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Abstract

Background: Tumorigenic transformation of human epithelial cells in vitro has been described experimentally as
the potential result of spontaneous immortalization. This process is characterized by a series of cell-state transitions, in
which normal epithelial cells acquire first a senescent state which is later surpassed to attain a mesenchymal stem-like
phenotype with a potentially tumorigenic behavior. In this paper we aim to provide a system-level mechanistic
explanation to the emergence of these cell types, and to the time-ordered transition patterns that are common to
neoplasias of epithelial origin. To this end, we first integrate published functional and well-curated molecular data of
the components and interactions that have been found to be involved in such cell states and transitions into a
network of 41 molecular components. We then reduce this initial network by removing linear or redundant regulatory
interactions, and formalize the resulting regulatory core into logical rules that govern the dynamics of each of the
network components as a function of the states of its regulators.

Results: Computational dynamic analysis shows that our proposed Gene Regulatory Network, time model recovers
exactly three attractors, each of them defined by a specific gene expression profile that corresponds to the epithelial,
senescent, and mesenchymal stem-like cellular phenotypes, respectively. We show that although a mesenchymal
stem-like state can be attained even under unperturbed physiological conditions, the likelihood of converging to this
state is increased when pro-inflammatory conditions are simulated, providing a systems—level mechanistic
explanation for the carcinogenic role of chronic inflammatory conditions observed in the clinic. We also found that
the regulatory core yields an epigenetic landscape that restricts temporal patterns of progression between the steady
states, such that recovered patterns resemble the time—ordered transitions observed during the spontaneous
immortalization of epithelial cells, both in vivo and in vitro.

Conclusion: Our study strongly suggests that the tumorigenic transformation in vitro of epithelial cells, which
strongly correlates with the patterns observed during the pathological progression of epithelial carcinogenesis in vivo,
is emerges from underlying regulatory networks involved in epithelial trans—differentiation during development.

Keywords: Carcinomas, Gene regulatory networks, Epigenetic landscape, Boolean models, Phenotypic attractors

Background

Nearly 84% of cancers diagnosed in human adults are car-
cinomas (i.e., cancer of epithelial origin). Although epithe-
lial carcinogenesis has been strongly associated with a
chronic inflammatory process and aging [1], the precise
role of these two processes to the origin and progression of
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carcinomas remains elusive. The current general assump-
tion is that aging and inflammation increase the chance
of accumulating somatic mutations, and that this genetic
instability constitutes in fact the cause of carcinoma. But
this view does not explain several well-described exper-
imental and clinical observations. For instance, cancer
behavior can be acquired in the absence of mutations
through trans—or de—differentiation and is characterized
for recapitulating embryonic processes. Cancer cells can
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be "normalized” by several experimental means and com-
monly show morphological and transcriptional conver-
gence despite their diverse origin and mutations [2—4]. In
addition, different carcinomas share similar time—ordered
patterns of progression, as well as clear associations with
lifestyle factors in many cases [5]. These empirical obser-
vations suggest that, in analogy to normal development,
epithelial carcinogenesis is a consequence of conserved or
generic system—level mechanisms that restrict the malig-
nant phenotypes that can be attained, as well as the
temporal patterns of progression that describe the transi-
tions between them. In accordance with this latter view,
it has been proposed that cancer can be considered a
developmental disease [6].

In agreement with this developmental view of can-
cer, numerous experimental findings in molecular and
cell biology of cancer research have revealed that it is
possible to recover cells with cancer-like phenotypes
through the induction of de—differentiation events. This
has been shown particularly in carcinomas [3, 7], since
inflammatory cytokines induce a de—differentiation event
of epithelial cells denominated Epithelial-Mesenchymal
Transition (EMT) in which cells acquire a mesenchymal
stem—like phenotype with a tumorigenic potential able to
develop cancer in mice [3].

In systems biology it is common to study cell differentia-
tion processes that underlie development and pathogene-
sis from the point of view of dynamical systems theory. In
this framework, the information encoded by the genome,
in addition to epigenetic mechanisms, can be mapped
to a gene regulatory network (GRN), that shows mul-
tiple stable steady states, each of which corresponds to
a particular phenotypic cellular state. Further, the GRN
also underlies the epigenetic landscape (EL), that restricts
the time—ordered patterns of transition between the phe-
notypes [8—13]. Thus, the same genome and GRN can
robustly generate multiple discrete cellular phenotypes
through developmental dynamics [11, 14, 15]. These sta-
ble phenotypic states are called attractors and correspond
to configurations of gene or protein activation states
that underlie the cellular fates or phenotypes. Therefore,
dynamic developmental processes — particularly, cellu-
lar differentiation and morphogenetic patterning — can
be formalized in temporal terms as transitions between
attractors (i.e., cell states). Here, we adopt such approach
to study how tumorigenic transformation due to sponta-
neous immortalization via EMT emerges from the regula-
tory interactions between different molecular players that
are known to contribute to the tumorigenic transforma-
tion of epithelial cells. We hypothesize that: (1) a generic
series of cell state transitions describing the phenotypic
transformation of epithelial cells first to senescent cells
and finally to mesenchymal stem-like cells, that is widely
observed in epithelial cell cultures during spontaneous
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immortalization, naturally result from the self-organized
behavior emerging from an underlying intracellular GRN;
and (2) that pro—inflammatory tissue—level conditions,
which are associated with a bad prognosis, increase the
likelihood of this tumorigenic process, promoting the
emergence and progression of epithelial cancer.

