
The development of a multicellular organism 
with its array of organs and tissues is a 
reproducible event that, upon detailed 
observation, shows coordination between two 
processes: an increase in cellular mass and 
phenotypic diversification of the expanding 
cell populations. Classical studies of 
organisms with fixed lineages and numbers 
of cells established that there is an order to 
these processes in which cells adopt different 
identities with exquisite spatiotemporal 
precision in parallel to the increase in 
numbers1,2. In the case of Caenorhabditis 
elegans, the degree of this association is 
extreme, as the outcome of every cell division 
is largely predictable in terms of the identity, 
fate and relative position of the emerging 
cells1. This reproducibility suggests the 
existence of an underlying programme: 
a sequence of instructions towards an end 
point, which in this case is a specific cell 
type or cell fate. These programmes are 
implemented by gene regulatory networks 
(GRNs), which are fundamental units of 
molecular activity that build and maintain 
functioning tissues by promoting sequential, 
and largely irreversible, patterns of gene 
expression that link genes to cellular 
lineages3,4. The universality of this notion is 
supported by the observation that tissues and 
organs of insects and vertebrates, which do 
not have fixed numbers of cells, also emerge 

developing organisms and to identify the 
underlying molecular mechanisms. One of 
the most enduring is Conrad Waddington’s 
notion of the ‘epigenetic landscape’ 
(REFS 13,14), which focused on the activity 
of single cells and tried to conceptualize 
the emergence of developmental choices 
as the result of intrinsic constraints 
(regulatory interactions) shaped during 
evolution. With the recent rise in single- 
cell transcriptional methods and the 
accompanying statistical and computational 
analytical tools, we have a greater ability 
than ever before to begin to unravel some of 
the complexity of cell fate decisions and to 
challenge long-standing paradigms.

In this Opinion article, we discuss the 
relationship between Waddington’s epigenetic 
landscape and genetic programmes in the 
light of recent advances in genomics and, 
specifically, single-cell technologies. We 
focus particularly on the decision events 
within cell lineages; using examples and 
illustrations from recent literature, we review 
the relationship between the data and the 
abstract representations that exist for their 
interpretation. We suggest that there might 
be a fundamental flaw in the reinterpretation 
of Waddington’s landscape in terms of an 
assumption of continuous trajectories that 
branch smoothly at cell fate decisions, and 
instead propose the notion of a transition 
state as an alternative that accounts for 
the gene expression heterogeneity in terms 
of discontinuities in the mechanisms of 
fate choice.

Landscapes and dynamical systems
Waddington drew several representations 
of his famed landscape15, but two (FIG. 1a,b) 
have come to be identified with his views on 
development and evolution. In the first and 
most popular one, a cell, reimagined as a 
pebble, begins at the top of a hill and follows 
existing paths in the landscape driven by a 
gravitational force that leads it into one of 
several possible fates represented as valleys. 
In principle, the decisions about fate are 
stochastic, so if there are many cells rolling 
down the landscape they will go one way or 
another independently. Once a cell makes 
a decision, it is restricted in its subsequent 
decisions by the route it has taken, 
representing decreased cellular potential 

through lineages — in these cases, polyclonal 
lineages5 — associated with ordered 
sequences of gene expression3,6,7.

Programmes of gene expression are 
cell autonomous in that they operate 
independently and reproducibly in individual 
cells. Examples of this phenomenon are the 
lineages of stem cells in several tissues8,9 and, 
most clearly, the differentiation processes 
of embryonic stem (ES) cells, which closely 
resemble the events in embryogenesis10,11. 
A formal consideration of the relationship 
between cell lineages and genetic programmes 
during development highlights some 
essential elements of any process of cell fate 
specification: a sequence of instructions 
associated with a given fate, specific decision 
events, directionality and a means of 
apportioning defined numbers of cells to 
particular fates to generate proportionate 
tissues. The most crucial feature of any cell 
fate specification process is the mechanism 
by which cells make a choice, the so‑called 
cell fate decision. For the most part, this 
process is binary12 and steers cells to adopt 
one of two cell states, thus enabling an 
isogenic population to assume divergent 
states over time, each with a specific profile 
of gene expression.

Many attempts have been made to 
understand the connection between genetic 
programmes and cell fate decisions in 
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and fate restriction. In a second image, 
Waddington presciently implies that 
there are genetic regulatory mechanisms 
responsible for the shape of the landscape. 
Any modern interpretation of Waddington’s 
landscape needs to consider three elements 
that are built into his vision: the discreteness 
of the final states or fates, the smooth 
paths down which cells travel as they 
move towards these states and the decision 
events that occur at binary branches in 
the landscape.

formalism, Waddington’s intuition of genetic 
control of the landscape is brought to light 
using gene expression profiles projected 
onto an n‑dimensional phase space, with 
vector fields where stable states act as 
attractors16,18. It is these frameworks that 
have perhaps become most popular when 
invoking the Waddington landscape as a 
reference to interpret gene expression data 
in development and disease.

The epigenetic landscape is without a 
doubt a compelling and prescient analogy 
for how the static information encoded in 
the genome is translated dynamically into 
tissues and organs and how it is used to 
drive cell fate decisions. However, despite its 
popularity, when examined in closer detail, 
it harbours problems of formalism and 
interpretation. Although a good metaphor, 
it is difficult to implement formally; potentials 
cannot realistically be calculated analytically 
for more than one or two dimensions20, 
so interpretations of the z coordinate in 
graphical outputs need to be treated with 
care, especially as cellular states are often 
characterized by differences in many 
thousands of genes. More specifically, as a 
system far from chemical equilibrium, with 
no conservation of energy and in which the 
energy effort to move from A to B depends 
on the exact path, rather than the difference 
in elevation (non-gradient), the true 
potential landscape is unobtainable and 
alternatives (discussed later) require some 
assumptions. Furthermore, an essential 
feature of developmental processes is their 
dynamic behaviour, with properties that 
can make their accurate representation 
difficult. For instance, developmental systems 
often show overall directionality with some 
local reversibility, are associated with high 
levels of control such that cells can make 
decisions that are seemingly deterministic 
rather than stochastic, or display specific 
temporal dynamics.

