidopsis thaliana (see
Fig. 1.8). See the review [19], and the references therein, for a detailed discussion on
this issue, and also to explore some of our examples concerning plant developmental
biology, for example:

• Flower development
• Spatial cell patterns in Arabidopsis thaliana root
• Cell patterns emergence from coupled chemical and physical fields with cell

proliferation dynamics.

As we shall see in the next chapters, the bottom-up systems biology approach
for the understanding of biological developmental phenomena can be useful to
understand the systems-level mechanisms implied in chronic degenerative diseases.
As evidenced by theoretical and experimental research, some generic systems-level
mechanisms underlie fundamental aspects of the complex developmental processes
of multicellular organisms (e.g., cell differentiation and cell morphogenesis). These
mechanisms are self-organizing and have been attained in convergent evolution in
different evolutionary lineages (see for instance [17, 181, 495]). This explains why
we can uncover human developmental processes under both health and disease with
similar approaches to those used to uncover systems-level mechanisms of plant and
animal development.

It is now time to present a useful tool for the understanding of the emergence
of temporal and spatial morphogenetic patterns as a result of the developmental
regulatory networks: the epigenetic landscape formalism.
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Fig. 1.8 Plant systems. Schematic representations of an Arabidopsis thaliana plant (modified
from [460]). Two developmental processes of this model organism that have been studied using
multistable gene regulatory networks are indicated: flower morphogenesis and niche organization
of the root stem cell. For each example, the corresponding gene regulatory networks were
characterized via available empirical evidence. (a) Depicts the gene regulatory network underlying
flower development (see [16, 141]). (b) Shows the gene regulatory network underlying root stem
cell niche organization (see [32])
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Epigenetic Landscape

→ Attractors and Cellular Identities

The paradox that contrasting stable cellular phenotypes associated to different fates
or types are manifested despite an underlying invariant genomic sequence clearly
indicates that cellular differentiation is a consequence of epigenetic regulatory
mechanisms. By this, we mean that the consolidation of a given cell phenotype (i.e.,
the cell-identity at a given time), is not only dependent on the genome sequence of
the cell. The identity of cells with different fates result from complex systems-level
self-organizing mechanisms, including regulatory networks.

Remark 1.8 (Stable Cellular Phenotypes as Dynamical Attractors) If cells are
understood as dynamical systems that can be described in terms of a chosen state
variable, a particular cellular phenotype can be then seen as an attractor. As its
name suggests, an attractor corresponds to a robust circumstance of phenotypic
equilibrium. To say that a given system’s state is an attractor, means that the
concerned system remains in that perceived condition at a specific time even in the
presence of disturbances, i.e., the condition is attractive (see Fig. 1.9). This stable
condition is guaranteed by the underlying regulatory network and its restrictions
or interactions. Under some circumstances the stable condition can be altered, and
consequently the system will move to a different state. An invariant regulatory
network may attain several attractors and it hence constitutes per definition a
multistable system. Thus, a given system is said to be multistable if it possesses
more than one attractor.

The dynamical models proposed later in this volume constitute a mechanistic
explanation for the emergent stable gene configurations or gene expression profiles
that are associated to different cell types. As we shall see, the proposed gene
regulatory networks are in fact multistable, with each stable state or attractor
interpreted as a particular configuration of gene expression associated to each cell
type (see for instance [240, 264, 318]) or eventually health state. It must be pointed
out that multistable systems are necessarily nonlinear (see for instance [138]).

In historical terms, Stuart Kauffman first used randomly generated Boolean
networks (in which each component may attain only two values: 0 and 1) to explore
various dynamical network cellular behaviors with contrasting structures randomly
generated in silico. However, such network structures were not similar to those
found in actual living cells. Indeed, later, the first network models grounded on
experimental data showed that the structure of biological networks are different
to that of random ones (see [9, 318, 472]; for some reviews on this subject see:
[16, 109]). In the context of such network models, the “functional role” of each
gene can only be defined and understood in the context of its interactions and
beyond: in terms of the system where it is immersed. Moreover, each gene in the
network is simultaneously subject to this regulatory process; consequently, global,
non-intuitive, and structured behavior emerges in a self-organized manner.
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Fig. 1.9 Attractor notion. A dynamical system may be in stable circumstance or in an unstable
one. A stable circumstance is known as an attractor. If the system is in such a condition, it will
remain there even in the presence of (transient) disturbances (up to some limit). In an unstable
condition even low-intensity disturbances will more the system away from its attractor. Between
two conditions of equilibrium, the system displays transitory states. For a given attractor, the
system will be associated to a basin of attraction. For a given dynamical system, the union of
the attractors with their respective basins of attraction is defined as the attractors landscape of the
system

In summary, such complex regulatory networks converge to a discrete number
of genetic configurations that are consistent with the restrictions imposed by the
underlying gene regulatory network. Once such simulated configurations or stable
states coincide with those observed experimentally, a regulatory module can be
postulated (some reviews and examples are given in [16, 17, 213]). Qualitatively,
cell fates or phenotypes can be associated to the in vivo manifestation of attractor
configurations of the global gene regulatory network and in fact, this has been exper-
imentally validated using human cells (see [214]). Such networks are experimentally
validated with robustness analyses that test to what extent the network’s attractors



26 1 Medical Systems Biology

resist alterations of the interactions proposed. Also, the recovered attractors are
compared to those of mutant lines, once the corresponding component is either fixed
to 0 or 1 to simulate loss and gain of function mutations, respectively (see ahead).

→ Epigenetic Landscape and Morphogenesis: Populations of Cells

Gene regulatory networks also restrict the transitions among attractors. Such
restrictions depend on a nonlinear and multidimensional (with as many dimensions
as components, i.e., nodes, are in the network under consideration) quasi poten-
tial function that restricts the transitions among attractors. Such quasi potential
corresponds to what Waddington called the epigenetic landscape [214, 473]. More
detail on the formalities implied in the derivation, quantification, and analyses of the
epigenetic landscape will be provided in the following chapter. For now, we want
to state that the epigenetic landscape restricts the temporal and spatial transitions
among attractors. The analyses of the epigenetic landscape that emerges from a
particular regulatory network can be derived and analyzed in the context of both
deterministic and stochastic models. The first analysis of the epigenetic landscape
for a biological network grounded on experimental data was done in the context
of stochastic explorations of the transitions from one attractor to another one (see
[18, 468] and the references therein).

Stochasticity is another important property of biomolecular systems (see for
instance [442]). Interestingly, the apparently repetitive and deterministic patterns
of development seem to emerge from the feedback between complex intracellular
gene regulatory networks with:

• Deterministic dynamics
• Nonlinear interactions
• Under the influence of stochastic fluctuations

Stochasticity results from either intrinsic or extrinsic fluctuations in regulatory
interactions, or sampling errors resulting from limited numbers of molecules
involved in such interactions (see [21, 63]). Stochastic resonance that results from
such stochastic nonlinear systems seems to underlie the emergence of important
biological patterns [18, 353, 511].

A stochastic exploration of the epigenetic landscape was first achieved for the
regulatory network that underlies floral organ specification during early flower
development [18]. The temporal pattern with which floral organs emerge during
flower development is widely conserved among close to a quarter of a million of
flowering plants. Figure 1.10 shows in a schematic way the developmental process
that gives rise to the primordial floral organ cell–fate specification in Arabidopsis
thaliana as predicted from a stochastic exploration of the epigenetic landscape (see
next chapter for further detail). The set of attractors of the underlying transcriptional
gene regulatory network correspond to the configurations characteristic of the four
primordial cell types that later on during development form the four flower organs
of most angiosperms (flowering species): sepals, petals, carpels, and stamens. The
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Fig. 1.10 Epigenetic landscape. (a) The transcriptional gene core regulatory network that under-
lies primordial floral organ cell–fate determination in Arabidopsis thaliana. The gene profiles of
the four attractors of this network (left) correspond to the cell phenotypes that characterize sepals,
petals, stamens, and carpels, denoted by se, pe, st, and car, respectively. (b) Shows a (right) simple
Waddington-like representation of the epigenetic landscape that emerges from the regulatory
network. Each attractor is represented by the ball located at the bottom of the corresponding
basin. The developmental trajectory that gives rise to the structure of the flower (i.e., first sepals,
then petals, then stamens, and finally carpels) is also schematically represented. Computer-based
simulations, performed in [18], show that this developmental trajectory can be driven by stochastic
fluctuations in stochastic resonance with the underlying core gene regulatory network

floral organ primordia emerge from the population of stem cells (undifferentiated)
that constitute the floral primordia.

Deterministic gene regulatory models imply that the activity of a given gene at
any given time only depends the activity of the genes regulating it at a previous
time step. (see next chapter). These models are useful to explore the effect of
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such interactions in a network in cell differentiation. But regulatory interactions
are generally prone to stochastic fluctuations, and these coupled to the deterministic
logical rules or interactions yield important aspects of observed biological patterns.

Remark 1.9 (Biological Stochasticity and Its Constructive Role) It has been pro-
posed that in the context of nonlinear gene regulatory networks, stochastic noise
may play a constructive role in biology and that present-day biological networks
might have evolved in noisy conditions (see for instance [386]). Stochastic gene reg-
ulatory models consider noise into nonlinear dynamical models and such stochastic
regulatory networks recover, for example, robust temporal morphogenetic patterns
(See Fig. 1.10). In the biomedical context considered in this volume, such patterns
may correspond to generic transitions observed both during health and disease.

The complexity of pattern formation processes in multicellular organisms is a
formidable phenomenon. Gene regulatory networks collaborate in the determination
of cell–fate, but pattern formation also involves the interaction of gene regulation
with other complex phenomena where physicochemical fields play a fundamental
role. In what follows we expose how multicellular self-organizing dynamics
result from the coupled constraints that rule the interaction between informational
processes and the supporting materiality of biological organisms.

Coupled Constraints and Self-organization in Multicellular
Organisms

During multicellular developmental processes in vivo, groups or populations of cells
attain distinct fates with certain spatial and temporal patterns that occur concomi-
tantly. Such spatiotemporal dynamics and patterns result from dynamic feedback
interactions between intracellular networks and the physicochemical fields. Cell
proliferation dynamics, in turn, alter such physicochemical fields that feedback to
intracellular network dynamics regulating the cell-cycle and other cellular-level
processes. Such processes necessarily imply multi-level modeling that requires
frameworks of cooperative dynamics that simultaneously consider various levels
of organization and morphogenetic patterning. Key to these multi-level models is to
postulate processes that generate the positional information of cells at all times and
that modulate the invariant underlying gene regulatory accordingly. Such models
can be used to address issues concerning the regulation of the size and dimension of
tissues as well as the relative position of organs (see for instance [17, 376]).

In addition to understanding how mechanics, geometry, and growth contribute to
the formation of functional and robust structures [326], we must consider that these
sources of additional constraints not only influence each other but are also coupled
with at least two other fundamental dynamics coming from regulatory networks
and cell proliferation. Additionally, these dynamical processes occur at different
temporal and spatial scales. For example, chemical signals that are produced or
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excreted from cells to the extracellular matrix arrange themselves in space/time to
form macroscopic patterns, which, in turn, affect gene regulatory networks in each
cell, thus biasing its dynamics towards different gene expression configurations. In
other words, to accomplish the extraordinary choreography implied by morphogen-
esis (without a choreographer!), the behavior of the chemicals or mechanic-elastic
forces and communication mechanisms should be coupled to the dynamics of the
gene regulatory networks in such a way that the positional cues bias the underlying
corresponding attractor of the gene regulatory network, and, at the same time, the
modified gene activity configuration of the network regulates the spatial pattern
of chemical concentrations (see [17] for the details). We refer to the models that
capture such dynamics as models of cooperative nonlinear dynamics [42].

Mechanical forces provide cues for heterogeneous cellular behaviors by estab-
lishing sources of positional information, thereby contributing to the regulation of
morphogenesis [17, 41, 43, 189, 312, 494]. Recent work has started to uncover
the molecular mechanisms by which mechanico-elastic forces are sensed by
intracellular gene regulatory networks, as well as the role of myosin, actin, and
tubulin fibers in cell structuring, and in the transduction of changes in mechanical
and elastic forces into gene regulatory networks signals (see for instance [189, 295]).
As far as human-health is concerned, the morphogenetic role of mechanic and elastic
fields can be particularly relevant in the context of fibrotic diseases (see for instance
[197, 282]).

As we can see, morphogenetic spatiotemporal dynamics is the result of the
collaboration of gene regulation with a complex set of processes that involve
constrained self-organizing phenomena. As a consequence of disrupted regulatory
processes, chronic degenerative diseases also depend on this complexity. The under-
standing of the generic processes that underlie developmental phenomena opens the
door to the systems-level understanding of human disease. The merging of:

• conceptually clear theories,
• formal computational-mathematical tools,
• and molecular-genomic data into coherent frameworks,

is at the basis of a much needed nonlinear, dynamical, systems-level explanatory
and predictive approach to development (and also in fact also to evolution). We use
in this volume three biomedical examples to illustrate our proposals:

• Epithelial cancer
• Chronic inflammation
• Atopic dermatitis

These biomedical examples will illustrate (see Chap. 3) not only how a bottom-
up medical systems biology approach allows the systems-level understanding of
the underlying disrupted regulatory processes, but also how our approach suggest
potential preventive therapeutic strategies.

In what follows we shall discuss how the dynamics of human-health can be
tackled by a state-space perspective.
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1.6 Dynamical Trajectories of Human-Health

We have previously discussed that a pathology, understood as a dynamical process,
can be modulated by treatment and prevention strategies (see Fig. 1.4). Moreover,
we also considered through a systems-level perspective the interplay between
biological development (cell differentiation, cell proliferation, and morphogenesis)
and chronic degenerative diseases (characterized by health transitions that can
go from the healthy state to the disease state, via the preclinical state). We also
established the connection between regulatory dynamics at the transcriptional
intracellular level and cellular phenotypic plasticity that underlies potential health
transitions (under environmental constraints at the micro and the macro levels).

Fig. 1.11 Medical systems biology initial brick. This figure shows in schematic terms the interplay
between biological development (i.e., cellular morphogenetic dynamics driven by transcriptional
core regulatory networks) and human disease dynamics, under the dynamical constraints imposed
by the environment (at the micro and the macro levels). This interplay defines the initial brick
required to start the construction of the medical systems biology theoretical framework
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We can summarize all this initial brick of the medical systems biology theoretical
framework building in schematic terms as shown in Fig. 1.11. In what follows we
show how the state-space perspective can be generalized, in order to develop health-
state improvement by regulation of state-space trajectories of human-health.

The State-Space Perspective

Following the conceptual framework discussed above, we can consider the systems-
based description of the dynamics of human-health in terms of a state-space-based
trajectory. This implies that under the selection of a conveniently multidimensional
descriptive variable, i.e., the state variable (in fact a vector composed by a descrip-
tive set of different well-characterized biomolecular activation levels or values), the
evolution of the health-state of a given person can be seen as the time-evolution
of the chosen set of signals that encode his/her corresponding health-state (from a
clinical point of view). Therefore, the descriptive information quantifies preference-
based measures of human-health. Then, we say that a given person is completely
healthy (or perfectly healthy, or in good health, if we prefer) if the corresponding
health-state follows a trajectory (in the chosen state-space) that displays only
clinically defined signals or biomedical activation levels of the components being
considered (necessarily related to specific clinical health indicators) that correspond
to good health at any considered time.

Remark 1.10 (Clinical Characterization of Human-Health) Defining human-health
is not easy. For our purpose, we shall consider human-health as the well-established
ability to adapt and to self-manage, under the assumption that this definition is
accompanied by a set of dynamical features and dimensions that can be clinically
measured. Note that the actual clinical dimension of human-health is in fact given
by a trade-off between the current socio-cultural constraints and the current techno-
scientific standards that define medical science at a given time. The consideration of
this complex trade-off is out of the scope of this volume.

With state-health trajectories in mind, a measured disease condition will
then originate a state-health trajectory that does not match the state trajectory
corresponding to clinically defined healthy human dynamics. Therefore, the
disturbed trajectory does not correspond to the perfect health state trajectory (we
could add the adjective unhealthy to that undesired trajectory), and the mismatch
between this undesired trajectory and a clinically defined healthy trajectory will
characterize the intensity of the disease (measured in clinical terms). This implies
that at a given time, the state-of-health of a given individual would then be a
measurement of the distance that exists at that time between the actual health-
state trajectory and the trajectory corresponding to (ideal) good health. Thus,
a therapeutic intervention intended to improve the health state of the affected
individual can be conceived in terms of the continuous minimization of the distance
between those state trajectories.
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Since regulatory networks are adaptive (which implies some level of dynamical
plasticity), they can be intervened in order to modify the behavior of the associated
biological system. Let us now tackle this issue.

Regulated Human-Health State-Space Trajectories

Based on empirical evidence, for a given individual both the good health-state
trajectory and the state trajectory corresponding to a disease condition emerge
from the same regulatory networks, working under different operational circum-
stances (constrained by a complex network of multi-factorial risks, including the
key modulation of lifestyle). The therapeutic interventions can then be seen as
(ideally) well-designed interactions between exogenous stimuli and the concerned
regulatory networks. The plasticity that characterizes regulatory networks enables
that therapeutic interventions are implemented while attenuating disturbances (on
the concerned regulatory networks). It is quite obvious, nonetheless, that not
all therapeutic interventions are possible. This is due to the fact that regulatory
networks are under structural and functional constraints, and also because of our
own constraints (that include both knowledge uncertainty as well as technological
limitations).

Remark 1.11 (Technological Limitations) We must point out that at this time the
total characterization of a health-state trajectory for a given person is out of
our current technological capacities. Under the socio-cultural constraints, the best
we can do is to develop estimation techniques in order to get some important
well-defined characteristics of that curve, and use them as a starting point to
conceive dynamical therapeutic interventions. Moreover, even if we have perfect
knowledge on a particular human-health issue (which is always contestable), it may
be impossible to intervene in order to modify it.

Pharmacological interventions can seldom result in the total remission. More-
over, measuring a distance between good health and the actual health, at a given
time, is a quite formidable task. As we shall see in the next chapters, nonetheless, at
this time the state-space-based modeling approach offers some very important tools
in order to advance the medical systems biology agenda in that promising direction.

It is now time to conclude this chapter. In what follows we include a brief
summary, and we prepare the transition to our chapter concerning the formal
framework of the modeling procedures that we shall apply later for our cases
of study.
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1.7 Synthesis

Up to this point we have argued that systems biology approaches might be very
helpful to shed light on several of the current clinical research challenges posed by
the increasing incidence and social and economic burden of chronic degenerative
disease. Since these diseases are basically the undesired consequences of the
complex interplay between harmful environmental conditions and inconvenient
lifestyle processes (under the circumstances of the unavoidable human aging natural
processes), with underlying developmental systems-level mechanisms, medical
systems biology provides the right framework to uncover the properties of that
interplay, potentiating the development of preventive therapeutic strategies (in
combination with pharmacological-based approaches).

Effective prevention requires a systems-level deep understanding of disease, and
the epigenetic landscape formalism allows the effective modeling proposal that
integrates the theoretical and empirical exploration of the complex systems-level
mechanisms that underlie the disruption of human-health. It is clear that disrupted
regulation is at the heart of disease. The dynamical properties of chronic degen-
erative disease derive from the interplay between multi-factorial risk factors and
underlying regulatory processes that are at play during normal development. Hence
the complexity involved in human-health and disease is mediated by constrained
biomolecular interactions that can only be understood in the light of biological
developmental processes.

A bottom-up medical systems biology is required to unveil the generic processes
that explain chronic diseases at a systems-level. We believe that such a bottom-up
framework can be used to:

• Systematically investigate the risk of developing disease in response to different
risk factor combinations.

• Develop a formal knowledge-exchange platform to interpret clinical outcomes
in terms of the systems-level constraints imposed by the interaction between
environmental conditions and regulatory processes.

• Elucidate the mechanisms underlying the gradual tissue deterioration that char-
acterizes chronic degenerative diseases.

• Identify vulnerable but asymptomatic patient cohorts requiring preventive treat-
ments.

• Design optimal treatment regimes that effectively revert the disease phenotype
with the minimal associated negative side effects.

At this time, medical systems biology, supported by systems-level mathematical and
computer-based modeling (nourished by the impressive biomolecular cellular-based
empirical evidence that defines our post-genomic biology era), provides a mind set
to tackle in a systematic manner the improvement of complex health conditions. We
hope that this initial chapter has clarified our proposal.

The following methodological chapter focuses on our modeling procedures and
aims at providing the formal tools that are needed to pose clinical problems in a
bottom-up systems biology framework.



Chapter 2
Modeling Procedures

2.1 Introduction

Being concerned by the understanding of the mechanism underlying chronic
degenerative diseases, we presented in the previous chapter the medical systems
biology conceptual framework that we present for that purpose in this volume.
More specifically, we argued there the clear advantages offered by a state-space
perspective when applied to the systems-level description of the biomolecular
machinery that regulates complex degenerative diseases. We also discussed the
importance of the dynamical interplay between the risk factors and the network
of interdependencies that characterizes the biochemical, cellular, and tissue-level
biomolecular reactions that underlie the physiological processes in health and
disease. As we pointed out in the previous chapter, the understanding of this
interplay (articulated around cellular phenotypic plasticity properties, regulated by
specific kinds of gene regulatory networks) is necessary if prevention is chosen
as the human-health improvement strategy (potentially involving the modulation
of the patient’s lifestyle). In this chapter we provide the medical systems biology
mathematical and computational modeling tools required for this task.

The chapter is organized as follows: We introduce in Sect. 2.2 some basic
concepts on medical systems biology modeling, placing our exposition in the
context of the behavior of complex systems (recalling important concepts like
complexity and emergence). We focus our attention on the key role played by
feedback-based interactions in determining of the dynamical properties of biological
networks.

In Sect. 2.3 we deal with the practical definition of system and modeling,
and we expose how the experimental context conditions systems modeling. We
also discuss why medical systems biology requires systems-based mathematical
modeling, and present a brief classification of mathematical models (taking into
account the role played by the unavoidable presence of uncertainty). Additionally,
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we include the general mathematical modeling procedure, explain the particularities
of the interplay between modeling and simulation, and justify why we prefer to
work with models that allow hypothesis verification. We conclude the section
with exposition of the conceptual framework that characterizes the state-space
description of dynamical systems.

Section 2.4 is dedicated to justifying the use of a mechanistic bottom-up approach
based on dynamical systems theory to tackle the description of biological systems
(defined there as complex networks of biomolecular interactions at the intracellular
level). We also explain the systems-level consequences of the modular structure of
complex biological networks. As modeling is concerned, we define systems biology
in bottom-up terms, and introduce a practical definition of biological mechanism.
We also argue how to guide the modeling process through the consideration of
the regulatory dynamics that underlie the behavior of biological systems (taking
into account transcriptional dynamics), and expose the connection between disease
and disrupted regulation, and how this phenomenon can be understood through
systems modeling (taking into consideration that cells satisfy the requirements to
be considered dynamical systems). We conclude the section exposing the natural
connection between cell phenotypic plasticity and the dynamical systems state-
space perspective (the dynamical systems concept of attractor is chosen to describe
observable cellular phenotypes).

Taking into account the behavior of single cells, we present the modeling tools
required to tackle its description in Sect. 2.5, following this with a deterministic
discrete-time and discrete-space perspective. The discrete Boolean approach is
then discussed, specifying the essential components of gene regulatory Boolean
networks, namely the set of genes that constitute the nodes of the network (and
the members of the state-vector), and the updating rules that characterize how
the activity state of each given node in the network is regulated by the activity
state of the whole set of nodes in the network. We also tackle the dynamical
analysis of Boolean networks, which in the context of medical systems biology
allow us to describe cellular phenotypic identities in terms of the steady states
(i.e., the attractors of the system) of a given gene regulatory Boolean network.
The computer-based methodology to test the consistency between the model’s
predicted phenotypes (due to mutations) and the observed cellular phenotypes is
also discussed.

Section 2.6 is concerned by the continuous approximation of discrete Boolean
dynamics. This approximation allows us to build a computer-based methodology
intended to explore the role of specific genes in transient dynamics. We also
consider how to use Boolean networks to explore the phenotypic consequences of
gene decay rates. Transient dynamics are also tackled in Sect. 2.7 by introducing a
stochastic methodology intended to study gene regulatory networks and phenotypic
plasticity. The proposed stochastic formalism supports the development of the
epigenetic landscape theoretical framework, which makes it possible to uncover
in gene regulatory networks transient dynamics associated to the structure of the
stochastic epigenetic landscape. Specifically, the methodology allows the estimation
of transition probabilities of attractors (which can then be applied to uncover normal
and disrupted developmental paths).
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Since the discrete Boolean approach is qualitative, it is not suitable to explore
the effects of specific biochemical mechanisms and of quantitative variations.
The aim of Sect. 2.8 is to deal with this issue via the application of mechanistic
continuous models to the description of medical systems biology phenomena. These
models take the form of systems of nonlinear ordinary differential equations. From
the fact that cells commit to a phenotype through nonlinear signal processing
of microenvironmental conditions by regulatory networks, continuous modeling
allows an understanding of the key role of feedback-based interactions as well
as parameter variations. The section provides a useful methodology to build and
analyze mechanistic nonlinear ordinary differential equation models from scratch
(including the identification of initial conditions and the parameters of the system,
under the constraints imposed by the empirical evidence). We also expose in the
section how to assess the robustness/plasticity behavior of continuous models in
response to perturbations, and consider multi-scale dynamics in the context of the
interplay between regulatory networks and the microenvironment (this allow us to
tackle important questions turning around tissue-level consequences of disrupted
phenotypic dynamics).

We conclude this chapter in Sect. 2.10, discussing how to apply the exposed
modeling methodologies to shape an exploratory protocol intended to elaborate
predictive hypothesis (which opens the door to develop a research agenda focused
on preventive strategies to deal with chronic degenerative diseases).

2.2 Basic Concepts of Medical Systems Biology Modeling

Complexity and Emergence

Science is about organized knowledge, and systems modeling is about systems-
based methodologies for the efficient production of meaningful knowledge. Thus,
no scientific agenda concerned by complex systems (e.g., medical systems) can
exist without goal-oriented systems modeling. Therefore, we decided to begin
our exposition on modeling procedures tackling this topic. So, in this section we
follow a quite utilitarian perspective to expose the basic modeling issues that we
consider are required in the context of medical systems biology. We must point out
that by following this utilitarian approach we voluntarily decide to be at the same
time formal and to avoid excessive mathematical abstraction. Then, we prioritize
the apprehension of practice-oriented conceptual tools (by biomedical researchers
concerned by human health issues). With this, we also explore the standardization
of the basic concepts that currently flow in the available medical systems biology
scientific literature, where a lack of consensus still persists. Throughout our
exposition we refer to useful bibliographical sources that deeper information on
the discussed modeling procedures proposed here.
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To proceed with our exposition, let us first include here a brief discussion
concerning the important concept of complexity. This is important because when
tackling medical problems, from a medical systems biology point of view, we deal
in fact with complex systems.

Definition 2.1 (Emergence) Related to the behavior of dynamical systems, it
consists of the process of coming into existence.

We are conscious that this definition can be judged as being ambiguous. And
such judgment would be justified. Therefore, to be more specific, the notion of
emergence that concerns us here is that of weak emergence, developed in the context
of the study of physical systems (see for instance [447]). This type of emergence is
well suited for medical systems biology and in fact corresponds to the systems-
level emergent property that is amenable to computer simulation (for an interesting
discussion on the meaning of weak and strong emergence, see [79]).

Remark 2.1 (Holistic vision) In the context of the study of dynamical systems,
understood as the well-characterized composition of its constitutive parts, a given
detected behavior is named emergent when it is not a property of any of the
components of the system, but rather results from the system’s components inter-
actions. Therefore, the quest to understand of emergent behaviors requires a holistic
perspective. Note that this notion implies that dynamical systems can be modeled as
networks, that is, organized collections of interacting components.

Contemporary science uses the term “emergence” to refer to the manifestation
of novel collective phenomena or patterns in some large systems stemming from a
complex organization of their many constituent and interacting parts or components.
Thus, emergence and complexity are inseparable concepts. So:

Definition 2.2 (Complexity) A given dynamical system is said to be complex
when it is composed of a collection of individual agents whose interactions give
rise to emergent behaviors.

This definition implies the existence of dynamical systems that are not complex,
that is, they do not display emergent properties at all (the behavior of such a system
can be totally understood by the analysis of its constitutive parts).

Note that a given individual agent belonging to a system might be a system (even
a complex system) by itself.

To illustrate the previous concepts, let us consider now some examples of
emergent properties displayed by some dynamical systems.

Cell self-sustainability: A living cell is a rich collection of organized protein
machines. Each biomolecular complex in the family collaborates with its fellows
to manage the flux of matter and energy that ensures the survival of the cell. A
system is self-sustainable if it can maintain itself independently of other systems.
This is one of the most important properties of any living cell, which emerges
from the interaction of the cell’s constitutive biomolecules as well as chemical
and physical fields.
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Population density: A given population is defined as a measurement of population
per unit area or unit volume. This is an emergent trait of the whole population
that no single individual could exhibit on its own.

Universal health care: We say that a country has an universal healthcare system
if that system provides health care and an associated financial protection to all
its citizens. As an emergent property, universal health care comes as a result of
the interaction of a diverse collection of interacting systems that includes, among
others, a tax revenue system, a health insurance system, a fund system, and a
political system.

As illustrated by these examples, emergent properties are the result of the
system’s components interactions. In this context, feedback-based interactions are
particularly meaningful.

→ Feedback-Based Interactions

As can be seen, the notion of complexity is intimately related to the study of the
behavioral consequences of the interactions between the constitutive components of
systems. It should be mentioned that of the different types of interactions, those that
are based on feedback are by far the most interesting and the most important ones
to understand systems-level behavior and phenomena. By feedback we mean that if
a cause, say C, lead to an effect E, E will also affect C (this is also called circular
causality). Feedback-based interactions are related to systems-level properties:

• Multistability
• Homeostasis
• Robustness
• Plasticity

These are precisely the kind of properties that characterize medical systems. In
fact, feedback-based interactions are ubiquitous in complex systems. In general
feedback-based interactions have two flavors (see Fig. 2.1):

Negative feedback: This kind of interaction gives rise to a flow of information that
forms a closed loop that connects the output of a given system with its input,
having as its characteristic dynamical consequence the reduction of fluctuations
in the system’s output (which, under some conditions, may promote system
stability).

Positive feedback: This kind of interaction gives rise to a flow of information that
forms a closed loop that connects the output of a given system with its input,
promoting the reinforcement of the signals flowing in the loop. Under some
conditions, this reinforcement may promote system instability.

Colloquially speaking, we can say that negative feedback interactions (under
some circumstances) promote equilibrium or homeostasis, whereas positive feed-
back interactions (in coordination with negative feedback-based interactions) pro-
mote multistability. Nonetheless, in biological systems this sign separation (negative
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Fig. 2.1 Feedback-based
interaction. The output of
System A is routed back as a
processed input (by System
B). This chain of
cause-and-effect forms then
what is called a feedback
loop. Negative feedback tends
to reduce the fluctuations in
the output (promoting
equilibrium). In contrast,
positive feedback promotes
reinforcement of the signals
flowing in the loop

or positive) is not always so clear. A given feedback-based biomolecular inter-
action might be positive or negative, depending on the given circumstances.
Nevertheless, structural and functional constraints frequently determine the sign of
feedback-based interactions. In general, in biological networks it is common to find
interactions that combine negative feedback loops with positive feedback loops.
Such combinations are critical for the emergence of the dynamical properties of
biological networks (Fig. 2.2).

Remark 2.2 (Self-organization and Self-catalysis) As an evolutionary result, the
topology of biological networks reflect the interplay between self-catalyzed and
self-organized biomolecular processes. This interplay, which rules the evolution of
open thermodynamical systems, underlies the formation of complex biomolecular
systems (see for instance [34, 153, 173]). Negative and positive feedback-based
interactions play a key role in the structural and functional topology of such kinds
of dynamical systems.

As far as medical systems are concerned, complexity is a systems-level charac-
teristic that defines them at all levels of description, from the biomolecular scale
to the organization of medical institutions (see for instance [373]). The complex
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Fig. 2.2 Dynamical systems as networks. (a) In abstract terms, a dynamical system is constituted
by a (goal-oriented) collection of interacting components (shown in green), that is, a dynamical
network, that is linked to its environment through input and output channels. For the represented
system, {i1, i2, i3, i4} and {y1, y2, y3} denote the vector of inputs and outputs, respectively.
The system’s components could be interacting between them in different ways, including via
feedback-based interactions (as indicated by the purple and the orange edges that in graph theory
terms constitute cycles). We also represent the fact that a non-isolated system interact with its
surroundings. The immediate environment can or cannot be known in detail. (b) Shows the chosen
system as well as the interaction with its environment. The system is represented in input–output
terms. The feedback-based interactions that link the system’s outputs with the system’s inputs are
represented via the shown exogenous feedback connection. The arrows in blue and in red represent
how inputs and outputs are related to specific components of the system

nature of medical systems asks for strategic thinking to ease understanding. Thus,
formalization and abstraction are cognitive tools that are required for this. We have
been using until now an intuitive notion of system; let us now formalize in what
follows the concepts of system and modeling, and to expose how experiments are
related to these key concepts.
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2.3 Systems, Modeling, and the Experimental Context

In general, it is obvious that the complexity of our world is overwhelming. This
implies that it is very hard to get scientific explanations for the complex phenomena
that shape our world. That is the reason why science tackles the understanding of
the world through:

• Systems-level modeling
• Knowledge abstraction
• Systems reduction

We can say that we confront complexity through modeling, making it cognitively
tractable. This goal-oriented cognitive tool can be defined as follows:

Definition 2.3 (Modeling) The cognitive activity that consists of thinking about
and making goal-oriented representations to describe how particular systems
behave.

Thus, to model a given system is to organize the knowledge that concerns it.
Therefore, the cognitive reduction of complexity leads us to the identification of

physical reality as composed of a huge set of well-defined interacting systems. A
given system can then be represented by a specific model. The chosen description
organizes knowledge in a purposeful, specific way.

From a practical point of view, systems can be defined as processors of
information. This leads us to the following [77]:

Definition 2.4 (System) A potential source of data.

This utilitarian definition implies that a system can provide information, if it is
requested to do so. This implies that information from a given system is collected
through an interactive process. For a given system, the collected data are the result
of a goal-oriented knowledge harvesting process that can include both observation
of the behavior of the system as well as the conscious, purposeful manipulation of
it. In the latter case, a stimulation process of the system, that is, an experiment being
carried out on the system, can extract useful information that can be used to uncover
the specific mechanisms underlying the information processing that explains what
the system actually does. This leads us to the following:

Definition 2.5 (Experiment) Goal-oriented stimulation of a concerned given sys-
tem, in order to get essential and useful information related to it, intended to provide
the raw material that is required to build goal-oriented models.

Remark 2.3 (The Model and the Experiment as an Inseparable Couple) A particu-
lar model of a given system cannot be separated from the experiment that provides
the data (i.e., the empirical evidence) that give rise to the organized knowledge
coded by the model. The experimental context defines and validates the chosen
model.
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It is very common to start a modeling task with preexisting empirical data, that is,
experiments are not always carried out as a constitutive part of the modeling process.
This is in fact a common situation as far as contemporary medical biomolecular
systems are concerned. Indeed, it is quite common nowadays to have more data
than corresponding explanations turning around its biomedical meaning. Moreover,
the pace of biological data generation by high-throughput technologies shows super-
exponential growth; see for instance [180, 368]. Medical systems biology needs to
take this situation into account and put efforts in integrating and analyzing this data.

Abstraction and formalization of knowledge, in order to choose useful models of
specific systems, are strengthened when they are coded in an effective manner. As
a modeling language, mathematics offers a very effective tool to code and to share
organized knowledge. Let us now discuss this topic.

Mathematical Modeling

In practical terms, knowledge is useful when expressed through quantities that can
be processed via workable computations (intended to uncover systems-level basic
mechanisms hidden in the processed data). Hence, we are interested in qualitative
and quantitative descriptions of dynamical systems (i.e., systems that explicitly
depend on the time variable). Henceforth, we shall code our organized knowledge
extracted from dynamical systems using the standardized language of mathematics.
We are then concerned by mathematical models of dynamical systems:

Definition 2.6 (Mathematical Model) Describes relationships and variables that
offer a formal explanation of the data extracted from the study of the concerned
dynamical system. The identified explicative relationships describe the causal
mechanisms involved in the processing of information, while the proposed variables
usually represent, in quantitative terms, the signals being processed by the modeled
system.

It is not an exaggeration to say that the coupling of experimentation and
mathematical systems modeling is a fundamental part of the backbone of a broad
spectrum of scientific endeavors. In fact, mathematical modeling is essential for
science. Moreover, because each particular scientific field has its own particular
needs, mathematical models exist in diverse tastes, each one depending on the
specific goal pursued by a particular model, as well as the particularities of the
systems of interest of each particular scientific area.

Let us now include here a brief classification of mathematical models, which is
by no means unique.
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→ Classification of Mathematical Models

A mathematical model is composed by interacting operators, each one representing
an information processor. In terms of the effects that the constitutive operators
produce in the incoming signals, we can classify mathematical models as:

Linear mathematical models: We say that a mathematical model is linear when
all the involved constitutive information processors only perform time-indepen-
dent proportional changes on the incoming signals. In other words, any processed
signal by a given processor is just a proportional amplification or attenuation
of the corresponding input signal. Moreover, for a linear mathematical model
the consequences of the action of a combined set of stimuli equal the combined
effects of the set of stimuli taken separately. This is known as the superposition
property of linear systems, which is very useful when studying the interaction of
linear systems with their surroundings. When a given dynamical system satisfies
these two properties, we refer to it as a linear system.

Nonlinear mathematical models: A mathematical model is considered to be
nonlinear if at least one of the involved constitutive processors does not act in
a linear way on its corresponding incoming signals. An incoming signal and
the corresponding output signal are not just proportional one to the other, and
consequently the separation property is not valid in this case.

Remember that we are interested in mathematical models as useful represen-
tations of dynamical systems. This class of systems explicitly depends on the
time variable. Therefore, the way in which this independent variable is quantified
establishes a direct classification of mathematical models as follows:

Continuous-time mathematical models: If the time variable can take any value
between two given time instants, we say that corresponding mathematical model
evolves in a continuous-time manner.

Discrete-time mathematical models: When the time variable takes its values in
a well-defined set composed of distinct separated points of time.

In general we consider here non-autonomous systems. So, we consider that the
dependent variables explicitly depend on the independent variable, that is, the time
variable.

Remark 2.4 (Qualitative Descriptions and Continuous-Space Models) When the
dependent variables of a discrete-time model are discretized, we say that the
model is qualitative. These kinds of models are usually coded by finite state
representations. For instance, binary Boolean networks code systems in a qualitative
manner. If the dependent variables of a given model are not discretized, we deal with
a continuous-space model.

Not all discrete-time models are also discrete-space models. Indeed, the depen-
dent variables of discrete-time models coded in terms of difference equations are
usually not discretized. We are not considering these kinds of models in this volume.
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In this volume we consider continuous-space models when working with con-
tinuous-time models, and discrete-space models when working with discrete-time
models. To simplify our exposition, in what follows continuous-time mathematical
models just called continuous models and discrete-time mathematical models just
called discrete models.

As a goal-oriented cognitive task, mathematical modeling is constrained by
the unavoidable limitations that characterize any knowledge recollection process.
Modeling suffers always from uncertainty.

→ Uncertainty and the Lack of Predictability

Uncertainty is intrinsic to the acquisition of scientific knowledge, and its unavoid-
able presence in the context of systems modeling implies that perfect representation
of dynamical systems is in fact unachievable (in fact, only a perfect copy of a
given system would correspond to a perfect model of it). Henceforth, mathematical
models are imperfect. Uncertainty can be the result of limitations of the involved
measurement processes (i.e., measurement noise) or it can be the result of unavail-
able information related to the intrinsic nature of the given system. We must point
out that for a given system, and for a given modeling goal, it is important to
look after the best possible model, and take into account for this the presence of
uncertainty, which can be due to:

• Unmodeled dynamics
• Exogenous disturbances
• Noise

Moreover, it is always a matter of choice to include or not in a mathematical
description of a given system a model of the involved uncertainty (depending
on the concerned goal). It is common to model uncertainty in terms of lack of
predictability of the behavior of the system under certain operational conditions.
Moreover, predictability can or cannot be related to randomness. For our purpose,
we shall consider in the sequel that the lack of predictability is due to randomness.
We must point out that randomness can be due to the presence of measurement noise
or can originate from the system’s intrinsic nature (or can result from the presence
of both phenomena). Taking into account the predictability issue, we consider then
the following model classification:

Deterministic mathematical models: When the mathematical description does
not include any consideration on the lack of predictability (i.e., the variable states
are described by unique values).

Stochastic mathematical models: When the values of the involved variables are
described by probability distributions.

We shall see later that the inclusion of stochasticity in biomolecular network
modeling has revealed the importance of so-called stochastic resonance phenomena
that result from the combined action of random fluctuations and deterministic
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dynamical behavior. Such stochastic resonance seems to explain some apparently
deterministic behaviors and patterns in biological systems (see ahead).

Remark 2.5 (Stochasticity in Biomolecular Systems) Cell biomolecular systems
involve interactions of finite sets of molecules. These interactions take place in an
aqueous solution on the micro- and nanometer scale and thus are subject to thermal
fluctuations, which necessarily give rise to a form of stochasticity known as intrinsic
noise. This property implies that the behavior of cell biomolecular systems can be
considered basically as deterministic, but under the influence of random noise. The
frequential nature of the present noise, as well as its strength, depend on specific
spatiotemporal circumstances. Another source of random fluctuations also results
from the fact that the number of molecules involved in any interaction is finite and
sampling stochasticity is then involved.

→ Multiplicity of Representations

We must insist that for a given system the choice of a particular mathematical
description is a goal-oriented process. This means that different goals very often
imply the selection of different models (it is quite uncommon to choose the same
model for different modeling goals). Therefore, the same dynamical system can
be described by a linear or nonlinear mathematical model, for instance, or the
description can consider that the time evolves in a continuous way or in a discrete
manner. Moreover, complex physical systems can display behaviors that require to
be captured by hybrid mathematical models, that is, models that include components
that belong to more than one class of mathematical models (e.g., some part of the
model can be deterministic and some other part can be stochastic). A modeling rule
of thumb is to make the model to be structurally and phenomenologically similar
to the described system, and take into consideration the limitations imposed to the
analysis of the model by the available formal and computational tools.

Remark 2.6 (Hybrid Models) In general, a given system is constituted by the
interconnection of a given set of well-characterized subsystems. In mathematical
modeling terms, the description of each one of these subsystems could require a
particular goal-oriented mathematical model, since each subsystem may be related
to different modeling purposes. Therefore, the whole mathematical model for the
given system could be composed by a set of interconnected mathematical models,
each one of them belonging to a particular class of mathematical models. In the
case that the chosen model involves more than one model class, we say that the
concerned system is being described in hybrid terms or with a hybrid mathematical
model. Under some particular circumstances, hybrid models can be very useful.
However, hybrid models can be more difficult to analyze than non-hybrid models.
In mathematical terms it is not easy to analytically sustain the coherence of the
modeling tools when different types of modeling approaches are combined into a
single model. Therefore, it would be preferable to work with non-hybrid models,
but unfortunately it is not always possible. In several types of biological cases,
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Fig. 2.3 Basic criteria for the
classification of mathematical
models. A given
mathematical model, chosen
for the description of a given
dynamical system, possesses
properties that are determined
by proportionality to
exogenous stimuli, evolution
of the considered variables
over time, and
dependent-chance behavior.
This system’s characterizing
interplay can be used as a
conceptual framework to
classify mathematical models

hybrid models are necessary. For example, complex intracellular gene regulatory
networks can be represented by discrete models, but the interaction of the cell with
microenvironmental signals may require a continuous approach.