To test our hypothesis, we propose here a cellular—level
GRN that, for the first time, integrates those molecular
components and their interactions that have been exper-
imentally shown to play an important role during the
emergence and progression of carcinomas. It includes the
key molecular regulators that: (1) characterize the cellu-
lar phenotypes of epithelial, mesenchymal stem—like, and
senescent cells; (2) are involved in the induction of the cel-
lular processes of replicative senescence, cellular inflam-
mation, and epithelial-mesenchymal transition (EMT);
and (3) are involved in the phenotypic changes undergone
by cells emerging from these processes (i.e., mesenchymal
stem~—like cells). We then obtained a reduced regulatory
core for further dynamical analyses by removing linear
cascades while maintaining the feedback loops. We show
that the proposed regulatory core module displays an
orchestrating robust behavior akin to that seen in other
developmental regulatory modules previously character-
ized with similar modeling approaches (see, for example
[8, 9, 16, 17]). Specifically, by proposing logical func-
tions grounded on the available experimental data for this
regulatory core module, and by analyzing its behavior fol-
lowing conventional Boolean GRN dynamical approaches,
we show that the uncovered GRN converges to exactly
the three attractors corresponding to the expected gene
expression configurations characterizing the epithelial,
senescent, and mesenchymal stem-like phenotypes. Addi-
tionally, using a stochastic version of the model to explore
the GRN EL (following the methodology proposed in
[13]), we found that the proposed GRN also explains the
commonly observed temporal sequence by which epithe-
lial cells acquire the potentially tumorigenic mesenchymal
stem—like phenotype.

Our results suggest that the proposed core GRN incor-
porates a set of necessary and sufficient components and
interactions to explain the emergence of gene configura-
tions characteristic of epithelial, senescent and mesenchy-
mal cells, as well as the time—ordered sequence of cellular
transformations observed in the spontaneous immortal-
ization process that, in turn, underlies the tumorigenic
transformation of epithelial cells.

Results

Gene regulatory network underlying spontaneous
immortalization

Following a bottom—up approach, we performed an
extensive literature search to gather the most relevant
experimental functional molecular data describing the
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cellular-level processes involved in epithelial carcinogen-
esis, namely: replicative cellular senescence, inflamma-
tion, and EMT (see Additional file ??). We found a set
of 41 molecular players (composed by 12 TFs and 29
signaling molecules) which are involved in epithelial or
mesenchymal cell differentiation, cellular inflammation,
senescence, DNA damage, cell cycle, or in epigenetic
silencing; as well as 97 regulatory interactions between
them. For the first time, we integrated this previously scat-
tered experimental information into the GRN represented
in Fig. 1a. To further support that the set of regulatory
interactions that we manually curated based on published
data are indeed representative of the cellular—level pro-
cesses underlying epithelial carcinogenesis, we performed
a network—based Gene Set Enrichment Analysis (GSEA)
of the GRN, using both the KEGG and the GO Biological
Process databases as reference. We found that among the
12 pathways or processes reported as significant when tak-
ing the KEGG database as a reference, 10 (= 83%) corre-
spond to the cancer types bladder cancer, chronic myeloid
leukemia, non-small cell lung cancer, glioma, melanoma,
pancreatic cancer, prostate cancer, small cell lung cancer,
thyroid cancer, from which 6 (66.6%) correspond to carci-
nomas. When taking the GO Biological Process database
as reference, we found that the molecules considered in
our regulatory network are significantly enriched for sev-
eral of the biological processes known to play important
roles during spontaneous immortalization of epithelial
cells, namely replicative senescence, cellular senescence,
cell aging, positive regulation of ephitelial to mesenchymal
transition determination of adult life span, among oth-
ers (Table 1). Additionally to these GSEA, we performed
a Network-based topological gene set enrichment analy-
sis (described in Methods) and found that, in addition to
the enrichment of the pathways and processes described
above, the molecules in the proposed network show
also a topological signature that strongly resembles the
structure of the cancer pathways included in the KEGG
database (see Additional file 1: Figure S1). The com-
plete enrichment results are included in Additional file 2:
Supplementary Tables. These results provide further sup-
port for the relevance of the proposed molecular players,
manually assembled from an exhaustive literature search,
and for the novel regulatory module proposed here.

In conclusion, based on these analyses and the cur-
rent state of knowledge according to annotated databases,
the set of molecules manually included in the proposed
large network seem to be representative of the cellular
phenotypes and processes considered as prior biologi-
cal knowledge in our model. In addition, the molecular
components included in the proposed network are tightly
associated with reference pathways of epithelial cancers.

To study the dynamic and steady—state properties of the
network underlying epithelial carcinogenesis, we reduced
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the initial network (Fig. 1a) into a more mathematically
and computationally tractable regulatory core network by
collapsing the linear pathways while retaining the feed-
back loops. This reduced network, represented in Fig. 1b,
retains only the main players and regulatory interac-
tions that underlie epithelial and mesenchymal differen-
tiation, cell cycle progression, senescence, and cellular
inflammation.