The most critical challenge to 
Waddington’s vision arises specifically at the 
branching points in the landscape, where cell 
fate decisions take place. In Waddington’s 
representation, although the final states are 
clearly discrete, at decision points smooth 
channels simply branch off as states diverge, 
implying that cells passively ‘slide’ into 
the decision event (FIG. 1a,b). Alternative 
theories posit that the initial and final states 
do not converge and that the decision is 
discontinuous21 or that cells must actively 
‘jump’ to overcome barriers between discrete 
fates22. This distinction has broad implications 
for the interpretation of experimental data 
sets at cell fate decisions.

Although Waddington was aware of 
some dynamical systems theory, he used the 
epigenetic landscape more as a metaphor 
for development, without being explicit 
about its details. A formal underpinning 
of the landscape was first suggested by 
Kaufmann16,17 in 1969: he formalized the 
landscape by identifying the valleys with 
attractors in Boolean networks. Later, 
Huang and colleagues18,19 developed this 
notion further into a multidimensional 
dynamical systems framework. In this 

Figure 1 | Waddington’s epigenetic landscape and modern representations. a | The classical view 
in which a cell, represented as a pebble, starts at the top of a hill and rolls down the landscape through 
a series of branching points that represent decision events. b | Waddington conceived that the land-
scape was underpinned by the activity of genes, represented as pegs underneath the hills and valleys. 
c | Cell fate decisions are coordinated through the regulatory interactions between genes (x and y). 
Simple network motifs such as the bistable switch (left panel) can be modelled, and phase planes can 
be drawn, which identify the stable (filled red circles) and metastable (empty purple circle) points of the 
system (middle panel). With this framework, quasipotential values for each potential state of the system 
can be calculated and plotted as a third dimension (right panel). d | By invoking a time-dependent 
parameter of the network (λ), the dynamic response of the system can be examined. Such parameter 
changes represent biological situations in which cellular signalling inputs alter the network and affect 
fate decisions (left panel). At critical parameter values, the topology of the system can change, for 
instance by converting a monostable system with one stable point (red line) into a bistable one with two 
stable (red lines) and one metastable points (purple dashed line; middle panel). Calculating the quasi
potential values in this system can give a dynamic landscape (right panel), which is highly reminiscent 
of Waddington’s original epigenetic landscape. Parts a and b are from The Strategy of the Genes, 
C. H. Waddington © Allen & Unwin 1957. Reproduced by permission of Taylor & Francis books  UK.
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Gene regulatory networks and cell state
The genetic analysis of development in model 
organisms led to the identification of genes 
associated with particular cell fates and, 
through epistasis analysis, to the arrangement 
of those genes into ‘developmental pathways’, 
such as the segmentation cascade of 
Drosophila melanogaster23,24 or the vulva 
pathway in C. elegans25. The interpretation 
of these pathways rests on two important 
assumptions that permeate gene expression 
analyses of similar processes: first, given 
that development proceeds over time, 
the chains of gene activity must reflect 
continuous temporal sequences of events; 
and, second, the process of diversification 
proceeds through binary choices. As different 
studies uncovered an increasing number of 
genes involved in particular processes and 
identified many of these as transcription 
factors, pathways became linked to the 
activity of GRNs3. In its basic structure, 
a GRN captures a collection of interactions 
between transcription factors and their 
targets, and can be represented in network 
diagrams with genes or proteins as nodes 
and their input–output relationships as 
edges that, when possible, have a directional 
component26. The signs (+ or –) and strengths 
of the edges are identified either genetically 
or biochemically and provide a rational 
description of the regulatory relationships 
of a system. In its ideal form, a GRN should 
contain a complete molecular description of 
a specific process and provide insights into 
the manner in which multiple transcription 
factors create a unique ‘code’ for a particular 
cell fate and, if possible, for cell fate decisions. 
However a complete GRN — as the sum total 
of transcription factors associated with a fate 
— is impractical to model; just deriving all of 
the parameters of each interaction across a 
transcriptome is an insurmountable challenge 
in most biological systems. Fortunately, there 
are ways to reduce this complexity and, in 
the process, potentially identify the elements 
that drive biological events. The ability to 
do so lies in the observation that GRNs 
are organized in hierarchical and highly 
modular structures27–29.

Typically, high-throughput transcriptional 
studies generate large correlational structures, 
which, although useful for identifying 
markers or signatures of various cell types, 
are difficult to link to dynamic processes. 
Alternatively, such data can be used together 
with perturbation experiments to identify 
small, regulatory circuits of the system, 
often arranged in common structural 
patterns known as network motifs26,30, 
which are far more amenable to modelling. 

structures that are adapted to produce stable, 
discrete cellular states29,31,32. Thus, GRNs can 
be constructed as interactomes of network 
motifs, which provide a more insightful and 
functional representation of the processes 
under consideration30.

Waddington’s potential landscape
An advantage of a network motif formalism 
of GRNs is that landscapes similar to 
Waddington’s epigenetic landscape can 
be reconstructed largely using dynamical 
systems representations (FIG. 1). For example, 
bistable switches have many of the properties 
required for stable fate decisions and have 
been implicated in various systems in 
which a decision results in two discrete 
states33–35. Such network motifs can be 

The simplest GRN structure that might 
give rise to a directional state transition 
event is linear, whereby a signalling input 
increases the expression of gene A, which 
in turn regulates the expression of gene B, 
and so on, meaning that an input regulates a 
cascade of downstream genes that results in 
the equivalent of a ‘gene avalanche’ (REF. 20). 
Although this model is sufficient to cause 
systemic directionality, it proves lacking for 
other contexts in which signalling, rather 
than having a singular defined cell-type 
output, works pleiotropically to regulate 
diverse fate decisions at varying times during 
development. Instead of simplistic linear 
structures, there is evidence for core feedback 
loops in regulatory networks that control 
development, effectively creating circular 

Glossary

Bifurcation theory
A branch of mathematics associated with dynamical 
systems that accounts for the evolution of a physical 
or biological system according to a control parameter.

Cell fate
The developmental destination of a cell if left undisturbed 
in its environment. The fate of a cell is more restricted than 
its potential.