The classification provided above is common in the modeling scientific literature.
This classification is based on how the chosen model captures the given dynamical
interplay between three fundamental aspects characterizing systems behavior (see
Fig. 2.3):

1. Proportionality to present stimuli.
2. Evolution of the considered variables over time.
3. Involvement of stochasticity.

This classification of models is not the only available mathematical modeling
classification, but it is a quite useful one.

In a given particular case, the model chosen in order to describe a specific
given system would be defined by the specificity of the interplay of the described
system with the alternative frameworks that define each one of the three fundamental
aspects of a system’s behavior (proportionality to exogenous stimuli, dependent-
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chance behavior, and evolution over time of the considered descriptive variables, as
shown in Fig. 2.3).

Please consider [167] as a good reference to tackle the understanding of the
nature of mathematical modeling in general.

→ The General Mathematical Modeling Procedure

The general mathematical modeling process of dynamical systems (biological
or not), is summarized in schematic terms in Fig. 2.4. This process defines an
algorithm, which is iterative by nature (see Algorithm 1), and it is continuously
shaped by the modeling goals. These goals possess a certain degree of flexibility,
that is, the modeling goals must be adapted to the constraints imposed by the given
modeling task. Therefore, the right (ideal) model is the one that provides optimal
user satisfaction under the constraints imposed by experimental accessibility to the
system under consideration, as well as the available conceptual and modeling tools.
In any case, the optimal type of model to be used in each case can be adapted along
the way. In systems dynamical terms, a preliminary evaluation of the quality of the
chosen model, that is, the preliminary evaluation of its actual usability value, must
be based on a well-posed process of simulation. This consideration takes us to the
following:

Definition 2.7 (Simulation) In terms of a chosen model for a given system,
simulation is understood as virtual experimentation (i.e., experimentation carried
out on the model and not on the described system itself).

The purpose of simulation is to detect the strengths and the weaknesses of the
model as a useful descriptor and predictor of the represented system. Moreover, the
experimental context establishes the validity of the model as well as the possibilities
and constraints of simulations.

Once corrected (if required), after the preliminary evaluation, the model should
address some well-chosen hypothesis on the behavior of the described system under
stimuli, first tested on the model being considered (see Fig. 2.4) and Algorithm 1.
However, not all the mathematical models are necessarily oriented to hypothesis
verification. But the most useful models to understand biological systems-level
mechanisms are those that are useful to verify research hypotheses derived from
experimental approaches.

Remark 2.7 (Models and Hypothesis Verification) It is not an exaggeration to say
that models that do not allow hypothesis verification should be discarded, since they
have a limited usability.



2.3 Systems, Modeling, and the Experimental Context 49

Fig. 2.4 Schematic representation of the overall modeling process. This flowchart summarizes the
logic that underlies the modeling process. As can be seen, this process has an iterative nature shaped
by the modeling goals. The process of modeling begins once a specific system (to be modeled) has
been chosen, and the iterative process is halted when the goals of modeling are satisfied (and
restarted when necessary)

→ Recycling Knowledge and the Standardization of Mathematical
Modeling

Given a specific dynamical system that requires to be modeled in mathematical
terms, it is common to start the goal-oriented modeling task of recycling existing
models. Thus, in the mathematical modeling process, the recollected existing
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Algorithm 1: Mathematical modeling procedure
Data: characterization of the system to be modeled
Result: mathematical model that satisfies the modeling goal
initialization;
while not satisfied with the model do

set boundaries between the chosen system and its surroundings;
recollect the system’s existing knowledge;
if experiments are required then

define the experiments’ purposes;
perform the experiments;
add the experimental results to the data collection that characterizes the system;

extract the logical processes that explain the existing knowledge in causal terms;
formulate a mathematical model;
simulate the model to validate it through comparisons of the simulation results with the
data collection;
if the model requires to be corrected then

modify the model in order to satisfy the modeling goals;

explore the model and formulate from the results of the exploration hypothesis on the
behavior of the modeled given system;
perform a hypothesis procedure;
if the hypothesis is verified then

label the model as oriented to the verification of hypothesis ;
else

set a procedure intended to uncover why the hypothesis has not been verified;

if the model does not satisfy the modeling goals then
redefine the modeling goals;
update the selection of the modeling tools;
redefine the working hypothesis;

knowledge should include the available models related to the concerned system.
Those models could correspond to systems that are in fact related to the concerned
system in structural terms, even if they belong to different domains of the system.
Moreover, a mathematical model should be designed in order to be recyclable,
which means that both the mathematical model and its corresponding computational
codification (including documentation) should follow (industrial) standardization
rules. Such standardization eases the communication of knowledge. As discussed
in [218], the Systems Biology Markup Language (SBML) initiative illustrates how
standardization is required in order to improve the efficiency of systems biology
computer-based mathematical modeling.

Remark 2.8 (Models as Containers of Purposeful Knowledge) Mathematical and
computer-based models can not only be conceived as descriptors of specific systems,
but also as symbolic containers of knowledge related to the underlying modeling
goals.

We can at this level introduce the state-based approach for the description of
dynamical systems.
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The State-Based Description

To describe a dynamical system the first step is to identify the relevant variables
and their interactions with the surroundings. Next, it is compulsory to choose
the descriptive variables. As inferred by its qualifying adjective, the descriptive
variables describe the temporal behavior of the system under consideration. The
state-based approach offers a well-established modeling methodology for this
purpose. In formal terms, the state-space approach (also known as state-space
theory) deals with dynamical models describing both the internal dynamics of the
physical process under consideration and the interaction of this process with the
outside world. The formal mathematical treatment of dynamical systems from the
state-space approach of dynamical systems is beyond the scope of this book (to
develop a deep understanding of this subject consider the seminal book [196]). But
for the sake of clarity we shall introduce some of the basic concepts underlying this
theoretical approach for the description of dynamical systems.

The state-space approach (for the description of dynamical systems) is based
on a general algebraic formal concept of dynamical systems theory. This algebraic
concept requires some main terms:

• Time domain
• External variables
• Internal state
• State transition map
• Output map

These terms are usually defined as follows (see for instance [196]):

Time domain: Since any dynamical system evolves in time (the independent
variable), its behavior is best described in mathematical terms using specific
time-dependent functions. This means that every dynamical system has an
associated time domain, represented in symbolic terms by T ⊂ R (with R

standing for the field of positive real numbers). This term may be continuous,
that is, T is an interval (e.g., T = [0,∞)) or discrete, that is, T consists of
isolated points in R (e.g., T = Z, the set of all positive integers).

External variables: As we have been pointing out, the dynamical systems that
concern us are those that interact with the exterior world. In mathematical
modeling terms, this interaction is coded by a set of variables that is divided
in two subsets (see Fig. 2.5a): the set of inputs and the set of outputs. The given
set of inputs defines a time-dependent input vector, say u ∈ (ui), and the set of
outputs defines an output vector, say y ∈ (

yj

)
(the positive integers i and j index

a specific input-signal channel and a specific output-signal channel, respectively).
The set of inputs includes two different types:

• Manipulable inputs
• Non-manipulable inputs
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Fig. 2.5 State-space representation of dynamical systems. (a) Schematic representation of a non-
isolated dynamical system, characterized by the interaction of the system with its surroundings.
The interaction takes place as exchange of information, coded as (manipulable and non-
manipulable) input and output (regulated and measured) signals. If the system is described in
input–output terms, prioritizing in the description the dynamical interplay between the environment
and the system, we are concerned by input–output descriptions of dynamical systems. (b)
Schematic representation of a system’s state-description, where the internal behavior is described
by the state variable. The system’s state codes the interplay between the exogenous inputs and the
continuously updated memory of the system

The first type includes the inputs that can be controlled by the experimenter (i.e.,
the signals that act as manipulable inputs can be designed). The second type
includes exogenous inputs that cannot be controlled, and are commonly known
as disturbances (which means that they act in an undesirable way on the affected
system). Therefore, the definition of a dynamical system needs the specification
of a set of input values, say U , and a set of output values, say Y (i.e., in terms
of mathematical operators terminology u (·) : T → U , and y (·) : T → Y ).
Since input and output functions cannot be arbitrary, the specification of the sets
of input and output values also requires the inclusion of admissible sets, i.e.,
U ∈ UT , and Y ⊂ Y , for the admissible input functions, and the admissible
set of output functions, respectively.
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Internal state: This is the key notion in the definition of a dynamical system (in
state-space formal terms), and concerns variables that describe the processes in
the interior of the system. To be considered a state vector, a given set of internal
variables must satisfy three conditions:

1. The present state and the present input vector determine the future states of
the system under consideration.

2. Given an initial state at some initial time, the state at any later time only
depends on the input values for the interval starting at the initial time and
the present time. Moreover, knowledge of the initial state at some initial
time supersedes the information about all previous input and state values.

3. The output value at a given time is completely determined by the simulta-
neous input and state values, i.e., the past inputs act on the present output
only via accumulated effects on the system’s present state.

State transition map: The evolution in time of a state trajectory can be described
by a functional map called the state transition map, say:

x (t) = ϕ
(
t; t0, x

0, u (·)
)

, t ∈ Tt0,x
0,u(·),

where: ϕ represents the state transition map; t0 denotes the initial time; x0

denotes the initial state, i.e., the state of the system at time t0; Tt0,x
0,u(·) denotes

the time interval of T starting at t0, and being characterized by the presence of
the stimuli vector u (·). Note that the initial condition and the input condition
determine the state trajectory through the transition map.

Output map: In agreement with the concept of internal state, the definition of
a dynamical system requires the inclusion of an output map. That operator
maps the state of the system on the output vector (i.e., fixes the transmission of
information from the system to its surroundings). This map, say η, is conditioned
to be determined by the state and input values at time t :

y (t) = η (t, x (t) , u (t)) .

Now, using the state-space approach, we can introduce the axiomatic definition
of dynamical system as follows (see [196]):

Definition 2.8 (Dynamical System) An algebraic structure (T , U,U , X, Y, ϕ, η)

is said to be a dynamical system or state-space system with time domain T , input
value space U , input function space U , state-space X, output value space Y , state
transition ϕ and output map η, if T , U , U , X, Y are non void sets, T ⊂ R, U ⊂ UT ,
and η : T × X × U → Y , ϕ : Dϕ → X (where Dϕ ⊂ T 2 × X × U ) are functions
such that the following axioms hold:

Interval axiom: For every initial time, initial state, and for a given control input,
the life span of the corresponding transition map is an interval in T containing
the initial time.
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Consistency axiom: For every initial time, initial state, and control input, the
transition map maps these data on the initial state.

Causality axiom: For all initial time, and for a given initial state, if two control
signals are identical in a time interval starting in the same initial time, the states
mapped at the end of the interval coincide.

Cocycle property: If a given time instant, say t1, belongs to the life span of the
transition map characterized for some initial time, some given initial state, and
some given control input, with a corresponding state resulting from the action of
the transition map, then the time interval defining the life span of the transition
map having t1 as its initial time is contained in the life span (of the transition
map) characterized by the initial time. Moreover, for the life span of the transition
map starting at t1, the corresponding state trajectory matches the state trajectory
evolving from the initial time.

This axiomatic definition has a formal statement that is beyond our scope; for the
details see [196].

Notice that the previous definition considers time a continuous variable. But
the same definition can be easily adapted to consider the discrete-time case (or
even a hybrid case, if dynamics in both continuous-time and discrete-time are
simultaneously taken into consideration for modeling purposes).

Remark 2.9 (State-Space Theory Describes Systems in Terms of Information Stor-
age) The previous axiomatic definition implies, in colloquial terms, that the state
of a dynamical system is a kind of continually updated memory or information
storage (causality is embedded in the definition). Thus, the state variables need not
to represent physical quantities (of course, we would always prefer to choose state
variables that are physically meaningful!). However, in order to avoid arbitrariness
in the selection of the state variables, it is quite common to choose them in order to
represent the minimal amount of information required to describe the effect of past
history on the future development of the system (for specific initial conditions as
well as for specific input stimuli).

In the context of this volume, we choose the state-based approach for the
description of the dynamical systems that concern us, because of the conceptual
advantages offered by this formalization. With this approach we can code our
knowledge on medical dynamical systems through equations (and computational
procedures), and from them we can conceive empirically validated methodologies
to solve medical issues. In what follows we shall apply the conceptual framework
of the state-based approach to tackle biomedical systems.

It is now time to tackle biology from a systems dynamics point of view.
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2.4 Systems Biology

Basic Concepts

From a scientific point of view, life is a matter of biological dynamical systems. As
we have seen, in general any system (biological or not) can be seen as just a potential
source of data. The data, which can be collected through empirical exploration,
provide the raw material for the construction (or selection) of requested models.

Biological systems are composed of relevant biological entities. Relevancy is
related to the level of detail considered in the modeling process, i.e., it depends on
the chosen granularity of the model.

Since biological systems are extremely complex, the granularity of the mathe-
matical model chosen to describe a given biological system is quite important. In
our case, we are interested in biomolecular dynamics at the cellular level related
to a particular class of phenomena: the transition from a healthy to a disease state
of the system under consideration. That is then our granularity election, justified
because we want to uncover mechanistic basic principles underlying human disease.
We postulate that some of the basic aspects of such systems-level mechanisms
originate at the level of the complex biomolecular networks within cells and their
interactions with physical and chemical fields, as well as with signals in the cellular
microenvironment. Taking into account this choice, we shall consider here the
following:

Definition 2.9 (Biological Systems) A complex network of interactions between
biological entities, such as biomolecules, cells, tissues, organisms, populations and
communities.

Remark 2.10 (Focus on Biomolecular Systems) There are many types of biological
systems. However, this volume forces on biological subterms operating at the level
of molecular biology, since it is mainly biomolecular dynamics what underlies the
dynamics of chronic degenerative diseases.

As was pointed out before, when we talk about complex systems, we are
following the current essential scientific understanding on this subject:

• Complex dynamical systems are composed of several interacting components.
• Many of the involved interactions are nonlinear and based on feedback interde-

pendencies.
• The overall behavior of a complex system is an emergent property of those

functional interactions.

From this point of view, biological systems are then complex systems.
Because of its scientific novelty, systems biology does not have a well-

established and universally accepted definition. In fact, systems biology has two
main different origins, each one characterized by its own idiosyncrasy:

1. Dynamical systems theory.
2. Computational biology and bioinformatics.
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The first approach has in fact a quite old origin (Newtonian celestial mechanics, born
at the end of the seventeenth century), while the second approach is more recent; it
originated with the proliferation of electronic digital computer-based technology
and the generation of large molecular data sets from high throughput genomic
technologies during the second half of the twentieth century, e.g.:

• Trasncriptomics
• Proteomics
• Metabolomics

Let us briefly describe what it is understood by these two scientific fields:

Dynamical systems theory: Also known as the mechanistic approach, considers
that the behavior of any complex dynamical system is strictly determined by
its past history, by the interactions of its constitutive components, and the
modulation imposed by its surrounding environment. Moreover, for dynamical
systems theory these interactions are regulated by fluxes of some sort of
energy and information. Thus, a given physical dynamical system is understood
basically as an energy this reference to energy can be confusing processor. The
mechanistic approach is focused on the description and analysis of the dynamic
behavior of the system resulting from the system’s response to exogenous stimuli
given initial conditions and the involved parameters.

Computational biology: Describes biological systems as information proces-
sors, and privileges the study of the concerned system in terms of pattern
recognition by decomposing the biological system in its constituents, mainly of
biomolecular nature (e.g., transcripts, proteins or metabolites).

As far as computational biology is concerned, it is also common nowadays to
consider it as the statistical detection of correlations between biological empirical
data resulting from high throughput experimental explorations of the system under
different conditions.

Remark 2.11 (Dynamical Systems Theory as a Theoretical and Practical Choice)
In practice, any realistic exploration of biological systems needs systems-based
tools developed by both dynamical systems theory and computational biology. As
progress is made in both approaches, various opportunities to connect them are
emerging. In this volume, to tackle human biomedical issues we choose a dynamical
systems theory approach (as we previously pointed out). We believe that not sure
this is a fact theoretical and practical tools developed around the formal study of
dynamical systems constitute a theoretical framework well posed to uncover the
basic principles that rule biological systems.

Let us now be more specific about the main methodological approach of our
chosen scientific perspective.
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Bottom-Up and Top-Down Approaches

We are convinced that dynamical systems theory offers the right modeling frame-
work that we require in order to satisfy our objectives. More specifically:

• the multistable nature of complex biological systems,
• the system’s behavioral consequences in response to the presence of endogenous

and exogenous stimuli,

are well-captured by this approach. This framework, i.e. the mechanistic perspec-
tive, is well posed to tackle the description of biological systems following a
bottom-up approach. This modeling philosophy is defined as follows:

Definition 2.10 (Bottom-Up Approach) This approach proceeds first through the
characterization of the basic principles that rule the behavior of well-characterized
basic components of the concerned biological system, and then through the piecing
together of all these components in order to explore the behavior of the given system
as a whole, or of modules of such system. Bottom-up approaches are grounded on
well-curated experimental functional data for particular biomolecular interactions
under particular conditions.

Even if we are interested in multistable systems (since we are concerned in this
volume by cellular phenotypic plasticity), it is important to mention that not all
biological systems are multistable. For instance, under some conditions related to
the gain of an involved feedback-based interaction, some mitogen-activated protein
kinase signaling cascades can display multistability or monostability (see [22]).

As far as the computational approach for systems biology is concerned, the basic
methodology is known as the top-down approach. This modeling perspective obeys
the following epistemological philosophy:

Definition 2.11 (Top-Down Approach) Proceed first by piecing out all the con-
stituents of the studied system, observing their behavior under different conditions,
and then identifying via pattern recognition structural and functional connections
or interacting modules, for example by exploring the correlation in the behavior
(e.g., up or down-regulation) of different sets of components under contrasting
experimental conditions or for different life-stages or tissues types.

Remark 2.12 (Advantages of the Bottom-Up Perspective) The selection of the
guiding modeling approach is a matter of choice (in fact, it could even be a
matter of personal preference). We prefer the bottom-up approach because it
offers a mechanistic, rather than a descriptive, understanding of the phenomena
involved. This mechanistic understanding is required when considering systems-
level interventions on disrupted core regulatory networks.

Using the bottom-up approach and focusing on the characterization of basic
functional components (as well as basic interactions), offers a potential opportunity
for the conception of well-designed based-on systemic knowledge of functional
interventions intended to understand and propose therapeutic practices that mod-
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ulate the behavior of the concerned systems in the right direction. However, it is
clear that eventually the bottom-up and the top-down approaches complement each
together for a more complete understanding of biomedical systems.

Let us now add to the modeling perspective the networks-based approach issue.

→ Modular Decomposition and the Networks-Based Approach

When describing a given complex biological system, it is a common modeling
strategy to decompose it in its well-identified constitutive elements (e.g., structural
or functional modules). The system is then understood as a complex network of
interacting modules. This lead us to the following:

Definition 2.12 (Networks-Based Approach) When a system is coded in terms of
the specification of the system behavioral consequences of the interactions between
the constitutive components (i.e., a well-defined collection of functional nodes),
modeled as a network of interacting well-characterized components within modules
and among interacting modules.

Since biological dynamical systems can be interpreted as networks, it is very
tempting to study them in networks-based terms. We can identify at least two well-
defined research fields turning around networks-based understanding of complex
dynamical systems:

Networks-based topological analysis: This approach privileges the study of the
systems functionality in terms of specific patterns of interconnections between
the constitutive elements. This methodology, which extensively applies graph-
theory tools, looks for the identification of the specific role that individual nodes
or motifs play on the overall dynamics of the network (see for instance [8] and
the references therein).

Networks-based process analysis: This second approach privileges the deep
understanding of the specific dynamical processes carried out by the specific
interactions between the constitutive nodes, and the dynamical consequences on
the behavior of the whole system.

Having in mind the development of therapeutic methodologies, at this time
networks-based topological analysis does not offer the required systems-level
insight. That is the reason why in our case we are concerned by the second
perspective. In practice, both approaches coexist.

In the previous chapter we introduced the notion of systems biology in colloquial
terms. Now, and taking into account our previous discussion, we shall postulate the
following definition:

Definition 2.13 (Systems Biology) Domain of the biological science that studies
the interactions between the components of biological systems, and how these
dynamical interactions in concert give rise to the structure, function, and behavior
of the whole system, under the dynamical constraints imposed by its surroundings.
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Since systems biology tackles the understanding of complex biological systems
through the mechanistic perspective, we need the following:

Definition 2.14 (Biological Mechanism) A system of causally interacting well-
defined parts and processes that produce one or more well-observed and well-
characterized effects.

This definition implies that to name a biological mechanism is equivalent to
explain its function. We name a biological mechanism when we have an explanation
of what constitutes it.

Remark 2.13 (Biological Systems as Machines) In conceptual terms the previous
definition has a descriptive purpose. We are not assuming at all that biological
systems are just machines (in the common Newtonian mechanical sense for
this term); we use the concept of biological mechanism as a tool to ease our
understanding of complex biological systems. Hence, systems biology describes
biological phenomena via the characterization of the set of well-established biolog-
ical mechanisms that explain the specificity of the biological system.

We summarize in a graphic way the systems biology modeling framework that
we put forward in Fig. 2.6.

When using dynamical systems, i.e., state-based mathematical models, as the
chosen tool to describe biological systems, the involved biological mechanisms take
the form of time-dependent equations. In the molecular case, if the concerned sys-
tem consists of a network of interacting biological molecules belonging to several
molecular species, the (causal) biological mechanisms underlying the behavior of
the system usually take the form of a systems of chemical rate equations. In this case
the state of the system could be the time-indexed list of the molecular concentrations
of all the molecular species involved (if a continuous-time description formalism is
chosen). In the case of a gene network, the involved biological mechanisms describe
the set of causal interactions giving rise to the activation states of the genes being
considered, and the state of the system could be the list of the activation states of
such genes, possibly best described in discrete-time terms. In fact, the latter would
be the case if the gene network is a transcriptional regulatory one, a kind of gene
network that is central in our research approach, for the reasons that we explained
in the previous chapter.

Remark 2.14 (Holistic Understanding) Even if the systems biology research
methodology is based on the characterization of the biological mechanisms
underlying the behavior (as well as the structure and the function) of biological
systems, its working approach is not reductionist at all. In fact, for systems biology
description is not good enough. Moreover, systems biology has not as its main
purpose just to list the uncovered biological mechanisms. Systems biology looks for
the holistic understanding of complex biological systems to uncover the dynamical
consequences arising when all the explicit detected biological mechanisms are
combined. This understanding needs to make the causal specific mechanisms, as
well as the interplay between these biological mechanisms, in order to explain a
complex biological system as a whole.
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Fig. 2.6 Modeling framework of medical systems biology. The medical systems biology model-
ing strategy goes from empirical biological data to the description and dynamical network-based
analysis of the concerned complex biological system. The biological systems studied in this volume
are composed mainly by biomolecules such as transcription factors, enzymes or extracellular
ligands. Our chosen modeling framework follows a bottom-up approach, that begins with
the characterization of meaningful biological mechanisms and that ends with the behavioral
description of the systems, coded as a state-based dynamical system. We decided to follow this
pathways to system’s characterization, but it is not the only one. A top-down perspective (going
from the available empirical data to the description of the system’s behavior) also result in network-
based system’s characterization

Regulation as a Modeling Guiding Idea

In general, it is very difficult to fully describe and understand complex biological
systems. A more realistic goal is the description and understanding of specific
classes of biological systems that regulate specific biological functions.
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Remark 2.15 (Functional Interplay Between Complexity and Modularity in Biolog-
ical Dynamical Systems) Empirical evidence suggests that to deal with complexity,
natural biomolecular systems are (broadly speaking) organized in modular terms, at
both the structural and the functional levels (see for instance [92] and the references
therein). Modularity makes then complexity functionally and computationally
tractable. A fundamental consequence of modularity is regulation: the interaction
between the constitutive modules needs coordination.

As an organizational principle modularity requires regulation. This task, the
coordination of information exchange processes performed by the modules, is
carried out by specific specialized regulatory networks. Such kind of systems can
be defined as follows:

Definition 2.15 (Regulatory Networks) A particular kind of biomolecular net-
works that regulate information exchange processes, underlying a specific function-
ality in the biomolecular systems under study.

Remember that in the previous chapter we colloquially discussed the relationship
between the disruption of regulation and human diseases (and we exposed the fun-
damental role played by core regulatory networks, in the context of developmental
transcriptional regulatory networks). We shall now insist in that topic, being more
specific on certain modeling issues.

Strong evidence supports the epistemological claim that human disease comes
as a result of disruption of the regulatory processes that sustain the organism at
the biomolecular level is being accumulated. Transcriptional regulatory networks
involve complex interactions of gene biomolecular products as well as biomolecules
or signal transduction pathways that connect organisms with environmental cues.
Indeed, it has been shown that diseases involve particular disrupted transcriptional
core regulatory networks [267]. We schematically depict this statement in Fig. 2.7.

As exposed in the previous chapter, disruption is the dynamical consequence of a
multi-factorial process perturbed by a set of risk factors. Let us now to argue how the
understanding, and potentially the treatment, of disease can be tackled via a formal
modeling systems-level perspective intended to uncover the mechanisms that rule
this complex multi-factorial process.

→ Emergence of Disease

In modeling terms, attention must be focused on the interplay between:

1. Regulatory networks and
2. Genetic and (intrinsic and extrinsic) environmental perturbations

These disturbances alter network structure and function, disrupting regulation and
eventually leading to disease.

This dynamical interplay can be understood in terms of modifications of the
dynamics of the involved regulatory networks and their dynamical feedback with
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Fig. 2.7 Disrupted regulation and disease. Thinking about chronic degenerative disease in terms
of disrupted regulation requires to take into account how tissue integrity is lost. A coordinated
community of cells (e.g., a tissue) can be seen in modeling terms as a coordinated network of
interacting biomolecular networks. Each one of the involved networks sustains the functionality
of the corresponding regulated cell. Disruption of the regulatory functionality of a given core
transcriptional regulatory network might start a sequence of events giving rise to a consolidated
new network of networks, supporting then the dynamics of a resulting community of cells adapted
to the given unhealthy circumstance (constrained by a given specific environment at the micro
and the macro levels). The dynamical process that goes from an alteration to a medical condition
involves transitory states, where the phenotypic identity of is gradually modified until attaining a
stable unhealthy state, through specific cellular state-space trajectories. Notice that the existence
of transitory cell phenotypes reflects the plasticity of biomolecular networks

environmental conditions or factors (generally known as risk factors), and can be
coded as state trajectories characterized by fragile initial states coding potential
medical alterations and final states coding consolidated medical conditions. The
transitory states that might be uncovered upon goal-oriented analysis of empirical
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evidence bridge the initial and the final states and result from the influence of
environmental or risk factors (or both).

Remark 2.16 (Topological Description of Human-Health) In state-space-based
terms, the addition of a distance quantifier between an unhealthy state at a given time
and the corresponding desired healthy state makes the state-space a metric space
(a particular class of what is known as a topological space). From a state-space
perspective, it would be very advantageous to formulate human-health issues in
terms of the quantification of the health-state as a well-defined topological distance
(see Fig. 2.8). This would allow us to apply rigorous mathematical concepts in
the conceptualization of a topological-based theory for medical systems biology.
However, at this moment that ambition is out of the current state of both scientific
research and medical practice, but current developments point in that direction.

One of the main advantages of a topological description of human-health is
the application of principles of variational calculus in this context [258]. A given
human-health-state trajectory can be then understood as the solution of a given
variational problem, and a therapeutic intervention could then be seen as a specific
variational optimization problem. This would require to code human-health in term
of a formal optimization objective. However, this is easier said than done. In this
volume we shall not go in that direction, but it is important to point out what other
possibilities are opened by a state-space framework in medical systems biology.

It is time now to be more specific about a formal description of biological
systems. For this we shall apply in what follows the systems-based perspective to
the description of cellular functionalities.

The Cell as a Dynamical System

Previously we defined what we consider a dynamical system in formal terms, now
we apply that formal perspective and consider cells as dynamical systems. In other
words, we assume that at any given time the measurable state of any given cell can
be described by a set of time-dependent variables that satisfies the dynamical system
definition that we put forward above.

We can describe the state of the cell at a given time by the finite collection of
levels of expression or activation of the different molecular elements in it at a given
time.

Remark 2.17 (Molecular Diversity in the Mammalian Cell) If we were to consider
all the proteins in an average mammalian cell, we would be looking at around 2.7 ×
106 proteins/µm3 as the total number of protein molecules per cell volume [324].
Moreover, it has been estimated that there are 70,000 protein species in a single
human cell [343]. Thus, a protein-based cell state descriptor would be a 70,000-
dimension state vector. Studying the dynamics of such a large state vector is far from
being realistic. Fortunately, such a complex system is under regulation. The cell
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Fig. 2.8 Conceptual framework for the state-based description of human health. The green line
depicts the clinically defined good health trajectory, while the red line corresponds to a heath-state
trajectory affected by a given disease condition. At a given time, say t1, the length of the major
axis of the disease ellipse represents the measured distance between perfect health and the affected
health-state at that time. In absence of therapeutic intervention this disease will increase with
time, as depicted with the disease ellipse at time t2. Under medical treatment, a given therapeutic
intervention is then applied to regulate the state-of-health in order to make it recover (if possible)
good health. Ideally, remission is the goal of the therapeutic intervention

can be then seen through the dynamics of the involved regulatory networks. Thus,
regulation offers us an efficient dimensional reduction procedure, which enables us
to work with state vectors of analytically and computationally tractable dimensions.
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Fig. 2.9 Omics information.
Originally, the so-called
Omics sciences dealt with the
discovery and annotation of
all the sequences in the entire
genome of a given organism.
Nowadays, Omics sciences
are concerned by the
construction of the whole set
of cell biomolecular
informational databases, as
well as its goal-oriented
analysis. These databases
provide the raw data to
develop network-based
descriptions of cell
biomolecular systems (e.g.,
transcriptional gene
regulatory networks)

Selection of the State Variable

To pursue a state-space description of cell biomolecular network dynamics, we
require to select a convenient state variable that is biologically relevant. Since
transcriptional regulation is at the core of regulatory cellular networks, the state
variable necessarily includes transcriptional factors and their interactions.

Nowadays it is easy to have access to high-dimensional cell biomolecular
descriptive information that has been produced by high throughput approaches
(see Fig. 2.9). This information includes data related with the dynamics of gene
regulatory networks, which can be recovered through the application of specialized
computer-based data mining methodologies (increasingly depending on deep learn-
ing and machine learning tools, see for instance [225, 229]) or by other approaches
including well-curated functional data for sets of transcriptional regulators.

For practical reasons, the chosen state of the regulatory machinery of the cell
has been commonly approximated by the levels of expression of the genes that
encode for the transcriptional factors that are key for a particular cellular behavior
or function. The levels of expression constitute a convenient, measurable quantity,
from a systems dynamics point of view. We shall take such an approximation here.
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For us each gene or transcript in the cell represents one time-dependent variable,
and the genes interact with each other through regulatory mechanisms, therefore
forming a functional network. If only the active and inactive states of the network’s
nodes are taken into account, a Boolean discrete-time description can be very useful
to describe gene regulatory dynamics. In that case the descriptive state variable
consists of a Boolean vector, which evolves in a finite state-space. However, if
the rates of change of the involved biomolecular species (including gene products)
are relevant, the state vector will consist of the solution of a particular system of
ordinary differential equations. We shall continue this discussion later.

Remark 2.18 (Extending the State-Space Perspective) This gene-regulatory net-
works perspective can be naturally extended to encompass cells tissues or even
organs or persons. To begin with, the state variable take into consideration the spatial
location of chosen biomolecular species (e.g., gene products) or cells in specific
tissues.

→ Powerful Intuition from the State-Space: Cell Phenotypic Identity

Before getting into more technical details, we will motivate showing the utility of
modeling: the characterization of the state-space. The state-space is perhaps the
main theoretical/conceptual tool that enables an intuitive yet rigorous investigation
of some of the most fundamental questions in cell and developmental biology (as
well as the systems biology view of human complex chronic degenerative diseases).
Simply put:

The state-space is the abstract space where all the virtually
possible cellular phenotypes reside.

In reality we do not observe all the:

• possible expression profiles,
• cellular phenotypes,
• or morphologies.

Instead, we only observe a subset of robust and distinguishable cellular and tissue
types, as well as reproducible patterns of pathological cellular and tissue conditions
that allow clinical diagnosis.

Thus, our empirical observations of phenotypes in health and disease imply that
some driving force should be maintaining cells within specific, restricted regions of
the state-space.

As explained in the previous sections, in the mathematical theory of dynamical
systems, such attracting regions of the state-space are called attractors.

Remark 2.19 (Rectrictions and Cell Compatible States) Irrespective of the initial
phenotypic state, the restrictive behavior imposed by regulatory interactions within
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the gene regulatory network will push the cell away from incompatible states of gene
activity and towards a specific set of attracting states defined by logically consistent
gene activity configurations. For example, two mutually inhibitory regulators cannot
be active and highly expressed at the same time, as imbalances in gene expression
and stochasticity will always lead to one or the other direction—perhaps initiating a
cascading regulatory transition and lineage choice or attractor switching.

The set of attractors (i.e., the stationary and stable gene configurations), underlie
the possible observable cellular phenotypes or cell-types, which correspond to
specific state-space neighborhoods that together form an emergent and orga-
nized structure that constraints all the possible and plausible patterns of cellular
phenotypic transitions. Moreover, each attractor displays a characteristic context-
dependent robustness-versus-plasticity balance.

From this perspective, we know that disease emergence and
progression is epitomized by either the appearance of patho-
logical neighborhoods, or the occurrence of atypical, out-
of-context transitions towards existing immature or normally
unstable states due to the restructuring of the state-space.

The combination of intrinsic and extrinsic factors of both genetic and epigenetic
or environmental origin induce such state transitions during normal development in
healthy and ill individuals, or as part of rational therapeutic interventions.

The models discussed below provide tools intended to study and predict the
structure of the state-space associated with specific experimentally grounded gene
regulatory networks (that comprise the necessary and sufficient set of restrictions or
interactions) under physiological and altered conditions.

2.5 Discrete Single-Cell Boolean Models

We start by discussing the simplest modeling frameworks used to operationalize the
systems dynamics perspective of the cell: deterministic, discrete single-cell Boolean
models.

In discrete-time dynamical models it is assumed that both the time and the state
variables take discrete values. That is, it is assumed that at each time-step the state
of gene activity can take only one of a discrete set of values or levels. Simplifying
further, we can define the simplest discrete model by limiting the state variables, say
xi(t) (i = 1, 2, . . . , the total number of state variables), to take only binary values
(i.e., {0, 1}), thus obtaining the widely used Boolean gene regulatory model (see for
instance [240]). The mapping of cell state transitions functions then become:

xi(t + 1) = Fi(x1(t), x2(t), . . . xn(t)), i = 1, . . . , n (2.1)
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where:

• The set of transition functions Fi formalize logical propositions expressing the
relationship between the genes that share regulatory interactions with the gene i.

• The state variables xi(t) can take the discrete values 1 or 0 indicating whether
the gene i is active or not at a certain time t , respectively.

• Positive integer n denotes the number of nodes in the network (i.e., the dimension
of the associated state-space).

Despite the high degree of simplicity and abstraction, the deterministic discrete-
time description of Boolean networks provides a level of understanding useful for
explaining actual observed developmental processes (e.g., cell differentiation and
morphogenesis). Moreover, this modeling approach is able to predict outcomes
under novel contexts in multiple experimental systems (See examples and reviews in
[17, 19, 29, 49, 112, 318, 369]). The functional relationships coded in the transition
functions Fi can be readily obtained directly from experimental data (see for
instance [19, 112, 478]).

Thus, Boolean gene regulatory networks provide a powerful framework to
integrate diverse empirical data in the form of regulatory relationships and to
computationally interrogate their systems-level behavioral consequences.

In what follows we first present the practical application and analysis of the
Boolean gene regulatory approach, and then go on to expand this modeling tool
to continuous dynamical models.

The Boolean Approach

Boolean gene regulatory networks capture key qualitative aspects of developmental
systems, while being simple and intuitively appealing [6, 80, 318]. In this subsection
we provide a more detailed conceptual as well as practical presentation of discrete-
time Boolean networks as a first step towards integrating complex biomedical
systems.

In order to explain the formalism we:

1. Define a Boolean gene regulatory network model (selection of genes and
identification of regulatory relationships).

2. Show how such model is computationally analyzed to recover its dynamical
behavior.

3. Explain how the network attractor states are obtained and validated with
experimental data.

4. Characterize the configurations of the state-space
and:

5. Discuss how we validate the resulting models in terms of robustness and
predictions of mutant phenotypes.
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The mathematical basis of the models to be used can be found in [6, 80, 138, 235,
318].

→ Essential Components of Boolean Gene Regulatory Networks

A dynamical and deterministic discrete-time Boolean model representing a gene
regulatory network has two essential components:

1. A list of genes hypothesized to summarize the properties of interest in a
developmental system and a prediction of how those properties change over time.
The list of chosen genes defines the state of the system (xi(t)).

2. A set of updating rules (i.e., mapping functions Fi) specifying in terms of logical
propositions how the activity of each gene changes over time as a function of the
current activity of all the involved genes. Thus, the updating rules fix the system’s
transitions.

This approach can be applied to a broad class of biological systems (not only
to developmental ones). Moreover, not only genes are involved in gene regulatory
networks. Other regulatory players can also be playing an important role.

For Boolean networks, the length of the state vector corresponds to the number
of nodes, and the total number of states that constitute the state-space (i.e., the time-
dependent variables) equals 2 to the power of this length (see Fig. 2.10 for a sketchy
illustrative academic example).

Remark 2.20 (Network’s Curation) Through extensive literature curation of func-
tional experimental data, the genes and their regulatory rules can be proposed. The
set of genes and updating rules should represent the current state of knowledge
regarding what is known about the regulation of the developmental process or
biomedical system of interest under study. It is quite common nowadays also to get
the required data or to complement it from the databases generated by the Omics
sciences (see Fig. 2.9).

Let us now specify the procedure giving rise to the construction of a deterministic
discrete-time Boolean network model. The procedure is schematically summarized
in Fig. 2.11.

Defining the Set of Genes

In the first step in gene regulatory network modeling we need to define a set of
genes (and the other involved biomolecular players) to be included in the network.
Depending on the biomedical problem under consideration, a candidate regulatory
module is postulated by proposing a set of molecular components known to behave
as key regulators of the concerned process. The aim is to focus on a core regulatory
module that has been associated to a particular developmental process, as explained
in the previous chapter of this volume. We provide in this book two examples of
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Fig. 2.10 State-space of a Boolean network. This figure depicts the state space of a Boolean
network constituted by four nodes, shown in the top of the figure. The nodes are represented
by circles and the interactions between nodes are represented by arrows (i.e., the network is
represented as a digraph in terms of graph theory). Each node has only two possible states: active
(blue) and inactive (red). The depicted Boolean network has 24 = 16 configurations. Each one of
these configurations is represented via a binary row vector [A B C D], and can be interpreted
as a potential initial condition of the system

regulatory core modules that illustrate the usefulness of the Boolean approach (see
the details in the next chapter):

1. A model of epithelial-to-mesenchymal transition underlying the emergence and
progression of epithelial carcinoma.

2. A model of CD4+ T cell differentiation and plasticity during normal and
hyperinsulinemic conditions.
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Fig. 2.11 Construction of a deterministic discrete-time Boolean network model. This figure shows
the six stages that constitute the general procedure that is followed when tackling the construction
of a gene regulatory network grounded on empirical data. The procedure goes from the definition
of the genes that define the state of the concerned network to the recycling of the resulting
deterministic discrete-time Boolean network model

Consider, for example, the model of carcinogenesis. In this first model, extensive
literature search and curation resulted in the discovery of a set of nine molecular
key players regulating the molecular processes proposed to underlie carcinogenesis,
namely (see the details in [316]):

Cellular Senescence: p53, p16.

Cell-cycle: TEL, E2F, Rb, cyclin.

Epithelial cell differentiation: ESE-2.

Mesenchymal cell differentiation: Snai2.

Cellular inflammation: NF-κB.
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The nine genes involved in the core gene regulatory network were identified via
a meticulous study of the available published information, under the guidance of
experts on the subject of epithelial cancer.

In the corresponding Boolean gene regulatory network, we then define nine
binary variables representing the activity configurations of the set of the identified
nine genes. In symbolic terms, we have the binary vector given by:

x (t) =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

x1 (t)

x2 (t)

x3 (t)

x4 (t)

x5 (t)

x6 (t)

x7 (t)

x8 (t)

x9 (t)

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

:=

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

p53 (t)

p16 (t)

TEL (t)

E2F (t)

Rb (t)

cyclin (t)

ESE-2 (t)

Snai2 (t)

NF-κB (t)

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

This set of variables x (t) represents the state of the cell at any given time. In the next
chapter we present the biological and theoretical background of the problem, and the
detailed and complete modeling approach that we used to formalize it that allowed
us to tackle it in a simplified manner. In this section we shall only use this example
to present a general introduction to Boolean gene regulatory network modeling.

Defining the Updating Rules

Now that the set of genes in the network has been defined (i.e., the set of key players
involved in the regulation of carcinogenesis through the epithelial-to-mesenchymal
transition dynamics), we need to propose an updating function for each of the genes.

The updating function will act as the dynamical mapping (Fi) connecting the
present and future activity states of the corresponding i-gene. Altogether, these
functions will update the state of the network each time they are applied in
a synchronous manner (i.e., all the genes in the network make a simultaneous
transition from the present state to the next state). Consider for example the gene
telomerase TEL. A natural-language statement published in experimental studies
might state that:

Down-regulation of Snai2 and ESE2 induces increased
expression of telomerase.

Suppose that another study reports that:

Over-expression of Snai2 and ESE2 down-regulation induces
increased expression of telomerase.
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We can translate these two complementary statements into a simple logical propo-
sition as follows:

TEL (t + 1) = (not Snai2 and not ESE2) or (Snai2 and not ESE2). (2.2)

We can also write this logical proposition using the standard
notation for logical operators, i.e.:

∧ : and
∨ : or
¬ : not

(2.3)

Thus:

TEL (t + 1) = (¬Snai2 ∧ ¬ESE2) ∨ (Snai2 ∧¬ESE2)

The right-hand side of (2.2) represents a logical statement formalizing the nature
of the influence of Snai2 and ESE2 over TEL. The given equation is the update
function postulated to determine the dynamics of the activity of the gene telomerase
(TEL). In words:

Telomerase will become or stay active if either both Snai2 and ESE2 are currently not active,
or Snai2 but not ESE2 is currently active.

At first sight, it does not seem that such as simple rule will be able to generate
any interesting dynamical behavior. However, when we consider that each time the
activity of both Snai2 and ESE2 will itself be determined by two other updating
functions that can potentially be much more complex and involve more regulatory
molecules, each being regulated by an update function, then the coordinating power
and nontrivial behavior of even simple Boolean gene regulatory networks becomes
evident.

Once we extend the same type of reasoning to the simultaneous implementation
of all updating rules corresponding to all the genes or nodes in the regulatory
network, it is easy to imagine how the regulatory restrictions will ultimately
determine small subspaces (i.e., well-characterized collections of network’s states)
consistent with all the constraints. This emergent restructuring of the state-space is
what specifies the attractors and the corresponding observable cellular phenotypes.