Epithelial differentiation is represented by the tumor
suppressor Epithelium-Specific TF ESE-2, which acts
as a master regulator of this process by triggering the
expression of epithelium-specific genes while repressing
mesenchymal markers, such as Snail [18]. ESE-2 also pro-
motes its own expression and the expression of the other
ESE TFs [19], and it is hence considered as the main rep-
resentative of the TF family [18]. The differentiation of
epithelial cells into a mesenchymal stem—like phenotype is
orchestrated by the TF Snai2, which further induces its
own expression via the activation of Twist-Zeb-FOXC2
[20]. The progression of the cell cycle is controlled by Rb,
E2F, Cyclin, and Telomerase (here TELase). While both
E2F [21] and cyclins [22] are required for cell cycle pro-
gression, the tumor suppressor Rb acts as an inhibitor
of this process by forming an inactive heteromer with
E2F [23]. The enzyme TELase is responsible for the de
novo synthesis of telomeres, a process that allows cells
to surpass the cell cycle checkpoints and become immor-
talized [24]. Indeed, high levels of TELase are typical of
tumor initiating cells that become resistant to therapy
[3, 25]. The senescence of epithelial cells is mainly con-
trolled by the two tumor supressors p53 and pl6 [26].
They both induce replicative senescence by reducing the
activity of cyclins [27] and by inducing an Rb-mediated
inhibition of E2F [28]. Cellular inflammation is char-
acterized by the increased activity of the TF NF-«B.
Many (micro)environmental stimuli, including pathogens,
cytokines, interleukins, and antigens; trigger the expres-
sion of NF-«B, resulting in an immune response
characterized by increased levels of cytokines and
enzymes such as phospholipase A2, cyclooxygenase, and
lipoxygenase [29].

The above described molecular players (ESE-2, Snai2,
Rb, E2F, cyclin, TELase, p53, p16, and NF—«B) are tightly
interconnected by the following regulatory interactions:
NF-kB positively controls its own expression via the
induction of pro-inflammatory cytokines [30, 31]. It also
promotes the epithelial and mesenchymal stem-like phe-
notype by positive interactions with ESE-2 [32] and Snai2
[33], respectively; and it induces the cell cycle process by
increasing cyclin [34] and inhibiting p53 expression [35].
ESE-2 forms an auto-—activation feedback loop, inhibits
Snai2 [18], induces cyclin, inhibits TELase [18], and acti-
vates of NF-«B [36]. Snai2 induces its own expression
[37], increases the activity of TELase [38], and decrease
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Table 1 Most significant pathways and processes in the GRN (Fig. 1a) shown by a network-based gene set enrichment analysis

KEGG - Pathway or Process (carcinomas Functional association g-value Overlap/Size
marked in italics) (XD-score)

Bladder cancer 1.06805 0 11/38
Chronic myeloid leukemia 0.66539 0 13/69
p53 signaling pathway 0.68435 0 12/62
Pancreatic cancer 0.53872 0 11/70
Glioma 057682 0 10/60
Non-small cell lung cancer 0.61604 0 9/51
Melanoma 0.55531 0 10/62
Small cell lung cancer 0.39796 0 10/82
Prostate cancer 043396 0 11/84
Cell cycle 044349 0 16/120
Cytosolic DNA-sensing pathway 048155 0.00001 6/40
Thyroid cancer 0.39015 0.00564 3/25
Endometrial cancer 0.31015 0.00018 5/50
GO Biological Process

Replicative senescence 3.138 0 8/10
Cellular senescence 0.738 0.01815 2/10
Cell aging 0438 0.00461 3/24
Positive regulation of epithelial to mesenchy- 0438 0.03501 2/16
mal transition

Determination of adult lifespan 0.33328 0.40382 1/10

the expression of the epithelial-specific TF ESE-2 [18]. It
also represses the cell cycle process by reducing the tran-
scription of cyclin [39] and E2F [40], represses cellular
senescence by decreasing the expression of p16 [41] and
p53 [42], and induces cellular inflammation by increasing
the expression of NF—« B [43]. p16 promotes its own activ-
ity forming a positive feedback loop [44], stabilizes p53 via
the inactivation of its inhibitor MDM2 [45], and inhibits
the cell cycle progression by the induction of Rb [46] and
the inhibition of cyclin [23, 28]. These molecular pro-
cesses are known to induce the senescent phenotype. p16
also contributes to the cellular inflammation observed in
senescent cells by inducing the activation of NF-«B [47].
p53 inhibits E2F [48]. Rb inhibits E2F [23]. E2F induces
cyclin [49] and inhibits the senescence marker p16 [50].
Cyclin inhibits Rb activity [51] and stimulates E2F tran-
scription [52]. Finally, TELase inhibits the senescence
markers p16 [53] and p53 [54].

To analyze its long term and dynamic properties, we
then formalized the above described regulatory interac-
tions (Fig. 1b), by translating the nodes and their cor-
responding logical interaction rules into a mechanistic
Boolean dynamical GRN model [55]. The correspond-
ing logical rules and truth tables can be found in the
Additional file 3: Logic rules and truth tables.

The epithelial, senescent, and mesenchymal stem-like
phenotypes are attractors of the GRN

It has been experimentally shown that during the
process of spontaneous immortalization epithelial cells
acquire first a senescent and finally a mesenchymal
stem—like cell phenotype [56], each of which can be
described in terms of their gene expression profiles. Here,
we performed long term simulations of our Boolean
model of the GRN with the aim to recover these
three characteristic expression patterns. We found that
indeed our GRN (Fig. 1b) converges to three attrac-
tors, each corresponding, respectively, to the epithe-
lial, senescent, and mesenchymal stem-like phenotypic
markers (Fig. 1c).

Epithelial cells are characterized by the high expres-
sion of the TF ESE-2, which acts as a master regulator.
Being part of a constantly renewing tissue, epithelial cells
show an increased expression of the cell cycle inducers
Cyclin and E2F and a decreased expression of the cell
cycle inhibitor Rb [57] and of the senescence markers
p53 and p16 [58]. Epithelial cells do not express TELase,
since the activity of this enzyme is inhibited in response
to induction of differentiation events [59]. Being a con-
stitutively expressed gene, epithelial cells show also high
levels of the TF NF—«B [60]. In accordance to this empir-
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ical activity profile, approximated as a Boolean vector, the
first attractor of our GRN shows a absence of activity for
p53, p16, Rb, TELase and Snai2; and presence of NF—«B,
Cyclin, E2F and ESE-2 (Fig. 1c, left).