Cell states
The transcriptional output of a gene regulatory network, 
with a variable degree of stability; development is 
characterized by sequences of cell states that culminate 
in specific fates.

Cellular potential
Biologically, potentials represent the range of fates into 
which a cell can develop. It is reduced during development 
and is obscured in, for example, lineage-tracing experiments, 
which only reveal fates. In physics, potential can be 
described as the ability to do work and represents an 
amount of energy stored for that purpose. In both biology 
and physics, it represents an ability to do something.

Dynamical systems
Systems defined by a number of related variables that evolve 
in time according to certain rules. A gene regulatory network 
is an example of a dynamical system in which the variables 
are the transcription factors that represent the nodes.

Epistasis analysis
A genetic technique in which analysis of the phenotype 
of double mutants allows an ordering of the temporal 
activity of the wild-type products of the mutated genes. 
This works best, and often only, in linear processes.

Gene expression heterogeneity
Variability in the expression of a gene or a group of 
genes across a population at single-cell resolution.

Gene regulatory networks
(GRNs). GRNs represent units of interacting proteins that 
are functionally constrained by defined regulatory 
relationships. These interactions provide a structure and 
determine an output in the form of a pattern of gene 
expression. GRNs are usually represented by nodes 
(proteins) and edges (their interactions).

Genetic programmes
Temporally ordered interactions between proteins, usually 
transcription factors, associated with the emergence of 
cell types.

Macrostate
A notion derived from statistical mechanics that 
defines the macroscopic state of a system (for example, 
a particular volume or temperature) and, in the case 
of a biological system, a functional state. Importantly, 
a macrostate can be observed and measured.

Microstate
A notion derived from statistical mechanics that defines 
a configuration of the elements that are associated 
with a particular macrostate of the system: for example, 
a molecular configuration associated with a particular 
volume or temperature. Any given macrostate may be 
associated with many different microstates. We 
surmise that gene expression profiles can be related 
to microstates in a biological context. These are 
often inferred.

Phase space
A geometrical representation of the possible states of a 
dynamical system as a function of the value of its 
variables. A simple example is the states of water in 
terms of pressure, temperature and volume. In a cell state, 
the ‘phenotype’ is represented by the levels of expression 
of the genes that are active in that state.

Pseudotime
A notion derived from the analysis of single-cell 
transcriptomes in a cell population that allows the 
ordering of individual cells based on minimal 
differences of their transcriptomes. It has an implicit 
assumption that the resulting order reflects a smooth 
and continuous change in the state of the cell and 
aims to relate this change to changes in gene  
expression.

Transition state
An intermediate state during cell fate decisions in which 
a cell exhibits a mixed identity between two or more states, 
which often represents the state of origin (that is, the initial 
state the cell is in) and that of destination (that is, the 
identity that the cell is adopting). It is highly unstable 
and reversible.
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modelled and projected onto a phase 
plane that identifies the stable points of 
the system and the vectors that govern the 
motion of any state. If one could calculate 
the potential of every position on the phase 
plane, an extra dimension could be added 
that would generate a landscape. However, 
it is important to remember that for non-
equilibrium, non-gradient systems such as 
genetic networks, it is not possible to obtain 
a strict potential function20. The alternative 
is to evaluate the steady-state probabilities 
of each state or to decompose the vector 
field and approximate the quasipotential 
landscape19,20. Using these methods, a value 
of quasipotential can be calculated for 
every state that is inversely correlated to 
the probability that a cell will assume that 
state, meaning that local ‘low-energy states’ 
are more densely populated36. Changes in 
the expression profile of any cell are then 
associated with altered coordinate positions, 
meaning that dynamic state transitions can 
be directly mapped onto the landscape.

In the extreme, there are two means 
by which cells can change their state: by 
stochastic fluctuations that cause cells to 
jump around the landscape without requiring 
any parameter changes, or by extrinsic inputs 
to the system that alter the parameters of the 
network and change the landscape geometry 
(the position, shape or size of landscape 
elements) or topology (the number of 
landscape elements)37,38 (FIG. 1d).

Stochastic fluctuations appear to be an 
intrinsic feature of some biological systems, 
especially with regard to transcription in 
which low numbers of transcription factors 
and DNA molecules can cause sporadic 
engagement of RNA polymerase and lead to 
discontinuous mRNA synthesis39,40, resulting 
in deviations from the stable attractor state. 
Usually, these perturbations are small enough 
that the force of the attractor will draw the 
system back to its original stable state, but 
occasionally cells might cross a barrier in 
the landscape that divides attractor basins, 
causing a spontaneous state-switching 
event. Biologically, these events could 
represent stochastic fluctuations, perhaps of 
transcription factor levels, over a threshold 
that proves sufficient to promote cell 
identity changes41. Such events have been 
described in bacteria, in which they have 
been shown to have functional significance42. 
Stochastic fluctuations might also apply to 
stem cells in eukaryotes and, in particular, 
ES cell populations43–45. Such noise-induced 
transition events can be modulated by the 
landscape geometry such that deep attractor 
basins, or high barriers between basins, 

Sources of observed heterogeneity can 
be broadly divided into two groups: those 
associated with the experimental protocol 
or those that are an integral element of the 
process under study. Although technical 
noise is indeed a concern in the analysis of 
the data, accurately quantifying technical 
noise remains challenging. Nevertheless, 
there are experimental and analytical means 
of reducing the impact of such occurrences, 
including RNA spike-ins of known 
concentrations, or through application of 
compensatory models52,53. If noise is suitably 
accounted for, the remaining variability can 
be associated with biological processes that 
may or may not have functional relevance. 
Over the past few years, mouse ES cells have 
been well studied in this context, and there 
is now ample evidence that, in this system, 
broad distributions of many transcription 
factors have functional significance44. For 
example, in the case of Nanog, its expression 
distribution has been shown to be dynamic, 
with individual cells capable of re-forming the 
original distribution, suggesting some overall 
control of the heterogeneity43,54,55. Importantly, 
cells with different expression levels of Nanog 
have different functional capabilities for 
self-renewal and differentiation43,56, implying 
that dynamic heterogeneity is functionally 
relevant to cellular decision making.