Remark 2.21 (Constraints and Robustness in Gene Regulatory Networks) As an
evolutionary product, the constraints that rule the interplay between the genes
associated to the regulation of a specific biological function, coded by the updating
rules in the case of Boolean gene regulatory networks, decompose the state-
space and fix the cell-state trajectories. These constraints give rise to a level
of determinism that explain robustness of gene regulatory networks, even in the
presence of stochastic fluctuations of the involved biomolecules or some loss and
gain of function mutations or weaker alterations of the logical rules.
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Following the previous simple exercise of translating natural-language state-
ments published in the relevant experimental literature to logical functions, we
can define the complete set of updating rules and complete the definition of our
Boolean gene regulatory network model. We must point out that the logical updating
functions can readily be used as input for specialized existing computational tools to
directly proceed with the analysis of their dynamical behavior. This is, in fact, one
of the most important advantages of discrete-time Boolean networks as modeling
tools of gene regulatory networks.

It is clear that the translation from natural-language statements to logical
functions makes possible the development of computer-based automatic tools for
the description of gene regulatory networks. This asks for the inclusion of Artificial
Intelligence developments in the context of medical systems biology. In the spirit of
what is illustrated in [284], both text mining and data mining of reported empirical
evidence can be automatically translated to logical propositions, and then the
collection of these propositions can be explored to shape regulatory networks.

→ Dynamical Analysis of Boolean Gene Regulatory Networks

A gene regulatory network is completely specified by the proposed set of nodes
and their corresponding updating rules (that code the empirical evidence). Once
any network is specified, it is possible to analyze its associated dynamical behavior.
Consider as an illustrative example a network with eight genes (see Fig. 2.12a):

The state of all the genes specify a gene configuration of the complete network
(network state x(t)) at each time step t . In the Boolean case, a gene regulatory
network with n genes can only take state values from a finite state space of 2n

possible states—because each gene states can only take either of two values (0 or
1). Thus, the entire state space of a network with eight genes will have 28 = 256
states. In Fig. 2.12 we schematically represent these states as circles in a quadrant,
comprising the state-space. Each circle in the given state-space corresponds to
a specific state vector or expression configuration with eight “0” or “1” activity
values, one for each gene. The parallel implementation (i.e., all the genes in the
network make a simultaneous transition) of the updating rules (i.e., the transition
mapping) Fi uniquely determines a specific future network state, starting from any
initial state. For example, when only the gene x1 of the network is active at the
present state, application of the updating rules will produce a future state where the
genes x1, x2, x3, x7 are now active, as shown in Fig. 2.12b. Since the state-space
is finite and closed, if the updating rules are applied iteratively starting from a
specific network state, it is possible for the network to reach either a stationary state
that does not change after applying the updating rules (i.e., a fixed-point attractor)
or a close set of states from where the updating rules map to themselves (i.e., a
cyclic attractor). These stationary circumstances are the attractors. In the current
illustrative example, once the network state where only the genes x1, x3, x7 are
active is reached, further implementation of the updating rules will not change
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Fig. 2.12 Boolean gene regulatory network dynamics. The figure schematically shows key
concepts involved in the modeling of gene regulatory dynamics dynamics. (a) In the initial state
of a network with n = 8 genes only the gene x1 is active. This configuration constitutes a state
that corresponds to a point in the state-space of the network, which is partitioned into three basins
of attraction. (b) Application of the updating rules or mapping function results in a state change
resulting in the activation of three more genes. The state change is reflected in a change of location
in the state-space. (c) An additional updating of the network state results in a new state, where any
additional updating results in the same state. Consequently, this last state is in fact an attractor
state, and it is represented as a red point in the state-space. Each basin of attraction contains
a different attractor state. Resulting from the action of the transition mapping the state-space is
structured in a collection of state-regions, i.e., the basins of attraction associated to the set of
attractors

the state anymore (see Fig. 2.12c). In other words, the attained attractor state is
consistent with the regulatory constraints imposed by the regulatory logic coded
in the updating rules.

Extending this logic, if the updating rules are applied exhaustively starting
from every possible network state (i.e., the initial conditions), some subsets of
states converging to the same attractor will emerge. The regions in the state space
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converging to the same attractor are called basins of attraction. Usually more than
one of these basins of attraction emerge (i.e., the systems is multistable), thus as
a result of the dynamical behavior, the state-space is effectively partitioned into
attracting neighborhoods. In the current example (Fig. 2.12), the dynamics of the
network converges to three fixed-point attractors (red circles), and, accordingly, the
state-space is partitioned in three basins of attractions (black, blue, green); one for
each one of the attractors. Remarkably, in a real model, by virtue of the nontrivial
restrictions coded in the model specification, the uncovered attractors represent
activity configurations that are consistent with the regulatory logic specified in
the experimentally based updating functions—analogous to the way in which gene
expression profiles observed in vivo maintain specific cellular phenotypes.

Remark 2.22 (The Attractors Landscape) As a consequence of the gene regulatory
network dynamics, the state-space gets structured in a specific manner, which
is reflected in the way the basins of attraction are organized. We will refer
to such structure as the attractor landscape. In the case of development, the
characterization of this landscape allows us to explore and study the patterns of
cell-state transitions naturally emerging during developmental processes, as well as
its potential manipulations through rational interventions. In the context of complex
chronic degenerative diseases, attractors landscapes allow the construction of formal
settings for the understanding of disease dynamics.

To summarize, in Fig. 2.12, we schematically show the key concepts involved in
the modeling process of gene regulatory network dynamics. The implementation of
the updating rules to a given network state will determine a specific network state
for the next time step. The iterative implementation of the update functions to this
latter state will eventually drive the network to reach an attractor state. The most
basic characterization of the corresponding attractor landscape consists in obtaining
all the attractors as well as their corresponding basins of attraction.

Remark 2.23 (Open Access Computational Tools for the Modeling of Regulatory
Networks) A detailed mathematical presentation of dynamical systems theory for
this type of model is out of the scope of this book. We direct the interested reader to
existing superb references such as [429], and [157]. Fortunately, years of research
and the popularity of gene regulatory models have led to the implementation
of a multitude of open access modeling computational programs that can be
used to analyze Boolean network models. Such tools already include efficient
implementations of the necessary methods required to simulate gene regulatory
network dynamics and to characterize the associated attractors landscape, as well as
several approaches to conduct mutation and robustness analyses of network models.
Some examples of useful tools for the dynamical analysis of Boolean networks are:
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BoolNet: [336]

ANTELOPE: [25]

GINSIM: [340]

GNbox: [97]

GNA: [115]

BioCham: [71]

Various approaches to obtain the attractors and the technical details implied have
been reviewed elsewhere (see for instance [163]). Moreover, we have previously
published complete modeling protocols of gene regulatory networks, describing
how to exploit existing computational tools to propose and analyze experimentally
grounded networks (see for instance [30, 112, 466]).

Contrast the Attractors with the Observable Cellular Phenotypes

The main hypothesis of the modeling framework of gene regulatory networks is
that:

The experimentally grounded network constitutes a regula-
tory mechanism driving the specification of the experimen-
tally observable cellular phenotypes.

In order to support such hypothesis one expects that the attractors uncovered
through the dynamical analysis above will correspond exactly to the observable
cellular phenotypes in terms of the configurations or profiles of gene activation
states. The set of uncovered attractors thus defines predictions as to how cell-
state configurations are expected to be, given the regulatory constraints integrated
in the network. In order to test such model predictions, and thus evaluate the
suitability of the model at hand, we have to empirically measure (or to retrieve from
experimental literature) the actual, observable cellular phenotypes corresponding
to the developmental system being modeled. For comparison, the observable
phenotypes are represented in a format comparable to the binary state vectors
recovered with the Boolean model. The latter will ultimately enable to bridge
predictions and observations. If both predicted attractors and empirical phenotypes
show close to perfect correspondence (due to some unavoidable circumstances,
such as missing data as well as the variability of gene expression profiles, perfect
correspondence is hard to attain), we postulate that the uncovered gene regulatory
network includes a set of genes and regulatory interactions that naturally explain the
observed phenotypes, suggesting an explanatory molecular systemic and dynamical
mechanism. Note, however, that it is common practice in model building to go
through multiple rounds of modification and testing, before uncovering the final,
consistent gene regulatory network model.
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Prediction and Testing of the Phenotypic Consequence of Mutations

Testing for consistency between predicted attractors and observed cellular pheno-
types is a necessary first validation step. However, further computational validation
analyses are often used to test whether the uncovered network constitutes a
functionally relevant regulatory module. First, a naturally evolved biological mech-
anism is expected to be robust against errors and random perturbations (see for
instance [141] and the references therein). To test whether the uncovered model
tolerates such perturbations, random errors can be simulated by introducing random
modifications to one or several of the updating rules defining the given Boolean
model. Subsequently, a comparison of the dynamical behavior of the modified and
the original network will indicate if, and to what extent, the network dynamic
behavior is conserved. A robust gene regulatory network is expected to show an
unaltered dynamical behavior in response to a large number of tests.

Remark 2.24 (Measuring Robustness) In the context of discrete-time (and discrete-
space) Boolean networks, as exposed in [29, 141], a standard measure of robustness
quantifies the frequency at which the attractors uncovered with the original gene
regulatory network exist in each perturbed network. Therefore, perfectly robust
attractors of the original network are those that exist in all perturbed networks
(resulting from errors and random perturbations affecting the original network), and
totally fragile attractors of the original network are those that have a zero frequency
of existence in the perturbed networks. Thus, if an uncovered regulatory network,
described in Boolean terms, is such that all its attractors have a high frequency of
existence in all perturbed networks, we say that the uncovered network is robust.

A gene regulatory network module that is consistent in terms of recovering
observable cellular phenotypes, as well as displaying a robust behavior under
random perturbations, provides an explanatory mechanism. The uncovered network
can be further used to predict and test the cellular phenotypes that are expected to
emerge under specific genetic perturbation. Boolean gene regulatory networks are
particularly well suited for such predictive experiments, as it is straightforward to
simulate single or combined loss- and gain-of-function mutations by simply fixing
the value of a gene as 0 or 1, respectively. For the case of existing experiments
analogous to the simulated mutations, direct comparison can be used as further
validation of the predictive power of the uncovered model. In turn, a gene regulatory
network model able to predict independent phenotypes as result of mutation strongly
supports that an underlying biological mechanism has been uncovered.

From Validation and Prediction to Model Recycling

The ability to simulate novel mutations and to predict the corresponding phenotypes
provides a valuable framework to prioritize candidates to be experimentally tested.
Both robustness assessment and mutant simulation experiments further support the
hypotheses implied in the gene regulatory network model, and are important steps
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in the modeling protocol. In addition to testing mutations, the uncovered gene
regulatory networks can also be useful as a computational frameworks to test the
impact of modulatory factors (or therapeutic interventions). Once the model has
been validated, it becomes a useful framework to integrate newly available data;
constituting a valuable building block for more complex models. New biologically
meaningful data can be used to update the network based on modeling recycling
(see for instance [167]). The idea is to propose updated models that are able to better
explain observed experimental evidence. Such models also enable predictions that
are likely to be more accurate in the context of the available data and the uncovered
regulatory module.

Remark 2.25 (Identified Gene Regulatory Network Rules as Hypothesis Testers)
There are cases in which the outlined protocol becomes more complicated. In some
cases, different updating rules can be consistent with the data at hand. In fact,
networks with different structures can produce the same combination of functional-
ities, being also able to produce similar attractor landscapes (see for instance [31]).
In this context, the overall gene regulatory network module can be viewed as a
“hypotheses tester” framework, with which the different options can be tested. It
is always convenient to review and discuss such cases with experimental biologists
(or biomedical professionals) who are experts in the molecular underpinnings of
the cases under consideration. In many cases, additional arguments can be found
to select among the possible alternative functions. The dimension of the space of
alternative functions shrinks as the quality of the experimental evidence improves.

Given that in most systems under analysis it is common to find gaps or holes in
the experimental data, alternative gene regulatory network models can be used to
postulate alternative system-level hypotheses (in fact, an identified gene regulatory
network module can be seen as a preliminary explanation of the phenomena under
study). In any case, having a systems biology dynamic model is recommended to
postulate alternative hypotheses and predictions; rather than just following an empir-
ical trial-and-error approach because once the system under consideration goes
beyond two components, the number of combinations and possibilities increases
as double exponential (see for instance [138]).

Networks Organization: Spatial Considerations and Coupling
of Gene Regulatory Modules

The modeling framework described up to now does not incorporate any explicit spa-
tial information. However, gene regulatory dynamics are intimately related to spatial
constraints. In fact, in multi-cellular organisms cell communities possess high levels
of spatial organization, and this robust organization involves physicochemical fields.
Thus, mechanical forces emerge as a result of cell-to-cell interactions (like the
ones generated by the action of integrins and cadherins that give rise to cell–cell
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adhesion forces), and the presence of mechanical constraints generates specific
gene regulatory dynamics that condition the spatial organization of specialized cell
communities (e.g., tissues). Moreover, the dynamics of the interplay between gene
regulatory networks and mechanical constraints display feedback-based interactions
with the whole organism’s regulatory chemical fields (e.g., the human body’s
endocrine system regulates via the endocrine signaling processes the function of
whole organs, which require the regulation of specific genes in each involved cell,
see for instance [313]). From a modeling point of view, all this complexity seems
to be overwhelming. However, once function-specific intracellular gene regulatory
network modules are proposed, it is relatively easy to study the coupled dynamics
of biological networks in explicit spatial and temporal domains. Hence, a meta-gene
regulatory network model can be proposed to recover morphogenetic patterns. In the
simplest case, a network (composed by a N number of cell types or spatial locations
in a lattice) of networks of dimension equal to the N cells times the M intracellular
components can be proposed. In such meta-network each component is identified
by the location or cell type in which it is found at a particular moment, and also
by its gene identity. Cell-to-cell communication, due to active molecular transport
biomolecules, and/or the action of chemical (e.g., diffusion) and physical fields,
can be tackled via the specification of spatially dependent initial conditions ruling
the dynamics of the coupled gene regulatory networks underlying the behavior of
the cellular structure. Such spatial dynamical models are out of the scope of this
volume, but we direct the interested reader to studies previously published by our
group (see for an example, [29]). In such case, restrictions that depend both on
intracellular networks, as well as on patterns of cell-to-cell communication can be
explicitly considered to study both cell differentiation and spatial cellular patterning,
i.e., where the cellular lattice is not static.

A next step would imply considering the following phenomena (among
others):

• Cell proliferation;
• Multi-level modeling.
• The feedback from signaling pathways and microenvironment conditions or

elicitors (which is addressed later).
• Cell-cycle or metabolic modules.

Since identified gene regulatory network modules do not work in isolation,
modeling is necessarily confronted with the coupling issue. In the context of
deterministic discrete Boolean gene regulatory networks, the coupling problem
comes into play when more than one module has been identified (each of them
consisting of a particular given set of logical rules), and these identified modules
collaborate in a regulatory function that combines the regulatory functions fulfilled
by each participant module (e.g., the gene regulatory module that coordinates
the cell-cycle collaborates with the gene regulatory machinery that coordinates
cardiogenesis in mammals [516]). Moreover, in a given cell, the whole set of gene
regulatory network modules works in coordination to ensure the overall behav-
ior of the cell. Couplings are unavoidable. Modularity, as a robustness-oriented
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Fig. 2.13 Coupling of gene regulatory network modules. This figure shows in a schematic way the
logic behind the coupling of deterministic discrete-time Boolean gene regulatory network modules
as discussed in [228]. Module A and Module B are considered to be autonomous systems when
being isolated (i.e., they have not inputs and/or outputs), each giving rise to a particular attractor
landscape. In isolation, Module A and Module B contain all the genes colored in orange and in
green, but when interconnected a choice substantiated by meaningful biological empirical evidence
of the location of the common genes must be carried out. This choice introduces inputs and outputs,
as depicted in the figure, and gives rise to a global attractors landscape whose members can differ
from the union of the members of the isolated attractors landscapes

organizational principle, is a complex phenomenon in the biological context (see
for instance [362, 475]). Transcriptional networks are essentially modular, but this
does not mean that the constitutive modules are just abstract dynamical systems
exchanging information. In fact, it is quite common that interacting modules
have shared nodes. Moreover, these shared nodes (i.e., specific genes) are not
only bridges allowing interactions between modules but agents fully engaged in
the fulfillment of the regulatory functions performed by the interacting modules
(see Fig. 2.13). When applying deterministic discrete Boolean descriptions, this
phenomenon guides coupling modeling procedures (like in [82]). The coupling issue
is out of the scope of this volume. Fortunately, the available literature provides some
formal methodologies to tackle this issue (while still requiring non-automatized
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knowledge-based techniques). A formal Boolean networks coupling procedure has
been developed in [228], based on the developments presented in [82], conceived for
the decomposition of large Boolean networks. The procedure is illustrated in [228]
via the coupling of the epithelial-to-mesenchymal transition core gene regulatory
network developed in [316], with the mammalian cell-cycle regulatory module
developed in [144]. A coupling methodology based on logical regulatory graphs
as well as transition graphs is included in GINsim [314].

Remark 2.26 (Indirect Interactions) Even if a set of gene regulatory network
modules are not sharing common nodes, this does not mean that interactions are
absent. This is due to the fact that the modules under consideration could be
interacting by proxy. In other words, unknown bridges between the modules under
consideration could be present. Remember that transcriptional networks interact
with other types of networks (e.g., transcriptional regulatory networks interact with
metabolic networks and signaling pathways). Indirect interactions make modeling a
real challenge. In some circumstances a suspected indirect interaction between gene
regulatory modules can me modeled via virtual components, which characterization
can be an important challenge for the research agenda resulting from the analysis of
the dynamical behavior of the gene regulatory modules under consideration.

Once a gene regulatory function has been described via a specific discrete-
time Boolean gene regulatory network module grounded on empirical data, we can
proceed to test hypothesis and to make biological meaningful predictions. For this,
we take the discrete-time Boolean model as a departure point, and we perform some
well-tested transformations of the model in order to extract useful information. In
what follows we present some of these transformations.

2.6 Continuous Approximations to Discrete Single-Cell
Models

As we previously discussed, the deterministic discrete-time (and discrete-space)
Boolean gene regulatory networks have been very useful in the study of the
complex logic of gene regulation involved in cell differentiation, as well as in the
identification and explanation of cell-types as dynamical attractor states. However,
for the study of more detailed dynamical behaviors (i.e., behaviors that do not
only include like-switching dynamics), which are often determined by quantitative
aspects of gene regulation, more complex mathematical models are needed. In
particular, lumped parameter continuous models are very useful, as far as the
study of transient dynamics are concerned. Therefore, as a modeling recycling
idea it is handy to have a way of transforming existing discrete-time Boolean gene
regulatory networks into continuous dynamical models (then coded by differential
equations). This because continuous-time and continuous-space descriptions allow
the consideration of transient dynamics involved in regulatory dynamics, as well as
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the inclusion of parametric information. Although multiple approaches considering
different levels of detail are often used in systems biology to model via differential
equations, we consider here the most general and simple methods that enable
obtaining continuous approximations of the discrete Boolean models of gene
regulatory networks (see for instance [30]). More detailed, mechanistic continuous
models will be introduced in the following sections.

From Switching Dynamics to Smooth Saturated Behaviors

The direct mapping of discrete-time Boolean dynamics to continuous-time dynam-
ical models allows extending the bottom-up gene regulatory network modeling
approach at multiple levels of spatial and temporal resolution. Importantly, the
obtained continuous models (taking the form of systems of ordinary differential
equations) enable exploring different types of questions and generating novel
quantitative predictions and comparing results with those derived with the Boolean
framework. More specifically, in the clinical context, continuous-time models are
useful when considering parameter-dependent transient dynamics, for instance:

• The interplay between androgen dynamics and the dynamics of prostate tumor
[220].

• The quantitative description of type 2 diabetes and obesity [11].
• Systems-level dynamics dependent on environmental constraints (e.g., evolution

of cancer cells under the influence of the concentrations of nutrients and
therapeutic drugs [61]).

In what follows we summarize how to approximate a deterministic discrete Boolean
gene regulatory network into a continuous dynamical system. The analysis of such
differential equation models will be the focus of the next sections.

In the general case, in the absence of exogenous stimuli (a very idealistic
situation) the dynamics of deterministic and continuous models of gene regulatory
networks is given by a system of autonomous ordinary differential equations. In
such case, the time evolution of the cell-state:

x (t) := {x1 (t) , x2 (t) , . . . , xn (t)} , (2.4)

is modeled by a system of ordinary differential equations of the form:

dxi(t)

dt
= Fi(x1, x2, . . . , xn, p), xi = 1, 2, . . . , n, (2.5)

where:

• xi(t) denotes the concentration of the i-th product resulting from a corresponding
gene expression process.

• dxi(t)/dt corresponds to the rate of change of the concentration of xi(t).
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A system’s dynamics defined by such a system of ordinary differential equations
is a special form of the general transition map linking present and future states,
in this case, where both time increments and state variables take continuous
values (recall the formal definition of dynamical systems discussed in the previous
chapter).

Importantly, this definition also introduces a parameter vector p. This vector
is included to quantify the regulatory relations among genes. This allows us, for
example, to introduce temporal gene hierarchies, as well as analyze qualitative
changes to the state-space through bifurcations [112], as we will see in the
next sections. Thus, the first goal is to simply map directly into a deterministic
continuous-time dynamical model the set of updating rules describing a discrete-
time Boolean gene regulatory network. To this end, consider decomposing the
functions Fi in (2.5) into a system of ordinary differential equations of the form:

dxi(t)

dt
= Θ[fi(x1, x2, . . . , xn)] − kixi, (2.6)

where:

• fi denotes the logical regulatory function that characterizes the dynamics of the
i-th gene.

• ki represents the expression decay rate of the i-th gene of the given gene
regulatory network.

• Θ [fi] denotes a transformation that maps the discrete-time Boolean dynamics
coded by the logical function fi into a continuous-time function.

As we have shown before [30, 112], a simple and useful way to transform the
switching functions that shape the Boolean dynamics is by applying the following
mapping rules (see (2.3)):

⎧
⎨

⎩

xi(t) ∧ xj (t) → xi(t)xj (t),

xi(t) ∨ xj (t) → xi(t) + xj (t) − xi(t)xj (t),

¬xi(t) → 1 − xi(t).

⎫
⎬

⎭
(2.7)

In other words, by substituting the logical operations in the Boolean update function
with the arithmetical operations following the rules above, we can effectively map
the discrete-time Boolean space to the continuous-time state realm [30].

Thus, instead of having rules dictating whether the binary activity state of one
gene will change (or remain the same), the transformation allows us to quantify a
regulatory continuous-time input for that gene. In order to process this input into
an activity output of the gene, we consider an input-response gene function that
displays a smooth saturation-like behavior as is customary in modeling chemical
reactions. Formally, the input associated to a i-th gene is included in the form [30]:



2.6 Continuous Approximations to Discrete Single-Cell Models 85

Θ[fi(x1, x2, . . . , xn)] = 1

1 + exp (−b (fi (x1, x2, . . . , xn) − ε))
, (2.8)

where:

• ε is a threshold level (usually ε = 1/2), and
• b is the input saturation rate.

Note that for b >> 1, the input function displays step-like behavior, getting close to
the binary on/off behavior of the Boolean case. In simple words, this transformation
smooths a switch-like behavior in which the regulatory input of a gene produces an
all-or-none (i.e., either active or inactive) response into a s-type function where the
output is of quantitative and continuous character.

Thanks to this simple transformation, for any deterministic discrete-time Boolean
gene regulatory model, we can obtain a corresponding finite set of ordinary
differential equations that respects the regulatory restrictions included and validated
in the Boolean case, and that can be subjected to all the well-developed toolkits
for modeling and analyzing differential equations. This allows various quantitative
approaches to explore, for instance:

• Robustness properties of the associated dynamical attractors.
• Structural fragilities of the underlying network of interactions.

More specifically, for each gene the regulatory term that involves the corresponding
gene decay rate acts as a negative regulation of that node with a strength given by
the value of the associated decay rate.

Remark 2.27 (The Hill Function and Glass Transformation) There are also oth-
ers methodologies to transform discrete-time Boolean models to continuous-time
descriptions. For instance, the Hill function and the Glass transformation (see
[169, 488]) are well-known alternatives. From a modeling perspective, a selection
of a qualitative-oriented methodology that involves a low-dimensional parameter
space should be preferred over an alternative that requires an important number of
parameters to be tuned in a precise manner.

Parametric Dependencies of the Discrete to the Continuous
Transformation

When transforming a given deterministic discrete-time (and discrete-space) Boolean
model to a continuous-time (and continuous-state) model (coded by ordinary
nonlinear differential equations), we add to the resulting description a required set of
parameters. Sometimes these required parameters do not need to be realistic in order
to be useful (this does not mean at all that the parameters values are just arbitrary!).
As far as gene regulatory networks are concerned, the expression decay rates of
the involved genes condition in a differentiated manner the level of involvement
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of the genes in transient dynamics (and then in the fate of the concerned cell).
Indeed, actual gene decay rates are not constant but context-dependent variables
(see for instance [243]). In order to extract significant information concerning the
transient dynamics, the transformed system can be analyzed through computer-
based simulations, and these involve explorations in the parameter space (see [112]).
To pursue this, the analysis of the transformed system can be performed specifying
a range of values for the parameters.

One of the most important advantages of discrete-time Boolean models, as
qualitative descriptive tools, lies in the fact that they constitute an abstraction
of rates of chemical reaction. Moreover, empirical evidence shows that actual
transcriptional regulatory networks are functionally close to discrete-time Boolean
networks almost independently from the values of the involved parameters (see for
instance [289, 374]). Moreover, all-or-none dynamics in transcriptional regulation
are supported by the intervention of epigenetic regulatory mechanisms [300].

Before continuing with the analysis of ordinary differential equations in the next
sections, we discuss, in what follows, an extension to discrete Boolean models in
order to consider the ever present stochasticity of biomolecular systems and their
functional cell-fate developmental consequences.

We shall show how to exploit a discrete-time Boolean gene regulatory model as
a computational tool to explore transient dynamics due to stochastic influences.

2.7 Stochastic Cell Population Models and Epigenetic
Landscapes

As discussed previously, stochastic models consider uncertainty in the dynamical
outcomes by considering random variables as descriptors of the system’s behavior.
In other words, the same set of regulatory restrictions and initial conditions do not
always produce the same state change. Rather, the change is influenced by variables
whose outcome is uncertain at any given time. This uncertainty can represent
unknown processes potentially affecting changes in cell behavior or sampling errors
due to a limited number of molecules involved in the regulatory interactions being
modeled. That is, stochasticity can be seen as an operational approximation to deal
with the unavoidable incomplete information about the system (i.e., stochasticity
can be considered as a modeling artifact in order to consider unmodeled dynamics).
However, uncertainty can also constitute an intrinsic property of the system
under study. For example, different cells in a population produce different mRNA
molecules at different times, and these changes occur in discrete bursts that produce
variability or biological noise. Irrespective of the actual nature of uncertainty, it
is important to have effective ways to model it and to account for its potential
functional consequences (particularly on transcriptional regulatory dynamics). As
we will see, uncertainty of any source can be naturally included in the Boolean gene
regulatory model, enabling then the study of cell states and state transitions in terms
of probabilities.
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Modeling Uncertainty Through Stochasticity

The standard analysis of the deterministic models presented up to this point
mostly focuses on recovering the network’s attractors and characterizing their local
properties (e.g., the characterization of the corresponding basins of attractions). As a
consequence of this exhaustive local characterization of the properties of attractors,
the geometry of an underlying attractors landscape also emerges. However, in such
deterministic setting, under fixed values for the related control parameters and
a given fixed initial regulatory network state, the cell always reaches a specific
attractor, and remains in such attractor, if the network is not disturbed. This is
because any chosen initial state necessarily belongs to the basin of attraction
of an attractor, and the whole state-space is the union of all the attractors, and
their corresponding basins of attraction. However, a given developmental path
requires the concerned network to display a corresponding state motion shaped by
a trajectory between a set of attractors. Then, the commonly observed plasticity of
development, where cell-state transitions recurrently occur in different directions,
is more naturally captured by considering uncertainty. Noise in resonance with
the deterministic kinetic interacting functions can lead to the gradual movement
of the state variable (i.e., the cell’s phenotype) between attractors, resulting in the
emergence of transient dynamics, corresponding to developmental paths from one
attractor to another one in a time-ordered pattern. Taking into account uncertainty,
we are interested here in stochastic dynamical models. Stochastic models enable the
study of potential transition events among cell states, even under fixed parameters
and an initial state. Due to the introduced uncertainty, the cell system can reach and
surpass the boundaries of a state associated with a given phenotypic state that is
defined by or corresponds to a particular attractor.

Remark 2.28 (Uncovering Transitory Dynamics via Stochastic Explorations) The
implementation of stochastic models, in conjunction with the nonlinear constraints
of the concerned regulatory network, enable the study of signal-independent
transitions among attractors. In other words, stochastic analysis provides tools
to uncover the dynamical consequences of a system’s uncertainty and to address
whether recovered time-ordered patterns correspond to the generic developmental
paths or spontaneous temporal patterns that are observed in vivo.

Epigenetic Landscapes

Stochasticity also enables departing from an exclusive focus on the local prop-
erties of the network’s attractors to instead characterize the global dynamical
consequences of the underlying attractors landscape. The characterization of the
attractors landscape provides a natural formalization of the classical metaphoric
model of the epigenetic landscape first proposed by Conrad Hal Waddington in
[473]. As we have highlighted in previous sections, in addition to generating the
cellular phenotypic states (attractors), the constraints imposed by the underlying
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gene regulatory network also partition the state-space, determining a landscape of
cell states with different levels of stability. The formalization of the epigenetic
landscape in this context is conceptually simple:

The number, depth, width, and relative position of the attrac-
tor’s basins of attraction epitomize in the realm of dynamical
systems the hills and valleys of the metaphorical epigenetic
landscape.

Thus, for our purposes, the characterization of the attractors landscape corre-
sponds, in practical terms, to the characterization of the epigenetic landscape.

Under uncertainty, we can estimate “how easy” it is to transit from one attractor
to another by means of stochastic dynamics. We can further generalize and estimate
the relative stability of the different attractors, thus establishing a natural hierarchy
of transitions as a natural consequence of the geometry of the attractors landscape,
and a fundamental result of regulatory constraints. Simply put, in addition to the
determination of the attractors themselves, the most likely hierarchy of time-ordered
transitions among attractors also emerges from the regulatory constraints imposed
by the interactions that link the genes in a particular regulatory network module
under analysis.

In order to exploit the global character of the analysis of stochastic systems,
and to characterize the dynamics of transitions across attracting neighborhoods in
the state-space, in what follows we present modeling extensions to the discrete-time
Boolean approach with the aim of characterizing the epigenetic landscape associated
with the gene regulatory network. Remember that the epigenetic landscape is the
multidimensional and multistable space that emerges from a nonlinear regulatory
network. The basins of attraction and the attractors lie in such space. The latter
restricts the possible transition pathways from one attractor and basin of attraction
to another one.

Modeling Uncertainty in Discrete-Time Boolean Gene
Regulatory Networks

A given discrete-time Boolean gene regulatory network can be naturally extended
into a discrete stochastic model by introducing uncertainty using the so-called
stochasticity in nodes (SIN) model [112]. In this proposed model, a constant
probability of error ξ is introduced into the deterministic Boolean functions as
follows:

{
Pxi(t+1)[Fi(xregi

(t))] = 1 − ξ

Pxi(t+1)[1 − Fi(xregi
(t))] = ξ,

}

, (2.9)
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where:

• Pxi(t) represents the probability of state at time t and
• xregi

denotes the set of regulators of gene i.

This model considers that the state of a gene xi(t + 1) is represented by a random
variable, and the probability that its activity value is determined or not by the
associated logical function Fi(xregi

(t)) is 1 − ξ or ξ , respectively. Simply put,
we assume that due to uncertainty stemming from either incomplete knowledge or
intrinsic molecular processes, the regulatory rules will not apply unequivocally all
the time, but instead there is a probability ξ of observing an unexpected result (i.e.,
the state of a gene changes in contrast to what its associated logical rule specifies).

Remark 2.29 (Stochasticity and Flexibility of the Regulatory Logic) Stochasticity
in this setting effectively provides flexibility to the regulatory logic by enabling a
more plastic mapping between states. Note, however, that the regulatory constraints
imposed in the regulatory function Fi still channel the dynamics, so that the
stochastic force is not independent but interacts with the underlying nonlinear
dynamics. In the simplest model, the probability ξ is a fixed parameter affecting
independently each gene in the network.

We shall now illustrate how the proposed uncertainty model allows the study of
the concerned network’s transient dynamics.

Estimating Transition Probabilities of Attractors

By simulating a stochastic one-step transition multiple times, according to the
proposed stochastic model, and starting from each of all the possible states in the
system, we can empirically estimate the probability of transition from one given
attractor to another. The frequency of times the states belonging to the basin of
the attractor i are mapped into a state within the basin of the attractor j under
uncertainty constitutes a right approximation of the probability of such transition.
Utilizing this intuitive simulation scheme, we can operationalize the stochastic
Boolean gene regulatory model as a simple discrete-time Markov chain (MC) model
(see [462] for a detailed exploration of stochastic processes), by defining an attractor
transition probability matrix Π with components:

πij = P(At+1 = j |At = i),

representing the probability that an attractor j is reached from an attractor i. These
components are estimated from the empirical transition probability resulting from
the performed simulations.

In this discrete stochastic dynamics, changes from one attractor to another are
represented as a sequence of random variables {Ct : t ∈ N}, where CT takes
as values the characterized different attractors, and the elements πij represent the
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inter-attractor transition probabilities. The resulting matrix Π is then the (one-step)
transition probability matrix that operationalizes for each attractor the likelihood of
going to or coming from any of the other attractors. Note that the simplest model
assumes a homogeneous MC, that is, the characterized probabilities do not depend
on time.

The statistical behavior of the stochastic dynamics is represented at the ensemble
level by the attractor occupation probability distribution P(Ct = j), which repre-
sents the probability that the cell population is in attractor j at a given time t , and
it is denoted by the row-vector u(t). Considering the previously estimated inter-
attractor transition probabilities Π , the attractor distribution of the cell population
temporally evolves according to the dynamical equation:

u(t + 1) = u(t) × Π.

This dynamical mapping equation enables simulating the dynamics of the cell
population by simple iteration. However, by taking u(0) as the initial distribution
of the MC, the equation reads u(1) = u(0) × Π , and by linking the occupation
probabilities iteratively we get:

u(t) = u(0) × Πt.

Thus, the occupation probability distribution at time t can also be obtained directly
by matrix exponentiation. In either case, the initial distribution u(0) represents the
initial cell state distribution of the cell population—that is, whether all the cells
belong to the same state of differentiation (same attractor) or are heterogeneous
(fractions with different attractors).

Having obtained the temporal evolution of the occupation probability distribution
u(t) given an initial distribution u(0), following [18], it is assumed that the most
likely time for an attractor to be reached is when the probability of reaching that
particular attractor is maximal. Therefore, the temporal sequence in which attractors
are attained is obtained by determining the sequence in which their maximum
probabilities are reached, i.e., max u(t). This sequence characterizes, in temporal
terms, how the population of cells is organized (from the population defined by the
initial attractor) throughout the developmental trajectory. In the context of biological
development, this is an important consequence of the proposed analysis. Therefore,
this methodology provides the characterization of most-probable developmental
paths, offering then test-hypothesis opportunities. It constitutes a stochastic explo-
ration of the epigenetic landscape and it was first proposed and applied to study
floral organ specification time-patterning in [18].
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Developmental Paths: Emergent Hierarchies of Cell State
Transitions

In addition to the calculation of the most probable temporal cell-fate pattern, a
discrete stochastic gene regulatory network model also enables the calculation of the
shortest and fastest pathways of cell-fate transitions, as well as possible restrictions
of some cell-fate transitions. Both the likely and restrictive developmental pathways
emerge from gene regulatory network constraints reflected in the topography of the
associated epigenetic landscape.

One way to characterize developmental paths is by calculating the feasibility
of sequential attractor transitions. A natural metric to quantify the latter is by
statistically estimating how long it takes to transit from one attractor to another,
under the constraints of the underlying gene regulatory network. The mean first
passage time (MFPT) (i.e., the time taken for a random walker to reach a specified
target), is a natural metric to quantify the feasibility of each pair of possible
transitions. The MFPT can be estimated numerically by simulating a large number
of samples of paths, simulated as a finite Markov chain process using the transition
probabilities among attractors Π . More formally, the MFPT from one attractor
i to another j corresponds to the average value of the number of steps taken
to visit attractor j for the first time, given that the entire probability mass was
initially localized at attractor i. By estimating the MFPT for all the pairs of possible
transitions, we can know whether from an initial attractor state it is more likely
to observe first a transition to another attractor i and then to attractor j , relative
to all the other transitions (including reversal transitions). This directionality of
developmental paths can be simply quantified as a probability flow, as proposed
in [519]. Using the computed MFPT values, a net transition rate between attractors
i and j can be defined as:

dij = 1/MFPTij − 1/MFPTj i . (2.10)

This quantity effectively measures the feasibility by which the system transits from
one attractor to another as a net probability flow.

Remark 2.30 (Directionality of Sequential Attractor Transitions) The sign of the
net transition rates in (2.10) naturally imposes directionality to the transitions. A
directional path through the epigenetic landscape emerges naturally as the sequential
order of states for which all involved net transition rates have a positive sign.

Interestingly, the differentiation paths might constitute robust emergent pheno-
types, potentially biased by associated genetic backgrounds and/or environmental
inputs to the network. For example, we recently applied the epigenetic landscape
formalism to analyze the observed in vivo developmental phenotypes of flowers
for several mutant lines. By quantifying differentiation paths based on stochastic
gene regulatory network dynamics, we identified a preferential transition to a undif-
ferentiated phenotypic state, providing a novel systems explanation for apparently
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incompatible evidence [369]. The same framework can be used to analyze the
development of pathological versus normal conditions in humans.

Remark 2.31 (Stochasticity Model Implementation) We are aware that the imple-
mentation of uncertainty in Boolean gene regulatory networks might seem chal-
lenging, as it, requires tailored simulation schemes. In order to naturally extend
the conventional analysis of Boolean gene regulatory networks, in [110] we
recently implemented a set of tools for simulation and downstream analysis of
stochastic Boolean dynamics that enable straightforward implementation of the
models conceptually described here.

The proposed model of uncertainty, intended to estimate the attractor transition
probabilities (as well as the most probable developmental temporal trajectories),
shows the power of discrete-time Boolean networks as descriptors of actual gene
regulatory networks grounded on empirical evidence.

Reshaping of the Epigenetic Landscape

So far we have discussed a model of the epigenetic landscape based on the relative
stability properties of the attractors recovered though the analysis of gene regulatory
network dynamics. The practical implementation of such a model involves four
steps:

1. Specification of an experimentally grounded dynamical model representing a
gene regulatory network.

2. Characterization of the attractor landscape through deterministic dynamical
modeling.

3. Computational estimation of cell state transition probabilities.
4. Analysis of the prevailing paths of sequential cell state transitions.

This modeling framework has been shown to be useful for the study of robust
developmental processes under normal and altered conditions [18, 316, 369]. In
both cases, the dynamics develops over the complex structure of a fixed epigenetic
landscape.

An alternative view has been advocated by others (as is the case in [146, 379])
and explored by us in the context of deterministic but continuous dynamical models
(as discussed in [112]). In this view, a dynamically changing (as opposed to fixed)
epigenetic landscape is proposed as a potentially more accurate description of
certain developmental processes. Structural changes in the epigenetic landscape
might occur at time-scales similar to those in which the developmental process
unfolds. For instance:

• environmental factors;
• intercellular communication;
• mechano-elastic forces,
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might bias net transition rates between cell states, reflecting shape changes in the
epigenetic landscape.

A simple framework to start exploring these possible scenarios is to first trans-
form a well-characterized Boolean gene regulatory network into a continuous model
(see previous section), and explore the impact of parameters into the structure of
the underlying epigenetic landscape. For example, gene-wise numerical bifurcation
analysis using the characteristic decay rate of each gene as a control parameter, and
each attractor as initial state, can uncover gene perturbation able to qualitatively
modify the structure of the epigenetic landscape [112]. As we will discuss in the
next section, a qualitative change of the state-space as a function of a parameter
is formally known as a bifurcation. Characterizing such dynamical changes in the
state-space might help to answer questions regarding the effect of signaling in
normal development, or rational interventions over the system. In such cases, the
direct modeling of gene regulatory dynamics through a continuous-time formalism
provides a more natural framework.

It is time now to address the issue concerning mechanistic descriptions of
regulatory interactions using the continuous modeling framework.

2.8 Mechanistic Continuous Models

We have previously discussed the versatility of discrete-time Boolean models as
modeling tools that describe the essential dynamics of gene regulatory networks.
We have shown how the attractor landscape of a discrete-time Boolean gene
regulatory network can describe the phenotypic plasticity of a cell. Moreover, we
have shown how to include in the discrete-time (and discrete-state) description
a simple uncertainty model via a stochastic extension, and how to extract from
this extension important information concerning transient dynamics: the estimation
of attractor transition probabilities and the most probable developmental temporal
trajectories (i.e., finite attractors sequences resulting from stochastic disturbances
on the network). As far as the understanding of high-level dynamical properties
of gene regulatory networks are concerned, the discrete-time (and discrete-space)
Boolean formalisms are then very successful. Still, there are some important
questions turning around regulatory dynamics that cannot be answered by the
proposed discrete Boolean formalism. In particular, such modeling approach cannot
explain how and when a specific logic emerges from specific biomolecular interac-
tions. Fortunately, this kind of questions can be tackled via a direct mechanistic
continuous-time and continuous-state modeling approach. In what follows we shall
consider this issue.
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When to Use Continuous-Time and Continuous-State Models?

Phenotypic transitions are the basis of the onset and progression of chronic degen-
erative diseases. As we have stated, discrete Boolean networks are powerful models
that can effectively describe multistable systems’ dynamical behaviors, helping
then to explain how multiple cellular phenotypes, and the transitions among them,
emerge from the interplay between biomolecules, even in the absence of precise
kinetic information. This makes discrete Boolean network modeling framework a
very useful conceptual tool to tackle the study of the interplay between phenotypic
plasticity and the dynamics of disease dynamics. As we have previously discussed,
the key assumptions of Boolean models are:

1. The regulation between molecules can be described by combinations of logical
operators.

2. The state variables are binary (i.e., can have two values, 0 or 1).
3. The dynamics of the system occur in discrete-time intervals.

Indeed, experimental evidence suggests that many biological regulatory networks
show such a discrete-time, discrete-state dynamical behavior, and that the regulatory
interactions can be described by logical functions. But:

• Where does such a discrete-state and discrete-time regulatory logic come from?
• What are the specific underlying biomolecular regulatory mechanisms?
• What are the effects of changes in kinetic constants on the dynamical behaviors?
• How are continuous changes in concentrations of regulatory molecules digitally

encoded, by binary switching of the responsive biomolecular components?

The importance of these questions in some clinical contexts cannot be denied.
We shall show in what follows that continuous modeling allows to tackle these
questions, which cannot be answered with a Boolean framework. Moreover, we
shall illustrate when it might be useful to tackle medical systems biology research
using kinetic nonlinear ordinary differential equations.