Senescent epithelial cells conserve the high levels of
the epithelial markers ESE-2 [61] and the low expression
of the mesenchymal marker Snai2 [18]; but, in contrast
to normal epithelial cells, these cells show an increased
expression of the two tumor suppressor proteins plé6
and p53 [62], both of which contribute to the cell cycle
arrest by inhibiting the cell cycle inducers Cyclins and
E2F [27, 28, 63] and by inducing the cell cycle suppres-
sor Rb [64]. As in homeostatically cycling epithelial cells,
TELase is inactive in this cell type [59]. Also in this case,
NF-«B expression is constitutively active. These features
are recovered in our second attractor, which shows activ-
ity of NF-«B, p53, p16, Rb and ESE2, and absence of
TELase, Snai2, cyclin, and E2F (Fig. 1c, center). Also in
this case, our in silico analysis predicts activity of NF-«B
in epithelial senescent cells.

Mesenchymal stem—like cells express the mesenchy-
mal marker Snai2 [18], which acts as one of the key
players during the EMT by orchestrating the repression
of epithelium—specific genes [65] such as ESE-2 [18]
and by inducing the expression of mesenchymal markers
[63]. In contrast to the senescent cells, these mesenchy-
mal stem-like cells have a strong proliferative potential,
shown by a decreased expression of p53, pl6, Rb; and
by a high expression of cyclin [66]. Cell cycle progres-
sion is further promoted in these potentially tumor ini-
tiating cells by the high levels of TELase [3, 25]. This
cell type also shows a constitutive expression of NF-«B
[60, 67]. Our third attractor recovers this genetic con-
figuration, showing inactivity of p53, p16, Rb, E2F and
ESE-2; and activity of NF-«B, TELase, Snai2, and Cyclin
(Fig. 1c, right).

Cells that have acquired this latter mesenchymal stem—
like phenotype have a strong tumorigenic potential,
since they show most of the hallmarks of cancer: The
low expression of ESE-2 accompanied by the over—
activation of Snai2 enable cells to sustain proliferative
signals and to evade growth suppressors by undergo-
ing a de—differentiation process [68]. Further, the con-
stitutive activity of Snai2 is associated to an motile
and invasive phenotype, and with the avoidance of
immune destruction [69] and deregulation of cellular
energetics [70]. The de-—activation of the senescence
markers pl6 and p53 and of the tumor suppressor
Rb, as well as the over—expression of TELase, confers
genome instability that is associated to a mutation—
prone phenotype [71] and enable cells to acquire replica-
tive immortality and to resist cell death. Moreover,
high levels NF—«B suggest chronic and tumor-promoting
cellular inflammation [72].
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The correspondence between the recovered attractors
in the GRN model simulation and the experimentally
observed gene or protein configurations in the stud-
ied cellular phenotypes strongly suggests that the pro-
posed core GRN indeed constitutes a regulatory module
that is robust to initial conditions and that comprises
a set of components and interactions able to restrict
the system to converge to the cellular states observed
during spontaneous immortalization. We conclude that
the derived core GRN module (Fig. 1b) includes a set
of sufficient and necessary molecular players and inter-
actions that specify epithelial, senescent and stem-like
mesenchymal cells.

The proposed GRN reproduces the characteristic
phenotypes of 6 different mutant conditions

To further validate our model, we tested if the GRN
(Fig. 1b) is able to reproduce the phenotypic con-
figurations (in the form of attractors) observed in 6
different mutant conditions. Specifically, we simulated
loss— and gain—of—function conditions of ESE-2, Snai2,
and pl6 (by setting the expression state for the corre-
sponding node permanently to “1” or “0’ respectively),
and compared the resulting attractors to the corre-
sponding gene expression profiles reported in the litera-
ture. When simulating ESE-2 loss—of—function the model
recovers a single attractor, equivalent to a mesenchymal
stem—like phenotype with increased Snai2 expression as
experimentally observed [18] (Fig. 2a). Simulations of the
ESE-2 gain of function mutant results in three attractors
that are consistent with the experimental description of
the phenotypes resulting from ESE-2 over—expression: an
epithelial senescent cell [61], a normal epithelial cell [18],
and a EMT intermediate state presenting simultaneous
features of both epithelial and mesenchymal states with
proliferative phenotype [73] (Fig. 2b). Simulating Snai2
loss—of—function gives rise to two attractors correspond-
ing to normal and senescent epithelial phenotypes, both
consistent with experimental observations [18] (Fig. 2c).
Simulating Snai2 gain—of-function mutation results in
a single attractor corresponding to mesenchymal stem—
like phenotype, which is also consistent with experimen-
tal observations derived from ectopic over—expression
of mesenchymal TFs [74] (Fig. 2d). These results are
also consistent with the TGF-S-dependent induction of
EMT, which occurs via the activation of Snail by down-
stream components of the TGF-f signaling pathway [75],
and which have been successfully reproduced in a recent
model of TGF-B-driven EMT [76]. p16 loss—of-function
simulations recover two attractors corresponding to an
epithelial and a mesenchymal stem-like cell, which is also
consistent with experimental observations [77] (Fig. 2e).
Finally, gain—of—function simulation of p16 recovered two
attractors, one associated with a mesenchymal stem—like
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but incompletely senescent (due to the lack of p53) phe-
notype, the other corresponding to an epithelial senes-
cent phenotype. The first prediction is consistent with
the immortalization and apoptosis—resistance shown by
mesenchymal stem-like cells, as well as with the capa-
bility of mesenchymal TFs to abrogate senescence [78].
The second attractor is consistent with the potential for
replicative senescence of epithelial cells [56] (Fig. 2f).
In conclusion, we found that our model simulations are
consistent with six mutant conditions reported in the
literature, providing further validation for our proposed
GRN.