Attempts to ascribe meaning to observed 
heterogeneities in gene expression, alongside 
the sheer growth in popularity of single-cell 
methods, have necessitated the development 
of statistical and computational analyses 
that are capable of accessing the wealth of 
information harboured within the patterns 
of these heterogeneities. Many of these 
techniques were borrowed from other 
disciplines, whereas others have been devised 
specifically for the application to such data 
types (TABLE 1). The simplest methods seek to 
cluster cells on the basis of the similarities of 
their expression profiles and to distinguish 
them on the basis of differences, thereby 
revealing underlying structures within 
the population. Many of these methods 
execute weighted dimensionality reductions 
that turn the n‑dimensional space into a 
number of components or dimensions that 
enable visualization and identification of 
the population structure. Classification 
of single cells into clusters by mapping them 
to gene expression patterns can identify the 
subpopulation structure within the data 
set. Clustering analysis of single-cell data is 
particularly valuable in identifying very rare 
or transient populations of cells that might 
not have been previously observable from 
low-dimensional or ensemble assays57,58.

can reduce the probability of spontaneous 
transition events and even impose 
directionality on the transitions20,46.

Alternatively, the change in state can 
be associated with a transformation of the 
landscape, associated with variations in 
some parameters of the system38 and often 
mediated by input stimuli on the networks. 
In a biological context, these inputs could 
represent extracellular signalling associated 
with cell fate decisions, such as fibroblast 
growth factor (FGF), Nodal or bone 
morphogenetic protein (BMP) signalling. At 
critical parameter values, the landscape can 
change qualitatively: for example, converting 
a monostable system, with one stable state or 
attractor, to a bistable system, with two. These 
dynamical system changes can be related 
to bifurcations (BOX 1). This formalism is 
important as it can predict systemic behaviour 
from an underlying GRN, providing a testable 
assessment of various models. Identifying 
which model best approximates the biological 
behaviour of cell fate decisions requires 
experimental evidence of sufficient resolution 
as to be able to test predictions, ideally using 
dynamic data from single cells.

Single-cell resolution of fate decisions
Over the past 10 years, there have been 
remarkable advances in our ability to 
monitor the transcriptional activity 
of single cells either for specific sets of 
genes by multiplexed quantitative 
reverse transcription PCR or for whole 
transcriptomes by RNA sequencing 
(RNA-seq)47,48. The output of these 
experiments is a gene expression matrix 
of n genes across m cells that reveals how 
the genome is expressed within individual 
cells, and from which the corresponding 
distribution pattern of expression 
across a population can be estimated. 
A complementary technique measures 
protein levels at single-cell resolution by 
labelling antibodies with heavy-metal 
tags (CyTOF)49. Applications of these 
technologies to an ever increasing number 
of case studies have revealed that although 
a cell type is indeed largely characterized by 
differential expression of particular genes, 
when observed at the level of individual 
cells, even phenotypically homogeneous cell 
types display a high degree of heterogeneity 
in the expression of individual genes. Indeed, 
the crucial difference between ensemble 
and single-cell-level transcriptional assays 
lies resolutely in the ability to observe 
heterogeneity; the challenge is to interpret 
this heterogeneity in a meaningful way 
(reviewed in REFS 48,50,51).

P E R S P E C T I V E S

696 | NOVEMBER 2016 | VOLUME 17	 www.nature.com/nrg

©
 
2016

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved. ©

 
2016

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved.

elisa

elisa

elisa

elisa

elisa

elisa

elisa

elisa

elisa

elisa

elisa

elisa

elisa

elisa

elisa

elisa

elisa



Nature Reviews | Genetics

A A

A

A

A

A

A

A

B

B

B

B

B

B

B

B

B

B

C

C

B C

C

C

C

a  Supercritical pitchfork bifurcation

b  Saddle-node bifurcation

c  Subcritical pitchfork bifurcation

x

x

x

x

λ

Monostable (i) to bistable (ii)

(i)

(ii)

x

λ

Monostable (i) to tristable (ii)
to bistable (iii)

(i)

(ii)

(iii)

x

λ

Bistable (i) to monostable (ii)

(i)

(ii)

Q
ua

si
po

te
nt

ia
l

Q
ua

si
po

te
nt

ia
l

Q
ua

si
po

te
nt

ia
l

Box 1 | Bifurcations and cell fate decisions

A gene regulatory network (GRN) can be 
construed as a dynamical system in which the 
temporal evolution of the system is a function of 
the parameters of the network (for example, the 
rate constants of the gene interactions). An 
important consequence is the ability to apply 
‘bifurcation theory’, a geometrical formalism that 
identifies critical parameter values at which 
qualitative changes in systemic behaviour occur. 
This is particularly important in the context of 
fate decisions, as such an analysis could identify 
the drivers of the system and dynamics of the 
decision-making process.

There are several types of bifurcation108, each 
with specific features that produce different 
behaviours. Here, we focus on three that are 
pertinent to the study of cell fate decisions37,38,94. 
The simplest is the supercritical pitchfork 
bifurcation (see the figure, part a), which maps 
well to the classical Waddington landscape, as it 
allows for a temporal diversification of cell states 
by binary fate decisions. Cells in a locally 
monostable regime on a landscape undergoing a 
supercritical pitchfork bifurcation would 
gradually move into one of two new stable states 
after the bifurcation, and as a result fate decisions 
appear smooth and continuous ( in the 
mathematical sense), as a cell remains in a stable 
basin throughout the decision event. Although 
this bifurcation type is favoured by many models 
of fate decision, it is crucially unable to account 
for a key feature of cell fate decisions: their 
irreversibility94 (see the main text). In the 
supercritical pitchfork bifurcation, the temporal 
dynamics of the landscape depend entirely on the 
parameter change: if the parameter were 
reversed, cells from both of the two final states 
would simply slide back to the initial state. This 
reversibility is a challenge in the context of cell 
fate decisions given that state reversibility is not 
often observed, instead requiring experimental 
manipulation.