→ A Priori Versus A Posteriori Logical Operators

Consider that we want to represent that the expression of gene x can be induced by
the transcription factors y and z. If we chose to describe this simple regulatory
interaction between x, y, and z with a Boolean function, we could write the
model as:

x(t + δt) = y(t) ∧ z(t), (2.11)

which means that only when both y and z are present, x is transcribed.
Another alternative could be that gene x can be transcribed when, y, z, or both

are present. If that was the case, then we would write the model as:
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Fig. 2.14 A posteriori logical operators. (a) The levels of transcription of gene g depend on
the association of the RNApolimerase (RNApol), and transcription factors (TF A and TF B),
to their binding sites (TFBS A and TFBS B, respectively) on the regulatory region of gene g.
The interaction strength is described by the kinetic parameters kA, kBB, and kRR. The binding of
these proteins to the DNA might also depend on the formation of heteromeric protein complexes
(described by the kinetic parameters kAR, kAB, and kBR). (b) Different kinetic constants quantifying
the contribution of specific biochemical mechanisms shape the dynamical response of the network.
Only in extreme cases these functions can be approximated by logic gates (G(t) = A(t − δt) ∧
B(t − δt), G(t) = A(t − δt) ∨ B(t − δt), or G(t) = A(t − δt))

x(t + δt) = y(t) ∨ z(t). (2.12)

But, hold on. How in the first place can such an and (multiplicative) or or

(additive) function be achieved? In other words, which biochemical interactions
between genes y, z, and the promoter of gene x lead to an additive, and which to
a multiplicative output function? Before solving our simple Boolean model, let us
take a step back and consider some of the actual possible biochemical mechanisms
by which the transcription factors y and z can regulate the expression of z. Some of
the options are (Fig. 2.14):



96 2 Modeling Procedures

Option 1: The promoter of gene x has Transcription Factor Binding Sites (TFBS)
for both y and z. So, if y enters the cell nucleus it can:

• Bind to its corresponding TFBS,
• Recruit RNA polymerase (RNApol) to the promoter and hence
• Drive the transcription of gene x.

Similarly, when z enters the cell nucleus it can bind to its corresponding TFBS
and induce the expression of gene x. When both of them enter, each of them can
independently bind to its TFBS and contribute to the expression of x.

Option 2: Although the promoter of gene x has TFBS for both y and z, y can
enter the nucleus and bind to its TFBS and recruit RNApol only when it is
forming a heterodimer with z.

Option 3: The TFBS for y and z are overlapping; only one TF can bind at a time.

As can be seen, each option implies a specific regulatory network topology. Some
questions arise when taking them into account:

• Which of these mechanisms could result in an and-type of input function,
and which in an or-like function? In other words, how to map biochemical
mechanisms and promoter architectures to transcriptional response functions?

• Which of these mechanisms can be approximated by a Boolean framework,
where abrupt changes, from 0 to 1 (or from 1 to 0), occur in response to (con-
tinuous) changes in input concentrations? In other words, when are intermediate
concentrations of inputs and outputs negligible?

• Which minimal concentrations of TF y and z are needed for triggering a sharp
switch-like transitions of the system’s output (expression of gene g in this
example)?

• When are these significant levels of expression achieved, and does this time lag
δt depend on the kinetic rates of binding and unbinding of the TFs with TFBS
and RNApol?

These and other questions addressing the finer details of how the logical operators
(that form the building blocks of Boolean models) emerge from the underlying
biochemical interactions can, per construction, not be answered by Boolean for-
malisms. But fortunately for us, these can be explored by mechanistic continuous-
time and continuous-state mathematical representations of the different possible
biochemical interactions regulating gene expression. Such a mathematical frame-
work is given by (kinetic nonlinear) ordinary differential equations (ODE’s), which
allow the explicit representation of biochemical interactions between biomolecules
(using for this the well-known Law of Mass Action), in continuous-time and
continuous-state.

Indeed, ODE models have been used extensively to explore how different
network topologies describing differential binding between TFs and TFBS map
to discrete logic gates (see for example [305, 404, 410]). In other words, these
models show under which conditions Boolean operators emerge a posteriori from
biochemical interactions (see Fig. 2.14).
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→ Dynamical Consequences of Distinguishing Between Inhibitory
Mechanisms

Consider that we want to model the experimental observation that the levels
(concentrations) of protein P at time t1 are inversely correlated with the levels of
protein Q at time t2 > t1. If we chose a Boolean formalism, then we could simply
write:

Q(t2) = ¬P(t1), (t2 = t1 + δt) (2.13)

But, hold on. How is protein P leading to a reduced concentration of Q? At least
two possible mechanisms could underlie this relation:

Mechanism 1: P is a transcriptional repressor, and thus inhibits the transcription
of the gene encoding Q.

Mechanism 2: P is a protease; it induces the degradation of the protein Q.

Although modeled with the same Boolean function, these two mechanisms differ
strongly in terms of the dynamic response of the output (Q) to changes (increases) in
the input, P . In the first case (inhibition of transcription), reductions of P at time t1
are reflected in an increased Q only after enough time, say δA, has passed to allow
the de novo transcription of P (see Fig. 2.15, left). In fact, it is this delay in the
transcriptional response that justifies the use of discrete time jumps when modeling
gene regulatory networks. When using differential equations, such time delay can
be explicitly represented with a delay term (see for instance [328]).

In turn, as shown in Fig. 2.15, right, if the inhibitory mechanism of Q by P is
by induction of degradation, the time between administration of P and decline of
Q, say δB is much shorter (i.e., δB � δA), asymptotically decreasing with the
increase in the degradation rate. Thus, the use of an explicit delay term might be
less justified. Therefore, care should be taken when coding different biochemical
mechanisms with the same regulatory logic.

→ Discrete Filtering of Continuous Signals: Multistability in Discrete
Versus Continuous Frameworks

Phenotypic plasticity (i.e., the one-to-many map of genetic-to-functional configura-
tions), is a fundamental feature of cells (or the whole organism). It allows:

1. The adaptation of cells/organisms to different environmental conditions [303,
360, 465, 491].

2. The emergence of complex, multicellular structures [36, 330].
3. Ontogenetic changes [18, 86, 318].
4. Tissue regeneration [205, 348].

However, this phenotypic plasticity also underlies the pathological transformation
of affected tissues that are characteristic of the onset and progression of chronic
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Fig. 2.15 Dynamical consequences of distinguishing between inhibitory mechanisms. Regardless
of the underlying biochemical mechanism, the inhibition of Q by P can be represented by the
Boolean function P(t) = ¬Q(t − 1). However, when timing matters, distinguishing between
the mechanisms of inhibition might be important. (a) Shows the mechanisms of inhibition due to
inhibition-by-repression. (b) Shows the mechanisms of inhibition due to induction-of-degradation.
While inhibition-by-repression takes a long time due to the delay, say δA, that is intrinsic to the
de novo transcription of a gene, when inhibition occurs by induction-of-degradation, increases in
the repressor P are reflected almost immediately (after a time delay δB) in a decrease in Q, i.e.,
δB � δA

degenerative disease, as we discussed in the previous chapter (see for instance [84,
217, 233, 316, 425]).

In dynamical terms, as has been previously discussed, different phenotypes
can be interpreted as different stable steady-states, or dynamical attractors, of
an underlying nonlinear regulatory network controlling cell-type-specific gene
expression (see for instance [217, 233, 330, 465]). To obtain these attractors, these
nonlinear regulatory networks must be translated into dynamical equations, from
which the steady-state behavior can be characterized. Because of their simplicity
(both in terms of their formulation and computational implementations), Boolean



2.8 Mechanistic Continuous Models 99

models offer an attractive framework to explore how multistability emerges from
regulatory networks. Further, as discussed extensively above, Boolean formalisms
can be used to characterize the topology of the basins of attraction (epigenetic
landscape analysis, as discussed in [18, 112]). By doing this analysis for nominal
versus genetically perturbed versions of the regulatory network, the effects of
structural alterations on the network (“mutations”) in terms of the existence,
stability, and accessibility (topology) of attractors can be systematically evaluated.
With a Boolean framework, it is also possible to characterize the minimal strength
of transient environmental forcing necessary to drive the state of the system from
one attractor to another one (see ahead and [85, 303]). This type of analysis is very
useful to evaluate the mechanisms of phenotypic transitions underlying ontogenetic,
physiological, and plasticity, as well as pathological processes.

Remark 2.32 (Going Beyond Boolean Descriptions: The Bifurcation Analysis)
Given that Boolean network models are qualitative representations of regulatory
structures, it is not possible with such an approach to study the effects of parametric
changes on the system’s behavior. Bifurcation analysis can, however, be important
to understand how quantitative changes in the network can lead to qualitative
transitions (i.e., bifurcations), how these bifurcation structures are shaped by other
parameters and how the susceptibility to change from one attractor to the other in
response to environmental perturbations (forcing) is affected by this bifurcation
parameter [22].

In order to perform a bifurcation analysis, we require quantitative descriptions
of the regulatory networks, such as nonlinear ordinary differential equations, for
which extensive mathematical and computational theory for the bifurcation analysis
has been developed (see for instance [22, 183, 224, 256, 429]). Such a qualitative
bifurcation analysis can lead to:

• the detection of early warning signals that predict an imminent bifurcation [40,
84];

• the development of patient-specific, personalized biomarkers and treatment
options [149, 195, 450];

• the design of optimal pharmacological intervention strategies that effectively
(de)stabilize specific phenotypic attractors using the minimal amount and dura-
tion of the treatment [88, 122].

These are some of the advantages that bifurcation analysis provides to the agenda
of medical system biology.

Let us now discuss how models coded as systems on nonlinear ordinary
differential equations allow the detection of system’s dynamical properties that
depend on the (quantitative) magnitude and duration of environmental stimuli.
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→ Modulating Transient Responses

Negative feedback has long been associated to the ability of a system to maintain a
nominal, operational, or homeostatic state, even in the presence of perturbations
in the form of environmental or genetic fluctuations [426, 493, 505]. Classical
examples of such systems are:

• The synthetic Tet-repressor system in Escherichia coli [47, 346].
• The pheromone response pathway controlled by Fus3 in Saccharomyces cere-

visiae [93, 385].
• The BMP4 signaling pathway modulated by the pseudo-receptor BAMBI in

Xenopus laevis [365].
• The signaling networks underlying bacterial chemotaxis [14, 91].

In mathematical terms, such an adaptive response to perturbations is reflected in
the ability of the output response variable (R in Fig. 2.16) to return to a nominal
steady-state (Rss in Fig. 2.16) after a transient deviation triggered by a change in
the input conditions (S in Fig. 2.16). For example, the perfect adaptation network
discussed in [459], given by the activation of a regulator X and a response R by the
input (stimulus) S, and a inhibition of R by X, shows that, upon a step-like increase
in S, R transiently rises from R(0) = Rss to Rmax and returns then to a nominal
steady-state Rss.

Remark 2.33 (Quantitative Assessment of the Dependency of Rmax and Time-to-
Rss on Increasing S Concentrations) Both Boolean and differential equations
models of this simple network are able to capture this long-term adaptive response.
However, only the quantitative, continuous time-and-state framework of nonlinear
ordinary differential equations captures the dependency of Rmax and time-to-Rss
on increasing S concentrations. Since values of R and time-to-Rss might affect
the onset of their parts of the system (for example, leading to the transition from
one attractor to another if the perturbation is strong enough), implementing a
continuous, tunable version of this S-to-Rmax and time-to-Rss map could have
important functional consequences [3].

It is time to discuss now how the continuous description of regulatory networks
can be very useful to uncover the dynamical consequences of the relative strength
of the different regulatory interactions.

→ Quantitative Modulations Shape Qualitative Transitions

Phenotypic commitment of cells occurs through nonlinear signal processing of
microenvironmental conditions by regulatory networks. As we have seen, the
resulting input–output response depends of the topology of the network. Some of the
quantitative features of this input–output relation between microenvironment and
phenotypic response are in turn shaped by the relative strength of the different reg-
ulatory interactions, which can be affected by genetic (mutations, polymorphisms)
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Fig. 2.16 Modeling perfect adaptation networks with Boolean algebra (a) or differential equations
(b). The perfect adaptation network discussed in [459], given by the activation of a regulator X

and a response R by the input (stimulus) S, and a inhibition of R by X, shows that, upon a step-
like increase in S, R transiently rises from R(0) = Rss to Rmax and returns then to a nominal
steady-state Rss. Although both Boolean (a) and kinetic differential equations (b) models of this
network capture this adaptive behavior, only the qualitative, continuous time-and-state framework
of ordinary differential equations captures the dependency of Rmax and time-to-Rss on increasing
S concentrations. Since the values of Rmax and time-to-Rss might affect the onset of other parts
of the system, a continuous, tunable version of this S-to Rmax and time-to-Rss map could have
important functional consequences
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or microenvironmental (i.e., cell context) variations. These perturbations result in
quantitative variations in network topology, which can have important functional
consequences. The most common dynamic responses to an input, and how they are
affected by quantitative variations elicited by genetic or contextual perturbations,
are as follows.

1. In a linear cascade, the output dynamics follows the input, with a delay caused
by intermediate states in the signal processing network. Network variations can
result in differences in the time-to-maximum and time-to-relaxation. Despite
having the same network topology, context-dependent variations in this regu-
latory network can lead to different phenotypic outcomes. For example, it has
been shown in [125] that the memory of previous exposures to α-pheromone
in Saccharomyces cereviceae can be inherited from one generation to the next
by differentially affecting the degradation rate of a signaling molecule that
determines the response to this pheromone (phenotype decision: to mate or not
to mate).

2. Negative feedback leads to a controlled output even under persisting input.
Amplitude and duration of the transient response as well as the difference of
output steady-states in the absence versus presence of persistent input (error)
can be shaped by different input strengths and parametric variations (this is
explained in detail in Fig. 2.16). Understanding how parametric perturbations
shape the transient pulses of the output can be important, for example, when only
high-amplitude or long-duration transient responses lead to a further phenotypic
progression (as discussed in [122]), or when the fidelity of a signal determines
the phenotypic response [93, 385].

3. Positive feedback (with cooperativity) can stably fix a phenotype even after
the removal of the input driving the phenotypic decision. In such a multistable
behavior, different reaction strengths determine the minimum time and duration
required to fix the new phenotype (time-to-sepparatrix) (see Fig. 2.17). This
might be important to characterize the patient-specific sensitivity of deleterious
phenotypic transitions in response to environmental perturbations [122], or to
find optimal, personalized treatment strategies that reverse such a pathological
progression (as discussed in [88, 122]).

4. An odd number inverter can generate sustained oscillations [37], characterized
by an amplitude and frequency (1/period) that can be modulated by quantitative
variations in the reaction network. These variations in the amplitude and
frequency of the response can have important functional consequences, in terms
of the type of phenotypic response to the input condition. For example, it has
been reported that the input-specific response of some “master transcriptional
regulators”, that is, TF that can be activated by many different upstream
signaling molecules, activated in turn by different inputs, and that have a
myriad of potential transcriptional targets, can be explained by the capacity of
such master transcriptional regulators to filter specific oscillation amplitudes or
frequencies. Examples of master regulators for which such a specificity has been
experimentally and theoretically shown include:
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• NFκB [381, 443].
• p53 [44, 45, 380].
• The MAPK pathway elements [395].

→ Recap: When to Use Continuous Models for the Description of Gene
Regulatory Networks

As we have established before, qualitative models of biological networks are
extremely powerful tools that allow the exploration of how different phenotypic
features emerge from these networks. Many interesting and clinically relevant
questions can be addressed with such an approach, including:

• Phenotypic plasticity (existence of multiple attractors; including multiple-state
attractors, i.e. oscillators);

• The effects of structural perturbations affecting the behavior of different nodes
of the network (mutations, environmental inputs);

• The time-ordering of the progression of pathological and ontogenetic cell states
(characterization of the epigenetic landscape).

However powerful, this framework does not allow the examination of important
biological phenomena such as:

1. The biochemical mechanisms underlying the regulatory network architecture.
2. The effects of parametric variations on the systems behavior (where these re-

“bifurcation parameters” can be interpreted as patient-specificity [149], cell-
specific context [70], or a treatment regime that should be optimized).

3. The effects of different kinetic rates on the system’s behavior.
4. The role of intermediate concentrations of the involved regulatory molecules.

Reiterating, a mechanistic, quantitative, continuous-time-and-continuous-state fra-
mework that can be used to address these kinds of questions are ordinary differential
equation models constructed on the basis of mass action kinetics. Since these models
allow direct representations of biochemical mechanisms (building blocks of such
models are the rates-of-change, which are direct representations of the most basic
biochemical mechanisms: degradation, polymerization, post-translational modifica-
tions, etc.). Importantly, the regulatory logic does not have to be assumed a priori.
As these models depend on parameters, the effects of quantitative variations on the
network topology behavior can be assessed by many different mathematical and
computational tools, including:

• Bifurcation analysis.
• Sensitivity analysis.
• Parameter optimization.

It is time now to introduce the main modeling tools to construct, analyze, and
validate such mechanistic nonlinear ordinary differential equations-based models.
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Fig. 2.17 Phenotypic commitment through nonlinear signal processing networks. The qualitative
features of the input–output relation between microenvironment and phenotypic response is
determined by the topology of the corresponding signal processing network, and is shaped by
the relative strength of the different regulatory interactions, which can be affected by genetic
(mutations, polymorphisms) or microenvironmental (cell context) variations. These perturbations
result in quantitative variations in network topology, which can have important functional
consequences. (i) In a linear cascade, the output follows the input with a delay caused by
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Building and Analyzing Mechanistic Nonlinear Ordinary
Differential Equations Models from Scratch

We introduce here continuous-time and continuous-state mechanistic models, na-
mely kinetic models based on nonlinear ordinary differential equations. Using a
simple illustrative example, we explain the pipeline for the formulation, parameter
calibration, and analysis of a system of nonlinear ordinary differential equations in
the context of gene regulatory dynamics modeling. The pipeline is formed by the
following steps:

1. Visual representation of the biological system, using visual conventions that
facilitate the direct translation of the network to a corresponding system of
equations.

2. Mathematical representation of the biological system: translation of the network
to a system of ordinary differential equations.

3. Simplification of the mathematical model (i.e., identification of conservation
equations).

4. Identification of:

• initial conditions;
• parameters;
• experimental data,
• qualitative behaviors to be reproduced by the model.

5. Finding the equilibrium behavior of the system (i.e., steady-state analysis).
6. Dynamical simulation of the system of ordinary differential equations (integra-

tion).
7. Parameter optimization (i.e., seeking the best agreement between the mathemat-

ical model and the experimental data, using minimization algorithms).
8. Model analysis, i.e., assessing the robustness/plasticity of the model behavior in

response to parametric variations, via:

• Perturbation analysis;
• Parameter sensitivity analysis;
• Bifurcation analysis.

�
Fig. 2.17 (continued) intermediate states in the signal processing network. Network variations can
result in differences in the time-to-maximum and time-to-relaxation. (ii) Negative feedback leads
to a controlled output even under persisting input. Amplitude and duration of the transient response
as well as the difference of output steady-states in the absence versus presence of persistent
input (error) can be shaped by different input strengths and parametric variations. (iii) Positive
feedback (with cooperativity) can stably fix a phenotype even after the removal of the input driving
the phenotypic decision. In such a multistable behavior, different reaction strengths determine
the minimum time and duration required to fix the new phenotype (time-to-sepparatrix) (iv) An
odd number invertor can generate sustained oscillations, characterized specific amplitudes and
frequencies, can be modulated by quantitative variations in the reaction network
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In what follows, each of these points is briefly described and exemplified. It is
noteworthy that there are some software tools for systems biology purposes (both
open-source and commercial) that help to perform most of the steps along this
pipeline. For example:

Copasi [315]: http://copasi.org
SBiology Toolbox for Matlab [405]: http://www.sbtoolbox.org/

→ Step 1: Visual Representations of Reaction Networks

It is a good practice to start the construction of a mathematical model with an
intuitive visual representation of the system. In the case of mechanistic models
coded as nonlinear differential equations, it is very useful to follow the visual
conventions given by the Systems Biology Markup Language (SBML) community
[265] since there is an (almost) one-to-one relation between the graphical and the
mathematical representation of the biological system. In fact, software such as Cell
Designer (http://www.celldesigner.org) automatically creates ordinary differential
models from a mechanistic user-defined graphical representation of the biological
system.

As shown in Fig. 2.18a, the basic building blocks of a system of ordinary
differential equations are:

• Constants. The value c of the constants (per definition) does not change, and thus
there is no need to write a dynamic equation for it (they are represented in the
mathematical model by parameters).

• Inputs. The values of the inputs u(t) can change, but this change is independent of
the system’s dynamics—it can be controlled by external conditions (for example,
by the experimenter). The dynamics of the input u(t) is represented in the
mathematical model by algebraic equations.

• Variables. The values of the variables yi(t) change dynamically, as functions of
the reactions. The system of equations describing the coupled dynamical changes
of all the variables considered has the form:

dyi

dt
= Fi (y1, . . . , yn, t) , i = 1, . . . , n.

• Outputs. Correspond to the subset of the system’s variables that represent the
experimentally observed features of the system that one wants to reproduce with
the model (for example, levels of target gene expression). While mathematically,
it is not required to distinguish between the outputs and the other variables, it
might be useful to make that distinction clear in the reaction network.

• Reactions. The reactions rj encode the biochemical mechanisms or processes
regulating the system’s variables. They are the building blocks for the functions
describing the dynamical changes of the variables; the functions Fi are linear
combinations of the reactions, i.e.:

http://copasi.org
http://www.sbtoolbox.org/
http://www.celldesigner.org
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Fig. 2.18 Basic building blocks to represent mechanistic reaction networks based on kinetic
interactions between biomolecules. This figure shows the graphical elements that ease the visual
representation of reaction networks. (a) Shows the basic building blocks, (b) includes the basic
network motives, and (c) shows the modulations. A specific reaction network can be visually coded
via these blocks, and then be automatically translated to the corresponding system of nonlinear
differential equations, following the Systems Biology Markup Language (SBML) community
conventions [265]

Fi (y1, . . . , yn, t) =
m∑

j=1

rj , i = 1, . . . , n. (2.14)

• Sources or sinks. Are used to represent substrates or products of reactions that are
not explicitly considered in the model. For example, the substrate of a de novo
transcription of a gene are nucleic acids seldom coded as a variable and therefore
representing a source or degradation of a protein, which produces aminoacids
that are commonly neglected, thus represented by a sink.

Each reaction describes the transformation of a (set of) precursor(s) a to a (set
of) product(s) b. Thus, while the concentrations of a decrease when this reaction
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occurs, b increases with this reaction. A typical example of such a reaction is the
conversion of a substrate into a product. Reactions can also be modulated by another
molecule of the system and this explicitly depends on them. Positive modulators
increase the rate of the reaction, and negative modulators decrease it. Modulators
are not consumed or produced by the reaction they affect. A typical example of such
modulator is an enzyme. Modulators (x) can be a constant, an input, or a variable.
The effect of x on the reaction can also be additive (i.e., the reaction occurs even in
the absence of x, like an or Boolean function), or multiplicative (the reaction occurs
only in the presence/absence of x, like in a logic and Boolean function).

We can at this level proceed to the Step 2 of our pipeline.

→ Step 2: Mathematical Representation of the System

To construct a mathematical model that represents the reaction network, each of the
regulatory interactions must be translated into a mathematical expression, partic-
ularly, a rate. Collectively, these rates form a system of differential equations that
describe the inter-dependent dynamics of the different components of the reaction
network. Translating a reaction network into a system of ordinary differential
equations is a standard methodology in systems biology that has been discussed
widely, for example in [100, 335, 429, 435]. The basic principle used to construct
the individual rates of the system is the Law of Mass Action. It assumes that rate
of change in the concentration of species X is proportional to the concentration of
precursors Xpre, the effectors Ereaction, and the kinetic rate constants (denoted by
kreaction in each case), thus:

• A production reaction of X is represented by the term:

dX(t)

dt
= XprekprodEprod.

Since the production of X from Xpre also consumes Xpre, this reaction also
negatively affects Xpre, i.e.:

dXpre (t)

dt
= −XprekprodEprod.

• The degradation of X is represented by:

dX(t)

dt
= −X(t)kdegEdeg.

• The reversible dimerization of X and Y (i.e., the formation of the dimer XY ), by:

dXY(t)

dt
= X(t)Y (t)kdimEdim − XY(t)kdisEdis.
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Fig. 2.19 Example of a kinetic reaction network. The reaction network is given by the interactions
between the time-varying biochemical species X, Y , and the heterodimer XY (shown in gray
circles). The concentrations of these species are determined by the reactions R1: de novo
production of X from a non-rate-limiting precursor Xpre; R2: degradation of X, and R3+/−:
and reversible formation of the heterodimer XY . These reactions are catalyzed by the enzymes
Eprod, Edeg, and Edis, and Edim (blue squares), whose concentrations are assumed to remain
constant. Figure taken from [120] (URL: http://hdl.handle.net/10044/1/47969, published under a
Creative Commons Attribution Non-Commercial No Derivatives Licence https://creativecommons.
org/licenses/by-nc-nd/3.0/)

Let us remind again that effectors are distinguished from precursors in that their
concentrations are not affected by the reaction they catalyze (i.e., dEreaction/dt is
independent of these reactions).

Negative regulation is often represented in a phenomenological way, by mul-
tiplying the rate on which the repressor is acting by a function that decreases
monotonically with the concentration of the repressor. It would also be possible to
derive these sorts of functions from basic biochemistry, by explicitly representing,
again using the Law of Mass Action, the mechanism by which the repressor exerts
its action (depending on how the repressor acts: for instance, trapping the effector
molecule). However, for convenience (less parameters and equations) this level of
mechanistic detail is often omitted.

One of the main advantages of the mathematical description of a reaction network
is that all the reactions that affect X can be represented and studied simultaneously
(this is why it is called a systems biology approach). Thus, if for example, X is being
produced, degraded, and also forms a heterodimer with another molecule Y (reac-
tion network depicted in Fig. 2.19), then its full dynamics are described by simply
adding up the individual reactions explained above. In the particular example shown
in Fig. 2.19, this procedure would retrieve the expression that describes X(t) as:

http://hdl.handle.net/10044/1/47969
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
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dX(t)

dt
=

R1: de novo production
︷ ︸︸ ︷
XprekprodEprod −

R2: degradation
︷ ︸︸ ︷
X(t)kdegEdeg−

R3+: dimer formation
︷ ︸︸ ︷
X(t)Y (t)kdimEdim +

R3-: dimer dissociation
︷ ︸︸ ︷
XY(t)kdisEdis .

(2.15)
The dynamics of X given by Eq. (2.15) depend on constant parameters, such as
kdeg, kdim, and kdis, but also on other, time-varying variables, such as Y (t) and
XY(t). Hence, to mathematically analyze the behavior of X(t), we need also to
consider the equations for Y (t):

dY (t)

dt
= −

R3+: dimer formation
︷ ︸︸ ︷
X(t)Y (t)kdimEdim +

R3-: dimer dissociation
︷ ︸︸ ︷
XY(t)kdisEdis , (2.16)

and for XY(t):

dXY(t)

dt
=

R3+: dimer formation
︷ ︸︸ ︷
X(t)Y (t)kdimEdim −

R3-: dimer dissociation
︷ ︸︸ ︷
XY(t)kdisEdis = −dY (t)

dt
. (2.17)

Collectively, the set of coupled equations (2.15)–(2.17) that describe all the
inter-dependent variables of the system form the system of differential equations
describing the reaction network.

More generally, our example is an Initial Value Problem of the form:

dx̄(t)

dt
= f̄ (x̄(t), P̄ ) (2.18a)

x̄(0) = x̄0 (2.18b)

where:

• x̄(t) represents the n-th dimensional vector of n model variables (x̄(t) =
(X(t), Y (t), XY (t)) in our example Eq. (2.15));

• f̄ is the n-th dimensional function describing the dynamics of x̄(t), e.g., right-
hand side of (2.15)–(2.17);

• and x̄0 is the vector of initial conditions.

→ Step 3: Model Simplification: Identification of the Conservation
Equations

Let’s try to make some simplifications by identifying sets of variables (also called
species in this context) that together do not change over time. In other words, we
are looking for sub-sets of x̄ that satisfy:

k∑

j=1

dxj (t)

dt
= 0 (2.19a)
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→
k∑

j=1

xj (t) = xtotal
k = constant. (2.19b)

Equations (2.19) are known as conservation equations because they describe
conserved amounts of species in a system. Dynamical systems in which sets of
species are related by such equations can be simplified, since Eq. (2.19) implies that
(at least) one of the variables xξ of the subset xk can be described algebraically, as
a function of xtotal

k and xj , j = 1, . . . , k − 1, i.e.:

xξ (t) = xtotal
k −

k−1∑

j=1

xj (t) (2.20)

and thus, there is no need to solve (integrate) dxξ (t)/dt . The n-th-dimensional
system (2.18) can then be simplified to an (n − 1)-th dimensional system of ordinary
differential equations with one algebraic equation (2.20).

Remark 2.34 (Simplifications Are Not Always Possible) Not all systems can be
simplified by conservation equations; only those in which at least some of the
variables are neither produced de novo nor degraded.

In our example, we can see already from the reaction network in Fig. 2.19 that
although variable X is being produced and degraded, neither the monomer Y nor
the heterodimer XY are being produced de novo nor degraded—they are good
candidates for our conservation equations. Looking at the corresponding ODEs, we
can indeed show that dXY(t)

dt
+ dY (t)

dt
= 0. In other words, the total amount of Y is

conserved (i.e., the sum of free Y and heterodimer-Y (XY ) is constant), and thus,
defining YT as the total amount of Y (YT = Y + XY ):

dYT(t)

dt
= dXY(t)

dt
+ dY (t)

dt
= 0 → YT = Y (t) + XY(t) = constant. (2.21)

These conservation equations imply that Y (t) = YT − XY(t) (or, equivalently,
XY(t) = YT −Y (t)) and thus, there is no need to solve (integrate) dY (t)

dt

(
or dXY(t)

dt

)

to obtain Y (t) (or XY(t)). The three-dimensional system of ordinary differential
equations given by the coupling of Eqs. (2.15)–(2.17), can then be simplified to the
two-dimensional system given by:

dX(t)

dt
= XprekprodEprod−X(t)kdegEdeg−X(t)Y (t)kdimEdim+(YT − Y (t))kdisEdis,

(2.22)

dY (t)

dt
= −X(t)Y (t)kdimEdim + (YT − Y (t))kdisEdis. (2.23)
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→ Step 4: Identification of the Initial Conditions, Parameters,
Experimental Data and Qualitative Behaviors to be Reproduced
by the Model

Before proceeding to the analysis of the system, it is necessary to gather all the
relevant experimental information to which the model simulations will be compared.
Although this is an important step in all types of mathematical modeling, it is
particularly important for mechanistic ordinary differential equations, since their
behavior can be strongly affected by the chosen model parameters. Indeed, while
the behavior of the Boolean network models we revised earlier in this book (namely,
number, composition, and topology of the attractors) depend solely on the network
structure (i.e., there is one and only one behavior per Boolean model), depending on
the parameter choice a single ODE-based model can display significantly different
behaviors. For example, the model of the NFκB response pathway proposed in [221]
can show either an oscillatory or a bistable behavior. Also, the model of Atopic
dermatitis (see next chapter), can display:

• monostability,
• bistability,
• or oscillations.

Thus, prior knowledge on the initial conditions, critical parameters, experimental
data, and expected qualitative behaviors to be reproduced by the model is very
useful to constrain the analysis of the system of ordinary differential equations. For
example:

• What is the typical range of concentrations/numbers in which we expect to find
the model variables?

• How is the input–output relation? Equivalently, are dose–response curves avail-
able?

• Is there any critical parameter known to drastically change this input–output
response (mutations, further environmental factors, etc.)?

• How is the dynamic response of the measurable output to changes in the input?
• What is the time-resolution of typical experiments that empirically describe the

system?

→ Step 5: Finding the Equilibrium Behavior of the System: Steady-State
Analysis

We will start the mathematical analysis of our system of ODEs by identifying the
steady-state behavior of the system (i.e., the circumstances of equilibrium). Per
definition, when a system is in steady state, its rate-of-change is equal to zero. These
steady-state values x̄ss satisfy that:

x̄ss(t) = x̄ss(t + Δt) ∀Δt > 0
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(equivalent to the attractors of the Boolean networks). These conditions are fulfilled
when the rate of change of x̄, given by (Eq. (2.18)):

dx̄(t)

dt
= f̄

(
x̄(t), P̄

)
,

is equal to zero, i.e., if x̄ss is a steady-state value then:

dx̄ss

dt
= 0 → f̄ (x̄ss, P̄ ) = 0.

To obtain the steady-state value(s) x̄ss, it thus is necessary to solve the algebraic
equation:

f̄ (x̄ss, P̄ ) = 0 (2.24)

For some systems of equations, it is possible to analytically derive an expression
for x̄ss as a function of parameters. i.e., by solving (2.24), one can obtain the function
G(P̄ ) such that:

x̄ss = G(P̄ ). (2.25)

For example, the steady-state behavior [Xss, Yss] of our reaction network depicted
in Fig. 2.20 and described by the system of equations (2.23) is obtained by
simultaneously solving: dX(t)

dt
= 0 and dY (t)

dt
= 0, leading to:

Fig. 2.20 Steady-state behavior of the example kinetic reaction network. This figure shows the
steady-state behavior of the example kinetic reaction network as a function of the dimerization
constant kdim. Increasing the dimerization constant kdim leads to a monotonous decrease in Yss
(Eq. (2.26b)), mirrored by an increase in XYss. The values of Xss are unaffected by changes in this
parameter (Parameter values: Xpre = 10, kprod = 1, Eprod = 0.5, kdeg = 1, Edeg = 0.5, Edim =
10, kdis = 1, Edis = 1, Ytot = 6 and kdim = [0 : 0.01 : 1])
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Xss = Eprod Xpre kprod

Edeg kdeg
, (2.26a)

Yss = Edeg Edis Ytot kdeg kdis

Edeg Edis kdeg kdis + Edim Eprod Xpre kdim kprod
. (2.26b)

While the expressions for Xss and Yss can be easily obtained by hand, it is
often useful to use software to obtain such steady-state values. Different types of
software can be used for this, as long as it has the possibility to preform symbolic
computations (e.g., Mathematica, Maple, Macsyma, etc.).

In Box 2.1, we exemplify how Matlab can be used to obtain expressions (2.26).

Box 2.1. Using software to compute analytical expressions of steady states

1 % ( 1 ) d e c l a r e p a r a m e t e r s a s s y m b o l i c v a r i a b l e s
2 syms Xpre kprod Eprod kdeg Edeg kdim Edim k d i s

Ed i s Yto t
3 % . . . and a l s o t h e v a r i a b l e s
4 syms X Y
5

6 % ( 2 ) w r i t e t h e e q u a t i o n s :
7 XY=Ytot−Y;
8 dXdt=Xpre∗ kprod ∗Eprod−X∗kdeg∗Edeg−X∗Y∗kdim∗Edim+XY

∗ k d i s ∗ Edi s ;
9 dYdt=−X∗Y∗kdim∗Edim+XY∗ k d i s ∗ Edi s ;

10

11 % ( 3 ) o b t a i n t h e s t e a d y s t a t e s
12 [ Xss , Yss ]= s o l v e ( [ dXdt ==0 , dYdt ==0] , [X, Y] ) ;

These expressions (Eq. (2.23)) can be used to assess the parameter dependency
on the long-term behavior of the system. For example, Fig. 2.20 shows the steady-
state behavior of the example kinetic reaction network as a function of the
dimerization constant kdim from 0 to 1 while keeping the other parameter values
constant (Xpre = 10, kprod = 1, Eprod = 0.5, kdeg = 1, Edeg = 0.5, Edim =
10, kdis = 1, Edis = 1, Ytot = 6). Increasing the dimerization constant kdim leads to
a monotonous decrease in Yss (Eq. (2.26b)), mirrored by an increase in XYss. The
values of Xss are unaffected by changes in this parameter.

In general, neither the existence nor the uniqueness of a steady state can be
guaranteed. For example, consider the simplest, zero-order ODE describing the
constant production of B(t) (∅ → B in our graphical notation given in Fig. 2.18)
B(t)
dt

= a, for a > 0. This equation has no steady-state solution (i.e., there is not

Bss such that dBss(t)
dt

= 0), which makes sense, since we are considering a constant
production of B. In the other extreme, there are also many biologically relevant



2.8 Mechanistic Continuous Models 115

systems that (depending on parameter choices) can display multiple steady states. As
in Boolean network models displaying multiple attractors, such multistable systems
can be used to represent the phenotypic plasticity displayed by biological systems,
and are hence a particularly important class of ordinary differential equations
models.

The following Box 2.2 is devoted to its description.

Box 2.2. Bistability—fragmentation of the phenotype space

Definition of Bistability
A switch-like dose–response behavior refers to the relation between a input
(commonly, a ligand) and the steady-state concentrations of an output,
where small changes in the input can drive large changes in the output
(see for instance [171]). A particular class of such a switch-like behavior
is bistability, in which this abrupt change in output concentration is also
history-dependent. In such a bistable dose–response behavior, the critical
concentration of the input at which the abrupt switching onset from low
to high values occurs is different from the critical input concentration that
triggers the ceasing of the switch, back from high to low values. The region
between the two threshold values for cease and onset of the output response
is termed bistable region because the output can have two possible values,
high or low, depending on the previous values of the output; if previous
values are low, then the system remains at the low branch, and vice versa.
This property confers the system with memory, also termed as hysteresis,
since the current state depends on past values (see Fig. 2.21).

Functional Implications of Bistable Biological Systems
For cellular systems, the existence of bistability (or multistability in general,
as discussed in previous sections of this chapter) has enormous functional
implications. If a state of a cell is interpreted as a phenotype, then the
multistability of a cellular system corresponds to the spectrum of different
phenotypes that can be attained by a particular cell with a particular
reaction network configuration. Each of these states, or phenotypes, has an
associated basin of attraction, the size of which is related to the stability
and the robustness to stochastic, intrinsic (e.g., genetic) and environmental
perturbations (see Fig. 2.22). For example, many small signaling networks
controlling abrupt, all-or-nothing phenotypes have been modeled with
ordinary differential equations, which result in bistability. Examples include
apoptosis [129, 194]; cell cycle progression [513]; commitment to meiosis
[125]; oocite maturation [147, 148]; quorum sensing in bacteria [482], and
immune responses elicited by dendritic cells [413], keratinocytes in psioratic
[461] and atopic dermatitis [439] lesions, T cells [201, 279], lymphocytes
[512], chondrocytes [343], macrophages [432] and endothelial cells [332],
among others. In general, computational [412, 451, 489] and theoretical

(continued)
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Box 2.2. (continued)

[22, 101] analysis of these and other biochemical networks have shown
that bistability can result from biochemical networks displaying positive
feedback with cooperativity.

Assessing the Effects of Genetic and Environmental Risk Factors
Using the genetic deficiency as a bifurcation parameter, it is possible to
systematically assess how the properties of the basin of attraction of a
particular cell state are affected by the strength of the genetic deficiency
[22] (analogously to the analysis of the changes in the epigenetic landscape
elicited by genetic perturbations, as schematically shown in Fig. 2.22b).
External (environmental) perturbations are required to force the system from
one state to the other, crossing the sepparatrix that divides the basins of
attraction (Fig. 2.22b). With a mathematical model one can assess how the
minimal magnitude or duration of an external challenge required to drive a
phenotype transition is affected by genetic perturbations (Fig. 2.22c). Such a
susceptibility analysis can be used to characterize how disease progression
emerges from the complex interplays between genetic and environmental
risk factors (Fig. 1.1), as will be exemplified in the last chapter.

Complexity of Discrete vs Continuous Multistable Models
It is important to point out that due to the theoretical and computational con-
straints of the current methods to analyze systems of nonlinear differential
equations (which give rise to multistability), in general a nonlinear ordinary
differential equations approach to analyze multistability should be favored
over a Boolean approach only if the system under study and the number
of attractors or phenotypes to be described are small enough, and if there
is an explicit need to analyze the network assuming continuous-time and
continuous-state variables. In principle, to determine if an ordinary differen-
tial equations system shows bistability, it is enough to solve Eq. (2.24) and
find that there are three (two locally stable, one locally unstable; stability
can be determined by the analysis of the corresponding Jacobian matrix)
steady-state solutions. However, in practice, most of the ordinary differential
equations systems that can show bistability are highly nonlinear (indeed,
nonlinear positive feedback interactions are required for such a qualitative
behavior, see for instance [22, 101]), and thus, the solution to Eq. (2.24)
can seldom be determined analytically. Numerically, of course one could
either integrate the ordinary differential equations from varying initial
conditions (discussed in the next section), or compute the different roots of
Eq. (2.24) (e.g., using the Newton-Raphson algorithm). The difficulty lies
on the fact that one cannot know a priori if a given ordinary differential
equation system with a specific parameter set shows bistability, even if it
displays the structural features for this behavior. Thus, for each parameter
set, multiple initial conditions (numerical integration) or initial guesses

(continued)
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Box 2.2. (continued)

(numerical determinations of the roots of the algebraic equation) have to
be tested. To address these issues, several software toolboxes have been
proposed for the construction of such bifurcation diagrams. Examples are
Matcont or the Dynamical Systems Toolbox, both for Matlab;
Oscill8; XPPAUT; GRIND and COPASI. All of these programs use
numerical continuation algorithms to computationally approximate the
long-term behavior of the nonlinear ODEs as a function of a bifurcation
parameter [139, 256]. Such results can be graphically represented by bifur-
cation diagrams, which in a bistable system describe the abrupt switching
between two stable steady states when the bifurcation parameter reaches its
cease or onset thresholds (Fig. 2.21).

→ Step 6: Dynamical Simulation of the System of Ordinary Differential
Equations

When we formulate an ordinary differential equations based mechanistic model,
such as in the coupling between Eqs. (2.15), (2.17), and (2.16), what we describe
are the rates of change of the dynamic variables, i.e., dx̄(t)/dt with x̄(t) =
[X(t), Y (t), XY (t)]. But wait! When looking for the system’s dynamics, what we
actually want to know is not exactly dx̄(t)/dt , but rather x̄(t). So, what we have to
do is to deduce x̄(t) from the information that we have, i.e., from dx̄(t)/dt . This is,
we have to integrate, or solve, dx̄(t)/dt . How? There is bad news and good news.

The bad news is that the vast majority of the biologically relevant mechanistic
ordinary differential equations based models are highly nonlinear systems of
ordinary differential equations describing the rate of change of more than one state
variable, and in general such models do not have in general an analytical solution
[429]. This means that in most cases we cannot aim to obtain a function Ḡ(t, P̄ )

such that x̄(t) = Ḡ(t, P̄ ).
The good news is that there are many numerical methods to estimate x̄(t) from

dx̄(t)/dt (and the initial conditions x(0)), for example, the Euler or the Runge–
Kutta methods (see for instance [421]). It is beyond the scope of this book to
discuss in detail how these methods work (interested readers are referred to [429] or
[421]), but the basic principles are illustrated with the simplest method for numerical
integration of systems of ordinary differential equations, namely the Euler method,
as follows:

Numerical Integration via the Euler Method

Consider the Initial Value Problem given by Eq. (2.18). To numerically integrate this
model, one takes a current, known value:
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Fig. 2.21 Bifurcation diagram of a continuous bistable switch. Schematic representation of a
bistable dose–response (bifurcation) behavior describing the relation between the concentration
of the input (stimulus) and the steady-state concentration of the output (effector). Effector
concentrations remain at low values until a critical threshold for onset in the stimulus concentration
is reached, triggering the abrupt activation of the effector. High effector values can be decreased
only if the ceasing threshold is reached. The history-dependent region comprised between ceasing
and onset thresholds is termed bistable region. Example of such bistable dose–response behavior
is the abrupt and history-dependent onset and cease of innate immune responses that are triggered
in response to pathogens that come in contact with epithelial cells

x̄(t0) = x̄0,

and using the knowledge about the expected dynamics, comprised in the derivative
f̄ (x̄(t), P̄ ), one can estimate the value in the next time step:

t1 = t0 + Δt,
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Fig. 2.22 Genetic risk factors affect the susceptibility of changing the phenotype in response to
environmental perturbations by altering the size and structure of the basins of attraction. (a) The
topology of all the basins of attraction of a given gene regulatory network can be represented by
the epigenetic landscape (discussed previously). Environmental perturbations and noise can trigger
the movement between attractors (i.e., a phase shift). Genetic perturbations can directly affect
the structure of the epigenetic landscape. (b) shows an alternate representation of the attractor
landscape associated to a regulatory network: the state-space description, which maps the initial
conditions to its attractors, defining the basins of attraction. As in (a), movement between attractors
can be driven by environmental perturbations that are strong enough to force the state from one
basin into the other. As shown is (c), genetic perturbations can ease or hinder this transition by
affecting size and structure of the basins of attraction

with Δt → 0 a sufficiently small time step, as:

x̄(t0 + Δt) = x̄0 + Δtf̄ (x̄(t0), P̄ ).