Cellular inflammation accelerates the spontaneous
immortalization of epithelial cells

Inflammation has been recognized as one of the key
drivers of carcinogenesis, partly due to its implication
in the EMT [79]. Indeed, several pro-inflammatory
cytokines such as TFG-g [80] and IL-6 [81], some of

which are produced by senescent cells [82], have shown
to be strong inducers of EMT. Cells that are exposed to
such a pro-inflammatory micro-environment show an
over-activation of NF—«B [31, 47], which induces EMT
by triggering the expression of mesenchymal markers
including Snail [20] and silences the expression of pl6
and p53 [83]. To assess whether our model reproduces
this increased propensity of de—differentiation into a
mesenchymal stem-like phenotype in the presence of
cellular inflammation, we calculated the relative size of
the basins of attraction of the epithelial, senescent, and
mesenchymal stem-like phenotypes (Fig. 1c), with and
without the assumption of a constant over—activation
of the NF-«B node in the GRN model. We found that
cellular inflammation increases the size of the mes-
enchymal stem-like attractor from 56.25 to 75% while
decreasing the region of convergence of the epithe-
lial (from 17.97 to 6.25% ) and of the senescent (from
25.78 to 18.75% ) phenotypes (Fig. 1d). These results
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are in accordance with the experimental results stated
above, in which cellular inflammation is recognized
as an important driver of spontaneous immortaliza-
tion by promoting the induction of de—differentiation
of epithelial cells into a mesenchymal stem-like
phenotype.

Attractor time-ordered transitions: epigenetic landscape
of the uncovered GRN core module
During the tumorigenic transformation of epithelial cells
in culture a generic time—ordered series of cell state
transitions is observed and can be robustly induced [3].
Normal epithelial cells become first senescent cells, a
state which they afterwards overcome to acquire a mes-
enchymal stem-like phenotype. Interestingly, during the
progressive pathological description of epithelial carcino-
mas in vivo, the temporal pattern with which each of these
different cell phenotypes enriches the tissue seems to be
tightly ordered and is also generic to all types of such
cancers irrespective of the tissue where they first appear.
In order to test if the uncovered GRN core module not
only underlies and restricts the types of cell phenotypes
(attractors) but also their time—ordered transitions, we
performed two independent EL: (1) We explored the tem-
poral sequence of attractor attainment, and (2) calculated
the consistent global ordering of all the given attractors.
To do so, we followed [13, 84] and explored the EL asso-
ciated to the GRN by implementing a discrete stochastic
model as an extension to the deterministic Boolean net-
work model [11] (detailed in Methods). The results of
our analysis regarding the temporal sequence of attrac-
tor attainment (following the methodology proposed in
[13]) show that the most probable temporal order of
attractor attainment for a population of cells that initially
show and epithelial phenotype correspond to the expected
transition from an epithelial to a senescent to a mesenchy-
mal stem-like phenotype (Fig. 3a). The estimated tran-
sition probability matrices are given in Additional file 4:
Table S1.

In agreement with these results, following [85] we found
a consistent global temporal ordering of the uncovered
attractors. This analysis is based on calculating the rela-
tive stability of the three different attractors, which is done
by computing the Mean First Passage Time (MFPT, shown
in Additional file 5: Table S2) between pairs of attrac-
tors. These, in turn, epitomize barrier heights in the EL
by approximating a measure for the ease of specific tran-
sitions. Similar to the previous analysis, the uncovered
global ordering of attractors is Epithelial — Senescent
— Mesenchymal stem-like (Fig. 3b). This path corre-
sponds to the only order in which the system can visit
the three attractors following a positive net transition rate
(Additional file 6: Table S3). These results indicate
that, when considering intracellular regulatory constraints
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alone, the uncovered GRN core module structures the epi-
genetic landscape in a way that a specific flow across the
landscape is preferentially and robustly followed (Fig. 3c).
We anticipate that observed transition rates in vivo are
likely to be altered or favored by tissue—level processes
and/or additional GRN components underlying epithe-
lial cell sub—differentiation that have not been considered
here. These latter restrictions will be modeled in future
single cell and multi-level models building up on the
framework that has been put forward here.

Discussion

Multicellularity by definition implies a one—to—many
genotype—phenotype map. The genome of a multicellular
individual possesses the intrinsic potentiality to imple-
ment a developmental process by which all its different
cell-types and tissue structures are ultimately established.
In the last decades, a coherent theory to explain the devel-
opment of multicellular organisms as the result of the
orchestrating role of GRNs has been developed [8, 10, 11].
The main conclusion is that observable cell states emerge
from the self—consistent multi—stable regulatory logic dic-
tated by genome structure and obeyed by (mainly) TFs
resulting in stable, steady—states of gene expression. Can-
cer development and progression is also a phenomenon
intrinsic to multicellular organisms. Furthermore, simi-
lar to normal development, cancer is robustly established
as evidenced by its directionality and phenotypic con-
vergence [2]. Might also cancer be orchestrated by GRN
dynamics? Several hypothesis have been presented in this
direction such as the cancer attractor theory [2, 6], and
the endogenous molecular cellular network hypothesis
(86, 87]. In this contribution adhere to the viewpoint
of an intrinsic regulatory network, but we focus on a
specific developmental process at the cellular level: the
robust cell state transitions observed during the tumori-
genic transformation of human epithelial cells in culture
induced by cellular inflammation and resulting from sur-
passing a senescent state through EMT - i.e., tumorigenic
transformation due to spontaneous immortalization via
EMT [63, 88]. We propose that a mechanistic understand-
ing of this process is an important first step to unravel
key cellular processes which might be occurring in vivo,
where its rate of occurrence is likely to be regulated by
tissue—level and systemic conditions directly linked with
lifestyle choices, as well as additional regulatory interac-
tions underlying epithelial cell sub—differentiation.