Alternatively, irreversibility can be achieved 
through a saddle-node bifurcation94 (see 
the figure, part b). In this case, rather than the 
creation of new stable states, all stable states 
pre-exist in the system and a state is removed as 
the parameter value changes, when an unstable 
point (the ‘saddle’) and a stable state (the ‘node’) 
meet, effectively destabilizing the initial state. 
Similarly to the supercritical pitchfork bifurcation, 
the saddle-node bifurcation is capable of 
reproducing the temporal progression of cell 
states, but it also has the intrinsic properties of 
irreversibility and hysteresis because reversing 
the parameter levels in a deterministic system  
will retain cells in their final state, as a barrier 
between states exists. Importantly, the initial  
and final states (A and B or C) never converge, 
meaning that the temporal state change is 
itself discrete.

A third type of bifurcation, the subcritical 
pitchfork bifurcation87,108 (see the figure, part c), 
contains elements of both the supercritical 
pitchfork bifurcation and the saddle-node 

bifurcation, and has clear parallels with the cell 
fate decision process. Like the supercritical 
pitchfork bifurcation, this bifurcation begins 
with a locally monostable regime (A) and resolves 
into a bistable regime (B and C), except that it 
does so through a transient period of tristability, 
which is initiated through two saddle-node 
bifurcations. For a range of parameter values, 
there is therefore an overlap between the initial 
and final states. This model has interesting 
features, including directionality and hysteresis 
(that is, a cell that transitions to a final state 
reverts back to the original state at a different 
parameter value to the one at which it 
transitioned). But the key feature of this 

bifurcation is that, in a stochastic system, there 
will be heterogeneity and local interchangeability 
between states within the tristable parameter 
range, as the force of each attractor is weak and 
corresponding barriers between the states are 
relatively low. Such transient tristability has 
previously been linked to cell fate decisions, and 
could represent a transition state-promoting 
regime within the system (see the main text). 
Importantly, the subcritical pitchfork bifurcation 
also maintains discrete states throughout the 
range of parameter values (A, B and C), reiterating 
that the transition is not a gradual or continuous 
state separation but comprises discrete 
state-switching events.
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Subpopulation characterization based 
on multidimensional gene expression data 
can also relate back to original estimates of 
population structure based on alternative 
methods, to validate or challenge it. In 
haematopoietic progenitors, sorting 
strategies based on cell surface markers are 
often used to capture distinct functional cell 
types59,60. However, a recent study identified 
new myeloid progenitor subpopulations 
from single-cell gene expression clusters, 
suggesting that traditional sorting strategies 
might result in mixed populations and 
showing that the transcriptionally defined 
subpopulations better predicted the 
functional capacity of cells61,62. These 
findings provide a transcriptional regulatory 
framework in which to place observations 
made a decade ago that challenged the routes 
of lineage specification63–65 suggested by the 
classical haematopoietic hierarchy66.

The power of single-cell transcriptomic 
data does not only lie in their potential to 
reveal structures within populations, but 
in the possibility that these data contain 
information about the dynamics of the 
GRNs during fate decisions. Assuming that 
gene expression profiles provide an estimate 
of the coordinates for a phase space of the 
dynamical system that defines the state of 
a cell, heterogeneities can be used to infer 

made towards this end with recently devised 
algorithms derived from dimensionality 
reduction techniques that have been used 
to create a sequence of ordered events 
in a dimension referred to as pseudotime 
(two of the most common algorithms 
are Wanderlust68 and Monocle69; see also 
REF. 70). These methods seek to minimize the 
variability conferred by cellular heterogeneity 
by ordering cells by similarity (FIG. 2b). Any 
heterogeneity of cells during a decision is 
minimized as average continuous trajectories 
are drawn. Any remaining observed 
heterogeneity between cells at a snapshot in 
time might then be reduced to asynchronous 
traversal of a fixed pathway or lack of 
synchrony in decisions. These methods have 
already been applied to systems including 
primary human neuroblasts69, human 
B cell lymphopoiesis68 and haematopoietic 
stem cells71.

It is unclear how much the output of these 
methods tells us about the specific process of 
cell fate decisions, as there is a considerable 
assumption that influences the pseudotime 
interpretation — that the transition between 
states follows a continuous trajectory. This 
view has been compared to a temporal 
interpretation of Waddington’s landscape, but 
it is not implicit in the original formulation of 
the landscape and need not reflect the actual 
course of events, particularly decision events 
in which changes of state might be mediated 
by discontinuous mechanisms. These 
mechanisms would be obscured by methods 
attempting to linearize heterogeneities into a 
continuous, convergent pathway.

The transition state
Pioneering single-cell studies of fate decisions 
in the haematopoietic system revealed 
that cells with multilineage potential could 
co‑express genes typically associated with 
each of their alternative lineage fates72. For 
the most part, expression was infrequent 
and at low levels that varied from cell to 
cell72. Similar observations have since been 
made in several different systems73–76, 
specifically in single cells within populations 
undergoing fate changes77,78 and, notably, in 
stem cell populations in which these genes are 
thought to have a role in the balance between 
differentiation and self-renewal79–81. These 
observations suggest that heterogeneities 
might represent a general feature of changes 
in state44,82,83 and have led to the proposal 
that heterogeneous patterns of expression are 
associated with the cell fate decision event 
at the level of single cells44,72,84–86. The varied 
expression of genes associated with each 
alternative fate in single cells can act as a 

the mechanisms of transitions between 
different states of a system. The potential 
of this approach has been shown using a 
stochastic model of lineage commitment in 
the haematopoietic system67. By using the 
combined transcriptional patterns of three 
transcriptional regulators in individual 
self-renewing and committed cells, the 
model calculates the probability of transition 
from self-renewal to the committed 
state associated with each individual 
transcriptional pattern, and successfully 
recapitulates in silico the dynamics of a 
differentiation culture system. In this 
example, cells assayed came from a source in 
constant asynchronous flux, such that cells 
were observable at all points of the dynamic 
process. This makes a key assumption of 
ergodicity: that a snapshot of cell identities at 
one time point is equivalent to a longitudinal 
observation of one cell over time. In other 
examples, cells originate from relatively 
synchronized populations, with observations 
recorded at different temporal intervals, 
such as different developmental stages or 
times after a differentiation cue.