Repeating this procedure iteratively from t0 to tn, one can obtain an numerical
estimation for the dynamics for x̄(t). The smaller the time step, the more accurate
the calculation, but, if done manually, also the more cumbersome the procedure!
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Fortunately, there are many software choices with built-in ordinary differential
equations solvers. For example, the statistical programming language R, already
mentioned in previous sections of this book, has a library (deSolve) with many
functions to perform this task see [421]. Also Matlab has many built-in functions
for this (for example, ode45), and extensive documentation.

Note that these solvers will implement more sophisticated integration algorithms
than this simple Euler method, but the procedure remains the same:

1. Declare the ordinary differential equations function (Eq. (2.18a)).
2. Define the parameter value (P̄ ).
3. Define the initial condition (x̄(t0) = x̄0).
4. Define the integration interval.

Note: most of the computational ODE solvers “choose” Δt , hence it is only necessary
to set the initial and the final times.

5. Call the ordinary differential equations solver, and obtain x̄(t).

To illustrate this procedure, let’s see how these steps can be implemented in
Matlab. First, we write the system of ordinary differential equations (Eq. (2.23))
in a separate m-file. The name of the file should be the name of the function. In
our case, we call it dimerFormation.m:

Note: it is also possible to declare the function within the same script where it will be
solved (as an anonymous function), but it is generally a good practice to define functions in
separate files.

1 f u n c t i o n d y d t = d i m e r F o r m a t i o n ( ~ , y , Xpre , kprodEprod
, kdegEdeg , kdimEdim , k d i s E d i s , Y_ to t )

2

3 dyd t = z e r o s ( 2 , 1 ) ;
4

5 X_t=y ( 1 ) ;
6 Y_t=y ( 2 ) ;
7 XY_t =( Y_tot−Y_t ) ;
8

9 dyd t ( 1 ) =Xpre∗kprodEprod−X_t∗kdegEdeg−X_t∗Y_t∗
kdimEdim+XY_t∗ k d i s E d i s ;

10 dyd t ( 2 )=−X_t∗Y_t∗kdimEdim+XY_t∗ k d i s E d i s ;

Now we are ready for the numerical integration:

1 % ( 1 ) D e f i n e t h e c o n s t a n t p a r a m e t r e v a l u e s
2 Xpre =10; kprodEprod = . 5 ; kdegEdeg = . 5 ; kdimEdim =10;

k d i s E d i s =1; Yto t =6 ;

(continued)
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Box 2.2. (continued)

3 % ( 2 ) D e f i n e t h e i n i t i a l c o n d i t i o n
4 y0 =[0 Yto t ] ;
5 % ( 3 ) D e f i n e t h e i n t e g r a t i o n i n t e r v a l
6 t s p a n = [0 5 ] ;
7 % ( 4 ) C a l l t h e ODE s o l v e r
8 [ t , y ] = ode45 (@( t , y ) d i m e r F o r m a t i o n ( t , y , Xpre ,

kprodEprod , kdegEdeg , kdimEdim , k d i s E d i s , Y to t
) , t s p a n , y0 ) ;

We can then visualize the results, obtaining in our case the dynamic trajectories
for x̄(t) = [X(t), Y (t), XY (t)] shown in Fig. 2.23.

→ Step 7: Parameter Optimization (Seeking the Best Agreement Between
the Mathematical Model and the Experimental Data, Using Minimization
Algorithms)

Ordinary differential equations models are quantitative. This means that there is
an explicit dependency on the transitory and steady-state behaviors of the state
variables on the choice of parameter values. So, how to choose the best parameter
set P̄opt?

Ideally, one should use multi-dimensional quantitative data (to obtain experimen-
tal values for all our dynamic variables, i.e. x̄exp(texp)) to find this optimal parameter

Fig. 2.23 Dynamic behavior
of the example kinetic
reaction network with the
settings specified in the
code 2.8. The horizontal
dotted lines represent the
steady-state values
(Eq. (2.26))
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set. To do so, the idea is to find the optimal parameter set P̄opt such that the model
x̄(t) = f̄ (t, P̄opt) matches as closely as possible the experimental data x̄exp. In
other words, we are looking for the parameter set P̄opt that minimizes the difference
between the experimental data and the model, i.e., the cost given by:

cost(P̄ ) =
k∑

i=1

(x̄exp(ti) − x̄(ti, P̄ ))2 (2.27)

To find the solution to this minimization problem:

min(cost(P̄ )) = cost(P̄opt) (2.28)

one can use nonlinear optimization algorithms such as the Nelder–Mead simplex
algorithm. These can be implemented by most of the software with nonlinear
ordinary differential equations analysis capabilities. Below we will give an example
of how this algorithm can be implemented in Matlab, by using the built-in
function fminsearch (Box 2.3). In our example, we will seek the optimal
agreement between simulations of our reaction network representing the regulatory
interactions controlling the formation of the heterodimer XY (Eq. (2.23)) and the
experimental data from [417] (Fig. 5B). This data describes the binding of the
activated transcription factor Smad1 (corresponding to our variable X; since Smad1
can be activated/produced, degraded, and forms a heterodimer) to the promoter of
the PPARγ gene (corresponding to our variable Y , since DNA sequences such
as promoters are neither produced nor degraded in this time-scale (hours); their
monomeric, free concentrations are only affected by dimerization with regulatory
proteins such as transcription factors), in response to stimulation with the extracel-
lular ligand BMP. For our optimization, we will assume that the parameter values
Xpre = 10, kdis = kprod = kdeg = 0.5, Edim = Eprod = Edis = 1 are fixed (this
could be justified if these parameter values were calculated from other empirical
data). We will find the optimal P̄opt[kdim, Ytot] parameter pair that best reproduces
the dataset.

Box 2.3. Numerical optimization with Matlab

1 f u n c t i o n xOPT= e x a m p l e _ o p t i m i z a t i o n _ d i m e r F o r m a t i o n
2 %% E x p e r i m e n t a l d a t a
3 t _ e x p = [0 1 3 ] ; % h o u r s pos t −s t i m u l a t i o n
4 XY_exp = [ . 5 2 . 5 3 ] . / . 5 ; %Smad1− p r o m o t e r complex
5 %% O p t i m i z a t i o n
6 % Give an i n i t i a l g u e s s f o r t h e p a r a m e t e r
7 x i n i t = [2 7 ] ;
8 % Run t h e o p t i m i z a t i o n !

(continued)
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Box 2.3. (continued)

9 [ x , J , f l a g ]= f m i n s e a r c h (@( x ) C o s t F u n c t i o n ( x , t_exp ,
XY_exp ) , x i n i t ) ;

10 xOPT=x ;
11 end
12 f u n c t i o n Cos t = C o s t F u n c t i o n ( x , t_exp , XY_exp )
13 kdimEdim=x ( 1 ) ;
14 Y to t =x ( 2 ) ;
15 %% Solve t h e ODE − wi th t h i s p a r a m e t e r
16 %c o n s t a n t p a r a m e t e r s ( t h o s e n o t min imized )
17 Xpre =10; kprodEprod = . 5 ; kdegEdeg = . 5 ; k d i s E d i s =1;
18 %i n i t i a l c o n d i t i o n s
19 X_0 =0; Y_0=Ytot−XY_exp ( 1 ) ;
20 y0 =[X_0 Y_0 ] ; %i n i t i a l c o n d i t i o n [X, Y]
21 %i n t e g r a t i o n i n t e r v a l
22 t s p a n = [0 t _ e x p ( end ) ] ; %i n t e g r a t i o n i n t e r v a l
23 % C a l l t h e ODE s o l v e r
24 [ t , y ] = ode45 (@( t , y ) d i m e r F o r m a t i o n ( t , y , Xpre ,

kprodEprod , kdegEdeg , kdimEdim , k d i s E d i s , Y to t
) , t s p a n , y0 ) ;

25 % Focus on t h e v a r i a b l e t o be compared wi th d a t a
26 XY_t=Ytot−y ( : , 2 ) ;
27 % i n t e r p o l a t e t h o s e v a l u e s c o r r e s p o n d i n g t o t h e

measurements
28 XY_pred ic t ed = i n t e r p 1 ( t , XY_t , t _ e x p ) ;
29 %% C a l c u l a t e t h e c o s t o f t h e p r e d i t i o n vs . t h e

e x p e r i m e n t a l d a t a
30 Cos t =( sum ( ( XY_predic ted−XY_exp ) . ^ 2 ) ) ;
31 end

We can then visualize the results of our optimization by calculating P̄opt =
[kdim, Ytot] with our optimization function, and then plotting the model x̄(t, P̄opt)

together with the experimental data used for the optimization, as shown in Box 2.4.

Box 2.4. Visualization of the optimal solution

1 c l o s e a l l ; c l e a r a l l ; c l c
2 %% Run t h e ODE wi th t h e o p t i m a l p a r a m e t e r s
3 % c o n s t a n t p a r a m e t e r v a l u e s
4 Xpre =10; kprodEprod = . 5 ; kdegEdeg = . 5 ; k d i s E d i s =1;
5 % minimized p a r a m e t e r v a l u e s

(continued)
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Box 2.4. (continued)

6 xOPT= e x a m p l e _ o p t i m i z a t i o n _ d i m e r F o r m a t i o n ;
7 kdimEdim=xOPT ( 1 ) ; Y_ to t =xOPT ( 2 ) ;
8 % e x p e r i m e n t a l d a t a
9 t _ e x p = [0 1 3 ] ; XY_exp = [ . 5 2 . 5 3 ] . / . 5 ;

10 % I n i t i a l c o n d i t i o n s
11 X_0 =0; Y_0=Y_tot−XY_exp ( 1 ) ;
12 y0 =[X_0 Y_0 ] ;
13 % i n t e g r a t i o n i n t e r v a l
14 t s p a n = [0 t _ e x p ( end ) + . 5 ] ;
15 % C a l l t h e ODE s o l v e r
16 [ t , y ] = ode45 (@( t , y ) d i m e r F o r m a t i o n ( t , y , Xpre ,

kprodEprod , kdegEdeg , kdimEdim , k d i s E d i s ,
Y_ to t ) , t s p a n , y0 ) ;

17

18 %% c a l c u l a t e t h e f i n a l c o s t
19 XY_pred = i n t e r p 1 ( t , ( Y_tot−y ( : , 2 ) ) , t _ e x p ) ;
20 Cos t =( sum ( ( XY_pred−XY_exp ) . ^ 2 ) ) ;
21

22 %%P l o t t h e r e s u l t s
23 f i g u r e ;
24 s c a t t e r ( t_exp , XY_exp , ’ k ’ ) ; ho ld on
25 p l o t ( t , Y_tot−y ( : , 2 ) , ’ k ’ ) ; a x i s s q u a r e
26 y l a b e l ( ’XY dynamics [ f o l d i n c r e a s e ] ’ )
27 x l a b e l ( ’ t i me [ h o u r s ] ’ )
28 t i t l e ( [ ’ minimal c o s t : ’ num2s t r ( Cos t ) ’ kdim= ’

num2s t r ( xOPT ( 1 ) ) ’ Y to t = ’ num2s t r ( xOPT ( 2 ) ) ] ) ;

These results are shown in Fig. 2.24.
Let us conclude this small discussion on parameter optimization with a word of

caution.

Some Comments on Parameter Optimization

• Over-fitting of parameters might occur if the ratio of parameters to be optimized
relative to high-quality experimental information is unfavorable. Thus, the more
coherent (i.e., from the same experiment, ideally) empirical data we have for the
parameter optimization, the better. It is important to aim for a (parametrized)
model that robustly reproduces the expected behaviors [277, 426].

• The optimal solution P̄opt might not be unique. In fact, a practical problem when
searching for P̄opt is that the minimization algorithm can be trapped in a local
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Fig. 2.24 Example
parameter optimization.
Optimal agreement between
mathematical model
(Eq. (2.23)) and experimental
data given in [417]. The
obtained optimal parameters
are P̄opt = [kdim =
8.5, Ytot = 6.1], which result
in the minimal cost
(Eq. (2.27))
2.5 × 10−11—That’s small
indeed!

minimum, i.e., where the resulting cost is low but not the (globally) lowest. To
avoid these complications, whenever possible, a global optimization algorithm
(e.g., simulated annealing [247]) should be preferred over local minimization
algorithms such as fminsearch.

• Other, simpler (with less variables and parameters) models might be able to
better explain or reproduce the experimental data. If in doubt over the regulatory
interactions underlying the behavior of the model variables, it is advisable to
representing a by proposing a set of plausible models (with different kinetic
reactions representing a different network topology), and systematically testing
how well these models can fit the experimental data. Then, one can use the
Akaike Information Criterion or other statistical techniques to select the simplest
model able to best reproduce the experimental data (see the details in [453]).

In conclusion, parameter optimization is a powerful tool that can help to find
the parameter set with which the proposed model can best describe a given set of
experimental data. Often, this technique is used simply as a methodological step,
to parameterize the ordinary differential equations model for further mathematical
analysis. However, as more high-throughput and quantitative experimental data
becomes available, parameter optimization routines can be used to directly address
clinically relevant research problems. For example, parameter optimization has been
used to deduce from data the underlying cause of a pathogenic transformation of
the liver [195, 449, 450, 464], and helped to stratify patient cohorts in different
personalized treatments groups [149, 187, 395].

We are ready now to conclude our procedure.
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→ Step 8: Model Analysis (Assessing the Robustness/Plasticity of the
Model Behavior in Response to Perturbations)

Once we have an experimentally calibrated, mechanistic model, we can start
with the analysis. In most cases, clinically relevant research questions can be
rephrased as:

How do structural (i.e., in the model equations) or quantitative (i.e., in the model
parameters) perturbations affect the behavior of the model?

which is equivalent to asking:

How do genetic and/or environmental risk factors or treatment combinations affect the
patient outcome (see Figs. 1.1 and 1.4)?

To answer these questions, we first have to ask:

Which feature of our model are we interested in analyzing, in terms of its robustness?

For example:

• Is it the steady-state value?
• Is it the existence of multiple equilibrium points?
• The existence of oscillations?
• The frequency or amplitude of the transient response?
• The time-to-relaxation?

It is important to be specific about these features, since in order to assess their
robustness we must be able to bring them to formal terms. Once we have identified
the feature, we can proceed to the analysis of its robustness.

Remark 2.35 Note that both structural and quantitative features can be modulated
by parametric variations (this is because the presence or absence of a specific rate,
i.e. a structural change, can be represented by setting the corresponding kinetic
parameter to a value > 0 or = 0).

Usually, this analysis is done by:

Robustness analysis: Randomly varying all the model parameters around the
nominal (optimized) value, and assessing the response of the system to these
perturbations, for example, by computing the proportion of parametric model
variants displaying the desired behavior. See for example the robustness analysis
of a host–commensal bacteria interaction network reported in [121].

Sensitivity analysis: Systematically varying all the model parameter combina-
tions, and evaluating which parametric changes are responsible for the largest
deviation in the model behaviors [74, 301].

Bifurcation analysis: Follow the model’s behavior in response to changes in
a subset of parameters—the bifurcation parameters. Generally, this type of
analysis is performed when a sharp, qualitative transition in response to a
small, quantitative change in a bifurcation parameter is expected, for example,
when looking for a hysteretic switch as depicted in Fig. 2.21 (see for example
[123, 438]).

It is time to discuss the multiple time-scales modeling issue.
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2.9 Modeling the Interplay Between Regulatory Networks
and the Microenvironment

We explore in this section some mathematical tools intended to analyze biological
dynamical systems that evolve over several time-scales. Specifically, we consider
the interplay between biological processes occurring at two time-scales:

Fast processes: Biochemical processes that regulate the phenotypic decision-
making of cells in response to microenvironmental conditions.

Slow processes: Tissue level processes regulating the dynamics of the microen-
vironment.

As discussed previously, addressing this issue is clinically relevant, since the
characteristic gradual aggravation of chronic degenerative diseases often emerges
from aberrations in the phenotype–microenvironment interactions (Figs. 1.3 and
1.4).

In previous sections, we saw that phenotypes can be mathematically represented
as attractors of the underlying regulatory networks, and that transitions between
these attractors can be driven not only by stochastic fluctuations, but also by changes
in the microenvironmental conditions. Let us pose now the following questions:

• What if these environmental fluctuations are changing as a consequence of the
phenotype changes driven by the individual cells in the tissue (see Fig. 1.3)?

• How to account for tissue-level risk factors, which might propagate across this
multi-scale regulatory network, giving rise to the gradual phenotypic deteriora-
tion (see Fig. 1.4)?

To model this kind of systems, we will simultaneously consider:

• The changes in the activation state of biochemical reaction networks controlling
phenotypic decisions.
and:

• The tissue-level processes underlying microenvironmental fluctuations.

Time-Scale Separation

While the biochemical reactions are fast, in the time-scale of minutes to hours,
the dynamics of the surrounding tissue-level conditions stabilize within days to
weeks. To account for these two different time-scales, we will perform a time-scale
separation, also known as Quasi-Steady-State Assumption (QSSA), as presented in
Box 2.5.
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Box 2.5. Quasi-Steady-State Assumption (QSSA)

Assume that S(t) is a slowly changing micro environmental condition, and
that X(t) is the cellular phenotype. Assume further that the dynamics of S

and of X are coupled, i.e. Ṡ = F(S,X) and Ẋ = G(S,X).
Then, if we assume that the dynamics of X(t) are much faster as those

of S(t), then Ẋ = 0. This means that the relation between the microenvi-
ronmental factor S and the phenotype X is described algebraically, by the
mapping of the bifurcation parameter S to the stationary solution Xss(S) of
equation

Ẋ = G(S,X) = 0.

The bifurcation parameter S, in turn, is dynamically described by:

Ṡ = F(τ,Xss(S)),

with t and τ the time-scales of the fast and the slow system, respectively.

Remark 2.36 (The Bifurcation Parameter Under the Influence of the Proportion of
Phenotypes within the Tissue) Since the governing function F(τ,Xss(S)) for the
dynamics of S (see Box 2.5) explicitly considers the algebraic variable Xss(S), the
changes in the bifurcation parameter depend on the proportion of phenotypes within
the tissue.

Assuming such differences in time-scales can greatly simplify the analysis of

multi-dimensional systems described by the coupling between ˙̄X and ˙̄S, with X̄ and
S̄ being n and m dimensional vectors, respectively. To illustrate this, let’s consider
now an example.

The Brigss–Haldane Dynamical System

The typical example of a biochemical network described by a system of ordinary
differential equations and simplified by the QSSA is the Briggs–Haldane version of
the Michaelis–Menten equation (see [64, 454] for the details).

The system of equations:

d[E]
dt

= −kf[E][S] + kr[ES] + kcat[ES], (2.29a)

d[S]
dt

= −kf[E][S] + kr[ES], (2.29b)

d[ES]
dt

= kf[E][S] − kr[ES] − kcat[ES], (2.29c)
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Fig. 2.25 Michaelis–Menten
reaction. Reaction network is
composed by the dynamic
interactions between enzymes
(E), substrates (S),
enzyme–substrate complexes
(ES), and products (P ) of the
enzymatic reaction
represented in Eq. (2.29)

d[P ]
dt

= kcat[ES], (2.29d)

represents the dynamical interactions between (see Fig. 2.25):

• The catalyzing enzyme E.
• The substrate S.
• The enzyme–substrate complex ES.

and:
• The product of the enzymatic reaction, P .

In these equations (with kf, kr, and kcat, denoting reaction rates), it is considered that
the total amount of enzymes is conserved (i.e., no de novo production of E), which
can be seen directly from the conservation equation:

d[E]
dt

+ d[ES]
dt

= 0,

which implies:

[E] + [ES] = [E]0. (2.30)

The key assumption to simplify Eqs. (2.29) is that the enzyme–substrate forma-
tion [ES] is infinitely fast respect to the rest of the dynamics, i.e. d[ES]/dt = 0.
From this QSSA (i.e., it is assumed that [ES] attains its steady state [ES]SS in an
extremely fast way), it follows that

kf[E][S] = [ES]SS(kr + kcat).

Using the conservation equation (2.30), kf[E][S] can be rewritten as:

kf[E]0[S] − kf[ES]SS[S] = [ES]SS(kr + kcat),

from which one can isolate the variable [ES]SS as:

[ES]SS = kf[E]0[S]
(kr + kcat) + kf[S] ,
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which can be used to rewrite d[P ]
dt

as:

d[P ]
dt

= kcat
kf[E]0[S]

(kr + kcat) + kf[S] .

Defining:

KM = kr + kcat

kf
,

one can recognize the simple, one-dimensional system representing the dynamics
formation of a product, known as Michaelis–Menten equation:

d[P ]
dt

= kcat
[E]0[S]
KM[S] .

So, using QSSA we were able to reduce a four-dimensional dynamical system to
a just one-dimensional ordinary differential equations!

Bistable Dynamics

Now, back to our original problem of coupling phenotypic decisions to microenvi-
ronmental changes. Let’s consider the simplest multistable system in which gradual
environmental conditions drive abrupt phenotype changes, namely a bistable system
(Fig. 2.21). As discussed previously, mapping the relation between the bifurcation
parameter and the stable steady-state solutions can be tricky, since analytical steady
solutions for high-order nonlinear systems rarely exist, and numerical methods
require exhaustive explorations of the parameter space (including initial conditions)
and are often stuck in local solutions. Thus, iteratively solving such multi-time-scale
problems during the numerical integration of slow variables can be computationally
intensive, and might often even fail to find the desired steady-state solutions. To
overcome this difficulty, it is possible to phenomenologically describe the previously
characterized bistable switch by a piecewise-affine (PWA) function [82]. Such
PWA approximation provides a rule that maps the input (stimulus) to the output
(effector) (Fig. 2.21). For example, assuming a perfect switch, the effector can be
approximated by two constant values, Elow and Ehigh, representing the “low” or
“high” branches of the bifurcation diagram, attained at the threshold values S−
and S+, respectively. Now, let’s consider that our bifurcation parameter, this is, the
input, changes dynamically in the time-scale τ . Then the relation describing how
the output E(τ) is determined by the input S(τ) and by the previous output values
E(x < τ) can be approximated as follows:

• If S(τ) < S−, then E(τ) = Elow (effector is low if the stimulus concentration is
low).
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• If S(τ) > S+, then E(τ) = Ehigh (effector is high if the stimulus concentration
is high).

• If S(τ) ∈ [S−, S+], then:

– if E(x < τ) = Elow, then E(τ) = Elow

or
– if E(x < τ) = Ehigh, then E(τ) = Ehigh,

corresponding to the history-dependent determination of the effector value when
the stimulus is in the bistable region.

More formally, these conditions can be represented by the PWA given in
Eq. (2.31) (adapted from [359]):

E(τ) =
{

Elow if (S(τ ) < S−) or
{
S(τ) ∈ [S−, S+] and E(x < τ) = Elow

}

Ehigh if (S(τ ) > S+) or
{
S(τ) ∈ [S−, S+] and E(x < τ) = Ehigh

}
.

(2.31)
Note that Eq. (2.31) implicitly assumes two time-scales:

Fast time-scale: A time-scale t that governs the stabilized biochemical inter-
actions that underlie the bistable dose–response behavior. These biochemical
reactions can be represented by the system of ordinary differential equations
Ė(t, S, E) that operates at time-scale t and has a input S that does not change
significantly (S(t) ≈ constant) while E(t) reaches its equilibrium value (given
by Elow or Ehigh, respectively).

Slow time-scale: A time-scale τ that determines the dynamics of the input S(τ)

by the governing equation Ṡ(τ ) = F(τ, S).

A special case of system (2.31), which is of particular interest here, occurs when
the slowly changing input S(τ) is itself determined by its quickly stabilizing output
E(t) (and vice-versa). In such a case, also the dynamics of S(τ) (that depend on
E(τ)) can be descried by the PWA given in Eq. (2.32) (adapted from [359]):

Ṡ(τ ) =
{

Flow(S) if E(τ) = Elow

Fhigh(S) if E(τ) = Ehigh,
(2.32)

where Flow and Fhigh are the two governing equations that determine the dynamics
of S when E(τ) = Elow or E(τ) = Ehigh, respectively.

Accordingly, the long-term behavior of S is given by the focal points Slow
ss and

S
high
ss , which are the steady-state values given by the solution to Flow = 0 and

Fhigh = 0, respectively [359].
The coupling between Eqs. (2.31) and (2.32) represents a hybrid system that has

been extensively discussed and analyzed in [82, 359]. The long-term behavior of
the coupled variable S(τ) and E(t) is determined by the relative position of the
focal points Slow

ss and S
high
ss respect to the threshold values S− and S+, as follows

(Fig. 2.26):
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Fig. 2.26 Schematic representation of the qualitative dynamic behaviors of the hybrid system
described in the coupled equations (2.31) and (2.32). The long-term dynamical behavior of the
hybrid system (2.31) and (2.32) is determined by the position of the focal points Slow

ss and S
high
ss

respect to the threshold values S− and S+. (i) If Slow
ss ≤ S+ and S

high
ss < S− the global equilibrium

is the attractor Slow
ss . (ii) If Slow

ss > S+ and S
high
ss ≥ S−, the global equilibrium is the attractor

S
high
ss . (iii) Bistability arises from Slow

ss ≤ S+ but S
high
ss ≥ S−. (iv) Oscillations result from

Slow
ss > S+ and S

high
ss < S−. Figure taken from [120] (URL: http://hdl.handle.net/10044/1/47969,

published under a Creative Commons Attribution Non-Commercial No Derivatives License https://
creativecommons.org/licenses/by-nc-nd/3.0/)

• A resting, homeostatic (“low”) steady state occurs when Slow
ss ≤ S+ and S

high
ss <

S−.
• A chronically excited steady state occurs when Slow

ss > S+ and S
high
ss ≥ S−.

• Bistability in the two time-scale dynamical system occurs when Slow
ss ≤ S+ but

S
high
ss ≥ S−.

• Oscillations occur when Slow
ss > S+ and S

high
ss < S−.

We will see the possible clinical implications of these four qualitative behaviors in
the final chapter.

Some Final Remarks

This focal point analysis allows the derivation of conditions required for different
qualitative behaviors of a complex dynamical system that operates in two time-

http://hdl.handle.net/10044/1/47969
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
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scales, reducing the need for numerical methods. Note, however, that the agreement
between the dynamical behavior that is analytically derived from the hybrid system
representation and the numerical simulations of the model must be verified for the
particular mathematical model that is analyzed using this approach to ensure that
neither the discontinuities of the hybrid representation of the system nor the transient
behavior that is not captured by the focal point analysis detailed above affect the
dynamics of the unsimplified mathematical model.

The model concerning atopic dermatitis in the next chapter provides an example
in which this focal point analysis is used to systematically determine the effects
of risk factors affecting tissue-level processes on the development of early phases
of that disease. Such framework can be applied not only to microenvironment–
phenotype interactions discussed here, but in general to model (biological) systems
in which there is a co-existence and inter-dependence of processes operating at
different time-scales. Examples include multi-scale regulatory networks considering
the interplay between:

• Metabolism and signaling [449].
• Metabolism and gene expression [359].
• Cellular-level population dynamics and biochemical processes [177, 355, 433,

434].

We can at this level discuss how to shape predictive hypothesis via the exploita-
tion of models of regulatory networks that are relevant in the context of medical
systems biology.

2.10 Shaping Predictive Hypothesis (Exploratory Protocol)

When tackling medical systems biology phenomena, the interplay between mod-
eling and explicative intuition shapes predictive hypothesis. The purpose of a
predictive hypothesis is to predict the nature of a relationship among the variables
to be studied, which implies establishing a research agenda. This is the reason why
a predictive hypothesis is also called a research hypothesis:

A well-thought guess, derived logically from previous findings
or the predictions of a particular theory, regarding what
should happen in a particular situation under certain well-
defined conditions.

Since we are concerned by chronic degenerative diseases, as resulting from the
disruption of gene regulatory networks or the signal transduction mechanisms that
link such networks with microenvironmental conditions, our predictive hypothesis
will necessarily turn around the phenotypic consequences of such disturbances. In
particular, we are motivated in using the type of systems-level modeling tools, sum-
marized in this volume, to explore how environmental disturbances, that are related
to certain lifestyles, may favor transitions from healthy to ill states. Moreover, in
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order to regulate disease dynamics (as discussed previously), we are interested
in eventually extending the systems-level modeling approaches described here to
propose preventive approaches to avoid or minimize the emergence of degenerative
diseases. Once a systems-level model has been constructed for a particular disease
or condition, it will be possible to proceed with the formulation of the predictive
hypotheses concerning how different alterations of the regulatory networks, signal
transduction pathways, or environmental factors can modulate transitions from
healthy to pre-clinical, and from this to ill states. Such hypotheses should be posed
so that answers can be provided to particular questions concerning such transitions.
This process implies an exploratory research agenda that involves:

• Computer-based simulations.
• Data-mining.
• Epidemiological studies.
• Experiments.
• Clinical studies.

Such complete agenda for particular diseases is beyond the scope of this volume,
but the models presented in the next section could be used as basic building blocks.
They illustrate how the different systems-level approaches and tools presented in
this chapter can be used to study:

1. Epithelial cancer.
2. Chronic inflammation.
3. Atopic dermatitis.

In each case we shall illustrate, through a bottom-up systems-level modeling
approach, how the disruption of regulation gives rise to disease.



Chapter 3
Case Studies

3.1 Introduction

The aim of this chapter is to illustrate the modeling procedures discussed in the
previous chapter via three examples that deal with:

EXAMPLE 1: Epithelial cancer
EXAMPLE 2: Chronic inflammation
EXAMPLE 3: Atopic dermatitis

These three examples correspond to medical systems biology research carried
out by our research team. In each case the idea is to understand how disruption
of the regulatory networks leads to the onset and progression of specific chronic
degenerative diseases (see Fig. 3.1). These examples illustrate how modeling can
help to answer important questions concerning the systems-based mechanisms
underlying chronic degenerative diseases and to characterize the interplay between
the gene regulatory mechanisms and the environment. Specifically, the focus is to
shed light on phenotypic plasticity.

One aim of this chapter is to illustrate how the different computational and
mathematical methodologies exposed in the previous chapter of this book can be
applied in practice to answer particular clinically relevant questions. For the first
two case studies (epithelial cancer and chronic inflammation), we apply a qualitative
discrete-time (and discrete-state) Boolean approach, whereas the third example
(i.e., atopic dermatitis) follows a quantitative continuous-time and continuous-state
perspective (prioritizing the unveiling of multi-scale dynamics).

The first example (i.e., epithelial cancer) is studied via discrete time and discrete
state Boolean gene regulatory networks grounded on experiments. This example
illustrates how the interplay between healthy, pre-clinical, and disease states, is ruled
by the underlying gene regulatory machinery. A gene regulatory network module is

© Springer International Publishing AG, part of Springer Nature 2018
M. E. Álvarez-Buylla Roces et al., Modeling Methods for Medical Systems Biology,
Advances in Experimental Medicine and Biology 1069,
https://doi.org/10.1007/978-3-319-89354-9_3
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Fig. 3.1 Modeling the disruption of the gene regulatory networks. Schematic representation of
how the onset and progression of chronic degenerative diseases result from the disruption of gene
regulatory networks. Transitions between healthy, pre-clinical, and disease states, corresponding to
different attractors of the underlying regulatory network, are triggered by different perturbations in
the form of: (a) Mutations in network’s components; (b) Stochastic fluctuations; (c) Environmental
factors; (d) Disruption on parameters, i.e., patient-specific network variations
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proposed, and its dynamical attractors describe in systems dynamical terms the gene
profiles of the:

• epithelial phenotype
• senescent phenotype
• mesenchymal phenotype

that characterize the epithelial-to-mesenchymal transition in the context of epithelial
cancer. The robustness of the proposed module to genetic perturbations is analyzed
through the disruption of the network’s components (see Fig. 3.1a). Moreover, the
epigenetic landscape are studied via stochastic simulations (see Fig. 3.1b). Our
proposed bottom-up modeling approach uncovered the key role played by cell
senescence in the dynamics of epithelial cancer.

In the second example, we explore how chronic inflammation can arise from
the disruption of immune response by hyperinsulinemic conditions. For this,
we follow a discrete-time and discrete-state Boolean gene regulatory networks
modeling approach. In this case, our goal is to illustrate the dynamical consequences
resulting from the interaction between the underlying core gene regulatory network
module and the involved environmental factors (mediated by signaling transduction
pathways), as schematically represented in Fig. 3.1c. In the context of the adaptive
immune response, the example illustrates the regulatory role of the feedback-
structured interplay between the intrinsic or intracellular regulatory core and the
extrinsic microenvironment. Thus, the resulting Boolean network includes the gene
regulatory machinery, the involved signaling pathways and their regulators, as well
as cytokines that have shown to be fundamental in can help to explain CD4+ T-cell-
type attainment.

A third case study illustrates how quantitative, mechanistic models based on
kinetic interactions shaping the onset and progression of atopic dermatitis. For
this, multi-scale, mechanistic kinetic models, constructed with ordinary differential
equations, were used to systematically assess the dynamic interplay between
coupled biochemical and tissue-level processes that underlie epidermal function in
health and disease. We show how the model predictions are validated with clinical
and experimental in vivo data. Further, we illustrate how we use such models to
design therapeutic strategies to prevent or revert severe symptoms, using control
theory approaches.

3.2 Epithelial Cancer

Motivation

Cancer is a complex chronic degenerative disease that continues to challenge public
health systems in poor and rich countries. Moreover, the latter have experienced
increased rates of cancer incidence pointing to the important impact of environ-
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mental conditions in this complex health condition. In this section we deal with a
particular class of epithelial cancers. For this we use a dynamical state-space model
to exemplify a medical systems biology approach that considers cancer as a robust
developmental process. Through modeling we show that cancer can emerge from
altered systemic mechanisms or gene regulatory networks at play during normal
development. Further, given that this and other chronic degenerative diseases have
been associated to aging and to chronic inflammation, we use our model to evaluate
the effects of chronic inflammation on carcinogenic transformation, and indeed
show that chronic inflammation contributes to this pathogenic process.

Irrespective of the genetic background, a convergence to a finite and conserved
set of phenotypes has been observed, both in physiological and pathological
conditions. This convergence emerges from common and robust developmental
mechanisms that restrict tissue, organ, and whole organism phenotypes as a result of
the multi-level regulatory networks that encompass the dynamic interplay between
gene regulatory networks, signaling molecules that respond to the microenviron-
ment, and the environmental factors to which a person is exposed depending on the
individual’s lifestyle. For example, diet, as a key component of lifestyle, has been
shown to have a profound influence on aging and inflammation, and it is increasingly
being taken into account in scientific and clinical studies of age-related degenerative
diseases (see for instance [287] and the references therein).

Remark 3.1 (Lifestyle and Prevention) The modulation of lifestyle and the envi-
ronment may constitute an effective way to prevent and ameliorate malignancies,
independently of the genetic background of an individual.

In this section we exemplify how to apply the medical systems biology frame-
work explained in the previous chapters of this volume to understand the emergence
and progression of epithelial cancer. Pathological observations of precancerous
and cancerous patients indicate that cellular senescence resulting from chronic
inflammation and during aging are often required to transition to a cancerous
state with mesenchymal characteristics. Our proposal could aid the development
of novel and more effective strategies to prevent, delay, or temporally modulate
the transition to such cellular and tissue-level conditions. Indeed, carcinomas show
conserved patterns of cellular behavior, and a generic time-ordered sequence of
progression or transitions from certain cellular and tissue-level conditions to others
are robustly displayed in most cases. This indicates equally robust underlying
regulatory mechanisms that we aim to uncover (through a bottom-up state-space
modeling approach). The gene regulatory network model presented here seems
to constitute one of such underlying mechanisms. It incorporates components and
experimentally grounded interactions that have been related to:

• progression of cell cycle
• inflammation
• epidermal and mesenchymal cell differentiation
• epigenetic regulation.
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Our analysis suggests that we have uncovered a core regulatory module underlying
epithelial-to-mesenchymal transition in which an intermediate senescent cellular
state is necessary for such transition. The recovered time-ordered pattern robustly
emerges from the uncovered regulatory core module.

Cancer as a Developmental Process

Following a medical systems biology perspective, we study here cancer as a
developmental process that emerges from the regulatory networks that underlie
normal cell differentiation and morphogenesis during normal development. We are
concerned then by

• initiation of cancer
• promotion of cancer
• progression of cancer

We focus on cancerous alterations that originate in epithelial tissues, such as the
skin, lungs, ovary, and so on, including secretory or glandular epithelia, such as
mammary glands and the liver.

Remark 3.2 (The Complexity of Cancer) Cancer is a set of complex chronic degen-
erative diseases, and may be considered as a robust manifestation of underlying
developmental systems-level mechanisms at play during normal processes. But
cancer is tightly associated with human aging, and at the same time, lifestyle factors
seem to be modulators of the onset and progression of the disease. To understand
such a complex disease it is important to uncover the intracellular regulatory
mechanisms involved, and how they feed back to the cellular microenvironment,
which, in turn, is affected by environmental factors and the individual’s lifestyle.
The modulation of the cellular and morphogenetic transitions that underlie the
emergence and progression of neoplasias implies understanding the feedback
among these intra- and extracellular mechanisms (see for instance [192] and [293]
and the references therein).

Emergence of Cancer from Complex Modulation of Regulatory
Dynamics

The idea behind the project reported here is if in the progression of cancer we
could identify conserved or generic patterns that result from conserved underlying
systems-level mechanisms or core regulatory modules (see the previous chapter
of this volume and [19] for a review of a similar approach used in the context
of the study of cell differentiation and morphogenesis in plant systems). If we
focus on epithelial cancer (i.e., carcinomas), we can indeed show that the clinical
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and pathological progression of cancer that originates from this type of tissue
follows an almost generic pattern of cell transitions among patients with diverse
types of carcinomas and of equally diverse origin, genetic background, or life
condition. According to pathological studies, such pattern implies an intermediate
pre-clinical condition in which hyperplastic tissues are established due to chronic
inflammation (see for instance [254]). The cells implied in such tissues seem also to
develop premature senescent signs and express genes that have been associated with
inflammatory reactions and cell aging [260]. We hypothesized that such a repetitive
pattern could emerge from the modulation of regulatory modules that are involved
in normal cell function and in the organization of epithelial tissue. Such modules
comprise multiple components and nonlinear feedback-based interactions among
them, and are multistable, which is in fact a required dynamical characteristic as far
as cell phenotypic plasticity is concerned.

Remark 3.3 (From a Normal Epithelial State to an Anomalous Mesenchymal Pheno-
type) Under normal conditions the regulatory modules that coordinate cell function
and epithelial tissue organization display a specific configuration that leads to the
maintenance of a normal epithelial cell differentiation state. But under certain tissue
and microenvironmental conditions such systems transit to senescent states and
from these to a mesenchymal stem cell-like state.

A Core Regulatory Module Involved in the Onset and
Progression of Epithelial Cancer

In what follows we focus on the core regulatory module that could be involved in the
systemic mechanisms underlying the cellular and tissue transitions that eventually
may lead to advanced carcinomas (see the details in [316]). With the model
presented here we address why epithelial cancer seems to be highly reproducible
among patients, and why it seems an almost inevitable and robust outcome of
aging. Very importantly, based on stochastic models of complex gene regulatory
networks we can also address what may be the modulatory role of random or
stochastic fluctuations that recently have called the attention of cancer experts and
that together with environmental and genetic factors, as well as epigenetic factors,
lead to cancer emergence and progression. In contrast to targeting individual or
a few molecules for prevention and treatment, our systems-level approach calls
for preventive recommendations that may delay cancer emergence and/or slow its
progression considering the systems-level mechanisms uncovered by using gene
regulatory network modeling. We must point out that other researchers have also
proposed similar developmental and network-based modeling approaches to cancer
(see for instance [114, 212, 213, 262]).

We recently published a dynamic gene regulatory network model that integrates
key molecular components involved in cell aging, cell cycle, metabolism, epithelial
and mesenchymal differentiation, and inflammation [316]. All of these are processes
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that potentially underlie in vivo carcinogenesis and the cellular senescence of human
epithelial cells, as well as their subsequent epithelial-to-mesenchymal transition
induced by inflammation [298, 316].

Before going into the details of the gene regulatory network analyzed here, we
briefly contrast in what follows two of the main paradigms in cancer biology: the
classic genetic paradigm and the developmental perspective.

Cancer: Nurture Versus Nature?

Traditionally, cancer is usually defined as a genetic disorder (see for instance [428]):

A diverse group of diseases that result as a consequence of changes at the DNA level.

The genetic view of cancer has a long history. Indeed, its lineage can be traced back
to a series of fundamental discoveries. The causal link between genetic alterations
(abnormalities of hereditary material) and cancer dates back more than a century,
when chromosome aberrations were first observed in dividing cancer cells (see
for instance [58, 193]). Indirect empirical support was subsequently provided by
findings demonstrating that chemical damage to DNA causes both genetic mutations
and cancer (reviewed in [285]). Moreover, DNA sequences obtained from cancers
of diverse origin were shown to induce malignant transformation when introduced
into human cell lines (see for instance [415, 416]). Similar observations further
cemented a purely genetic causal view, having perhaps its maximal expression
in the consequential mass media-based popularization of the oncogene and the
tumor-suppressing gene concepts (see for instance [155, 259, 484]). Because of a
large body of experimental work replicating such observations (see for example
[186, 204, 269, 471]), it seems reasonable that nowadays most interpretations
of cancer are subject to testing for consistency with a genetic origin. However,
some recent cancer research breakthroughs have evidenced that in many cases
genetic alterations are not sufficient to explain the oncogenic process, and that
(micro)environmental factors such as chronic inflammation need to be taken into
consideration.

Random Mutations Do Not Explain Cancer

Because of this widely accepted belief in the genetic causes of cancer, the role of
chronic inflammation and aging in the oncogenic process (see for instance [20, 38]
is conventionally explained from the genetic view of cancer: it is generally assumed
that aging and inflammation increase the chance of accumulating somatic mutations
that constitute the ultimate cause of cancer. Genetic alterations, in turn, constitute
the main source for the production of genetic instability that ultimately leads to
cancer.
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Notwithstanding the empirical evidence described above, some of the difficulties
associated with an increasing number of inconsistencies derived from multiple
reports of apparently causal genetic elements have been pointed out and critically
reviewed several times [216, 424]. For example, it is not clear how a myriad of
different types of random mutations affecting many different signaling pathways
converge to a robust pathological phenotype, displaying the famous “hallmarks of
cancer”, including [192]:

• sustained proliferation
• dysregulation of cellular energetics
• resistance to apoptosis

The existence of a robust pathological phenotype calls for a systems-level explo-
ration of cancer.

Cancer as a Developmental Disease: Transcending the Classic
Genetic Paradigm

An alternative view of cancer, originally proposed more than one and a half centuries
ago (see for instance [470]), and that is increasingly receiving renewed attention,
is that cancer can be considered as a possible pathological outcome of the same
mechanisms underlying normal developmental processes [90, 216, 393, 470]. This
developmental view of cancer aims to offer mechanistic explanations different
clinical phenomena that cannot be understood under the classical genetic paradigm
introduced above. For example, cancer cells have been shown to transition to
morphological and transcriptional convergent phenotypes or genetic configurations
irrespective of the tissue of origin [51]. Cancer behavior in some cells can be
observed in the absence of mutations through trans- or dedifferentiation processes
(see for instance [46, 274, 298, 499]). In addition, the malignant phenotype of cancer
cells has been shown to be reversible (‘normalized’) by several experimental means
and conditions not involving genetic modifications [294, 477, 490]. Observations
such as these, and the fact that carcinogenesis invariably recapitulates processes
normally occurring during embryogenesis [322], align with a developmental and
multistable systems-level mechanism, rather than an entirely reductionist and purely
genetic basis to understand cancer.