A generic GRN underlying the epithelial, senescent and
mesenchymal stem-like phenotypes

The predominant strategy in the molecular study of can-
cer and cellular tumorigenic transformation has been to
focus on pathways and associated mutations. Aware that
signaling pathways are actually embedded in complex
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Fig. 3 Temporal sequence and global order of cell-fate attainment pattern under the stochastic Boolean GRN model during epithelial carcinogenesis.
a Maximum probability p of attaining each attractor, as a function of time (in iteration steps). The most probable sequence of cell attainment is:
epithelial(E) — senescent(S) — mesenchymal stem-like (M). The value of the error probability used in this case was & = 0.05. The same patterns
were obtained with the 3 different error probabilities tested (data not shown). b Schematic representation of the possible transitions between pairs
of attractors. Arrows indicate the directionality of the transitions. Above each arrow a sign (+) or (—) indicates whether the calculated net transition
rate between the corresponding attractors is positive or negative. Red arrows represent the globally consistent ordering for the 3 attractors: the
order of the attractors in which all individual transition has a positive net rate, resulting in a global probability flow across the EL.

¢ Schematic representation of the time-ordered phenotype transitions along the epigenetic landscape, showing the in—-between attractor barrier

highs in the landscape

regulatory networks, here we assembled curated litera-
ture into a GRN comprising the main molecular regulators
involved in key cellular processes ubiquitous to carcino-
genesis, following a bottom—up approach. Subsequently,
we followed a mechanistic approach to address the ques-
tion of whether we assembled a set of sufficient and nec-
essary molecular players and interactions able to recover
the cellular phenotypes and processes documented dur-
ing the spontaneous immortalization of human epithelial
cells in culture. Thus, in this contribution, we proposed,
analyzed, and validated an experimentally grounded core
GRN dynamical model.

Small developmental regulatory modules have been
shown to successfully include the necessary and suffi-
cient set of components and interactions for explaining, as
manifestations of intrinsic structural and functional con-
straints imposed by these GRNs, the dynamics of complex
processes such as stem cell differentiation [89], cell-fate
decision [90] and similar cellular processes during plant

morphogenesis [8, 9, 13, 16]. We hypothesized that a sim-
ilar core developmental module can be formulated in an
attempt to explain the cell-fates observed during sponta-
neous immortalization of human epithelial cells in vitro
resulting in a potentially tumorigenic state. In order to
show this, we first reduced the proposed larger network
(Fig. 1a) into a regulatory core module, consisting of a
small set of key molecular players and the regulatory inter-
actions between them (Fig. 1b). Although the components
of the core module have been previously shown to be
involved in EMT, the proposed architecture and topol-
ogy of this core module, had not been proposed before.
We extracted from available literature the expression pro-
files of the generally observable cell states of interest in
terms of this minimal set of molecules, and tested whether
the reduced GRN, formalized into logical rules, is able
to recover the biologically observable expression pro-
files as stationary and stable network configurations (i.e.,
attractors). Indeed, we found that the core GRN model
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converges exactly to the three observed gene expres-
sion profiles that correspond to the three phenotypes
that wild type cells acquire during the process of spon-
taneous immortalization (Fig. 1c). Our model analysis
also shows that cellular inflammation increases the size
of the basin of attraction of the potentially tumorigenic
mesenchymal stem-like phenotypic attractor (Fig. 1d),
which is in agreement with the strong tumorigenic effect
of inflammation that has been consistently reported in
the experimental and clinical literature. Further, our in
silico simulations of mutant conditions are also congru-
ent with the corresponding expression profiles (Fig. 2).
These results strongly suggest that we have successfully
included the key regulators and interactions at play during
the establishment of cell steady—states observed during
the tumorigenic transformation of human epithelial cells
resulting from spontaneous immortalization.

It is noteworthy that our model does not include
any hypothetical interaction or component, a common
practice in GRN modeling [9, 16, 90]. Our GRN model
exclusively integrates available published functional
experimental data; indeed, it was a surprising result
that the observed dynamical behavior emerged naturally
under such conditions. This suggests that despite incom-
plete information, there is enough molecular data to
uncover important restrictions underlying cell behavior
during transitions relevant to epithelial carcinogenesis.
Consequently, we consider that the networks reported
herein may serve as bona fide base models useful to inte-
grate novel discoveries, as well as components underlying
epithelial cellular sub-differentiation, while following a
bottom—up approach in cancer network systems biology.

Time-ordered transitions of the phenotypic attractors

Discrete GRN models can be used to integrate regulatory
mechanisms that not only recapitulate the observed gene
expression patterns, but that also reproduce the observed
developmental time—ordering of cell phenotypes. This
can be done by considering stochasticity in the model in
order to explore [11, 17, 84] and/or characterize [85] the
associated EL. Importantly, by exploring noise—induced
transitions we do not assume that noise alone is the driv-
ing force of the transitions, instead, we exploit noise as a
tool to explore the GRN=based version of Waddington’s
EL and to indirectly characterize its multidimensional
structure. Specifically, by calculating the relative stabil-
ity of the attractors (see Methods) we approximate the
in—-between attractor barrier heights in the landscape.
Furthermore, measures of relative stability can also be
exploited to calculate net transition rates measuring the
ease of specific inter—attractor transitions and to uncover
the predominant developmental path across the epige-
netic landscape [91]: ordered transitions sharing positive
net transition rates will be preferentially followed. Our
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results show that such a developmental path follows the
time—order of cellular phenotypic states from epithelial,
to senescent and finally mesenchymal stem—like cells with
a tumorigenic potential (Fig. 3). In other words, the con-
straints imposed by the GRN structure the associated EL
in such a way that an epithelial cell in culture as a “ball”
would naturally roll following such a path, in agreement
with the observed spontaneous immortalization process
(Fig. 3¢).