When time-resolved data have been 
collected, the major challenge is to extract the 
salient features in a manner that reveals the 
underlying dynamic processes (FIG. 2). These 
challenges are ongoing, but progress has been 

Table 1 | Single-cell transcriptional analysis tools

Application Tools Description

Dimensionality 
reduction 
techniques

•	Component analysis, including 
principle (PCA), independent 
(ICA) and multiresolution (MCA)

•	Multidimensional scaling (MDS)109

•	t‑distributed stochastic 
neighbour embedding (t-SNE)110

•	Diffusion maps111

Reduces multidimensional data to 
a minimal number of dimensions for 
visualization by identifying those 
dimensions that capture the important 
information in the data structure

Gene 
clustering

Self-organizing maps (SOM)112,113 SOMs are unsupervised neural network 
learning algorithms that organize genes 
into biologically relevant clusters that can 
then be compared between samples

Clustering 
methods

Various, including hierarchical, 
k‑means, shared-nearest neighbour 
and many others

A collection of methods that attempt to 
group observations based on similarity. With 
single-cell transcriptional data, these can be 
used to find populations of cells or cohorts 
of genes

Dynamic 
clustering

Time-variant clustering114 Using statistical methods, cells can be 
spatially clustered at each time point and 
the relationship of clusters across time 
points described. Can be used to generate 
‘branching’ patterns of cell clusters over time

Trajectory 
reconstruction

Pseudotime methods, with tools 
including Wanderlust68 and 

Monocle69

Orders cells by progress through a dynamic 
process based on similarity and arranges 
them into a ‘trajectory’

Network 
analysis

Gene regulatory network inference 
methods89,115

These methods seek to identify the 
underlying gene regulatory network that is 
responsible for the observed transcriptional 
patterns
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substrate for selection by signals87, or as an 
exploration of a phase space where changes 
in the levels of the regulators can lead to 
stochastic fate change67,81. In either case, 
when cells make a decision, they upregulate 
the expression levels of the gene cohort of 
their chosen fate and downregulate those 
of the alternative one, as has been seen in 
many systems88,89.

In the context of the premise that 
fate decisions typically occur between 
discrete states (that is, attractor states), the 
heterogeneities in gene expression as cells 
change state suggest a general principle: 
cells within a discrete attractor state may 
experience a degree of transcriptional 
stochasticity that can, with different 
probabilities, result in various transcriptional 
profiles characterized by the expression 
of genes associated with one or more 
independent cell identities. Such expression 
profiles, which are transient, distinct from 
cell to cell and manifest as heterogeneities 
at the population level, endow cells with 
varied probabilities of effecting a cell fate 
transition. We have called this collection of 
transcriptional profiles a ‘transition state’, 
and suggest that it represents a substrate 
for cell fate decisions by facilitating state 
switching while retaining a reverse transition 
probability (FIG. 3). An important element in 
the notion of the transition state is that the 
passage from one state to another need not 
be smooth and continuous as portrayed in 
representations of pseudotime. Furthermore, 
a transition state can be characterized by 
bistability or, in certain instances, tristability, 
because a cell can have access to either two or, 
if they still express some genes of the initial 
state, three states.

The term ‘transition state’ refers to an 
analogy with the well-known transition 
state in chemistry, which was introduced 
to provide a mechanistic underpinning 
for the progress of a chemical reaction90. 
The induction of a reaction between two 
substances, by a new reactant or a catalyst, 
triggers a short-lived intermediate in which 
the molecules involved engage into a number 
of configurations exhibiting intermediate 
characteristics between reactants and 
products. It represents a state of maximal 
potential energy as a chemical potential 
barrier is traversed, often using catalytic 
factors to reduce the intervening barrier 
height (FIG. 3a). In an analogous manner, 
we surmise that during a fate transition, a 
GRN can be seen as a reactant that receives 
a new input, from a signal or from crossing a 
threshold of its own activity, that leads to 
either a new network or to a new pattern 

Figure 2 | Continuous and discrete analysis of cell fate decisions from single-cell gene expression 
data. a | In a fate transition, a cell may traverse the transcriptional phase space in a smooth, continuous 
manner before reaching a decision point. Single-cell transcriptional data from cell ensembles can provide 
a snapshot of the population structure, and transcriptional profiles of each cell can be arranged into hier-
archical clusters of varying similarity, but the data might also contain information about the dynamics and 
mechanisms of the decision event. There are two alternative interpretations of this information. b | If the 
transition between states is assumed to be continuous, cells are ordered along a sequence that assumes 
that more similar cells should be closer together on the trajectory of differentiation; a sequence often 
referred to as ‘pseudotime’. c | Instead, if the transition between states is deemed to be discontinuous, as 
in the case of the transition state, cells might cluster into a number of functional ‘macrostates’ (shown as 
M1 and M2), each with a number of corresponding ‘microstates’ (see the main text for details). Each of these 
microstates has a different probability of transitioning to another state, but this is not necessarily directly 
correlated to similarities between a given microstate and the final state. Although there may be continu-
ous processes leading up to and after decision events, the decision itself is discontinuous and stochastic, 
in which each state has an associated probability of transitioning to any other state. d,e | Experimental 
evidence of a broad transcriptional space in haematopoietic cells undergoing commitment decisions. 
Principal component (PC) analysis plots of single-cell quantitative reverse transcription PCR data for cul-
tured, erythroid myeloid lymphoid (EML; part d) and primary mouse bone marrow (BM; part e) cells under-
going erythroid commitment and differentiation decisions. Plots are a comprehensive representation of 
the data in Pina et al.81, and highlight the point that early committed cells (erythroid-committed population 
(ECP) obtained in two distinct cytokine conditions, in the case of EML and pre-megakaryocytic/erythroid 
progenitors (preMegE), in the case of primary BM) are more heterogeneous in their transcriptional pro-
grammes than the multipotent self-renewing cells (SR; such as EML, BM, long-term reconstituting 
haematopoietic stem cells (LT-HSCs) and short-term HSCs) they originate from, or the differentiated pro
geny (EML, differentiated erythroid cells (Ediff); BM and colony-forming unit erythroid (CFUe)) they give 
rise to. A similar observation was made by Jaenisch and collaborators77 when analysing transcriptional 
programmes of individual cells undergoing early fate transitions in induced pluripotent stem cell 
reprogramming (see REF. 81 for details). EPO, erythropoietin; SCF, stem cell factor. 
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of connectivity of the existing network. By 
analogy with a chemical reaction, the cell fate 
decision process has an intermediate during 
which the networks explore the state space 
(FIG. 3b), and this manifests as heterogeneities 

far, especially as the biological transition state 
is limited by its thermodynamic properties 
that prevent a formal calculation of potential.