The developmental perspective has motivated our research group to propose a
systems-level modeling framework based on the construction of integrative gene
regulatory networks, as well as other types of models, that allows us to analyze
cancer as a developmental process emerging from the same mechanisms underlying
normal cell differentiation and morphogenesis.

Remark 3.4 (Developmental Mechanisms and Genetic Mutations) The develop-
mental perspective of epithelial cancer does not cancel the possibility that certain
genetic mutations, once they appear, may be critical to facilitate the transition
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to cancerous cellular behavior. In fact, integrative gene regulatory models as the
one discussed here can re-conciliate the genetic and developmental paradigms of
cancer, by offering at the same time a systems-level mechanistic explanation of
the developmental dynamics underlying carcinogenesis (detailed below), and by
providing a functional context for the interpretation of empirically observed genetic
variants (see, for example [19, 83]).

In what follows, we first briefly discuss some of the methodological approaches
currently in use in the cancer scientific research field, as well as novel proposals
to interpret recent experimental findings. Then we introduce and discuss interpreta-
tions of some of the models proposed so far, and offer some perspectives on cancer
prevention via modulation of lifestyle.

A Bottom-Up Developmental Perspective for the Understanding
of Cancer

As a methodological consequence of the intersection between the genetic tradition
of cancer and the technological explosion in bioinformatics and biomedicine,
massive resources are being devoted to genome sequencing of human tumors with
the hope of finding underlying genetic causes and therapeutic targets (see for
instance [164, 219, 486]). Unfortunately, despite the growing number of associative
and descriptive analyses of cancer genomic data sets, very little is still understood
about the dynamical mechanisms underlying the emergence and progression of
cancer (see for instance [501]). Such understanding is mandatory for more rational
preventive and therapeutic approaches. It is becoming clear that bioinformatics
insights derived from genomic data analyses are not enough to predict or clarify
the phenotypic pathological manifestations of cancer, and less so understand the
systems-level underlying mechanisms. In an attempt to overcome this, major efforts
are turning towards mapping epigenomic profiles (see for instance [388]). The cell
and tissue specificity of the epigenome can then be used to contextualize and predict
the potential disruptive role of mutations [253, 375].

It has been pointed out recently that, rather than using additional massive
tumor genomic data, a better strategy for approaching cancer may be to develop
methods for analyzing the molecular regulatory networks that underlie cancer
emergence, progression, and therapeutic resistance at a systems-level (see for
instance [102, 293, 501]). In line with both network-based approaches, a research
initiative based on the interpretation of such genome-level data within the context of
large-scale molecular networks following a top-down systems biology approach has
been proposed recently [252, 316]. But still, the main goal of this approach is the
molecular mechanistic conceptualization of potential cancer driver mutations (see
for instance [207]).

Concerned with the current situation of cancer biology (i.e., the abundance
of sequencing data, yet lack of mechanistic understanding), we and others have
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recently put forward a methodological viewpoint focusing on the systems dynamics
of molecular networks following a bottom-up mechanistic approach aimed at
understanding the generic patterns of cancerous stages [212, 217, 238, 316], instead
of a descriptive data-based one (for discussions on systems biology modeling
approaches, see [19, 112]). The goal of our ongoing effort is to provide conceptual
clarity by means of generic models focusing on epithelial carcinogenesis. For
this, we have started to integrate gene regulatory networks grounded on molecular
experimental data. These systems biology approaches are inspired in our efforts
to use plant systems to understanding cell differentiation and morphogenesis [19].
Also Stuart Kauffman (see for instance [238]) and Sui Huang and collaborators
[214, 217], have made important contributions such as the celebrated cancer
attractor theory, while others have proposed the endogenous molecular cellular
network hypothesis [481, 510, 522]. The latter are much in line with the proposal
that we pursue in this section.

The growing interest in modeling cancer development indicates an important
research transition driven by multidisciplinary attempts to go beyond extensive,
high-resolution description, towards uncovering and understanding systems-level
mechanisms underlying generic patterns in the emergence and progression of
cancer. This new perspective transcends the classical genetic paradigm, and its
ultimate goal is to further our understanding and, hopefully, provide rational
preventive and therapeutic strategies (fundamentally based on the modulation of
the lifestyle).

In what follows we shall tackle epithelial cancer modeling via the analysis of
how gene regulatory dynamics shape the epigenetic landscape, giving rise to the
state-space trajectories that characterize the dynamics of epithelial cancer.

Gene Regulatory Networks and Epigenetic Landscape
Modeling: The Case of Epithelial Cancer

Understanding the emergence of phenotypic manifestations that characterize both
health and disease requires integrative approaches based on the exploration of
biological development and going beyond gene-centric studies (see for instance
[19, 109, 112] and the references therein). Such system biology approaches have
proven to be more powerful to propose predictive models, which is something
that we are aiming for in the context of medical systems biology. In the last two
decades, work in our research group has followed such an approach in the study of
diverse systems-level developmental processes, specially using plant systems (see,
for example [17, 19, 29, 50, 141]). Recently, we started adopting this approach
to study epithelial carcinogenesis [316], work that we continue developing and
extending. The rationale of our work follows the dynamical systems view of cell
biology [112].
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As reviewed above, a mechanistic systems biology approach to cell differenti-
ation and morphogenesis relies on multistable and multi-level models with gene
regulatory networks at its basis. As we previously pointed out, these are intracellular
complex and highly nonlinear systems that comprise the underlying mutual gene
regulatory interactions implied in developmental processes. Nonlinear dynamical
gene regulatory networks yield several stationary states where the regulatory
constraints imposed by the network are satisfied in a way that the expression of each
gene stays unchanged (for a more in-depth explanation, see [19, 112] and the refer-
ences therein). This general model has been proposed as a mechanistic explanation
of how the same genome and network robustly generates multiple discrete cellular
phenotypes during development (as discussed in [16, 19, 109, 216, 238, 318]). As
in any nonlinear dynamical system, the stable stationary states are called attractors
(recall the exposition turning around these concepts that presented in the previous
chapters), and these states operationally correspond to configurations of gene or
protein activation that underlie or correlate with different cell types or cellular
phenotypes under study (which provides a systems-level explanation for phenotypic
plasticity).

Gene regulatory network modules comprise sets of necessary and sufficient
components and interactions to recover the stable configurations of activation under
study. These configurations correlate with those that have been experimentally
described for cell types or behaviors under study and comprise the expected
attractors. Such modeling approach has been validated for several systems during
flower development [18, 141, 318], stem cell differentiation [29, 273], and cell-fate
decision [518], among many others in plants and animals.

Epithelial Cancer Cellular Progression

We summarize here our work in epithelial cancer. This research work follows the
modeling philosophy cultivated when studying developmental dynamics associated
to cell differentiation and morphogenesis of plant structures. We focus on a core
gene regulatory network module underlying the conserved time-ordered observed
patterns of cellular transitions in the so-called carcinomas:

• Epithelial cells.
• Senescent cells.
• Mesenchymal-like cells.

We recently published an in silico model of the key cellular processes towards
this cellular progression in vitro [316]. This corresponds to the spontaneous
immortalization of epithelial cell lines. In vivo pathological studies have revealed
a conserved pattern in the cellular transitions observed during the emergence and
progression of this type of cancer. Normal epithelial cells transit to senescent
ones after chronic inflammation. It is from these prematurely senescent cells that
mesenchymal malignant ones emerge.
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Assembling the Regulatory Network Grounded on Experiments
Data

We aimed at integrating a gene regulatory network module integrating the main
molecular genetic processes involved in the emergence and transition of epithelial
cancer detailed above (see for instance [298, 504]). It has been documented
experimentally that epithelial cells that are exposed in vitro to cytokines undergo
epithelial-to-mesenchymal-transition and the resulting cells manifest mesenchymal
stem-like characteristics and genetic profiles as well as behaviors (e.g., capacity to
migrate) (see Fig. 3.2). The resulting mesenchymal stem-like cells are very similar
to cancer stem cells in vivo. Such cells have also been shown to have the potential
to initiate cancer in murine models (see for instance [46, 272, 298, 329, 499]).
The mathematical model comprising a dynamical mechanistic explanation for such
epithelial-to-mesenchymal transition via a senescent cell state has been recently
published [316]. In this study we used the gene regulatory network modeling
approaches that have been described in this volume, especially those related with
the postulation of multistable complex intracellular regulatory networks, to describe
different cellular phenotypes underlying normal and altered transitions and tissues.
Molecular components and interactions involved in:

• Cell cycle.
• Epidermal and mesenchymal cell differentiation.
• Senescence.
• Inflammation.

and:
• Epigenetic silencing,

were incorporated into the large regulatory network reproduced in Fig. 3.3 (for
details on the experimental evidence used to integrate and assemble this network
please refer to the original publication [316]). All of the components incorporated
have been experimentally characterized in normal development of epidermal and
mesenchymal tissues, and the other processes including their involvement in cancer
of various types with emphasis on carcinomas. Nonetheless, to test that we had
incorporated components that are relevant to study cancer emergence, we pursued
an network-based gene set enrichment analysis of the proposed gene regulatory
network.

Network-Based Gene Set Enrichment Analysis

To further support that the set of regulatory interactions that we manually curated
based on published data are indeed representative of the cellular-level processes
underlying epithelial carcinogenesis, we performed a network-based Gene Set
Enrichment Analysis (GSEA; [430]) of the gene regulatory network, using both
the KEGG and the GO Biological Process databases as reference [166, 231]. As a
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Fig. 3.2 Induced epithelial-to-mesenchymal transition. This figure shows in a schematic manner
that (under some conditions) cytokines and other microenvironmental conditions character-
izing chronic inflammation can induce epithelial-to-mesenchymal transition, giving rise to
mesenchymal-like cells from epithelial cells. Both the epithelial-like cells and the mesenchymal-
like cells are characterized by a specific gene profile defined by the activity of well-characterized
transcription factors (see for instance [316, 383])
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Fig. 3.3 Gene regulatory network for epithelial carcinogenesis. Figure taken from [316], pub-
lished under the Creative Commons Attribution 4.0 International License (http://creativecommons.
org/licenses/by/4.0/)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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result of this analysis, we found that among the 12 pathways or processes reported as
significant when taking the KEGG database as a reference, 10 (≈83%) correspond
to the cancer types:

• Bladder cancer.
• Chronic myeloid leukemia.
• Non-small cell lung cancer.
• Glioma.
• Melanoma.
• Pancreatic cancer.
• Prostate cancer.
• Small cell lung cancer.

and:
• Thyroid cancer.

From these cancer types, six (66.6%) correspond to carcinomas. When taking the
GO Biological Process database as reference, we found that the molecules consid-
ered in our regulatory network are significantly enriched for several of the biological
processes known to play important roles during spontaneous immortalization of
epithelial cells, including (see Table 1 in [316]):

• Replicative senescence.
• Cellular senescence.
• Cell aging.
• Positive regulation of epithelial to mesenchymal transition determination of adult

life span.

Additionally to this GSEA, we performed a network-based topological gene set
enrichment analysis (see Methods in [316] for the details) and found that, in addition
to the enrichment of the pathways and processes described above, the molecules in
the proposed network show also a topological signature that strongly resembles the
structure of the cancer pathways included in the KEGG database.

A Core Regulatory Network Module from the Reduction of the
Original Network

To mathematically analyze the functional consequences of the proposed network,
we simplified the large network shown in Fig. 3.3 into a smaller, computationally
tractable Core Regulatory Network, by collapsing the linear pathways (i.e., path-
ways that do not involve feedback-based interactions).

For this, we applied a systematic knowledge-based reduction algorithm that
reduces these pathways but preserves the regulatory interactions, obtaining the core
regulatory module shown in Fig. 3.4.
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Fig. 3.4 Epithelial-to-mesenchymal transition core regulatory network module. Core regulatory
network module that underlies epithelial-to-mesenchymal transition in the context of epithelial
cancer, developed in [316]. The nodes in blue are involved in senescence dynamics and the nodes
in green characterize cell-cycle dynamics. When over-activated, the node in red (i.e., NFκB)
represents the inflammatory response shaping the transition dynamics. The nodes in orange and
in black (i.e., Snai2 and ESE-2) represent the mesenchymal stem-like and the epithelial-like
gene profiles, respectively. Figure adapted from [316], published under the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/)

This network module retained all the functional feedback motifs in the large
network, but was small enough to be analyzed in terms of the dynamical behav-
iors and the epigenetic landscape modeling approaches described above [110].
Specifically, we aimed to test if the recovered core regulatory module contained
a set of interactions that were necessary and sufficient to robustly converge to
stable configurations or attractor states with the patterns of gene activation for the
included components, that have been described in normal epithelial, senescent, and
mesenchymal stem-like cells. Our analyses confirmed these hypotheses. Indeed, the
gene regulatory core module (characterized by the logical rules shown in Box 3.1)
attained only three attractors with activation patterns recovering the behaviors that
coincide with experimental observations (see Fig. 3.5). We also found that these

http://creativecommons.org/licenses/by/4.0/
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Fig. 3.5 Attractors of the core regulatory network module underlying the epithelial-to-
mesenchymal transition. The three attractors (steady-state configurations) of the core regulatory
network module underlying epithelial-to-mesenchymal transition in the context of epithelial
cancer [316]: the epithelial-like phenotype, the senescent phenotype, and the mesenchymal-like
phenotype. Each attractor is displayed (from left to right) as a column vector that contains the set
of binary variables that represent the activation states of the nodes of the core regulatory network
module (i.e., the involved transcription factors and signaling molecules). The percentages represent
the relative size of the different basins of attraction. Figure adapted from [316], published under
the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/)

systems states were quite robust to different types of perturbations of the logical
rules (see the details in [316]).

Remark 3.5 (From Interactions to Attractors) When exploring (through computer-
based simulations) the epithelial-to-mesenchymal transition core regulatory net-
work module shown in Fig. 3.4, we get the set of attractors shown in Fig. 3.5. These
results are consistent with the available empirical evidence. When the attractors are

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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known a priori, it is possible to build a network that converges to those attractors.
However, in our context, we go from the characterization of regulatory interactions
to resulting attractors, since we are interested in the uncovering of the circumstances
of emergent stability.

Box 3.1. Epithelial-to-mesenchymal transition core regulatory module

This box includes the set of logical rules that defines the core regulatory
module underlying epithelial-to-mesenchymal transition in the context of
the onset and progression of epithelial cancer [316].
The nine logical rules constitute a discrete-time and discrete-space Boolean
transcriptional gene regulatory network.
For each rule, the right-hand side of the rule defines the regulatory function
that updates the activation state of the corresponding gene at updating time.
Symbols ∧, ∨, and ¬, stand for the AND, OR, and NOT logical operators.

Nodes of the network
p53 : Transcription factor, regulates cellular responses.

to DNA damage

p16 : Signaling molecule, inhibits cyclin.
dependent kinases

Rb : Signaling molecule, inhibits cell-cycle progression.

TELase : Signaling molecule, RNA-dependent DNA polymerase
that synthesizes telomeric DNA sequences.

NFκB : Transcription factor, regulates the immune
response to infection.

Snai2 : Transcription factor, repressor of E-cadherin transcription.

Cyclin : Signaling molecule, regulates the progression
of cells through the cell cycle
by activating cyclin-dependent kinase (Cdk) enzymes.

E2F : Transcription factor, regulates genes required for
appropriate progression through the cell cycle.

ESE2 : Transcription factor, regulates late-stage differentiation
of keratinocytes (as well as glandular epithelia).

(continued)
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Box 3.1. (continued)

Logic functions

Mesenchymal phenotype

Snai2 = (¬ESE2 ∧ ¬NFκB ∧ ¬Snai2) ∨ (¬ESE2 ∧ ¬NFκB ∧ Snai2)

∨ (¬ESE2 ∧ NFκB ∧ ¬Snai2) ∨ (¬ESE2 ∧ NFκB ∧ Snai2)

∨ (ESE2 ∧ NFκB ∧ Snai2)

Epithelial phenotype

ESE2 = (¬NFκB ∧ ¬Snai2 ∧ ¬ESE2) ∨ (¬NFκB ∧ ¬Snai2 ∧ ESE2)

∨ (¬NFκB ∧ Snai2 ∧ ESE2) ∨ (NFκB ∧ ¬Snai2 ∧ ¬ESE2)

∨ (NFκB ∧ ¬Snai2 ∧ ESE2)

Cellular inflammation

NFκB = ¬ (¬ESE2 ∧ ¬p16 ∧ ¬Snai2 ∧ ¬NFκB)

Cellular senescence

p16 = (¬p16 ∧ ¬E2F ∧ p53 ∧ ¬TELasa ∧ ¬Snai2)

∨ (¬p16 ∧ ¬E2F ∧ p53 ∧ ¬TELasa ∧ Snai2)

∨ (¬p16 ∧ ¬E2F ∧ p53 ∧ TELasa ∧ ¬Snai2)

∨ (¬p16 ∧ E2F ∧ p53 ∧ ¬TELasa ∧ ¬Snai2)

∨ (¬p16 ∧ E2F ∧ p53 ∧ ¬TELasa ∧ Snai2)

∨ (¬p16 ∧ E2F ∧ p53 ∧ TELasa ∧ ¬Snai2)

∨ (p16 ∧ ¬E2F ∧ ¬p53 ∧ ¬TELasa ∧ ¬Snai2)

∨ (p16 ∧ ¬E2F ∧ p53 ∧ ¬TELasa ∧ ¬Snai2)

∨ (p16 ∧ ¬E2F ∧ p53 ∧ ¬TELasa ∧ Snai2)

∨ (p16 ∧ ¬E2F ∧ p53 ∧ TELasa ∧ ¬Snai2)

∨ (p16 ∧ E2F ∧ ¬p53 ∧ ¬TELasa ∧ ¬Snai2)

∨ (p16 ∧ E2F ∧ ¬p53 ∧ ¬TELasa ∧ Snai2)

∨ (p16 ∧ E2F ∧ ¬p53 ∧ TELasa ∧ ¬Snai2)

∨ (p16 ∧ E2F ∧ ¬p53 ∧ TELasa ∧ Snai2)

∨ (p16 ∧ E2F ∧ p53 ∧ ¬TELasa ∧ ¬Snai2)

∨ (p16 ∧ E2F ∧ p53 ∧ ¬TELasa ∧ Snai2)

∨ (p16 ∧ E2F ∧ p53 ∧ TELasa ∧ ¬Snai2)

∨ (p16 ∧ E2F ∧ p53 ∧ TELasa ∧ Snai2)

∨ (p16 ∧ ¬E2F ∧ ¬p53 ∧ TELasa ∧ ¬Snai2)

(continued)
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Box 3.1. (continued)

p53 = (¬p53 ∧ ¬NFκB ∧ ¬TELasa ∧ ¬p16 ∧ ¬Snai2)

∨ (p5 ∧ ¬NFκB ∧ ¬TELasa ∧ p16 ∧ ¬Snai2)

∨(¬p53 ∧ NFκB ∧ ¬TELasa ∧ p16 ∧ ¬Snai2)

∨(p53 ∧ ¬NFκB ∧ ¬TELasa ∧ ¬p16 ∧ ¬Snai2)

∨ (p53 ∧ ¬NFκB ∧ ¬TELasa ∧ p16 ∧ ¬Snai2)

∨ (p53 ∧ NFκB ∧ ¬TELasa ∧ p16 ∧ ¬Snai2)

Cell cycle

Cyclin = (¬ESE2 ∧ ¬E2F ∧ ¬p16 ∧ ¬NFκB ∧ ¬Snai2)

∨ (¬ESE2 ∧ ¬E2F ∧ ¬p16 ∧ NFκB ∧ ¬Snai2)

∨ (¬ESE2 ∧ ¬E2F ∧ ¬p16 ∧ NFκB ∧ Snai2)

∨ (¬ESE2 ∧ E2F ∧ ¬p16 ∧ ¬NFκB ∧ ¬Snai2)

∨ (¬ESE2 ∧ E2F ∧ ¬p16 ∧ NFκB ∧ ¬Snai2)

∨ (¬ESE2 ∧ E2F ∧ ¬p16 ∧ NFκB ∧ Snai2)

∨ (ESE2 ∧ ¬E2F ∧ ¬p16 ∧ ¬NFκB ∧ ¬Snai2)

∨ (ESE2 ∧ ¬E2F ∧ ¬p16 ∧ NFκB ∧ ¬Snai2)

∨ (ESE2 ∧ E2F ∧ ¬p16 ∧ ¬NFκB ∧ ¬Snai2)

∨ (ESE2 ∧ E2F ∧ ¬p16 ∧ NFκB ∧ ¬Snai2)

TELasa = (¬Snai2 ∧ ¬ESE2) ∨ (Snai2 ∧ ¬ESE2)

Rb = (¬Cyclin ∧ ¬p16 ∧ p53) ∨ (¬Cyclin ∧ p16 ∧ ¬p53)

∨ (¬Cyclin ∧ p16 ∧ p53) ∨ (Cyclin ∧ ¬p16 ∧ p53)

∨ (Cyclin ∧ p16 ∧ ¬p53) ∨ (Cyclin ∧ p16 ∧ p53)

E2F = (¬Rb ∧ ¬p53 ∧ ¬Snai2 ∧ ¬Cyclin)

∨ (¬Rb ∧ ¬p53 ∧ ¬Snai2 ∧ Cyclin)

We also used the model to simulate several different genetic alterations, recov-
ering the experimentally characterized expression profiles that have been character-
ized for several loss and gain-of-function mutants (see Fig. 3.6). With this agreement
between model behavior and experimental data, we validated the gene regulatory
core model. Further, this result exemplifies how a dynamical model can be used
to systematically evaluate the robustness of a gene regulatory network to genetic
perturbations.

Additionally, our model suggests a systems-level dynamical explanation to the
fact that in many cases intermediate inflammatory cells are observed before cells
transit to a mesenchymal state, because the epigenetic landscape modeling of the
network under analysis recovered the observed time-ordered pattern (epithelial-
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Fig. 3.6 Predicted attractors of loss- and gain-of-function mutants of the GRN. Predicted
attractors of loss- and gain-of-function mutants of the GRN for ESE2 (a, b), Snai2 (c, d) and
p16 (e, f). Percent (%) represents the size of the corresponding basin of attraction. Figure taken
from [316], published under the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/)

senescent-mesenchymal cells) repeatedly observed during epithelial cancer progres-
sion (see Fig. 3.7).

Interestingly, many of the components of the regulatory core proposed in our
study had been pointed out as important genes involved in epithelial (and other
types of) cancer, but the topology and architecture of the regulatory network that
we recently published had not been proposed before. We propose that it is the
dynamics of this gene regulatory network module what underlies the transitions
from normal epithelial cells to senescent ones, and finally to mesenchymal cells
with stem-like traits that are characteristic of carcinomas and that appear in vitro
during spontaneous immortalization of epithelial cells.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Fig. 3.7 Temporal sequence and global order of cell-fate attainment pattern under the stochastic
Boolean gene regulatory model during epithelial carcinogenesis. For the core gene regulatory
network module underlying epithelial-to-mesenchymal transition, in the context of epithelial
cancer, this figure shows the maximum probability of attaining each attractor as a function of
time (in iteration steps). The most probable sequence of cell attainment is: epithelial → senescent
→ mesenchymal stem-like. Figure adapted from [316], published under the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/)

The results obtained for the regulatory module under discussion for epithelial
cancer are in line with results obtained for other developmental systems. The
regulatory processes involved in cell transitions during normal and cancerous
development are prone to stochasticity as described above in the section devoted
to epigenetic landscape modeling. Several years ago, we hypothesized that at least
some aspects of the morphogenetic temporal and spatial patterns observed during
normal and altered development emerge from the deterministic dynamical gene

http://creativecommons.org/licenses/by/4.0/
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regulatory network underlying a particular process under study and its resonance
with stochastic fluctuations that result from intrinsic and extrinsic noise [18]. We
tested such stochastic explorations of the epigenetic landscape that emerges from
floral-organ specification gene regulatory network and recovered the time-ordered
patterns observed in floral development [18]. Interestingly, for the case of the core
regulatory module involved in epithelial-to-mesenchymal transition, our stochastic
simulations and exploration of the epigenetic landscape as succinctly summarized
above, reproduced the experimentally observed time-ordered transitions of cellular
phenotypes during carcinoma progression: initial epithelial cells more likely transit
to senescent cellular states and then to mesenchymal stem-like cell states. These
results strongly suggest that the uncovered regulatory core underlies important
aspects of the cellular transitions that have been observed in vitro and in vivo,
but also of their widely conserved behaviors or time-ordered patterns during
spontaneous immortalization of epithelial cells in vitro and probably also in the
progression of in vivo carcinomas. This model also supports that together with
complex gene–gene interactions, noise is an important aspect of the emergence of
cancer.

Discussion on the Medical Systems Biology Consequences of the
Exploration of the Model

As resulting from the exploration of the dynamical properties of the core gene
regulatory network module underlying epithelial-to-mesenchymal transition, it is
concluded that the transition depends on cell senescence. This is an important
result. We must point out that Stuart Kauffman was among the first to postulate that
disease-associated cellular states could correspond to particularly robust attractors
that once attained were difficult to leave [238]. But experimental data to test
such proposition has become available only in the last few years. More recently,
several researchers (see for instance [87, 105, 217, 496]) have indeed supported
this proposal and further developed it with gene regulatory network dynamical
modeling approaches that can now be grounded on experimental data. Furthermore,
there is evidence that shows that cancer progression can occur in the absence
of genetic alterations sometimes, and some normally behaving cells might have
some somatic mutations that are characteristic of some cancers, suggesting that
purely gene-centric approaches for understanding cancer are in fact very limited.
Our [316] and other models [87, 217] suggest that both the intracellular gene
regulatory network implied in the cellular processes involved in cancer progression
and its feedback with microenvironmental signals are involved in the dynamics of
emergence and progression of cancer. Some of these models have also pointed
out to the importance of stochasticity in cancer emergence and progression (see
[15, 145, 151, 316]). Moreover, some authors have suggested that cancer results
from pre-existent pathological attractors, which are not accessible under normal
development but become accessible during illness (see [212, 216]). This view
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suggests that the attractors of cancer can be reached through the nonexclusive
occurrence of perturbations to either the network state, by means of intra- or
intercellular signals, or to the gene regulatory network structure by mutation (see
[24, 211, 233]). Therefore, according to this theory: cancer can be triggered when
epithelial cells undergo abnormal state transitions towards attractors that encode
embryonic phenotypes. We propose here that perturbations can have re-structuring
effects in the epigenetic landscape, such that previously unstable states become
stable or even robust attractors. The latter view is more dynamical in nature
and suggests that the epigenetic landscape can be reshaped due to non-genetic
deterministic (chemical and physical fields or environmental factors) or stochastic
dynamics, during which formerly unstable states become stable.

Remark 3.6 (Epigenetic Landscape Re-shaping) In a recent study our research
team uncovered a case of epigenetic landscape re-shaping while modeling plant
development in a de-differentiation case that may be similar to what occurs in
some types of cancer. The over-expression of a MADS-domain transcriptional
regulator generated a novel attractor that shared both differentiated and stem-cell
gene expression profiles and thus explained the behavior of some cells in the
flowers of such gain-of-function lines (see the details in [369]). Such studies to
understand the systems-level mechanisms underlying phenotypic plasticity in plants
can also provide insights into human development and the emergence of disease
conditions. In any case, the key point of the type of proposal we put forward here
is that the potential for manifesting a cancerous phenotype is intrinsic to the human
genome and regulatory networks at play during normal development. It is perhaps
an inevitable consequence of metazoan evolution (as has been pointed out in [212]).

On the other hand, the approach proposed here and in other papers (see
[102, 213]) may be useful to reconcile both the genetic and developmental views
of cancer, because developmental dynamics and the influence of environmental and
microenvironmental factors result in the establishment of pathological attractors;
these may imply altered proliferation dynamics, which, in turn, may promote higher
rates of mutations, and in any case, genetic perturbations affecting gene regulatory
network structure may facilitate that cells, specifically after chronic inflammation
and premature senescence, attain new attractors that yield abnormal or pathological
cell behaviors

The modeling work in cancer described here enables us to conclude that an
“abnormal” cell state associated with a cancerous phenotype is readily attainable
with high probability as a consequence of the developmental dynamics of the gene
regulatory network that we have uncovered. This has two potential interpretations:

Primo: The architecture of the uncovered network could include structural
alterations resulting from genetic perturbations that are not considered in this
model explicitly. This first interpretation may be postulated given that most of the
experimental work that we considered for the assembly of this model came from
cancer-specific experimental data. If this is the case, in agreement with the cancer
attractor theory, we could say that we have found a perturbed network whose
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architecture increases the likelihood of a transition from a normal epithelial to an
abnormal pathological phenotype.

Secondo: It is possible that both the architecture and the likelihood of transitions
recovered when using the model presented here do not imply genetic alterations,
but the transition rates among cell types could be modulated by both genetic
and non-genetic factors. This would imply an intrinsically mutation-free model
mechanism for normal and abnormal developmental dynamics, and the latter
could cause a disease condition when attained in an ectopic manner both in terms
of temporal and spatial aspects of morphogenesis. In this case, the cancer state
might correspond to a novel attractor that emerges in the epigenetic landscape as
a consequence of the over-expression of one transcription factor, as we found in
plants case [369]. It is also possible that it could result from a normal attractor
that is visited during development, but when attained ectopically it implies a
morphogenetic alteration referred to as cancer at the tissue level. Finally, it could
imply a non-stable attractor, which, as a consequence of a non-genetic alteration
of the epigenetic landscape, becomes stable and more cells attain such abnormal
state. We favor this last interpretation. To further consider the latter, below we
elaborate on the level of abstraction of the model presented here and the level of
organization at which it is valid.

The Promotion of Inflammation by Senescent Cells Increases
the Likelihood of Epithelial-to-Mesenchymal Transition

Considering cellular senescence and inflammation, and distinguishing between in
vitro and in vivo processes, is fundamental to clarify the interpretation of our
model. We first discuss what occurs in actual human tissues and the importance
of chronic inflammation and premature cellular senescence in the emergence of
epithelial cancers. As senescent cells increase in number within normal tissues
under normal aging or abnormal chronic inflammation, aged tissues are prone to
have a pro-inflammatory milieu associated with immune system infiltration and the
active secretion of pro-inflammatory molecules (e.g., cytokines) by senescent cells
[96]. This causes structural damage of tissue that might also imply alterations in
the physical fields that in turn impact the mechano-sensitive signal-transduction
pathways. The latter are likely interconnected to the gene regulatory network
uncovered in the model discussed in this book and require further study. Indeed,
it has been described that the action of cytokines and associated inflammation also
increases the probability of epithelial-to-mesenchymal transition [38]. All of these
alterations are not necessarily directed to specific genetic mutations, although some
of the latter might for sure make tissues more prone to inflammatory responses and
premature cellular senescence. But this would not imply a direct causal relationship
between a specific mutation and the emergence of a cellular altered state that could
correspond to a cancerous one. Hence:
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Fig. 3.8 Chronic inflammation affects the sizes of the basins of attraction. Chronic inflammation
affects the propensity to converge to a mesenchymal-like phenotype by altering the sizes of the
basins of attraction. Figure taken from [316], published under the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/)

We propose that chronic inflammation facilitates the transition
from an epithelial to a senescent state and finally to a mes-
enchymal state, favoring the onset and progression of cancers
emerging from epithelial tissues in vivo.

In terms of the model of epigenetic landscape described in previous chapters of
this volume, the above behavior could imply that:

1. The landscape is altered by non-genetic factors mainly (although some genetic
alterations might make such alteration more or less feasible, as shown in Fig. 3.6)
and as a consequence, an attractor corresponding to the mesenchymal-state
becomes available or more likely (see Fig. 3.8, showing the effects of chronic
inflammation on the sizes of the basins of attraction) or a new de-differentiation
attractor does.

2. Under normal conditions the mesenchymal state might not be easy to access once
in a epithelial tissue, and consequently cancer is not so frequent. Hence, it might
be quite distant from the epithelial one, but the senescent state, which the cells
may attain due to chronic inflammation, might be closer to the mesenchymal state
or makes this attractor more accessible in the epigenetic landscape. Alternatively,
a non-stable state such as one that combines the expression characteristic of
mesenchymal and stem cells becomes more stable and accessible, also once cells
are in an inflammation state.

We are aware that in its present state the model used here to exemplify our approach
to study the emergence of cancer only considers the intracellular minimal and
sufficient set of restrictions to recover the three types of cells being considered and
that have been observed in the great majority of epithelial cancers.

Remark 3.7 (Multi-Level Dynamics) Multi-level models of dynamics of cancer are
required to further consider the tissue-level components and the feedback between
the intracellular gene regulatory network module and the microenvironment, and the

http://creativecommons.org/licenses/by/4.0/
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physical fields. These are likely to be critical modulators of the transition and of the
time that cells take to go from a normal state to a cancer-like one.

Interestingly, in vitro cells spontaneously transit from an epithelial to a mes-
enchymal state. This fact alone validates our model and suggests that in contrast
to cells in vivo, in the dish, cells are able to transit to a mesenchymal state
spontaneously. Alternatively, intermediate states are also visited in vitro, but have
not been characterized or further studied. Interestingly, the induction of epithelial-
to-mesenchymal transition in immortalized cells has been experimentally shown
to produce cells with both reduced expression of the senescence markers p16 and
p53, and gain of the enzyme telomerase, both of which allow the cells to surpass
senescence [162]. Phenotypically, the resultant cells:

1. Are similar to cancer stem cells, tumor-initiating cells, or embryonic stem cells
[329].

2. Display resistance to apoptosis.
3. Have the ability to migrate, metastasize, and form secondary tumors—all lethal

traits characterizing cancer cells [298].

Therefore, it seems that cells that have reached a senescent phenotype are prone to
acquire stem-like properties under a pro-inflammatory environment. Coincidently,
recent work has started to characterize molecular similarities between senescent and
cancerous cells [104].

Model-Based Interpretation Of Cancer Dynamics

The experimentally grounded gene regulatory network model presented here already
recovers the dynamical behavior observed during the acquisition of stem-like
properties by epithelial cells in vitro. However, the current model only considers
intracellular dynamics, thus predicting cellular-level behavior. At this level, a
generic series of cell-state transitions widely observed and robustly induced by
inflammation in cell cultures seem to naturally result from the self-organized
behavior emerging from the underlying regulatory network. Interestingly, similar
processes are known to be instrumental during embryogenesis, a developmental
stage lacking the adult tissue aspects highlighted above. In particular, senescence
is also a natural process fundamental for early development in mammals (see
[333, 427]), and epithelial-to-mesenchymal transition is known to have a critical
role during embryogenesis (see for instance [298]). We reasoned that cells within
an aged tissue might somehow be prone to revisit the developmental processes that
originally shape the embryo and that spontaneously occur in vitro. If that is the case,
then:

What conditions within an aged tissue could trigger such path,
and why is it so prevalent under certain conditions?



162 3 Case Studies

This is an important question. Let us explore an answer based on the proposed
model.

An aged tissue is prone to suffer architectural deterioration and to present a pro-
inflammatory environment; both aspects associated with the increase of senescent
cells (see for instance [73]). We suspect that such tissue-level conditions, which are
associated with a bad prognosis in cancer, may increase the rate of occurrence of the
cell-state transitions observed in vitro due to the promotion of embryonic processes.
Specifically, under such conditions senescent cells are likely to undergo epithelial-
to-mesenchymal transition in vivo. In support of this, in addition to recovering
the ordered state transitions, our model predicts that constitutive expression of the
inflammatory pathway by the action of NFκB increases the likelihood of acquiring
a mesenchymal stem-like phenotype (see Fig. 3.8). This situation is likely to occur
in vivo due to a feedback mechanism established by the secretion of inflammatory
signals by senescent cells that reinforce local inflammation due to a consequential
increase in immune infiltration.

Remark 3.8 (Nutrition and Cancer: The Key Role of Inflammation) As pointed out
in [523]: (1) There is compelling evidence that nutrition has considerable effects on
the incidence and progression of cancer and responses to treatment. (2) A lifestyle
characterized by caloric excess, sedentarism, and a high-fat, high-sugar Western-
style diet tends to promote carcinogenesis. The processes at play include but are not
limited to: increased inflammatory reactions; diminished immunosurveillance; and
a considerable abundance of energy-rich metabolites (or trophic factors).

Considering the results of our modeling efforts and the empirical evidence
highlighted above, the interpretation that links cellular and tissue-level descriptions
proposed here goes as follows:

1. At the cellular level, the time-ordered cell-state transitions undergone by an
epithelial cell subject to replicative senescence and subsequent inflammation
result in the establishment of a mesenchymal stem-like state that might be
eventually responsible for the origin of carcinomas in vivo.

2. At the tissue-level, the accumulation of senescent cells, and the associated
induction of a pro-inflammatory state, promote cell-state transitions and set
the stage for the progression to a malignant phenotype by eliminating tissue
restrictions.

Importantly, this latter condition can be intensified in tissues that are subject to
high proliferation rate because of the lifestyle choices of the individual (e.g., the
lack of exercise, smoking, pro-inflammatory diet, exposure to toxic agents, stress,
etc.). Hence, the “abnormal” disease-associated character of the natural dynamical
process uncovered by our model may rest on the fact that:
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Underlying systems-level developmental mechanisms are
reused out of context due to extracellular perturbations
that inevitably occur during aging or chronic abnormal
inflammation. We refer mainly to the disruption of tissue-
level self-organizational processes normally at play in a
healthy adult organism.

We can at this level discuss preventive therapeutic interventions based on what
the proposed model implies.

Lifestyle Choices: Setting the Stage for the Risk Modulation of
Cancer

An intuitive consequence of the cancer viewpoint put forward here is the likelihood
of risk modulation. Let us see how the results derived from the analysis of the
proposed model can inform the design of preventive strategies.

Considering the cellular mechanism proposed above (transition from the epithe-
lial-like phenotype to the mesenchymal stem-like phenotype via an intermediary
senescent phenotypic state), a decrease in either or both the rate of accumulation of
senescent cells and inflammation is likely to have a retarding effect on the onset and
progression of cancer. The latter would retard the onset of the first alterations and/or
slower the rate of cell state transitions. How feasible is it to achieve such retardation
effects in reality? It is very feasible, and diet provides in fact a lifestyle modulatory
mechanism that can delay the onset and progression of cancer.

Modulating Transitions Through Nutrition (and Other Lifestyle
Choices)

Empirical evidence strongly supports the beneficial effects of caloric restriction,
fasting regimes, and so-called functional foods, which ultimately lead to a signifi-
cant increase in at the cellular and tissue levels these habits indeed seem to promote
healthy cellular environments that could retard the onset of cancer, at least in model
organisms (see for instance [287, 288, 367, 523]). Further, recent epidemiological
studies suggest a potential role of diet in certain human cancers, an effect that may
be driven or mediated by lifestyle factors (see for instance [182]). Risk factors (e.g.,
obesity and sedentarism) are intertwined, and this should be taken into consideration
when considering the modulation of lifestyle as a preventive therapeutic strategy to
retard the onset of cancer.

Although the beneficial effects of a healthy lifestyle and environment for disease
is increasingly being acknowledged [287], our model suggests an underlying
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molecular mechanism to further study their relevance. Abundant research of the
regulatory processes and epigenomic modification associated with a healthy diet in
normal and pathological conditions is certainly required, nonetheless. Irrespective of
genetic background, understanding how the modulation of the environment delays
chronic degenerative diseases seems to be a promising endeavor. It must be pointed
out that the interplay between obesity and chronic inflammation has been well estab-
lished (see for instance [382, 463, 498]). This provides a potential process-based
explanation by why caloric restriction attenuates chronic inflammation, resulting
then in the attenuation of cell dynamical processes giving rise to carcinogenesis.
We consider that the epigenetic landscape formalism can be a useful framework to
tackle the interplay between lifestyle and cancer dynamics. The effects of preventive
mechanisms on the shape of the landscape can provide holistic systematic tools to
identify components and processes that can increase the robustness of the stability of
healthy attractors, and delay the emergence and progression of altered cellular states.
This offers a research agenda intended to fight cancer through preventive modulation
of lifestyle (taking diet into account as the main variable in the therapeutic approach
equation).

We can at this level conclude our exposition on the gene regulatory network
dynamics underlying epithelial-to-mesenchymal transition, discussing some per-
spectives.

Final Comments and Perspectives

The bottom-up medical systems biology approach exemplified here with cancers
that originate from epithelial cells (using for this discrete-time and discrete-space
Boolean models) is related to similar theoretical/conceptual proposals (see [216,
504]) and models (see for instance [140, 476, 514]). The systems-level mechanistic
understanding of the cellular-level processes integrated in the model discussed here
constitutes a first step to unravel key processes that might be at play in vivo during
the emergence and progression of neoplasias associated to different environments
and genetic backgrounds as exemplified with cancers that originate in epithelia.
Testing modeling hypotheses and predictions awaits the side-by-side development
of multi-level models integrating tissue-level processes with both in vitro and in
vivo perturbation experiments. We believe that the cellular-level network model
discussed here [316] is, nonetheless, a valuable building block for more detailed
modeling efforts integrating further sources of tissue-level constraints such as:

• Cell cycle progression.
• Cell–cell interactions.
• Differential proliferation rates.
• Chemical fields.
• Mechanical forces.
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Finally, we stress that, beyond theoretical arguments, the intuition gained by
our simple gene regulatory network model has important clinical implications
that question current therapies that rather than slowing or reverting epithelial-to-
mesenchymal transition, tend to promote cellular senescence, and even stemness of
malignant cells (see, for example [142, 274, 323]). The view put forward here, if
correct, would suggest the need for alternative ways of treatment of cancer, and it
also would support novel strategies to prevent or delay the onset and progression of
epithelial cancer. Elucidating more realistic and experimentally grounded dynamic
network attractor models will ultimately help overcome fundamental obstacles in
the prevention and treatment of cancer (see for instance [102]). Rational treatment
alternatives following such a view have been already discussed elsewhere (see for
instance [217]). Nevertheless, we consider that prevention and modulation strategies
based on controllable environmental factors are promising directions to tackle the
contention of cancer and other age-related chronic degenerative disorders alike.
Hopefully the present work and discussion will motivate novel approaches to think
about cancer research, prevention, and treatment.

It is time now to tackle, as our second study case, the systems-level modeling of
chronic inflammation.

3.3 Chronic Inflammation

Motivation

In this section, we present a mathematical model intended to describe the differ-
entiation of CD4+ T cells in response to different microenvironmental conditions
that characterize healthy and disease states. Since CD4+ T cells orchestrate the
adaptive immune response in vertebrates, the analysis of this model yields important
insights in the establishment of aberrant immune responses that can eventually lead
to chronic inflammation. Specifically, we show how the modeling methodology
proposed in this book is applied to construct and characterize a minimal regulatory
network for the core transcription factors and signaling pathways involved in the
cell-fate attainment of CD4+ T cells. This example illustrates the regulatory role of
the feedback-structured interplay between the intrinsic or intracellular regulatory
core and the extrinsic microenvironment. Based on the exposed model, some
possible therapeutic interventions intended to carry out the modulation of the
immune response are proposed.
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Stability, Plasticity, and the Immune System

Organisms live in a changing environment. In some cases, organisms must ignore
these changes and maintain a stable phenotype, while in others they must react to
them. How to distinguish between these two situations is not trivial, as living beings
must take into account their internal state and the environmental cues that surround
them. This means that to survive organisms require phenotypes that are both stable
and plastic, two seemingly contradictory phenotypic traits. Which mechanisms
enable living beings to be robust is still an open question.