Even in the case of the simple model presented here,
it is interesting that, of the many possible cell states and
developmental paths, the core GRN network is canalized
to the few steady—states and the developmental time—
ordering consistent with the molecular characterization of
cell phenotypes observed during spontaneous immortal-
ization and correlating with carcinoma progression in vivo
(see below). This suggests that specific progressive alter-
ations or particular “abnormal” signaling mechanisms are
not necessarily required for a cell to reach a potentially
tumorigenic state. Additionally, robustness analysis per-
formed on the same network showed that the recovered
attractors are also robust to permanent alterations of the
regulatory logic (see Additional file 7: Text).

Conclusions

In this contribution we propose an experimentally
grounded GRN model for spontaneous immortalization.
For the first time, we integrated a wealth of empiri-
cal evidence into a GRN (41 nodes, Fig. 1a) which we
reduced to a core GRN developmental module (9 nodes,
Fig. 1b) that converges to the three phenotypes observed
during the spontaneous immortalization of epithelial
cells (Fig. 1c). Simulations of cellular inflammation lead
to an increase in the size of the basin of attraction
of the potentially tumorigenic mesenchymal stem-like
phenotype (Fig. 1d). Our model also reproduces sev-
eral experimentally reported mutant conditions (Fig. 2),
as well as the time—ordered phenotypic transitions
undergone by epithelial cells during the process of spon-
taneous immortalization (Fig. 3). The proposed GRN
constitutes thus a integrative, coherent, and experimen-
tally validated framework which can be used in the future
for the integration and analysis of additional signaling
and mechanical processes that affect, and are affected
by, the oncogenic transformation of the epithelial tissue.
To this end, first we will explicitly incorporate into the
current model EMT—inducing signaling pathways, (trig-
gered by pro-inflammatory cytokines), increased TFG-
concentrations, or changes in the mechanical properties
of the surrounding environment. Analysing how these
pathways affect the phenotypic outcome, and how differ-
ent nutritional or pharmacological conditions modulate
these trans-differentiation processes (using for example
the methodologies proposed in [92, 93]) can aid the design
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of better prevention and treatment or even oncogenic
transformation reversion strategies. To explore this com-
plex interplay between the transcriptional and signaling
events driving the phenotypic transitions in individual
cells, and the changing properties of the epithelial tis-
sue, we will develop multi-scale tissue level models. Such
a framework will enable the systematic assessment of
the role on the oncogenic process of several tissue—level
constraints such as cell cycle progression, cell-cell inter-
actions, differential proliferation rates, as well as physical
fields (e.g., mechanical forces).

Our proposed integrative, quantitative, and dynamical
framework contributes to the understanding of the mech-
anisms underlying the onset and progression of epithelial
cancer, which is necessary for devising new and more
effective preventive strategies that halt or slow the pro-
gression of these diseases.

Methods
Construction of the network underlying epithelial
carcinogenesis
A total of 159 references, considering both references in
the main text and in the Supplementary Information [see
Additional file 8], were carefully and manually reviewed in
order to determine a minimal set of cellular phenotypes
and processes which enable a generic representation of
spontaneous immortalization (also reported in epithelial
carcinogenesis) on the basis of cell state transition events.
Following a bottom—up and an expert knowledge
approach we propose a set of cellular dynamical pro-
cesses ubiquitous to spontaneous immortalization (also
reported in epithelial carcinogenesis), namely: replicative
cellular senescence EMT driven by inflammation. The cel-
lular phenotypes, epithelial, senescent, and mesenchymal
stem-like produced by EMT induction have been largely
characterized as biological observables involved in such
processes. We take this information as a methodologi-
cal basis to integrate a generic dynamical network model
of spontaneous immortalization. As a first step in net-
work integration, we assembled a set of TFs and additional
molecular species involved in the establishment and regu-
lation of these cellular states and processes. Subsequently,
we manually retrieved documented regulatory interac-
tions among the molecular species, considering only those
supported by experimental evidence. The resulting nodes
and regulatory interactions were then assembled manu-
ally into the network represented in Fig. 1a with nodes
representing genes and proteins and edges representing
activating or inhibitory interactions.

Network-based gene set enrichment analysis

The bioinformatics tools EnrichNet [94] and TopoGSA
[95] were used to perform network—based gene set enrich-
ment analysis and topology—based gene set analysis,
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respectively. Briefly, EnrichNet maps the input gene set
into a molecular interaction network and calculates dis-
tances between the genes and pathways/processes in a
reference database. TopoGSA also first maps the input
gene set into a reference network, to then compute its
topological statistics, to finally compare these against the
topology of pathways/processes in a reference database.
Here a connected human interactome graph extracted
from the STRING database, the KEGG and the GO Bio-
logical Process databases were used as reference molec-
ular interaction network and database, respectively. Both
analysis were performed using the Cytoscape plugin
Jepetto [96].

