
Chapter 4:
Modelling procedures

Sections: continuous time description and multi-level modelling

Jose Davila-Velderrein, Elisa Domínguez-Hüttinger

April 17, 2017

1 Multi-scale modelling: Understanding the interplay between regula-
tory networks and the micro-environment

In this section, we explore mathematical tools to analyse biological systems with multiple time scales.
Specifically, we consider the interplay between biological processes occurring at two time scales: Fast
biochemical processes that regulate the phenotypic decision-making of cells in response to micro-
environmental conditions, and the slow, tissue level processes regulating the dynamics of the micro-
environment (the ”bifurcation parameter” in section ??). As discussed in chapter ??, the clinical rel-
evance of considering such multi-scale systems comes from the fact that the characteristic gradual
aggravation of the chronic degenerative diseases emerges from aberrations in the phenotype-micro-
environment interactions (figs. ?? and ??).

In previous sections, we saw that phenotypes can be mathematically represented as attractors of the
underlying regulatory networks, and that transitions between these attractors can be driven not only by
stochastic fluctuations (section ??, but also by changes in the micro-environmental conditions (subsec-
tion ??). In this section, we want to pose the following question: what if these environmental fluctuations
are actually changing as a consequence of the phenotype changes driven by the individual cells in the tis-
sue (fig. ??? How to account for tissue-level risk factors, which might propagate across this multi-scale
regulatory network, giving rise to the gradual phenotypic deterioration (fig. ??)?

To model these kind of systems, we will simultaneously consider the changes in the activation state
of biochemical reaction networks controlling phenotypic decisions, a the tissue-level processes under-
lying micro-environmental fluctuations. While the biochemical reactions are fast, in the time-scale of
minutes to hours, the dynamics of the surrounding tissue-level conditions stabilize within days to weeks.
To account for these two different time-scales, we will perform a time scale separation, also known as
Quasi-Steady-State Assumption (QSSA): The relation between the micro-environmental factor and the
phenotype is described algebraically, by the mapping of the bifurcation parameter S to the stationary
solution X̂ss(S) of eq. ˙̂X(t,S) = 0. The bifurcation parameter S, in turn, is dynamically described by
˙̂S = F(τ, X̂ss(S)), with t and τ the time-scales of the fast and the slow system, respectively. Note that the
governing function F(τ, X̂ss(S)) for the dynamics of S explicitly considers the algebraic variable X̂ss(S).
In other words, in such a model the changes in the bifurcation parameter depend on the proportion of
phenotypes within the tissue.

Assuming such differences in time-scales in fact greatly simplifies the analysis of such multi-dimensional
systems, described by the coupling between ˙̂X and ˙̂S, with X̂ and Ŝ n and m dimensional vectors, respec-
tively. To illustrate this, let’s consider the typical example of a biochemical network described by a

1



system of ODEs and simplified by the QSSA: The Briggs-Haldane version of the Michaelis-Menten
equations [1, 2]).

The system of equations:

d[E]
dt

=−kf[E][S]+ kr[ES]+ kcat[ES], (1a)

d[S]
dt

=−kf[E][S]+ kr[ES], (1b)

d[ES]
dt

= kf[E][S]− kr[ES]− kcat[ES], (1c)

d[P]
dt

= kcat[ES], (1d)

represents the dynamic interactions between the catalysing enzyme E, the substrate S, the enzyme-
substrate complex ES, and the product of the enzymatic reaction, P, represented in the reaction network
in figure 1. In these equations, it is considered that the total amount of enzymes is conserved (i.e., no de
novo production of E), which can be seen directly from the conservation equations:

d[E]
dt

+
d[ES]

dt
= 0,

which imply

[E]+ [ES] = [E]0 (2)

The key assumption to simplify equations 1 is that the enzyme-substrate formation [ES] is infinitely
fast respect to the rest of the dynamics i.e. d[ES]

dt = 0. From this QSSA, it follows that

kf[E][S] = [ES](kr + kcat)

. Using the conservation equation 2, kf[E][S] can be rewritten as:

kf[E]0[S]− kf[ES][S] = [ES](kr + kcat)

, from which one can isolate the variable [ES] as

[ES] =
kf[E]0[S]

((kr + kcat)+ kf[S])
,

which can be used to rewrite d[P]
dt as

d[P]
dt

= kcat
kf[E]0[S]

((kr + kcat)+ kf[S])
.

Defining

KM =
kr + kcat

kf

, one can recognize the simple, one dimensional system representing the dynamics of product formation,
known as Michaelis -Menten equation:

d[P]
dt

= kcat
[E]0[S]
KM+[S]

.
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Figure 1: Reaction network of the dynamic interactions between enzyme (E), substrate (S), enzyme-
substrate complex (ES) and product of the enzymatic reaction (P) represented in equations 1.

So, using QSSA we were able to reduce a 4-dimensional dynamical system to a one dimensional
ODE!

Back to our original problem of coupling phenotypic decisions to micro-environmental changes.
Let’s consider the simplest multi-stable system in which gradual environmental conditions drive abrupt
phenotype changes, namely a bistable system (fig. ??). As discussed in section ??, mapping the relation
between the bifurcation parameter and the stable steady state solutions can be tricky, since analyti-
cal steady solutions for high-order non-linear systems rarely exist (since they are roots of high order
polynomials), and numerical methods require exhaustive explorations of the parameter space (includ-
ing initial conditions) and are often stuck in local solutions. Thus, iteratively solving such multi-scale
problems during the numerical integration of slow variables can be computationally very intensive, and
might often even fail to find the desired steady state solutions. To overcome this difficulty, it is possible
to phenomenologically as opposed to mechanistic, corresponding to algebraic relations of steady state
solutions of ODEs as functions of bifurcation diagrams) describe the previously characterized bistable
switch by by a piecewise-affine (PWA) functions [3]. Such PWA approximation provides a rule that
maps the input (stimulus) to the output (effector) (figure ??). For example, assuming a perfect switch,
the effector can be approximated by two constant values, Elow and Ehigh, representing the ”low” or ”high”
branches of the bifurcation diagram, respectively. Now, let’s consider that our bifurcation parameter, this
is, the input, changes dynamically in the time-scale τ. Then the relation describing how the output E(τ)
is determined by the input S(τ) and by the previous output values E(x < τ) can be approximated as
follows:

• If S(τ)< S−, then E(τ) = Elow (effector is low if the stimulus concentration is low).