The immune system exemplifies how organisms require both stability and
plasticity. The immune system defends the organism against a wide range of
pathogens and immune challenges. To completely control a pathogen, the immune
system must maintain a response until the pathogen has been cleared. Failure to
mount an effective immune response leads to chronic infections. However, as both
the immune response and the infection progress, the circumstances change. Once
the immune challenge has been overcome, the immune system must regulate itself
to avoid autoimmune diseases. In this way, maintaining a “healthy” state requires
both a stable response to clear the pathogens and plasticity enough to adapt to the
changing immune challenges (see for instance [339]).

A Modeling Framework to Understand Immunity Dynamics

The key question is understanding how complex biochemical interactions maintain
the fine balance between plasticity and robustness of CD4+ T cells in homeostatic
conditions, and how perturbations affect this balance eventually leading to disease.
Answering this requires an integrative, systems-level modeling framework, that
encompasses the regulatory interplay between multiple types of molecules that
collectively shape phenotype decisions. Further, the model must take into account
that the immune response is dynamic and heavily influenced by the environment.
Also, it must be able to recover:

• differentiation patterns,
• plasticity, and:
• robustness

of the system. Finally, the model should be understandable and make predictions
that can be experimentally validated by both wet lab and in silico scientists.

As discussed in the previous chapter, the simplest modeling framework that
satisfies these requirements is the one based on discrete Boolean networks (see
for instance [240]). Discrete-time and discrete-space Boolean networks integrate
the available information of the molecular regulation to predict cellular-level phe-
nomena using a mathematical formalism. As discussed previously, these networks
consist of nodes -that represent genes, proteins, or other biological processes- and
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edges- that represent the regulatory interactions among the nodes. As Boolean
networks are dynamical systems, it is possible to construct logical functions that
describe the state of the nodes depending on the state of its regulators through time.
The value of the node represents whether the gene or protein is active or inactive in
the biological system. As far as the effect of the environment is concerned, it can be
included in these models as input nodes. These functions are then evaluated to obtain
the attractors of the network, which represent cell types or biological processes like
the cell cycle [240]. Furthermore, as illustrated with the previous example, Boolean
networks let us simulate multiple types of perturbations (genetic and non-genetic),
which makes them ideal for studying cell-fate attainment. These are the reasons why
Boolean networks have been extensively used to study how the cellular phenotypes
raise from the molecular regulation (see for instance [8, 39, 317, 320, 341]).

The dynamical behavior of CD4+ T cells, our current subject of study, is
conditioned by a changing environment. Moreover, the internal regulation of these
cells can be affected by [521]:

• Developmental noise;
• Mutations;
• Environmental fluctuations.

To understand the robustness of these cells it is necessary to study both their
stability and plasticity in a global context. Furthermore, it is important to develop
methods to quantify this robustness and to determine the key components of the
system. Boolean models let us study robustness and verify our model against many
types of available biological information. For example, as already discussed, it is
possible to study the effect of loss and gain of function mutations, and of changes in
the microenvironment [320] in the phenotypic convergence. These models can also
be used to study the effect of transient perturbations in the intrinsic components of
the network and the inputs of the system [303]. Boolean models can also be used
to:

1. Check if there is over-fitting.
2. Check if errors in the construction of the functions will affect the results.
3. Predict missing regulatory interactions (see for instance [28]).

Let us now briefly describe the regulatory role of CD4+ T cells.

CD4+ T Cells

CD4+ T cells are part of the adaptive immune response and help coordinate the
different mechanisms of the immune response. Each of the CD4+ T cell types
activates or inhibits different branches of the immune response (see Fig. 3.9).
Namely:

• Th1 cells are associated with the response against intracellular bacteria and
protozoa.
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Fig. 3.9 CD4+ T cell fate attainment. CD4+ T cell types are characterized by their unique cytokine
production profiles, transcription factors, and biological functions. The main cell types are Th0,
Th1, Th2, Th17, iTreg, and Tfh. Other cell types are IL-9 (Th9), IL-10+Foxp3-(Tr1), and TGF-
β+Foxp3-(Th3) producing cells (see [303])

• Th2 cells are associated with the response against extracellular parasites includ-
ing helminths [331].

• Th9 cells are associated with the response against parasites like Trichuris muris
and Nippostrongylus brasiliensis [175, 237, 290, 406].

• Th17 cells are associated with the response against extracellular bacteria and
fungi [467].

• Tfh cells are associated with the follicles and B cell maturation [62, 75, 103, 402,
469].

Furthermore, there exist multiple types of regulatory T cells, like Treg, Tr1,
and Th3, that produce IL-10 and TGFβ and induce immune tolerance and control
autoimmune diseases [165, 179, 268, 396, 485].

CD4+ T cells differentiate in response to the cytokines in their microenviron-
ment. Cytokines can be produced by the same cell (intrinsic) or by other cells of the
organism (extrinsic). Cytokines bind membrane receptors and activate signaling cas-
cades that ultimately trigger the translocation of transcription factors to the nucleus
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[357]. Complex signal integration occurs, partly due to the convergence of pathways
in common nodes. For example, SOCS proteins compete with transcription factors
(STATs) for the phosphorylation site in the receptor [158, 249, 506, 507]. Once the
signal has arrived to the nucleus the transcription factors can activate or inhibit other
transcription factors and cytokines, biasing the differentiation of the CD4+ T cell
into different subsets [137, 234, 480]. This genetic control is also influenced by other
factors like epigenetic marks and metabolism [137, 292]. The cytokines produced
by the cell are secreted to the microenvironment, where they will join the cytokines
produced by other cells of the immune system of the organism. The signals in
the microenvironment are fundamental for cell-fate attainment and maintenance of
these cells [56, 188, 280, 503].

CD4+ T cells have an heterogeneous transcriptional profile and can transdiffer-
entiate in response to changes in the microenvironment [55, 127, 334, 358]. There is
also considerable overlap among the expression profiles of different CD4+ T cells.
There are reports of hybrid Treg/Th17, Treg/Th1, and even Th1/Th2 hybrid cells
[248, 268, 500]. The regulatory cytokine IL-10 can be secreted by Th1, Th2, Th17,
iTreg cells, and a variety of other immune cells [210, 399].

Once differentiated, CD4+ T cells can dynamically change their expression
patterns as the immune challenge and the signals in the microenvironment change.
These plastic transitions between cell types have been associated with maintaining
the homeostasis of the organism and with some diseases. For example, the transition
from Treg to Th17 has been associated with anti-tumor response, but also with
multiple sclerosis and psoriasis [223]. There are restrictions to this plasticity; some
transitions are more common, like the Treg/Th17 transition, while others seem to be
uncommon, like the Th1/Th2 transition [55, 127, 223].

CD4+ T cells are closely integrated with the rest of the organism, and there
is a strong relationship with the metabolism and the microbiome. For example,
obesity-associated chronic inflammation (OACI) is characterized by a feedback
loop between the inflammatory response of the immune system and the altered
metabolism in obesity. In OACI there is an increase in inflammatory Th1 and Th17
cells, and a decrease in Tregs and IL-10 production. Hyperinsulinemia, which is
associated with obesity and metabolic syndrome, inhibits IL-10 and decreases the
number and stability of Treg cells [191]. At the same time, the species present in
the gut microbiota can affect the differentiation of CD4+ T cells. Understanding the
relationship between:

• the immune response,
• the metabolism,
• and the microbiome

is an open question.

Remark 3.9 (Immune Response and Robustness) Defining the phenotype of CD4+
T cells is not trivial, as we must take into account the heterogeneous transcriptional
profiles, the dynamical response to the environment, the plastic transitions between
cell types, and its relationship with the rest of the organism. This dynamical cellular
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behavior of CD4+ T cells is the result of a complex regulatory network of transcrip-
tion factors, signaling pathways, and extracellular cytokines. Understanding how
this regulatory network underlies cell-fate attainment and enables CD4+ T cells to
maintain their function in the face of a changing environment can help us understand
not only the immune response, but shed light on living beings achieve robustness.

Master Transcription Factors

A first step for modeling CD4+ T cell-fate attainment is to construct a regulatory net-
work from experimental data. For this, first focus on the transcriptional regulatory
core that is formed by the interactions between master transcription factors (MTF).
MTF are defined as the transcription factors whose expression is considered both
necessary and sufficient to induce the differentiation of the cell towards a certain
phenotype. To determine whether a minimal transcriptional regulatory core can
explain the cell-fate attainment of CD4+ T cells, we proposed a Boolean model that
consists of the regulatory interplay between the MTF for Th1 (T-bet), Th2 (GATA3),
Th17 (RORγ t), and Treg (Foxp3) [521]. The edges of the proposed network model
correspond to the regulatory interactions between MTF (see Fig. 3.10a).

To construct this network, we made certain simplifications and assumptions.
Specifically, although MTF collaborate with other transcription factors and are
modulated by external signals transmitted by signaling pathways, these are ignored
in this model. To do this, the cytokines and signaling pathways are modeled as input
nodes. Using a bottom-up approach, the biological information used in this simple
model has been obtained from multiple articles and curated databases to warrant its
reliability. However, it must be pointed out that there exist computational algorithms
to infer the network structure and the corresponding functions from transcriptomic
data [116]. Using this experimental information it is possible to reconstruct both:

• The topology (as shown in Fig. 3.10a).
• The functions of the Boolean regulatory network (see Fig. 3.10c).

Remark 3.10 (Network’s Topology Is Not Enough) The topology tells us which
nodes of the system interact, while the functions describe the dynamics of this
interactions. The topology alone is not sufficient to describe the dynamics of the
system. For example, the topology alone cannot tell us if there is synergy, or not,
between two regulators. This means that for most topologies there is more than one
set of functions that can describe the dynamics of the system.

Constructing the dynamical functions allows us to formally represent synergistic
interaction, distinguish between weak and strong inhibitions, and so on. Thus, this
model formulation serves as a formal way to review and integrate the available
experimental information, and helps us to determine which information is available
and which areas require more research.
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Fig. 3.10 Network of master transcription factors involved in CD4+ T cell-fate attainment. (a)
Known interactions between master transcription factors based on published experimental data.
(b) Graph of the CD4+ T cell regulatory network where nodes represent master transcription
factors. Activations among elements are represented with black arrows and inhibitions with red
blunt arrows. Dotted arrows represent inputs. (c) Boolean functions of the network. (d) Attractors
of the network, arranged in columns. Each node can be active (green), inactive (red) or either
(yellow).
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By reconstructing the network, we can also observe some interesting patterns.
For example, as shown in Fig. 3.10b, most MTF are self-regulated in a positive
feedback manner. At the same time, most MTF have mutual inhibitions between
them, creating negative feedback loops. Some of these patterns have been associated
with specific biological regulatory functions (see for instance [325]).

In the network, each node represents a MTF (see Fig. 3.10b). The dynamical
state of the node depends on the regulatory function (see Fig. 3.10c), and represents
whether the MTF is present (1) or absent (0). The state of a specific node in the next
time step t + 1 will depend in the states of its regulators during this time step t . We
can evaluate the functions to determine the global state of the system in the next time
step. The state of all nodes at a given time is the state of the system. We represent
this as a string of 0s and 1s (see Fig. 3.10d, where each position corresponds to a
given node).

One of the advantages of a Boolean network is that it lets us simulate an
initial condition and follow the behavior of the system through time (as shown in
Fig. 3.11). When, eventually, the system remains in a state, we say that we have
found an attractor. All the transient states visited in the path to the attractor are part
of the corresponding basin of attraction. As previously discussed, the attractors of
the system correspond to cell types (i.e., specific cellular phenotypes). If we do this
analysis for all possible states, we can determine all the attractors of the network
(see Fig. 3.10d). If we suppose that there are no external signals (this means, that
the input node is fixed to 0), the dynamic analysis of the network of MTF recovers
attractors corresponding to different types of CD4+ T cells: Th0, Th1, Th2, iTreg,
and Th17 and the hybrid states T-bet+Foxp3+ and GATA3+Foxp3+ (see Fig. 3.10b)
[126, 127, 521].

However, the network converges to a configuration that characterizes the Th17
cells only in the presence of constant Th17 polarizing signals. This implies that the
expression of RORγ t, the Th17 MTR marker, is not sufficient to sustain the Th17
phenotype once the environmental triggers have been removed, requiring additional
factors to generate a stable cell type. This result may be caused by the lack of feed-
forward loops in the transcriptional regulatory network.

Remark 3.11 (Why does Th17 Cells Dynamics Strongly Depends on Their Envi-
ronment?) Thanks to previous research we know that RORγ t has no positive
interactions with any of the transcription factors considered in the TRN and
therefore lacks a feedback loop mediated by transcription factors [89]. The absence
of a feedback loop regulating this master transcriptional factor could explain the
dependence of Th17 cells on their environment. Thus, this missing link must be
mediated by other signaling molecules that link the transcriptional response with
the microenvironment.

These results show that the interactions among MTF are not sufficient to recover
the configurations characteristic of CD4+ T cells types and highlight the importance
of signaling pathways and the microenvironment. Given these results, we can
continue to improve our model, creating a new version that takes into account the
factors we suspect are missing.
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Fig. 3.11 Synchronous vs.
asynchronous updating.
Effect of the (a) synchronous
or (b) asynchronous update in
the final attractor. The nodes
corresponding to the inputs of
the system have value 0 and
are not shown for clarity

Synchronous Versus Asynchronous Update of Boolean Networks

Before moving to a more realistic but also complicated model, let’s use the
simple model of interactions between MTF to illustrate the differences between
synchronous versus asynchronous updates of Boolean models.

Let’s suppose that there is a cell that expresses both T-bet and GATA-3 at the
same time in the absence of external signals. Using the Boolean model we can try
to determine the dynamical behavior of this cell (see Fig. 3.11a). We will consider
that, as there are no external signals, the value of the inputs of the system is 0. The
initial state t = 0 of this cell will be [1 1 0 0]. Evaluating all the Boolean functions,
we can determine the fate of this cell. At the next time step t = 1 the state of the
system will be [0 0 0 0] as both transcription factors will inhibit each other. If we
evaluate the state [0 0 0 0] using the same functions, we can determine that at t = 3
the state of the system is [0 0 0 0] again. The state [0 0 0 0] is a steady state, and
corresponds to the cell type Th0, where there are no MTF present.

However, an implicit assumption in this case is that we are evaluating all the
nodes at the same time. This update method is called “synchronous.” However, this
assumption is not always true. For example, a node could be produced faster than
the other affecting the other nodes. We can study this process by updating the nodes
separately. This update method is called “asynchronous.”
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Using the same example, we can see the effect of the asynchronous update in
the system (see Fig. 3.11b). Using the same initial state as in the previous example
[1 1 0 0] we can determine the effect of the update schema. If we update TBET first,
the node will be inhibited by the presence of GATA3 and reach the Th2 attractor
[0 1 0 0]. Then, no matter which node we update, the system will stay in the
[0 1 0 0] state; this means that [0 1 0 0] is a steady state of the system. On the
other hand, if we update first the GATA3 node, it will be inhibited and the system
will reach the Th1 attractor [1 0 0 0]. This contrasts with the synchronous update, as
the same state can have two (or more) successors states and reach different attractors
depending on the update order.

Remark 3.12 (Updating Affected by Different Time-Scales) Another case where
the update time can be affected is when processes have different time-scales. For
example, signaling can be faster than transcription [23]. In those cases, nodes can
be updated according with their dynamic hierarchy [342].

CD4+ T Cell Regulatory Network

As we have seen, including only the master transcription factors is not enough to
explain the differentiation of CD4+ T cells. We can do better. To improve our model,
we will now study a dynamical network that includes:

• Signaling pathways and their regulators.
• Cytokines that have been shown to be fundamental in CD4+ T cell type

attainment.

Given the complexity of the new network and the high number of involved
molecules in CD4+ T cell-fate attainment, we only show in Fig. 3.12 the IL-2
pathway. For the complete network see [303].

We can now proceed to add some new important information to the regulatory
network shaped around the involved master transcription factors.

Adding Signaling Pathways

When adding signaling pathways it is important to take into consideration post-
transcriptional modifications and how they affect signal transduction. In a Boolean
model we assume that a node is active (i.e., has the value of “1”) when it can
carry out its function. In the case of signaling pathways, this implies that not
only the components of the network are expressed, but also that they have the
necessary post-translational modifications (phosphorylation, complex formation,
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Fig. 3.12 Networks can include more than one level of regulation as exemplified by the IL-2
pathway. (a) The network includes transcription factors (rectangles), signaling pathways (ellipses),
and exogenous cytokines (diamonds). Activations between elements are represented with black
arrows, and inhibitions with blunt arrows. These regulatory interactions can be simplified using
mathematical methods (e.g., here we show that the linear pathway that is located at the center of
the graph that represents the IL-2 pathway can be compacted to give rise to a new node). (b) The
function of the IL2 node integrates multiple activators and inhibitors. (c) The truth table of the IL2
node was obtained from the function and represents available biological data

etc.) or spatial localization necessary to transduce the signal. For example, STAT
proteins are usually expressed in CD4+ T cells, but they only transduce the signal to
the nucleus if they are phosphorylated by a cytokine/receptor complex and dymerize
with another STAT protein. In this case, for the STAT node to be considered to be
active, a long chain of events is required. Including all the components and events
associated can be computationally complex. To solve this problem there are network
simplification methods that maintain the dynamics of the system while reducing the
number of nodes (see for instance [340, 468]).
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Inclusion of Cytokines

The cytokines in the cellular microenvironment are fundamental triggers for the
differentiation of these adaptive immune cells. Further, as immune cells differentiate
they also produce specific cytokines, altering the microenvironmental configuration.
The same cytokine can be produced both by the cell it affects, but also by other cells
in the tissue or cell culture. To distinguish between these two scenarios we separate
the cytokines in two different nodes:

• Intrinsic cytokines, produced by the cells as they differentiate.
• Extrinsic cytokines, present in the microenvironment.

Since exogenous cytokines are part of the microenvironment, they are modeled as
inputs of the system and cannot be regulated by the cell. Endogenous cytokines are
intrinsic to the system and their production can be regulated by the differentiating
cells, forming part of the feedback loops that determine the differentiation and
maintenance.

The Extended Model

The resulting network includes:

• Transcription factors.
• Signaling pathways.
• Intrinsic and extrinsic cytokines.

Each signaling pathway is compressed into a single node that is active if the signal
is transduced. The resulting network includes multiple levels of regulation:

1. The regulation in the nucleus by transcription factors.
2. The regulation by signal transduction pathways mediated by SOCS proteins.

Remark 3.13 (Models can Return a Large Number of Attractors that Correspond to
the Same Cell Type) In the CD4+ T cell regulatory network represented in Fig. 3.12,
there are some attractors that share the value of the intrinsic nodes but that differ in
the value of the extrinsic nodes. Each of these attractors is a different solution of
the system, but they correspond to the same cell type. At the same time, CD4+
T cells are highly heterogeneous. While each cell type has cellular markers and
cytokines associated with it, there can be variations in which markers are expressed.
Some of the attractors recovered by the model exhibit this behavior, where they
express different expression profiles that can be biologically assigned to the same
cell type. In this case, we used a criteria similar to biologist, where a cell is classified
according to a master transcription factor and characteristic cytokines [521].
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Fig. 3.13 Th17/Treg network. Extrinsic cytokines, which are present in the environment, cannot
be regulated by the cell. Intrinsic cytokines, produced by the cells as they differentiate, constraint
transcriptional regulation. (a) shows the regulatory network, taking into account extrinsic cytokines
as inputs. (b) Shows the attractors of the Th17/Treg network (i.e., Th0, Th3, Th17, and Treg)

Multiplicity of Stable Configurations

The dynamical analysis of the network can yield a great number of stable configura-
tions, as shown in Fig. 3.13b. However, most of these configurations are equivalent
and can be classified into different subtypes to facilitate analysis. For example, the
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inputs of the network represent the cytokine microenvironment and are not used as
markers to determine the cell phenotype. If we ignore the inputs, we can arrange
the attractors according to the value of the molecular markers (transcription factors,
intrinsic cytokines, etc.). Furthermore, some of these attractors are equivalent, as
they can be classified as the same cell type.

To label the attractors of the network we can use biological criteria:

• Resting CD4+ T cells (labeled Th0) were defined as expressing no transcription
factors or regulatory cytokines.

• Th17 was defined based on RORγ t and STAT3 signaling mediated by IL-6 or
IL-21, all of which require the presence of TGFβ.

• iTreg expressed Foxp3 and TGFβ, IL-10, or both, all of which require the
presence of IL-2e.

• Tr1 was characterized by the presence of IL-10 .
• Th3 was characterized by the presence of TGFβ.
• Cells that express both cytokines (i.e., IL-10 and TGFβ) are labeled as IL-10+

TGFβ +.

The new model of the network recovers the attractors that correspond to: Th0,
Th17, iTreg, and Th3 cells [521]. These results show that a network containing the
transcription factors, signaling pathways, and intrinsic and extrinsic cytokines can
recover some of the expression patterns observed in actual CD4+ T cells.

Once we know that the model recovers some of the biological behaviors we can
begin to do more complicated tests.

Analysis of the CD4+ T Cell Regulatory Network

In order to explore the validity of the resulting model, a procedure of analysis that
tackles systems-level consequences of mutations and environmental disturbances,
as well as phenotypic plasticity, is carried out.

→ Mutants

Boolean models allow us to simulate biological experiments in silico. These
experiments can be used to verify the model by comparing its results with available
experimental data. One of those experiments is simulating knockout or over-
expression mutants. Knockout mutants are modeled by setting the value of the target
node to 0, while over-expression mutants can be represented by setting the value of
the target node to 1. One advantage of in silico models is that it is relatively easy
to simulate the mutants and give predictions about experiments that have not been
made in vivo.

In the case of our regulatory network Fig. 3.13 it is possible to obtain all the
single-node mutants (Fig. 3.14a) and compare them with available information. Not
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all nodes are involved in all cell types, so mutating a node will only affect some
of the possible attractors. We can then compare the patterns of loss and gain of
cell types with the available experimental data. In this way, studying the mutants of
the network lets us verify most of the interactions. Furthermore, not all the mutants
have been studied in vivo. For example, some mutants like GATA3KO are lethal and
require complicated conditional murine models. For some other cases, the effect
of a mutation over a certain cell type has not been studied, for example, little is
known about the recently described cell types like Th2 and Tr1. In this way, the
mathematical model allows us to make predictions of various mutants where no
experimental data are available.

To further verify the construction of the functions and the structural properties
of the model, we can perform a robustness analysis altering the updating rules. For
each topology there are many possible sets of functions. A possible problem in the
construction of a network is over-fitting, where we chose a set of functions that
retrieves the attractors we are searching for, but a small change in the functions
can drastically search the resulting attractors invalidating the model. To verify the
construction of the network we can alter the functions and determine how much
these changes affect the results. As we have seen, we can express the function of
a node as a rule or as a truth table. To study the robustness of the network, we
alter some of its functions by randomly changing some of the values of their truth
table (Fig. 3.14c). If the system recovers the same attractors it means it is stable
to that perturbation, but if it loses or gains attractors, it means it is sensible to
that perturbation. Given the number of possible perturbations of the truth table,
it is necessary to do a random sampling of possible perturbations. This analysis
allows us to test the robustness of structural properties of the networks to noise,
mis-measurements and incorrect interpretation of the data. Another option is using
model checking to determine all the possible sets of functions that recover the same
attractors with the same topology (as discussed in [31]).

→ Role of the Microenvironment

When a CD4+ T cell is activated it will differentiate into different subsets depending
on the cytokines in its microenvironment. Cytokines can be produced by the same
cell (endogenous or intrinsic) or by other cells of the immune system or the organism
(exogenous or extrinsic). In the model we included as inputs extrinsic cytokines.
This allows us to study the relationship between cell types and exogenous cytokines.

We can study the effect of the microenvironment in CD4+ T cell-fate attainment
by setting the values of the inputs according to the environments that have
been defined experimentally (Fig. 3.14b). For example, if we want to simulate a
regulatory pro-Treg environment, we can set the value of IL2e and TGFBe to 1,
and set the value of the other inputs as 0. On the other hand, if we want to study
an inflammatory environment like pro-Th17, we can set the value of IL21e and
TGFBe to 1, and set the value of the other inputs as 0. One advantage of this
methodology is that it also helps us simplify the computational problem. For N
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Fig. 3.14 In silico experiments for the Th17/Treg network. (a) Knockout in silico experiments
for the Th17/Treg network. We simulated loss of function or null mutations (KO) by setting the
function of the target node to 0 and determine the resulting attractors. Mutating some nodes like
TGFB can cause the loss of multiple cell types, while some cell types are very robust to mutations
like Th0. The ticks represent attractors that were recovered and crosses attractors that were lost.
(b) Attractors obtained in the different microenvironments. (c) Truth table of the IL2 node without
and with random perturbations

inputs there are 2N possible combinations of inputs, however, most of them are not
biologically relevant. By focusing on the biological relevant microenvironments we
obtain relevant information that can be compared with experimental data and focus
our research in relevant biological situations.

Here, we focus on only the most relevant microenvironments: pro-Th0, pro-
Th17, and pro-Treg (Fig. 3.14b). Then, we determine which cell types can be
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recovered in each environment, and show that Treg cells require IL2e, and Th17
cells require TGFBe, as can be seen by the resulting attractors (Fig. 3.14b). Th0 and
Th3 can be maintained in the absence of extrinsic cytokines as can be seen in the
pro-Th0 environment. In a pro-Th17 environment we can only recover Th17 cells,
but in a pro-Treg environment we can recover both Treg and Th17 cells (Fig. 3.14b).
The recovered behaviors agree with the experimental data and also with previous
models [2, 521]. Furthermore, the coexistence of Treg and Th17 cells in a pro-Treg
environment is associated with chronic association, which we will discuss later.

Until now we have supposed that the signal in the microenvironment is constant.
However, this is not necessarily true. The signals in the environment, signal
transduction, and expression of transcription factors are subject to temporal changes.
For example, an exogenous cytokine could be produced only for a certain period by
cells of the immune system, creating a peak in its expression. We can study this
kind of phenomena by transiently changing the value of the nodes (Fig. 3.15). For
example, in this model a temporal activation of the TGFBe node is enough to change
the cell from a Th0 to a Th3 phenotype. However, transient perturbations of the IL2e
or the IL21e nodes are not enough to transition towards Th17 or Treg, as we require
constant signaling of these nodes to maintain the phenotype.

→ Plasticity

CD4+ T cells also exhibit phenotypic plasticity and memory. This means that,
once differentiated, their new expression pattern can often be maintained even after
the removal of the (microenvironmental) triggers of differentiation. This plastic
response has been associated to the capacity to robustly adapt to changes in the
immune challenges. There are various ways to study this plasticity. In this section
we will focus on the transitions between attractors caused by transient perturbations
in the values of the nodes.

The cytokines in the microenvironment, the activation of signaling pathways, and
the expression of transcription factors are not always constant; they are subjected to
noise and small perturbations. We can determine the effect of these perturbations
in the cell-fate attainment by transiently perturbing the value of the attractors of
the system. These transient perturbations in the values of the nodes are equivalent
to developmental noise, temporal changes in the microenvironment, risk factors,
or clinical interventions. For example, if we have a regulatory Treg attractor,
we can transiently activate the value of the IL21e node for a time step, and
determine the effect of the perturbation (see Fig. 3.15b). In this case the system
transitions towards a Th17 attractor, showing that transient expression of IL-21 in
the microenvironment can shift the system towards an inflammatory response, even
in a pro-Treg environment. Whether this response is detrimental or not depends on
the circumstances. In case of an infection a robust immune response is necessary
to control the pathogen, but if the patient is healthy it can lead to a chronic
inflammation.
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Fig. 3.15 Plastic transitions in response to transient perturbation in the value of the nodes. (a) The
transient perturbation of the TGFBe node causes a transition from a Th0 to a Th3 attractor. As
TGFBe is an input we set its value to 1 during one time step and then return the node to its original
value of 0. (b) The transient perturbation of the IL21 node causes a transition from a Treg to a
Th17 attractor. We set the value of IL21 value to 1 during one time step and then return the node
to its original function. (c) Transitions caused between cell types in response to the transient one
step of IL21

We can do this experiment for the same node for each attractor to study the
secondary effects of the perturbation (see Fig. 3.15c). If the cell returns to the same
attractor we say it is stable to the perturbation, but if it transitions to a new attractor
we say it is plastic to that perturbation. Some of the perturbations do not cause
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transitions, but let the system return to the original cell type. In this way, we can
achieve a measure of the stability of a given cell type. This shows that the regulatory
network generates restrictions in terms of cell types but also in terms of the patterns
of cell-fate transitions. If this analysis is repeated for every node of every attractor,
the result is a cell-fate map where the nodes represent CD4+ T cell types recovered
by the network and the connections represent the possible transitions between pairs
of differentiated cell types. Some of these transitions are more common than others,
and other transitions are only possible in certain microenvironments.

Remark 3.14 (The Plasticity of CD4+ T Cells and Its Microenvironment) The
microenvironment also affects the plasticity of CD4+ T cells, as the inputs of the
system limit the possible transitions between cell types (Fig. 3.15b). In general, if
a microenvironment favors a certain cell type, the cell type will be more stable (as
the system will return to it after a transient response to perturbations) and there will
also be more transitions towards that cell type. However, other attractors are still
reachable, and there exist transitions from and towards them. These “cell fate maps”
highlight the complexity of the immune response, where there is a high diversity of
cell types coexisting together.

Until now we have focused on Boolean models to study CD4+ T cells. However,
the differentiation and plasticity of these cells is also affected by the concentration of
the cytokines in the environment. As we have seen in previous chapters there exist
multiple approaches that use ordinary differential equations to study biomedical
systems. As we are focused on how the structure of the network affects the
phenotype of these cells, we will use the approach used in [19, 112] to convert
Boolean models to continuous functions.

Continuous Model

In Boolean models both the value of the nodes and the time steps are discrete.
However, in a ordinary differential equations approach, they are continuous. This
means we can obtain intermediate concentrations of transcription factors and
cytokines through time. The approach we are using recovers both regulatory
(Fig. 3.16a) and inflammatory (Fig. 3.16b) cell types, where the final value of the
nodes tends to 0 or 1. However, we can also observe transient peaks of expression
and cells that achieve intermediate phenotypes, which have been experimentally
observed [127, 521] (Fig. 3.16c).

Remark 3.15 (Assessing How Different Concentrations of Cytokines Affect Cell-
Fate Attainment) Continuous approaches can be used to determine how different
concentrations of two (or more cytokines) affect cell-fate attainment. We can
estimate the concentration of cytokines necessary for a cell to differentiate into a
regulatory or inflammatory cell type and how the presence of other signals in the
environment will affect this. For example, while high concentrations of regulatory



184 3 Case Studies

Fig. 3.16 Continuous approximations allow to study the effect of the concentration or expression
level of different nodes in cell fate attainment. Depending on the value of the regulatory and
inflammatory exogenous cytokines in the environment, the model can converge to a (a) regulatory,
(b) inflammatory, or (c) intermediate cell fate. (d) The relationship between different exogenous
cytokines—that serve as inputs to the system—can be visualized in a bifurcation diagram

cytokines will induce regulatory cell types and high concentrations of inflammatory
signals will induce inflammatory cell types, high concentrations of both regulatory
and inflammatory cytokines can induce cells with intermediate phenotypes that have
been associated with chronic inflammation (Fig. 3.16c, d).
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Integrating Other Systems

As we have discussed, the immune system strongly affects, and is affected by the
rest of the organism. In particular, there is a close communication between the
metabolism and the immune system, which underlies the feedback loop between
obesity and chronic inflammation. However, a limitation for creating Boolean
models that join metabolism and inflammation is that we lack detailed molecular
information of how both systems communicate. Now, thanks to the constant
advances by experimental biologists, we begin to understand the pathways that
mediate the information exchange between both systems.

To finish this section, and in order to illustrate the versatility of the proposed
model, we will show in what follows a small example of how hyperinsulinemia
affects CD4+ T cell-fate attainment, favoring inflammatory responses.

→ Hyperinsulinemia

Hyperinsulinemia is characterized by an increase in the levels of insulin and is
associated with metabolic syndrome. High levels of insulin inhibit the regulatory
cytokine IL-10 through the Akt/mTOR pathway [191]. Using this information, we
can expand the CD4+ T cell model. First, we determine the signaling pathways, then
we find the nodes in common and integrate both networks.

In this case, hyperinsulinemia acts as an input of the network, as it is an exoge-
nous factor that regulates the network. As we have seen, CD4+ T cells are plastic and
dynamically change from one type to others, depending on the microenvironment
and transient perturbations or initial conditions. To explore this, we can obtain both
the attractors and the cell-fate map in different microenvironments with or without
hyperinsulinemia.

The model provides an explanation to some paradoxical behaviors observed
in CD4+ T regulatory cell populations during obesity-associated chronic inflam-
mation. TGFβ can promote both inflammatory Th17 cells and regulatory Tregs,
and transitions between both subsets have been observed. TGFβ is necessary for
the differentiation of both subsets, and transient signaling via the STAT3 pathway
may be enough to shift some cells towards Th17, as the model shows. In obesity,
Tregs expression profiles are similar to inflammatory T cells and transfer and
depletion of adipose Treg cells have been reported to both improve or worsen insulin
sensitivity, depending on the model and the population studied [283, 310, 354].
Such apparently paradoxical behaviors can be explained by the relationship between
TGFβ and IL-10 in the context of the dynamic regulatory network model used
here. Under hyperinsulinemia, Th17 cells become more stable while IL10+ cells
are lost. The remaining regulatory cells express TGFβ that is involved in Th17
differentiation, while insulin alters iTregs stability. In this way, the model predicts
that hyperinsulinemic inflammatory environments’ regulatory T cells are less stable.
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Remark 3.16 (Exploring Therapeutic Interventions) The model also allows us to
propose therapeutic interventions. For example, if we have a patient with chronic
inflammation we may be interested in which signals can cause a transition from an
inflammatory to a regulatory effect. The model shows that the transient activation
of IL-10 can make inflammatory cells like Th17 transition towards regulatory
IL10+TGFB+ cells as can be seen in Fig. 3.17. Furthermore, the model can predict
secondary effects of this intervention by simulating the same perturbation in other
cell types. We focus on transitory perturbations as we want to return the system
towards a healthy system where it can react to the signals of the environment,
including inflammatory signals caused by pathogens. If there is a permanent
increase of the concentration of IL-10 in the microenvironment this may cause
immunosuppression in the patient. The model also allows us to determine risk
factors and their effects. Peaks in the concentration of insulin as those observed
in hyperinsulinemia cause transitions towards inflammatory cell types. In this way,
metabolic dysregulation can affect the equilibrium of the immune system.

As can be seen, the proposed modeling approach opens the door to the construc-
tion of mechanistic explanations of complex disease circumstances.

Fig. 3.17 Effect of
hyperinsulinemia in CD4+ T
cell fate plasticity. Transient
increases in the level of IL-10
or insulin can cause
phenotypic transitions
towards regulatory or
inflammatory cell types,
respectively. The width of the
arrow represents the
frequency of the transition
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Final Comments and Perspectives

For healthy conditions to be maintained, the immune system has to dynamically
respond and cooperate with the microbiome and communicate with other parts of
the organism that create complex environments. These environments are constantly
changing. Also, the immune system is subjected to developmental noise. To adapt,
the immune system has to be (depending on the circumstances) both:

• Plastic.
• Stable.

Grounded on experimental data, mathematical models help us understand how
the molecular mechanisms that underlie cell-fate attainment achieve this complex
dynamical behavior.

Taking chronic inflammation as a modeling subject, in this section we have seen
how Boolean regulatory networks serve us to:

1. Review the available information.
2. Determine which areas need more research.
3. Find common patterns in the regulatory network.

Discrete Boolean networks also let us validate the network against biological data
and construction errors. Once the network has been constructed and validated, it is
possible to study its dynamics to recover:

• The differentiation patterns.
• The plasticity characteristics.
• The effect of the microenvironment.

Furthermore, models let us look at systemic behaviors, not focusing on only one
molecule, cell type, or transition, but integrating all possible behaviors in a formal
and unified system.

This bottom-up integrative approach allows us not only to understand the system
we are studying, but also its relationship with the rest of the organism. For example,
we can integrate the effect of hyperinsulinemia in CD4+ T cells, explaining complex
patters observed in obesity-associated chronic inflammation. In this way, system
biology gives us a useful toolbox to unravel the complex relationships between
metabolism and the immune system.

We hope that the methodology presented here is useful for both experimental and
theoretical scientist to simulate, validate, and analyze complex biological systems.
In what follows, we shall tackle the study of complex phenomena that will require
a quantitative modeling approach: Atopic dermatitis.
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3.4 Atopic Dermatitis

Atopic dermatitis is a complex disease. First, because several combinations of
genetic and environmental risk factors can trigger the onset of this disease, and
second, because there are many different stages of the disease, with increasing
severity. Efficient preventive treatments should thus aim to halt the progression
of the disease from a mild and asymptomatic phenotype to severe forms that are
difficult and costly to treat.

Further, such intervention strategies should ideally be effective for the whole
spectrum of disease phenotypes. Until recently, understanding the mechanisms
underlying the onset, progression, and prevention of this disease had been difficult
because of the complex interconnections that exists between the many risk factors
and the associated disease phenotypes. In this section, we show some recent
mathematical models of atopic dermatitis that have shed light on the mechanisms
for onset, progression, and prevention of this disease, providing plausible answers
to clinically relevant questions, such as the design of optimal and personalized
treatment regimens.

We follow here a quantitative modeling approach, and the proposed mathematical
models consists of systems of ODEs (introduced in Sect. 2.6), some of which
operate at different time-scales to describe the complex interplay that exists
between fast biochemical reactions and slower tissue-level processes, as described
in Sect. 2.9.

Let’s proceed with our example.

Motivation

Note: The following first two paragraphs were taken from
[120]:

URL: http://hdl.handle.net/10044/1/47969
(published under a Creative Commons Attribution
Non-Commercial No Derivatives License
https://creativecommons.org/licenses/by-nc-nd/3.0/).

Atopic dermatitis is a skin disease characterized by a defective epidermal
permeability barrier function that appears as dry and scaly skin, and by aberrant
immune responses to environmental insults, manifested as excessive inflammation
and allergy [156]. This disease affects approximately:

• 15% of infants worldwide;
• 20% in the United Kingdom [474];
• 15% in Germany [128];
• 10% in Nigeria [349].

http://hdl.handle.net/10044/1/47969
https://creativecommons.org/licenses/by-nc-nd/3.0/
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And its incidence has been rapidly increasing (see for instance [128, 128, 474]).
Moreover, patients with a clinical history of atopic dermatitis have a strong
predisposition for developing other atopic diseases, such as asthma and allergic
rhinitis [95, 156, 517].

In terms of its economic impact, the average costs of treating atopic dermatitis
per patient per year has been estimated to represent up to 4480 USD in the United
States [136] and 1425 EUR per patient per year in Germany [128]. These costs are
increasing with the augmenting prevalence of atopic dermatitis [297].

Despite its clear socioeconomic relevance, the mechanisms leading to atopic
dermatitis have not been fully elucidated, limiting the treatment options to relieve
symptoms [156, 387, 436]. For instance:

• emollients enhance the permeability barrier function [99];
• steroids decrease the inflammation [351];
• antibiotics reduce the infection that results from a defective epithelial function

[270].

However, long-term treatment does not guarantee remission of the disease [441],
and can even lead to aggravation of the atopic dermatitis condition by further
affecting the epidermal structure [107, 351, 407].

Finding effective treatment options for atopic dermatitis has been challenging
because of following four features of this disease:

1. There are several different predisposing genetic [35, 143, 208, 250, 356, 389, 444]
and environmental [35, 95, 99, 134, 236, 492] risk factors that have been linked
to the development of atopic dermatitis.

2. The risk for developing atopic dermatitis as a consequence of predisposing
factors is often dose-dependent. Only a severe genetic deficiency [66], or high
amounts of environmental triggers [338, 403] can trigger the onset of the disease.

3. There is synergism between risk factors, because the presence of two or more
risk factors dramatically increases the susceptibility to develop atopic dermatitis,
in a non-additive way [337, 403].

4. The pathogenesis of atopic dermatitis comprises several different phases, charac-
terized by distinctive epidermal phenotypes of increasing severities [270, 436].

Together, these observations suggest that effective treatment strategies must account
for the risk-factor and stage-dependent, pathogenic process of the disease, which
might be specific for different patient cohorts.

These clinical challenges all arise from the fact that these predisposing risk
factors are strongly interlinked, forming a complex network of cellular and bio-
chemical interactions prone to perturbations by multiple risk factors (recall Fig. 1.1).
Different risk factor combinations act, interact, and propagate across the network in
unanticipated ways, resulting in:

• The existence of multiple possible combinations and strengths of perturbations
that can converge to a limited number of disease phenotypes of atopic dermatitis
(fragmentation of the phenotypic space, illustrated in Fig. 2.22).
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• The propagation of disturbances across the regulatory network, which are respon-
sible for the gradual aggravation of the atopic dermatitis phenotype (Fig. 1.4).

• The non-additive interactions between risk factors due to the intricate topology
of the feedback control structure underlying phenotypic determination.

• The nonlinear effects of risk factor severities on the phenotypic transitions
(Fig. 2.21).

Therefore, mapping risk factor combinations to the healthy and pathological
disease phenotypes requires the systems-level, regulatory network approach that has
been discussed throughout this volume. Further, understanding the mechanisms of
disease progression, from a mild asymptomatic to a severe and treatment-resistant
phenotype, is fundamental to devise preventive treatment strategies, and requires an
explicitly dynamical systems approach. Indeed, one of the fundamental motivations
of proposing and analyzing dynamical models of disease is to prevent or decrease
the incidence of late-stage diseases. The reason for this is that treating late stages
of chronic diseases requires a higher treatment effort with an associated increased
cost, and with increased negative side effects. For example, while the early and
asymptomatic stages of atopic dermatitis can be treated with the application of
emollient creams that have a low economic cost and no known negative side
effects [436], advanced stages of atopic dermatitis require continuous applications
of corticosteroids, which are costly and have associated negative side effects (tissue
atrophy) [387, 390, 418]. Consequently, it is also important to find the minimal
treatment strengths that lead to the remission of advanced disease stages. Systems
biology approaches can be used for such an optimization of treatment regimens, as
has been shown for:

• prostate cancer [198–200, 407];
• pneumococcal infection [121];
• and indeed also for atopic dermatitis [88, 438].

Recently, we and our collaborators proposed a series of mathematical models
of atopic dermatitis that give answer to these clinical problems from a systems
biology perspective. These models were constructed and analyzed using some of
the methods and techniques presented throughout this volume (Sects. 2.6 and 2.9),
and thus illustrate how different modeling methods can be applied to answer specific
clinical questions.

This section is organized as follows:

Primo: We give a brief overview of how the different genetic and environmental
risk factors are connected among them by a complex reaction network that under
healthy conditions controls epidermal homeostasis and that is disrupted in atopic
dermatitis.

Secondo: We introduce three mathematical models with increasing complexity,
which cover growing regions of these reaction networks, and explain the insights
gained from these models:
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• First, we will describe two models representing the innate and the adaptive
immune responses that govern the onset and progression of atopic dermatitis,
which are abruptly activated by the presence of environmental stressors and
other immune components, respectively.

• Then, we will couple the dynamical model of innate immune responses to
slower tissue-level dynamics, and show how different risk factors mediate the
turning-on-and-off dynamics of these innate immune responses.

Trezo: We explain the clinically relevant questions addressed with these mod-
els.

• How tissue-damaging, chronic inflammation is established as a consequence
of frequent or long-lasting activations of innate immune responses, and
underlie the progression of atopic dermatitis.

• How the last model, which describes the progression from a mild and asymp-
tomatic to a severe atopic dermatitis phenotype, has helped to understand how
the worsening of this disease can be prevented.