Network reduction

The regulatory core underlying spontaneous immortal-
ization (Fig. 1b) was obtained from the large network
(Fig. 1a) by iteratively reducing all the simple mediator (i.e.
those with in-degree and out-degree of one) and source
(those with no regulators) nodes. This reduction pro-
cess has been shown to conserve the attractors of the
original Boolean network under an asynchronous update
method [97]). During the reduction process, we kept the
main molecular players controlling DNA damage (p53
and pl16), Cell Cycle (TELase, E2F, Rb and cyclin), dif-
ferentiation into epithelial cells (ESE-2), differentiation
into mesenchymal cells (Snai2), and cellular inflammation
(NF-«B), since different activity configurations of these
molecular players define the transcriptional identity of the
three cellular phenotypes we sought to reproduce with the
proposed model.

Dynamical gene regulatory network model

A Boolean network models a dynamical system assum-
ing both discrete—time and discrete—state variables. This
is expressed formally with the mapping:

x%(t+1) =F (x1(1), %2(0), . . ., %, (1)) (1)

where the set of functions F; are logical propositions
(or truth tables) expressing the relationship between the
genes that share regulatory interactions with the gene
i, and where the state variables x;(¢) can take the dis-
crete values 1 or O indicating whether the gene i is
expressed or not at a certain discrete—time t, respec-
tively. An experimentally grounded Boolean GRN model
is then completely specified by the set of genes pro-
posed to be involved in the process of interest and the
associated set of logical functions derived from exper-
imental data [17]. The set of logical functions for the
core regulatory module used in this study is given in the
Additional file 3. The dynamical analysis of the Boolean
network model was conducted using the package BoolNet
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[98] within the R statistical programming environment
(www.R-project.org).

Size of the basins of attraction

The size of the basins of attraction of the GRN cor-
responds to the percentage of initial Boolean network
configurations converging to that attractor, and were cal-
culated for our GRN under wt (Fig. 1d) and under differ-
ent mutant conditions (Fig. 2) by exhaustively exploring all
the 2° = 512 possible initial configurations of the GRN.

Epigenetic Landscape characterization

Stochastic version of the Boolean GRN

In order to extend the Boolean Network into a discrete
stochastic model and then study the properties of its asso-
ciated EL, the so—called Stochasticity In Nodes model
was implemented following [13, 17, 84]. In this model,
a constant probability of error £ is introduced for the
deterministic Boolean functions. In other words, at each
time step, each gene “disobeys” its Boolean function with
probability &. Formally:

Pyie+1) [F (xregl (t))] 1-
(Xreg, (t))]
The probability that the value of the now random vari-

able x;(t 4+ 1) is determined or not by its associated logical
function F;(Xyeg; (£)) is 1 — & or &, respectively.

) (2)

§
Pxi(t+1) [1 - £, (3)

Attractor Transition Probability Estimation
An attractor transition probability matrix IT with compo-
nents:

wj =P (A1 = jlAs = i), 4)

representing the probability that an attractor j is reached
from an attractor i, was estimated by numerical simulation
following [13]. Specifically, for each network state i in the
state space (2") a stochastic one—step transition was simu-
lated a large number of times (& 10, 000). The probability
of transition from an attractor / to an attractor j was then
estimated as the frequency of times the states belonging
to the basin of the attractor i were stochastically mapped
into a state within the basin of the attractor j.

Following the Discrete Time Markov Chains [99] the-
oretical framework, the estimated transition probability
matrix was integrated into a dynamic equation for the
probability distribution:

Py(t+1) =I1PA(D), (5)
where P4 (¢) is the probability distribution over the attrac-
tors at time ¢, and IT is the transition probability matrix
(Additional file 4: Table S1). This equation was then iter-
ated to simulate the temporal evolution of the probability
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distribution over the attractors starting from a specific
initial probability distribution (Fig. 3a).

Attractor relative stability and global ordering analyses

In addition to the calculation of the most probable tempo-
ral cell-fate pattern [13], a discrete stochastic GRN model
enables the study of the ease for transitioning from one
attractor to another [91]. Specifically, a transition bar-
rier in the EL epitomizes the ease for transitioning from
one attractor to another. The ease of transitions, in turn,
offers a notion of relative stability. It has recently been
proposed that the GRN has a consistent global order-
ing of all cell attractors and intermediate transient states
which can be uncovered by measuring the relative stabil-
ity of all the attractors of a Boolean GRN (85, 91]. Here,
the relative stability of each one of the cell states were
defined based on the MFPT. Specifically, a relative stabil-
ity matrix M was calculated which reflects the transition
barrier between any two states based on the MFPT. Here,
in all cases, the MFPT was numerically estimated. Using
the transition probabilities among attractors, a large num-
ber sample paths of a finite Markov chain were simulated.
The MFPT from attractor i to attractor j corresponds to
the averaged value of the number of steps taken to visit
attractor j for the fist time, given that the entire probability
mass was initially localized at the attractor i. The average
is taken over the realizations. Following [91], based on the
MEPT values a net transition rate between attractor i and
j can be defined as follows:

1 1

dij = : (6)
MFPT;;  MFPT;

This quantity effectively measures the ease of transition
as a net probability flow, and is shown for our GRN in
Additional file 5: Table S2. For all the calculation involving
stochasticity, the robustness of the results was assessed by
taking three different values for the probability of error
(0.01,0.05,0.1). Stability of the results was assessed by
manually changing the number of simulated samples until
results become stable.

The consistent global ordering of all attractors uncov-
ered with the core GRN was defined based on the formula
proposed in [85]. Briefly, the consistent global ordering
of the attractors is given by the attractor permutation
in which all transitory net transition rates from an ini-
tial attractor to a final attractor are positive. This is
schematically represented in Fig. 3b. Calculated transi-
tion probabilities, MFPT, and net transition rate matrices
are included in Additional file 4: Table S1, Additional
file 5: Table S2 and Additional file 6: Table S3, respec-
tively. R source code implementing all the calculations and
analyses is available upon request.
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