• If S(τ)> S−, then E(τ) = Ehigh (effector is high if the stimulus concentration is high).

• If S(τ) ∈ [S−,S+], then:

– if E(x < τ) = Elow, then E(τ) = Elow, or

– if E(x < τ) = Ehigh, then E(τ) = Ehigh,

corresponding to the history-dependent determination of the effector value when the stimulus is
in the bistable region.

More formally, these conditions can be represented by the PWA given in equation 3 (adapted from
[4]):

E(τ) =

{
Elow if (S(τ)< S−) or {S(τ) ∈ [S−,S+] and E(x < τ) = Elow}
Ehigh if (S(τ)> S+) or

{
S(τ) ∈ [S−,S+] and E(x < τ) = Ehigh

}
.

(3)

Note that equation 3 implicitly assumes two time-scales:
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• A fast time-scale t that governs the stabilized biochemical interactions that underlie the bistable
dose-response behaviour. These biochemical reactions can be represented by a system of ODEs
Ė(t,S,E) that operates at time-scale t and has a input S that does not change significantly (S(t)≈
constant) while E(t) reaches its equilibrium value (given by Elow or Ehigh, respectively).

• A slow time-scale τ that determines the dynamics of the input S(τ) by the governing equation
Ṡ(τ) = F(τ,S).

A special case of the system 3, which is of particular interest here, when considering the complex
interplays between phenotype decisions (described by the different states of the bifurcation diagram)
and microenvironmental conditions, occurs when the slowly changing input S(τ) is itself determined
by its quickly stabilizing output E(t) (and vice-versa). In such a case, also the dynamics of S(τ) (that
depend on E(τ)) can be descried by the PWA given in equation 4 (adapted from [4]):

Ṡ(τ) =

{
Flow(S) if E(τ) = Elow

Fhigh(S) if E(τ) = Ehigh,
(4)

where Flow and Fhigh are the two governing equations that determine the dynamics of S when E(τ) =
Elow or E(τ) = Ehigh, respectively.
Accordingly, the long term behaviour of S is given by the focal points Slow

ss and Shigh
ss , corresponding to

the steady state values given by the solution to Flow = 0 and Fhigh = 0, respectively [4].
The coupling between equations 3 and 4 represents a hybrid system that has been extensively discussed
and analysed in [3, 4]. The long term behaviour of the coupled variable S(τ) and E(t) is determined
by the relative position of the focal points Slow

ss and Shigh
ss respect to the threshold values S− and S+, as

follows (figure 2):

• A resting, homeostatic (”low”) steady state occurs when Slow
ss ≤ S+ and Shigh

ss < S−.

• A chronically inflamed steady state occurs when Slow
ss > S+ and Shigh

ss ≥ S−.

• Bistability in the two-time-scale dynamical system occurs when Slow
ss ≤ S+ but Shigh

ss ≥ S−.

• Oscillations occur when Slow
ss > S+ and Shigh

ss < S−.

In conclusion, this methodology allows the derivation of analytical conditions required for different
qualitative behaviours of a complex dynamical system that operates in two time-scales, reducing the
need for numerical methods. Note however that the agreement between the dynamical behaviour that is
analytically derived from the hybrid system representation and the numerical simulations of the model
must be verified for the particular mathematical model that is analysed using this approach, to ensure
that neither the discontinuities of the hybrid representation of the system, nor the transient behaviour
that is not captured by the focal point analysis detailed above, affect the dynamics of the unsimplified
mathematical model.

The model described in section ?? provides an example in which this focal point analysis is used to
systematically determine the effects of risk factors affecting tissue level processes on the development
of early phases of AD. Such framework can be applied not only to micro-environment - phenotype
interactions discussed here, but in general to model (biological) systems in which there is a co-existence
and inter-dependence of processes operating at different time-scales, such as metabolism- signalling [5]
(although this reference actually uses a numerical method, based on parameter fitting, to uncover the
slow changes /adaptations in the signalling pathways that account for the fast metabolic reactions) and
metabolism-gene expression [4], among many others.

Multi-scale systems coupling cellular level population dynamics with biochemical processes have
been assessed mainly in spatially explicit models (eg. wound healing PDEs models [6], agent based
models to understand epidermal homeostasis [7, 8, 9]) which will be discussed in the next chapter
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Figure 2: Schematic representation of the qualitative dynamic behaviours of the hybrid system
described in the coupled equations 3 and 4. The long term dynamical behaviour of the hybrid system
3 and 4 is determined by the position of the focal points Slow

ss and Shigh
ss respect to the threshold values

S− and S+. (i) Slow
ss ≤ S+ and Shigh

ss < S− lead to homeostasis, (ii) chronic inflammation occurs when
Slow

ss > S+ and Shigh
ss ≥ S−, (iii) Bistability arises from Slow

ss ≤ S+ but Shigh
ss ≥ S−, and (iv) Oscillations

result from Slow
ss > S+ and Shigh

ss < S−.
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