• Finally, we will briefly discuss how the proposed model can be used as a
quantitative framework to find optimal treatment options to revert severe
symptoms of atopic dermatitis with the minimal amount and duration of
corticosteroids and emollients. For this, we will refer to recent publications
that have tackled this issue, specifically: [88, 438].

The Biology of Atopic Dermatitis: Regulatory Network
Controlling the Complex Interplay Between Hallmarks and Risk
Factors

Note: This subsection was taken from [120]:
URL: http://hdl.handle.net/10044/1/47969
(published under a Creative Commons Attribution
Non-Commercial No Derivatives License
https://creativecommons.org/licenses/by-nc-nd/3.0/).

The phenotype of atopic dermatitis is characterized by three hallmarks:

1. A dysfunctional skin barrier [133].
2. Propensity for infection by bacteria such as Staphylococcus aureus [251, 309].

and:
3. Frequent [270] and long-lasting [255] inflammation that is sometimes accompa-

nied by allergic reactions to ubiquitous environmental insults [176].

Many genetic and environmental risk factors have been associated with an increased
propensity to develop atopic dermatitis, all of which affect these three hallmarks of
this disease, either directly or indirectly.

http://hdl.handle.net/10044/1/47969
https://creativecommons.org/licenses/by-nc-nd/3.0/
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Skin barrier function is affected by genetic or environmental risk factors that
decrease the expression of structural components of the skin barrier, most notably
the protein filaggrin [143, 306, 356] that is responsible for the cross linking
between the extracellular lipid envelope and the intercellular cytoskeleton of the
keratinocytes that form the skin barrier [397], and has been identified as a key
determinant of the permeability barrier function of the epidermis [143]. Genetic risk
factors that decrease the expression of filaggrin and other components of the skin
barrier are polymorphisms [66, 361] and mutations [143]. Environmental factors
can also impair the expression of barrier function components, for example, by
the prolonged use of hard water [98], which interferes with the calcium gradient
that regulates the expression of terminal differentiation markers of keratinocytes
[130, 131, 400, 456]. Also chronic inflammation, which is actually a characteristic
feature of advanced atopic dermatitis, is associated to a decrease in the expression
of barrier function components [52, 117, 130, 209, 350]. Immune responses are
affected by risk factors that alter the concentrations or activities of different
components of their mediating signaling cascades [12, 35, 309, 345, 444]. These
changes can result from polymorphisms [309, 444] or environmental fluctuations,
such as changes in the microbiota [35]. An important mediator of both immune
responses [65, 68, 423] and barrier function [76, 184, 423] are the networks of
kallikrein proteases, the activity of which can be altered by further environmental
and genetic risk factors, such as the frequent use of soaps and detergents [98] that
raise the pH, increasing the catalytic activity of these enzymes [60], the genetically
determined decrease in the expression of the protease inhibitor LEKTI [208, 389],
or the increased expression and activity of the protease [33, 250].

Not only the risk factors, but also the resulting symptoms of atopic dermatitis
are associated to the hallmarks of this disease: dysfunctional skin barrier leads
to an increased permeability to environmental factors, such as pathogens, thereby
increasing the susceptibility for infection [113, 133]. In turn, increased pathogen
load in the viable epidermis weakens the skin barrier, since pathogens interfere with
the barrier repair mechanisms [185, 266]. Moreover, augmented pathogen loads
in the viable epidermis triggers further inflammatory flares of atopic dermatitis
[113]. Excessive activation of innate immune responses can lead to the activation
of Th2-mediated adaptive immune responses [65, 108, 257], which contribute to
the establishment of a pro-inflammatory microenvironment that further impairs
barrier function by interfering with gene expression programs that control the barrier
remodeling process [350, 448], and underlies the allergic reactions that characterize
severe forms of atopic dermatitis [160, 168, 347].

This internal regulatory logic of interconnected reaction network elements
(Fig. 3.18) is responsible for:

1. Phenotypic convergence.
2. Disease aggravation.
3. Synergism between risk factors.
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Fig. 3.18 Interplay between hallmarks (red) and risk factors (blue) of atopic dermatitis, intercon-
nected by the regulatory interplay between pathogens, innate and adaptive immune responses, and
skin barrier

In what follows we will present increasingly complex mathematical models that
represent this regulatory interplay between:

• pathogens,
• innate and adaptive immune responses,
• and skin barrier.

Modeling Immune Responses as Bistable Switches

One of the hallmarks of atopic dermatitis is the aberrant immune responses, which
are responsible for the typical flares of atopic dermatitis (innate immune responses)
and of the establishment of chronic inflammation and allergic reactions (adaptive
immune responses). These were mathematically represented and analyzed with the
ordinary differential equations models of Tanaka et al. [439] and Hoefer et al. [201],
which will be explained in the following lines.

→ Modeling Innate Immune Responses with a Reversible Switch

In atopic dermatitis, a key player mediating the innate immune responses to
pathogens and other environmental stressors that have infiltrated into the viable lay-
ers of the epidermis (Fig. 3.19a) is the Protease-Activated receptor (PAR2) pathway.
The activity of this signaling cascade is mediated by a complex interplay between
proteases called kallikreins (KLK), PAR2, and the kallikrein inhibitor LEKTI
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Fig. 3.19 Modeling innate
immune responses in Atopic
Dermatitis. (a) Innate
immune responses in atopic
dermatitis (b) are mediated
by a complex network of
Protein-Protein-Interactions
controlling the activity of
PAR2 in response to pathogen
challenges. (c) The abrupt
onset and cease of flares of
atopic dermatitis in response
to pathogen stressors is
described by a bistable
dose–response behavior,
which is affected by genetic
and environmental risk
factors for atopic dermatitis.
Figure adapted from [439]
with permission from the
Author; DOI of the original
manuscript: https://doi.org/
10.1371/journal.pone.
0019895 (published under the
Creative Commons License
https://creativecommons.org/
licenses/by/4.0/)

(Fig. 3.19b). Two major risk factors for atopic dermatitis affect the functioning of
this reaction network:

1. Changes in pH, which affect the catalytic activity of the KLKs and the affinity of
the LEKTI to its inhibitory target KLK.
and:

2. Genetically determined decreases in the expression levels of LEKTI.

To explore the impact of these risk factors on the PAR2-mediated immune responses
to pathogens, Tanaka et al. proposed in 2011 an ordinary differential equations-
based mechanistic and kinetic mathematical model of this complex Protein-Protein-
Interaction network [439].

The mathematical model is a set of six ordinary differential equations repre-
senting the experimentally described dynamic interplays between inactive (KLK)

https://doi.org/10.1371/journal.pone.0019895
https://doi.org/10.1371/journal.pone.0019895
https://doi.org/10.1371/journal.pone.0019895
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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and active (KLK∗) protease, inactive (PAR2) and active (PAR2∗) protease receptor,
unbound protease inhibitor (LEKTI), and the inhibitory complex (KLK∗LEKTI):

d[KLK∗LEKTI]
dt

= ka[KLK∗][LEKTI] − kd[KLK∗LEKTI] − δLK[KLK∗LEKTI],
d[LEKTI]

dt
= −ka[KLK∗][LEKTI] + kd[KLK∗LEKTI] + tL(mL + fL[PAR2∗])

−δL[LEKTI],
d[KLK∗]

dt
= −ka[KLK∗][LEKTI] + kd[KLK∗LEKTI] + k [KLK∗][KLK]

[KLK∗]+CK

−δK∗ [KLK∗],
d[KLK]

dt
= −k [KLK∗][KLK]

[KLK∗]+CK
− δK[KLK] + fKSS + fK[PAR2∗],

d[PAR2]
dt

= −kP
[KLK∗][PAR2]
[KLK∗]+CP

− δP[PAR2] + mP,

d[PAR2∗]
dt

= kP
[KLK∗][PAR2]
[KLK∗]+CP

− δP∗ [PAR2∗].
(3.1)

Using the Law of Mass Action (Sect. 2.6), this system of ODEs formally
represents the following reactions:

• The reversible formation (ka[KLK∗][LEKTI]) (i.e., with a non-zero dissociation
term kd[KLK∗LEKTI]) of the inhibitory complex ([KLK∗LEKTI]).

• The degradation rates of all the molecules involved (dx[X]).
• The proteolytic activation of KLK

(
k [KLK∗][KLK]

[KLK∗]+CK

)
, and of PAR2

(
kP

[KLK∗][PAR2]
[KLK∗]+CP

)
.

and:
• The de novo expression of LEKTI (tL(mL + fL[PAR2∗])), KLK (fKSS +

fK[PAR2∗]) and PAR2 (+mP).

Two feedback mechanisms regulate the activity of the network:

• The auto-catalysis of KLK (first positive feedback).
and:

• The active PAR2-mediated production of KLK5.

As far as the interaction with the environment is concerned:

Input to the system: Given by the infiltrated pathogens (S) that induce the
production of inactive KLK5.

Output of the network: Given by the active PAR2 ([PAR2∗]), which drives the
release of antimicrobial peptides and pro-inflammatory cytokines that character-
ize the flares of atopic dermatitis.
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The mathematical model also considers the environmental and genetic risk
factors known to affect the functioning of this network:

• High pH, which dramatically increases the catalytic activity of active KLK [60]
and its affinity for LEKTI [118]. It is represented in the model by an increase
in the catalytic rates of KLK∗ (parameters k and kP in Eq. (3.1)) and the affinity
between active KLK and LEKTI (parameters ka and kd in Eq. (3.1)).

• Decreased expression of the KLK inhibitor LEKTI [76, 152, 389], is represented
in the model by a lower LEKTI production rate (parameter tL in Eq. (3.1)).

Analysis of the model was centered around understanding:

• how the flares of atopic dermatitis result from infiltrated pathogen loads,
• how this input–output relation is affected by the genetic and environmental risk

factors.

For this, the dose–response behavior between pathogen load (input) and the stable
steady-state values (see Box 2.2 in the previous chapter) of PAR2 activity (output)
was assessed, neglecting the fast transient dynamic behavior of the Protein-Protein-
Interactions.

The resulting bifurcation diagram (recall its schematic representation in
Fig. 2.21) displays a robust bistable behavior, with on-and-off-states of the switch
corresponding to the abrupt onset and cease of the flares of atopic dermatitis.

Genetic and environmental risk factors dramatically increases the propensity to
develop the flares in response to pathogenic challenges by decreasing the threshold
for onset and increasing the threshold for ceasing of atopic dermatitis flares,
respectively (Fig. 3.19c).

→ Modeling Adaptive Immune Responses with an Irreversible Switch

Advanced and more severe forms of atopic dermatitis are characterized by chronic
inflammation and allergy [436]. A key event in the establishment of these pathogenic
features is the infiltration of Th2 cells into the epidermis [517]. This process is
preceded by the polarization of naïve CD4+ T cells into Th2 cells, and corresponds
to an irreversible differentiation event that is controlled by the master transcriptional
regulator of CD4+ T cells polarization, Gata3. This regulator is induced by pro-
inflammatory cytokines, such as IL4, which are released by dendritic cells that
have migrated from the epidermis to the lymph nodes in response to previous
innate immune responses [160]. A first step to understand the progression of atopic
dermatitis from a mild phenotype to the establishment of severe symptoms in the
form of allergic inflammation and allergy is thus to elucidate how CD4+ T cells
polarization occurs in response to IL4 (Fig. 3.20a).

In [201], Höfer et al. proposed the first mathematical model of irreversible
Th2 polarization in response to the increased expression of Gata3 by IL4. This
simple mathematical model describes the dynamics of the Gata3 activity in the
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Fig. 3.20 Adaptive immune
responses in Atopic
dermatitis. (a) Adaptive
immune responses in atopic
dermatitis (b) are mediated
by the Gata-3-dependent
activation polarization of
naive T cells in response to
stimulation with the
pro-inflammatory cytokine
IL4. (c) This irreversible T
cell polarization is described
by a bistable switching
behavior, which emerges
from the underlying reaction
network controlling Gata-3
activity that displays positive
feedback and cooperativity.
Figures (b) and (c) taken
from [120] (URL: http://hdl.
handle.net/10044/1/47969,
published under a Creative
Commons Attribution
Non-Commercial No
Derivatives License https://
creativecommons.org/
licenses/by-nc-nd/3.0/)

undifferentiated T cells that reside in the lymph nodes, in response to stimulation
with IL4, as:

d[Gata3(t)]
dt

= α[IL4] + κG[Gata3(t)]2

1 + [Gata3(t)]2 + κ[Gata3(t)]. (3.2)

In this model, Gata3 expression is mediated by:

• An IL4-dependent de novo production term (α[IL4]).
• A positive feedback term describing the Gata-3 mediated Gata-3 expression

(κ[Gata3(t)]).
• A nonlinear term (κG[Gata3(t)]2/

(
1 + [Gata3(t)]2)) that represents the post-

translational modifications of Gata-3 (Fig. 3.20b).

http://hdl.handle.net/10044/1/47969
http://hdl.handle.net/10044/1/47969
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
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Steady-state simulations of this one-dimensional ordinary differential equation
(Eq. (3.2)) show an irreversible, bistable dose–response behavior (with a cease
threshold value < 0, Fig. 2.21) that characterizes the irreversible polarization of
individual Th2 cells (Fig. 3.2c).

Fig. 3.21 (continued)
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The Flares of Atopic Dermatitis Result from the Interplay
Between Biochemical and Cellular Networks

In a previous section, we introduced the model of Tanaka et al., which reproduces
the switch-like dose–response relation between infiltrated pathogens and the PAR2-
mediated flares of atopic dermatitis (Fig. 3.19c). There, the input to this system, i.e.,
the infiltrated pathogen load (S), was treated as bifurcation parameter that can be
swept in an autonomous manner. However, the infiltrated pathogen not only controls
the onset and cease of the flares, but is also modulated by other tissue-level conse-
quences of the activation of the PAR2-mediated signaling pathways (Fig. 3.21a).
On the one hand, the activation of innate immune responses result in the weakening
of the skin barrier through the activation of skin-barrier-degrading KLKs [184] and
inhibition of barrier-restoration processes, such as the release of lamellar bodies into
the corneal layer of the skin [117]. A defective skin barrier with low barrier integrity
allows more exogenous stimuli to invade the inner epidermal layers, forming a
positive feedback loop from the onset of atopic dermatitis flares (PAR2∗) to the
stimulus concentration. On the other hand, the innate immune responses triggered
by PAR2∗ also contribute to the eradication of the accumulated stimulus in the inner
epidermal layers by mediating the release of antimicrobial peptides or the induction
of keratinocyte phagocytosis [1, 124, 266, 414], forming also a negative feedback
loop from PAR2∗ to the stimulus concentration. The concentration of stimulus that
penetrates the inner epidermal layers is thus determined by the balance between
the positive and negative feedback regulations, whose strengths respectively depend
on the skin permeability and the capacity of stimulus eradication, both of which
are tissue-level processes that occur at a slower time-scale than the biochemically
determined immune response switch (Fig. 3.21b).

Two of the mayor genetic risk factors for atopic dermatitis directly affect the
strength of these feedbacks. A decreased filaggrin expression, caused by mutations
or polymorphisms [66, 222, 245], weakens the skin barrier, increasing its permeabil-
ity to environmental stimuli [242]. In turn, a decreased expression of immune system
components [364] results in lower levels of pathogen-eradicating Anti-Microbial

�
Fig. 3.21 Modeling the early phases of Atopic Dermatitis. (a) The early phases of atopic der-
matitis are characterized by the interplay between infiltrated pathogen load, skin barrier integrity
and reversible-switch-like innate immune responses. (b) The regulatory network underlying
early phases of atopic dermatitis is a multi-scale structure in which the flares are controlled
by the interplay between fast-switch-like biochemical processes and slow tissue-level dynam-
ics. Figure adapted from [123] DOI: http://dx.doi.org/10.1098/rsfs.2012.0090 (published under
the Creative Commons License https://creativecommons.org/licenses/by/4.0/). (c) 2D-bifurcation
diagram showing the effects of the two mayor genetic risk factors for atopic dermatitis on the
“dynamic phenotypes.” (e) Long-term behavior of the barrier integrity of the four “dynamical
phenotypes.” (f) Barrier recovery time of the control vs- bistable (healthy branch) “dynamical
phenotypes.” Figures (c)–(f) adapted from https://doi.org/10.1016/j.jaci.2016.10.026 (published
under the Creative Commons License https://creativecommons.org/licenses/by/4.0/)

http://dx.doi.org/10.1098/rsfs.2012.0090
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.jaci.2016.10.026
https://creativecommons.org/licenses/by/4.0/
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Peptides (AMPs) [309], decreasing the strength of the negative feedback mediated
by the immune responses (Fig. 3.21b). To systematically characterize the effects of
different combinations of these two risk factors, in [123] we proposed a multi-scale
model that comprises the fast control of the innate immune responses, and the slower
tissue-level processes that are affected by these risk factors. The hybrid system of
differential equations (see Sect. 2.9) is given by:

dP (t)
dt

= Penv
κP

1+γBB(t)
− αIR(t)P (t) − δPP(t),

dB(t)
dt

= κB
1

1+γRR(t)
(1 − B(t)) − δBK(t)B(t),

(3.3)

for the dynamics of the tissue-level variables P(t) and B(t), denoting the infiltrated
pathogen load (mg/ml) and the strength of barrier integrity (relative to the maximum
strength), respectively. The dynamics of P(t) and B(t) depend on the dynamics of
the additional variables, R(t) and K(t), denoting the levels of activated immune
receptors and active KLKs, respectively. We consider that the infiltrated pathogen
load, P , increases by the penetration of environmental stress load, Penv, through
the barrier, B. P is eradicated by innate immune responses triggered by inflam-
mation (R) and is also naturally degraded. The barrier production is described
by phenomenological representation of its capacity to self-restore the nominal
barrier function following its disruption, and is compromised by innate immune
responses triggered by inflammation (R). We represent this inhibitory rate by the
phenomenological term 1/(1 + X). The degradation of the barrier occurs as a result
of desquamation mediated by active kallikreins, K .

To describe the activity of R(t) and K(t) in response to the dynamically changing
infiltrated pathogen load P , we phenomenologically describe the mechanistically
derived bifurcation diagrams (Fig. 3.19c) with a perfect switch (Fig. 3.21a), as:

(R(t),K(t)) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(Roff,Koff),

if (P (t) < P −) or
{
P(t) ∈ [P −, P +] and R(t−) = Roff

}
,

(Ron,Kon = monP(t) − βon),

if (P (t) < P −) or
{
P(t) ∈ [P −, P +] and R(t−) = Ron

}
,

(3.4)
where t− is a time slightly before the time t , as they change abruptly within hours
[124, 502], in a much faster time-scale than for P(t), B(t), and D(t), which change
over weeks [202, 515].

Together, the coupling between Eqs. (3.3) and (3.4) comprises a hybrid system
of algebraic-differential equations. To analyze the different qualitative behaviors
that can result from sweeping the strengths of the tissue-level positive and negative
feedbacks, we performed the focal point analysis described in Sect. 2.9 and
schematically represented in Fig. 2.26. We found that different severities of the
tissue-level risk factors can lead to four different qualitative dynamic behaviors
(Fig. 3.21c, d):
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1. In the absence of genetic risk factors, the system quickly recovers from environ-
mental perturbations (in the form of a transient increase in Penv). After a transient
decrease, the skin barrier returns to its nominal state; analogously, after a atopic
dermatitis flare, the immune responses turn off (R = Roff). This dynamical
phenotype corresponds to the healthy control.

2. When both genetic risk factors are present, the system converges to a unhealthy
steady state, corresponding to a chronically decreased barrier integrity and
persistent flares (R = Ron). This corresponds to the unhealthy dynamical
phenotype in Fig. 3.21c, d.

3. Genetic defects leading to deregulated immune responses result in bistability,
where either the healthy or unhealthy steady state is achieved depending on the
initial conditions of the system (bistable dynamical phenotype). Interestingly,
even when the environmental triggers are low enough for the system to remain
in the healthy basin of attraction (Fig. 2.21), computational analysis of the model
shows that the recovery time is significantly slower in the bistability dynam-
ical phenotype as compared to the control dynamical phenotype (Fig. 3.21f).
Mathematically, this observation can be related to the existence of the second
stable (unhealthy) steady state, which is responsible to the critical slowing
down of nonlinear dynamical systems that are close to a bifurcation [106].
Experimentally, this model prediction is consistent with the slower skin barrier
recovery following tape stripping observed in non-lesional skin of patients
suffering atopic dermatitis compared with healthy individuals [431], and in
inflamed compared with non-inflamed human skin [203]. This model prediction
is clinically relevant, since this “critical slowing down” of the skin barrier could
be used to distinguish asymptomatic carriers of genetic risk factors that decrease
the immune responses to infiltrated pathogens.

4. Genetic defects leading to high skin barrier permeability results in persistent
oscillatory dynamics due to the switching of R between Ron and Roff (oscillation
dynamic phenotype).

Interestingly, the steady-state behaviors of the bistability (healthy branch) and
dynamical phenotypes are clinically indistinguishable from the control dynamical
phenotype (Fig. 3.21e). Although the oscillation dynamical phenotype shows a
lower mean, it also has an increased variance, which makes it statistically hard
to distinguish from the control dynamical phenotype. This long-term dynamical
behavior of the oscillation phenotype is concordant with a slightly lower but more
variable skin barrier integrity observed in mouse models for atopic dermatitis
carrying mutations in the filaggrin gene (flg−/− [242] and ft [143, 403]), compared
to their wild type (wt) litter mates. Thus, according to these results, the presence
of a single genetic risk factor is not per se associated to the development of
clinically detectable atopic dermatitis symptoms. Rather, the development of severe
symptoms of atopic dermatitis might require a second hit, for example, in the
form of environmental insults. This observation is consistent with experimental
observations, stating that animal models of atopic dermatitis with single genetic
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defects (e.g., Stat3-ko [122], ft/ft [403], flg−/− [242]) require environmental triggers
to develop clinically severe atopic dermatitis.

In what follows we present a mathematical model that reproduces this atopic
dermatitis progression, from an asymptomatic stage to the development of the severe
disease. The implications of these results in terms of prevention of severe symptoms
are discussed.

Preventing Disease Progression

Atopic dermatitis is a multi-stage disease, in which early and asymptomatic phases
can progress to advanced atopic dermatitis characterized by severe symptoms that
are difficult to treat. Although several genetic and environmental factors have been
associated to development, the mechanisms through which different combinations
of these factors contribute to the progression of atopic dermatitis had not been fully
elucidated.

Recently, this question of atopic dermatitis progression and its prevention was
addressed through mathematical modeling [122]. We extended the model of early
phases of atopic dermatitis [123] previously exposed to incorporate key cellular
and molecular players responsible for the severe symptoms of atopic dermatitis: the
adaptive immune responses (activated Th2 cells) and its mediators (the transcription
factor Gata3 and the dendritic cells) (Fig. 3.22). From previous experimental and
clinical literature [143, 160, 190, 257, 296, 403, 437, 517] it was well known that
Th2 cell activation and with it, the sharp increase in the severity of atopic dermatitis
symptoms can be triggered by atopic dermatitis flares. This occurs through the
cytokine-dependent activation of dendritic cells, which migrate to the lymph nodes
where they increase the concentrations of the pro-inflammatory cytokine IL4, which
triggers the expression of the Th2 cell differentiation marker Gata3. What remained
to be elucidated, however, was:

• What are the quantitative features of atopic dermatitis flares necessary to trigger
the aggravation of atopic dermatitis?

• How do risk factors affect the propensity to develop severe atopic dermatitis
symptoms?

• Which role does the combination of genetic and environmental risk factors play
in the establishment of severe atopic dermatitis symptoms?

• How can the prevention of the progression of atopic dermatitis be achieved?
and:

• Do preventive strategies have to be tailored to the specific genetic background of
the patient?

To answer these questions from a mathematical, systems biology approach, we
incorporated the regulatory interactions for atopic dermatitis progression detailed
above into the previous model by coupling to Eqs. (3.3) and (3.4) the dynamical
equation describing the innate immune receptor-mediated migration of DC to the
lymph nodes, i.e.:
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Fig. 3.22 Mathematical model to understand and prevent the progression of Atopic Dermatitis.
(a) “Double switch” model for the progression of atopic dermatitis. Progression occurs when
adaptive immune responses are irreversibly turned on. (b) Mechanisms for progression of atopic
dermatitis. Long-lasting or frequent atopic dermatitis flares irreversibly switch on the adaptive
immune responses. (c) Genetic risk factors increase the susceptibility to develop severe atopic
dermatitis symptoms by decreasing the minimal pathogen load required for triggering long-lasting
or frequent atopic dermatitis flares. (d) Emollients effectively prevent the progression of AD
by increasing the minimal pathogen load required for allergic sensitization of the skin. Figures
adapted from [122] URL: https://doi.org/10.1016/j.jaci.2016.10.026, published under the Creative
Commons License https://creativecommons.org/licenses/by/4.0/

https://doi.org/10.1016/j.jaci.2016.10.026
https://creativecommons.org/licenses/by/4.0/
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dD(t)

dt
= κDR(t) − δDD(t), (3.5)

as well as the irreversible switch-like expression of Gata3 in T cells:

G(t) =
{

Goff, if (D(t) < D+) and G(t−) = Goff,

Gon, if (D(t) ≥ D−) or
{
D(t) < D+ and G(t−) = Gon

}
,

(3.6)

To address the first question (What are the quantitative features of atopic
dermatitis flares necessary to trigger Atopic Dermatitis aggravation?), we used
expressions (3.5) and (3.6) to analytically determine which type of atopic dermatitis
flares—i.e., on-and-off activations of the innate immune responses with specific
on-periods (with duration ton) and off-periods (with duration toff) could trigger the
irreversible activation of the adaptive immune responses. From (3.5) and (3.6) we
could derive analytical expressions for the critical values of t∗on and t∗off above/below
which atopic dermatitis progression occurs, as shown in Box 3.2.

Box 3.2. Analytical derivation of t∗on and t∗off

This mathematical derivation is taken from the Supplementary Infor-
mation provided in [122] URL: https://doi.org/10.1016/j.jaci.2016.
10.026, published under the Creative Commons License https://
creativecommons.org/licenses/by/4.0/.

The solution of (3.5),

D(t)

dt
= κDCR(t) − δDD(t),

is described by

D(t) = e−δD(t−t0)D(t0) +
∫ t

t0

e−δD(t−τ)κDCR(τ)dτ, (3.7)

where the integral is defined over each time segment, on which R(t) is
continuously defined, either by R(t) = Ron for the duration of a flare time,
ton, or by R(t) = Roff = 0 for the duration of a relaxation time, toff. Note
that the steady-state value, Dss, of D(t) while R(t) = Ron is obtained by

Dss = κDC Ron

δD
. The period of the R-spike is denoted by T = ton + toff.

To determine the dynamics of D(t), we derive D(tk) and D(Tk) (k =
1, 2, . . .), where tk and Tk denote the time when the k-th spike of R(t) = Ron
starts and the time when the k-th spike ends, respectively. We define t1 = 0

(continued)

https://doi.org/10.1016/j.jaci.2016.10.026
https://doi.org/10.1016/j.jaci.2016.10.026
https://creativecommons.org/licenses/by/4.0/
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Box 3.2. (continued)

and D(t1) = 0. D(t) decreases during Tk ≤ t ≤ tk+1 when R(t) = Roff = 0
and reaches D(tk+1) = e−δDtoffD(Tk), whereas it increases during tk ≤ t ≤
Tk with R(t) = Ron and achieves

D(Tk) = e−δDtonD(tk) + κDC Ron

∫ Tk

tk

e−δD(Tk−τ)dτ

= e−δDtonD(tk) + κDC Ron e−δDTk

∫ Tk

tk

eδDτ dτ

= e−δDtonD(tk) + Dss (1 − e−δDton). (3.8)

Since D(t1) = 0 for t1 = 0, we have D(T1) = Dss (1 − e−δDton) and

D(Tk) = e−δDtone−δDtoffD(Tk−1) + Dss (1 − e−δDton)

= e−δDT D(Tk−1) + Dss (1 − e−δDton), k = 2, 3, . . . .

Therefore, D(Tk) is described as

D(Tk) = Dss
(
1 − e−δDton

) k−1∑

i=0

e−iδDT , (3.9)

which converges to

D(T∞) = lim
k→∞ D(Tk) = Dss(1 − e−δDton)

1

1 − e−δDT
. (3.10)

The minimum flare time, t∗on, for a single pulse of R(t) = Ron to trigger
systemic Th2 sensitization is analytically obtained from the corresponding
solution

D(t) =
∫ t

0
e−δD(t−τ)κDCR(τ)dτ = Dss(1 − e−δDt )

of Eq. (3.7). Solving D(t∗on) = D+ leads to

t∗on = −
ln
(

1 − D+
Dss

)

δD
. (3.11)

The minimum relaxation time, t∗off, for a periodic R-spike with a fixed ton
to trigger systemic Th2 sensitization is analytically obtained by solving
D(T∞) = D+ as

(continued)
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Box 3.2. (continued)

t∗off = −
[
ton + 1

δD
ln

{
1 − Dss

D+ (1 − e−δDton)

}]
. (3.12)

Note that the solution in Eq. (3.12) exists if 1 − Dss

D+ (1 − e−δDton) > 0 and

ton + 1

δD
ln

{
1 − Dss

D+ (1 − e−δDton)

}
< 0. These conditions are equivalent

to

ton < − 1

δD
ln

(
1 − D+

Dss

)
= t∗on and D+ < Dss.

These results, represented also in Fig. 3.22b, show that only long-lasting (i.e.,
with ton > t∗on) or frequent (i.e., with toff < t∗off) flares can induce the Th2 cell
activation.

Next, we investigate how the two most frequent genetic risk factors for atopic
dermatitis, i.e.:

• low filaggrin expression, augmenting the barrier permeability (parameter κP in
the model)
and:

• low immune responses, decreasing the efficacy of the innate immune responses
to eradicate pathogens (parameter αI in the model) as well as increased pathogen
load (corresponding to the most common environmental risk factor for atopic
dermatitis)

synergistically affect the progression of atopic dermatitis (Fig. 3.22c).
For this, we considered the three virtual patient cohorts, corresponding to three

of the four regions of the bifurcation diagram in Fig. 3.21c:

• The “Control” virtual patient cohort.
• The “Bistability” virtual patient cohort.

and:
• The “Oscillation” virtual patient cohort.

Recall that single genetic risk factors (high barrier permeability and low immune
responses) often give rise to the asymptomatic phenotypes (“oscillation” and
“bistability”), which at steady state cannot be distinguished from the “control”
virtual patient cohort (Fig. 3.21e). This means that these genetic alterations are not
enough for the full development of a severe atopic dermatitis phenotype. So:

• What else is required?
• What is the role of environmental risk factors on atopic dermatitis progression,

in different genetic backgrounds?
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In other words:

• Which role does the combination of genetic and environmental risk factors play
in the establishment of severe atopic dermatitis symptoms?

To answer these questions, for each of these virtual patient cohorts, we calculated
numerically the minimal pathogen load required to trigger allergic sensitization;
i.e., the minimal pathogen load required to trigger long-lasting (i.e., with ton > t∗on)
or frequent (i.e., with toff < t∗off) atopic dermatitis flares, as previously analytically
determined (see Box 3.2 and Fig. 3.22c). The results of these investigations are
shown in Fig. 3.22c. For the “control” virtual patient cohort with no genetic risk
factors, a high pathogen load is required to trigger allergic sensitization. Genetic
risk factors, initially appearing as an asymptomatic phenotype, drastically decrease
this minimal amount of pathogen load, hence increasing the susceptibility of
(asymptomatic) genetic risk factor carriers to develop severe symptoms of atopic
dermatitis in response to environmental challenges. This synergistic effect of
genetic and environmental factors can be seen as a “two-hit-process” for atopic
dermatitis progression: The first genetic hit results in an asymptomatic phenotype
that is phenotypically indistinguishable from the control phenotype but much more
vulnerable, and a second hit, in the form of environmental fluctuations causing
natural variations in pathogen loads.

We can visualize this -two-hit-process with the following analogy:

A genetic perturbation acts as on the position (“phenotype”) of a ball on a mountain
(location in the epigenetic landscape) by pushing it to the edge of a mountain top - it’s still
on the same level (phenotype) as the control genotype, but more vulnerable to environmental
perturbations: it is much easier for a “genotype on the edge” to roll down the hill and develop
severe symptoms! (Fig. 3.22).

Finally, the results of this investigation were used to evaluate the effects of
emollients on the progression of atopic dermatitis. Specifically, we aimed at
answering the two remaining questions, i.e.:

• How can atopic dermatitis progression be prevented?
and:

• Do preventive strategies have to be tailored to the specific genetic background of
the patient?

For this, we first mathematically represented emollient treatments by adding a
constant term +E to dB(t)/dt in (3.3). Recent clinical trials [206, 420] suggested
that emollients could effectively prevent the development of severe atopic dermati-
tis. However, due to the large variation in the patient cohort considered in this
investigation and the lack of mechanistic understanding of the effects of emollients
on a heterogeneous group of patients, the result of these trials were not conclusive.
To determine if application of emollients could effectively prevent the progression
of atopic dermatitis from a mild to a severe phenotype, regardless of the genetic
background, we evaluated the susceptibility of the different virtual patient cohorts
to develop severe atopic dermatitis symptoms in response to pathogenic challenges.
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Our results show that, regardless of the genetic background, emollient application
decreases the susceptibility to develop severe atopic dermatitis symptoms by
decreasing the minimal pathogen load required for atopic dermatitis progression
(Fig. 3.22d).

Together, the results presented in this section (Fig. 3.22) show that mathematical
modeling can be used to:

• Uncover the mechanisms of complex disease progression.
• Characterize the effects of different risk factor combinations on the pathogenic

process.
and:

• Systematically and quantitatively evaluate the benefits of preventive treatment
strategies.

We can at this level conclude our quantitative example with some final comments.

Concluding Remarks

In this section we showcased how multi-scale, mechanistic ordinary differential
equations models can be used to gain understanding of the mechanisms underlying
the onset and progression of a complex epithelial tissue disease: atopic dermatitis.
We also showed how such a quantitative framework can be used to improve the early
detection strategies to identify the susceptible but asymptomatic patient cohorts that
might benefit from preventive treatments, and to systematically test the efficacy
of preventive treatment regimens on the pathogenic progression, and whether this
efficacy is affected by the genetic background of the patients.

Furthermore, such dynamical, mechanistic, integrative, and quantitative systems-
level representations of a disease process can be used for the design of optimized
and -patient-specific treatment strategies that effectively revert the symptoms
using the minimal amount of pharmacological treatment. For example, in [88],
Christodoulides et al. used optimal control theory to minimize the use of corticos-
teroids in pro-active treatments [441] of severe atopic dermatitis forms. In [438],
Tanaka et al. used a bifurcation analysis approach to systematically design -patient-
specific optimal treatments for atopic dermatitis.

Minimizing the duration and magnitude of pharmacological treatments used for
the reversion of severe symptoms is a clinically relevant task, since many pharma-
cological treatments have associated negative side effects. For example, reducing
epithelial inflammation with corticosteroids might lead to tissue atrophy [407].
Analogously, immoderate use of antibiotics to treat epithelial infection is associated
to the development of antibiotics resistant bacterial strains [352, 377, 408].

We hope that with this example we could show how mathematical models of
complex diseases can be used to gain an integrative, quantitative, and dynamical
systems-level understanding of complex diseases, such as atopic dermatitis, to
improve their early detection, prevention, and treatment strategies (see Fig. 3.23).
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Fig. 3.23 Mathematical
models of complex epithelial
tissue diseases, such as atopic
dermatitis and carcinomas,
provide a formal, quantitative,
and systems-level framework
to analyze the causes for
onset and progression and to
improve the treatment
strategies for disease
prevention and reversión

We would like to encourage the use of mathematical models of complex diseases,
since, as shown here, they have the potential to reduce the burden of diseases and
thus contribute to the health and well-being of the population.
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In this volume we have presented basic concepts and formal/computational
approaches of systems biology using a bottom-up approach as applied to complex
chronic degenerative diseases. To this end we have emphasized the use of Boolean
network dynamical modeling to understand the systemic mechanisms underlying
the emergence of different cell types under health and disease, but also the extension
of such models to continuous approximations to study quantitative dynamics and
the role of specific network nodes in response to possible microenvironmental or
physicochemical cues. In addition to complex intracellular regulatory networks,
signal transduction pathways couple to these networks and mediate cellular
feedback to physicochemical and environmental factors also under normal and
altered conditions.

Complex intracellular networks attain stable or attractor states that correlate
to the gene/protein expression/activation configurations that are observed in dif-
ferent cell types and that are coherent with the restrictions imposed by network
interactions. Such intracellular networks also give rise to multi-dimensional quasi-
potentials that may be considered the mathematical or formal representations of
the epigenetic landscape proposed by Conrad Hal Waddington. In this book we
have also described our deterministic and stochastic approaches to formal and
quantitative analyses of the epigenetic landscape that restricts time-ordered and
spatial patterns of cell transitions and dynamics. These approaches are useful
to further understand the systemic mechanisms that may underlie the conserved
patterns of progression during complex diseases. We illustrated these using the case
of epithelial cancer, which is the most common type of cancer, characterized by the
progression of normal epithelial tissues to tissues affected by chronic inflammation
and then to mesenchymal neoplasias, regardless of the type of epithelium. We sum-
marize here our findings of a regulatory network module that recovers as attractor
states the configurations corresponding to epithelial, inflamed, and mesenchymal
cells and show that this module also yields the time-ordered transitions observed
in the spontaneous immortalization of epithelial cell cultures and could provide a
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basic framework to further understanding the systems-level mechanisms underlying
cancer emergence and progression dynamics.

In the second case study, we explored how the plasticity of CD4+ T cells is
modulated by microenvironmental (pro-inflammatory cytokines) and lifestyle (diet)
factors. For this, we integrated in a mathematical model both the key transcriptional
regulators, signaling molecules, and extracellular signals (cytokines) that underlie
the patterns of CD4+ T-cell differentiation and plasticity. Moreover, we were able
to exemplify how such cellular networks may be linked to alterations associated to
various types of complex diseases. Particularly, we have explored the system-level
mechanisms by which hyperinsulinemia causes chronic inflammation and the types
of couplings that may occur between altered metabolites or hormones and CD4+
T-cell differentiation under various diseases that imply alterations of the immune
system. Specific and more complete feedback mechanisms among the uncovered
network and metabolic network modules awaits further analyses. Using this case
we also exemplify an approach that we have proposed to analyze the re-patterning
of the epigenetic landscape in the context of a continuous network model in which
the impact of continuous alterations in the decay rates of particular components or
nodes can be simulated. We have particularly shown how different cytokines can
alter the immune system by modifying CD4+ T-cell differentiation and plasticity
dynamics. The network proposed in this case, together with other similar studies,
should become an important modeling framework to explore the link between
inflammation, the immune system, and several diseases.

A third case study illustrates a scenario in which quantitative, mechanistic models
based on kinetic interactions are used to capture the onset and progression of atopic
dermatitis. For this, multi-scale, mechanistic kinetic models were used to capture
the dynamic interplay between coupled biochemical and tissue-level processes that
underlie epidermal function in health and disease. We also show how the model
predictions are validated with clinical and experimental in vivo data. Further, we
illustrate how we use such models to design therapeutic strategies to prevent or
revert severe symptoms, using control theory approaches.

As novel single-cell Omics approaches, especially deep sequencing, transcrip-
tomic, proteomics, and epigenomic ones, are developed, we expect rapid progress in
research that links such empirical top-down description of single cell behavior with
the types of dynamic, bottom-up approaches that we presented here. For example, it
would be interesting to explore to what extent the networks inferred with top-down
approaches can be dynamically analyzed using the tools presented here. Specifically,
it would be interesting to assess whether the empirically described individual single-
cell profiles along the temporal differentiation trajectories that are being studied can
be mathematically reproduced by the transient and attractor states of the underlying
multistable networks.

The integrative approach put forward here has also been very useful to identify
holes in the empirical evidence accumulated up to now. As mathematical models
of biological systems integrate experimental data, their analysis and predictions can
be used to guide further experimental approaches, suggesting important missing
components or interactions of the systems involved.
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The type of approach that we and other research groups have followed is also
contributing to the generation of a repertoire of relevant gene regulatory network
modules that enable uncovering patterns shared by different types of network
modules, and eventually contribute to understanding how network structure relates
to the function and dynamics of such regulatory modules. For example, the modules
that have been uncovered up to now seem to be quite robust to many different
types of structural and functional perturbations. Further, the existence of multiple
attractors in these models seems to result from specific combinations of positive
and negative feedback loops. Also, positive feedback loops seem to be important
for making networks robust to attacks to highly connected nodes [31, 141]. Other
research groups have also started to analyze the prevalence of certain regulatory
motifs and their function in the context of the whole networks (for example, [7]).

As more sophisticated time-lapse, single-cell, and life-imaging approaches are
developed, additional data will become available to better calibrate and experi-
mentally validate systems-level models. Multilevel modeling will be particularly
relevant and useful as such data becomes available. For example, a rapidly changing
research area is addressing the role of mechanic and elastic fields in morphogenesis
and in disease emergence and progression. Novel approaches that couple such
physical forces with the intracellular complex regulatory network modules, as the
ones presented here, should be further pursued.

We believe that the approach presented in this book is a first building block in
systems biology modeling. This and further formal and computational approaches
are necessary for the mechanistic understanding of the role of genetic versus
environmental components in disease emergence and progression. Since systems
biology approaches can be used to improve the strategies for early detection,
diagnosis, prevention, and treatment of complex diseases, we predict that their use
will significantly improve health care programs by establishing prospective analyses
grounded on a combination of mathematical system biology models as well as
experimental and clinical data.
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69. Çaǧatay, T., Turcotte, M., Elowitz, M. B., Garcia-Ojalvo, J., & Süel, G. M. (2009).
Architecture-dependent noise discriminates functionally analogous differentiation circuits.
Cell, 139(3), 512–522.

70. Caligaris, C., Vázquez-Victorio, G., Sosa-Garrocho, M., Ríos-López, D. G., Marín-
Hernández, A., & Macías-Silva, M. (2015). Actin-cytoskeleton polymerization differentially
controls the stability of Ski and SnoN co-repressors in normal but not in transformed
hepatocytes. Biochimica et Biophysica Acta (BBA)-General Subjects, 1850(9), 1832–1841.

71. Calzone, L., Fages, F., & Soliman, S. (2006). BIOCHAM: An environment for modeling
biological systems and formalizing experimental knowledge. Bioinformatics, 22(14), 1805–
1807.

72. Campbell, C., & Albert, R. (2014). Stabilization of perturbed Boolean network attractors
through compensatory interactions. BMC Systems Biology, 8(1), 53.

73. Campisi, J., Andersen, J. K., Kapahi, P., & Melov, S. (2011). Cellular senescence: A link
between cancer and age-related degenerative disease? Seminars in Cancer Biology, 21(6),
354–359.



Bibliography 219

74. Cannavó, F. (2012). Sensitivity analysis for volcanic source modeling quality assessment and
model selection. Computers & Geosciences, 44, 52–59.

75. Cannons, J. L., Lu, K. T., & Schwartzberg, P. L. (2013). T follicular helper cell diversity and
plasticity. Trends in Immunology, 34(5), 200–207.

76. Caubet, C., Jonca, N., Brattsand, M., Guerrin, M., Bernard, D., Schmidt, R., et al. (2004).
Degradation of corneodesmosome proteins by two serine proteases of the kallikrein family,
SCTE/KLK5/hK5 and SCCE/KLK7/hK7. Journal of Investigative Dermatology, 122(5),
1235–1244.

77. Cellier, F. E. (1991). Continuous system modeling. New York: Springer.
78. Chaldakov, G. N., Fiore, M., Ghenev, P. I., Beltowski, J., Ranćić, G., Tunçel, N., & Aloe,
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