A corollary of the notion of the transition 
state is that any given phenotypic state might 
not be associated with just one network state. 
If GRNs involved in cell fate decisions are 
hierarchical, it might be that there are key 
configurations of specific network motifs or 
small networks that are sufficient to trigger a 
particular state, independently of additional 
or downstream gene activity. Pursuing a 
chemical analogy further, a cell state or fate 
can be described by its macrostate (the core 
GRN connectivity that gives rise to a specific 
phenotypic state), which can be represented 
by more than one microstate (one of many 
connectivities of a network compatible with 
a particular macrostate)21,91 (FIG. 2c). The 
number of potential microstates depends 
on the number of nodes of the network, 
but whether a cell will assume any given 
microstate is dependent on the network 
configuration and its biological relevance 
(for instance, a cell can only assume a positive 
value of a transcription factor level). In a 
transition state, cells may explore a higher 
number of microstates. This notion has been 
formally discussed in the context of mouse ES 
cells21 but is, in principle, applicable to any cell 
fate transition.

Landscapes and transition states. The notion 
of the transition state leads to the corollary 
that heterogeneities in gene expression, which 
are observed with single-cell transcriptomics 
in systems undergoing fate decisions, need 
not align through time along an ordered 
continuum, and could instead be interpreted 
as a reflection of systemic features that 
allow a cell to stochastically rearrange its 
networks by exploring the local phase space. 
We do not venture to suggest that cellular 
trajectories do not exist at all; merely that 
at the decision event, the actual transitions 
between states might be discontinuous, 
and that the observed transcriptional 
heterogeneity reflects the existence of a 
dynamic array of transcriptional states, 
with varied probability of transitions. It 
is highly likely that downstream of the 
decision, external signalling or intrinsic 
programmes of the GRN result in continuous 
trajectories through geometric landscape 
changes that lead to the next decision point 
in a manner that is consistent with the 
temporal continuity implicit in the notion 
of pseudotime. The distinction between 
the two notions arises at the point at which 
cellular decisions are made (FIG. 2). There are 
hints that discontinuous fate decisions do 

in gene expression at the level of single cells. 
Although the analogy between the chemical 
and biological transition states holds value in 
its description of an intermediate state, care 
should be taken not to extend the analogy too 

Figure 3 | The transition state. a | In chemistry, a transition state is a short-lived intermediate that 
arises in a chemical reaction, in which reactant atoms assume a configuration that is intermediate 
between the initial and final products and which explores an available space of potential energy. In 
endergonic reactions, the free energy of the initial state must overcome an activation energy before 
assuming the lower-energy final state with the products of the reaction. Additional components such 
as catalysts can alter the height of the activation energy, changing the likelihood of transition. b | By 
analogy, biological gene regulatory networks could be deemed to undergo similar transition dynamics 
as they make cell fate decisions. The activation of a specific node within a gene regulatory network 
leads the system to assume a transition state, in which a number of network states are represented 
that are intermediate between the initial and final states of the network. Each has identical network 
structure, but with different gene expression levels (represented by node colour) and with an associ-
ated probability (Pr) of transitioning to any other state, including a transition back to the original state. 
We surmise that the transition state represents a heterogeneous substrate for network selection and 
fate decisions by factors such as signalling pathways.
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occur in some contexts: for instance, in the 
haematopoietic system, particularly in 
the case of early myelo-erythroid choices 
in mouse haematopoiesis81 and in human 
haematopoietic stem cells that can give rise 
to differentiated cells directly92 without going 
through multilineage intermediates. But the 
framework could be applied to many binary 
decisions, such as the neuromesodermal 
progenitor in the mammalian embryo, which 
generates neural and mesodermal progenitors 
from a common precursor that co-expresses 
neural and mesodermal genes93.

The notion of a ‘state’ (the transition 
state), made up of a collection of cells, each 
with a different transcriptional profile, 
that are disconnected temporally is, at first 
sight, at odds with the intuitive, smooth 
and continuous interpretation derived from 
a cursory examination of Waddington’s 
landscapes. However, by representing the 
process in terms of a computable dynamical 
system with parameter changes, we can 
apply bifurcation theory to examine systemic 
behaviours37,38,94, particularly focusing on 
bifurcation events (BOX 1). In this framework, 
a subcritical pitchfork bifurcation38 (BOX 1) 
captures many of the features of cell fate 
decisions that we have described as a 
transition state. Namely, the specific range 
of parameter values conferring tristability 
could correspond to a transient ‘window’ 
during which transitions are promoted; the 
system assumes a permissive topology in 
which both the initial and final states stably 
coexist and transcriptional exploration is 
favoured as the landscape assumes relatively 
high-energy (quasipotential) stable states 
with low intervening barriers. This bears a 
clear resemblance to our proposed transition 
state, as the landscape promotes increased 
heterogeneity across the population owing 
to the relatively low quasipotential force 
of each attractor. Like the supercritical 
pitchfork bifurcation (BOX 1), the initial 
and final states are discrete, although 
the subcritical pitchfork bifurcation 
suggests that transitions might occur 
through state-switching events rather than 
continuous divergence of states as implicated 
in Waddington’s epigenetic landscape.

Importantly, the bifurcation diagram 
as drawn in FIG. 1d does not represent the 
evolution of the system as a function of time 
but as a function of a parameter or parameters 
that could themselves also vary with time, 
not necessarily in a deterministic or linear 
manner37. An example of these parameters 
could be extracellular signals. This means 
that the same system could easily be tuned 
to different circumstances — for instance, 

results in the expression of a set of genes that 
neither of them alone can activate, and thus 
changes the landscape.

The role of the other components in 
fate decisions is less specific. They do not 
determine a cell state per se, but rather 
govern the robustness of the transcriptional 
process by modulating the binding kinetics 
of particular transcription factors (chromatin 
modifiers) or altering the frequency and 
amplitude of the transcriptional process 
(basal transcriptional machinery). Thus, 
any event that targets any of these will 
affect the efficiency of transition between 
states in individual cells45. In landscape 
terms, such interactions might change the 
potential barrier (that is, act as the catalysts 
in a chemical reaction) and, on the basis 
of their strength, determine the number of 
cells that would change state over time. We 
have suggested that WNT–β-catenin and 
FGF–extracellular signalling-regulated 
kinase (ERK) signalling pathways act in 
this manner12,41,45. This level of regulation is 
particularly important at the decision events 
and would allow tuning of the number of 
cells making fate decisions.

The transition state in developmental 
populations. A valuable feature of the 
proposed framework is that it provides a 
mechanism for the control over the size 
of any given population, because some of 
the variables can act to bias the landscape 
towards certain fate decisions. This is 
because although decisions are taken at the 
level of single cells, at the population level, 
biases in the bifurcation landscape will 
result in differences in the number of cells 
apportioned to each state. Extrinsic factors 
(for example, signalling) or intrinsic 
factors (for example, basal transcriptional 
machinery and chromatin modifiers) that 
bias state-space exploration towards specific 
transcriptional states, or that change the 
probability of transition associated with each 
individual state, can ultimately alter the final 
number of differentiated cells and their 
relative proportions. This poses a potentially 
useful framework for the homeostatic 
regulation of the size of a population86.

An example of this situation can be found 
in the partitioning of the inner cell mass of 
the pre-implantation mouse embryo into the 
embryonic epiblast and the extra-embryonic 
primitive endoderm. This binary decision 
occurs in a population of cells deemed to be 
in a transition state, as cells express variable 
levels of genes associated with both fates103–105. 
The heterogeneities are resolved through the 
activity of a small transcriptional network 

by applying high cooperativity to the input 
that alters the system’s parameter — which 
would effectively reduce the time the system 
spends in the tristable regime. The inverse is 
also possible, with certain systems potentially 
tuned to elongate this transition-promoting 
phase, a possible example of which is ES 
cells. These cells exist in a pluripotent state 
that, in the developing embryo, represents 
the transition to differentiation, which is 
very short lived and not renewed, but which 
is stabilized and maintained indefinitely in 
certain culture conditions95,96. These cells 
might then be described essentially as a 
‘trapped’ transition state12,85,97.

A molecular interpretation of the transition 
state. At the molecular level, a cell fate 
decision necessarily involves a change in 
the transcriptional state of a cell. Gene 
transcription requires a close interaction 
between three sets of components (each of 
which involves large multiprotein complexes):  
transcription factors that define a state 
by promoting spatiotemporal control of 
gene expression; histone modifiers and 
chromatin remodellers, which determine 
the accessibility of the transcription factors 
to the DNA and their binding stability; and 
the basal transcriptional machinery, which 
executes the transcriptional process and, 
to a first approximation, is unlikely to vary 
throughout the process. Proteins that interact 
with each and any of these machines have 
the potential to change the coordinates of the 
transcriptional state of a cell, but the effects, 
and the type of input that an individual 
protein will have on the process, are different 
in each case. For example, transcription 
factors can define the cellular state by 
activating specific genes and thus define 
which networks will be active; this could be 
a noisy process if the numbers of molecules 
of the participant proteins are limiting and 
vary from cell to cell39,40,98–100, thus creating 
a substrate for regulation. The effectors of 
BMP–transforming growth factor‑β (TGFβ) 
signalling, the SMAD proteins, would fall 
into this class, and their activity may result 
in a change in the parameters of the GRN 
as on their own they have weak outputs 
that are stabilized by association with other 
transcription factors101,102 that change their 
binding kinetics and, by extension, the 
associated landscape. This is an example of 
how an interaction between the intrinsic 
cellular state (which is defined by extant 
transcription factors) and extrinsic signals 
(BMPs and TGFβ in this case) can sculpt 
the outline of the landscape in a synergistic 
manner: the interaction between the two 
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involving GATA factors and Nanog, which is 
modulated by FGF signalling. The decision 
can be recapitulated in ES cells, in which 
the mechanisms involved in the decision 
can be explored in detail41. Modelling of this 
decision has suggested that it is driven by a 
tristable network106,107 that can be reduced 
to a bistable one41, which accounts for most 
of the observations. The outcome is two 
populations with balanced cell numbers that 
will interact later in development to steer the 
patterning of the embryo. How the precise 
and reproducible partitioning is coordinated 
is not fully understood, but there is evidence 
that it is achieved through time integration 
of FGF signalling by the transcriptional 
network. A population in a transition state 
is an ideal substrate for this integration, as 
it has an a priori equal probability of each 
cell adopting one of the two alternative fates. 
This system acts as a good model for similar 
decisions that occur during development 
and which result in precise and robust 
partitioning of populations.

Perspectives
It will be interesting to see how general and 
useful the notion of the transition state is, 
not only in terms of its ability to represent 
data but, importantly, in its ability to 
frame the role and activity of signals at the 
decision events. In most representations 
of developmental decisions, signals simply 
contribute another node to the network, but 
in our view they represent parameters that 
can change the structure and the dynamics 
of the landscape that cells explore. To test 
these ideas, we shall have to go beyond the 
analysis of snapshot gene expression data 
and explore the dynamics of individual 
genes within individual cells. A validation 
of the hypothesis of the transition state 
will probably require a combination 
of quantitative live imaging of cellular 
dynamics through a decision event, with 
concurrent measurement of multiple genes 
predicted to be indicative of transition 
events. In the case of a continuous transition, 
as portrayed by pseudotime, cells at the 
same point of the fate transition will be 
transcriptionally very similar to each other, 
whereas in the case of a discontinuous one, 
they should be very dissimilar. By observing 
cells at different stages, according to the 
continuous pseudotime representation, all 
sampled intermediates between functional 
states will follow an identical sequence of 
cellular states. By contrast, the transition 
state theory predicts that cells will transition 
between states through a diverse array of 
dynamic mechanisms (FIG. 2).
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