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ABSTRACT

Recent studies have shown that biological networks demonstrate control
strategies which are also utilized in typical engineering systems. In
systems biology, it is essential to understand the biological responses at
a system level, by incorporating information from genetic, signaling
and metabolic networks. Cells respond appropriately to diverse signals
by coordinating complex network of protein, gene and metabolic
interactions. Mathematical representation and quantification of the
dynamic properties of biological networks is essential to decipher the
inherent design principles evolved in biological systems. The networks
can be modeled either by deterministic or stochastic formalisms. The
essential parameters are estimated by data fitting and optimization
techniques. Further, the models are subjected to steady state and dynamic
analysis to study the dynamics, control and design principles of the
system, which eventually helps the cell to achieve a desired phenotypic
state. The modeling and analysis approaches used for describing the
system level behavior in biological systems are described with examples
in this chapter.
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INTRODUCTION

Molecular biology in the last four decades has deciphered components
and their connections in biological systems through reductionist

" approach. Their studies have resulted in the description of the biological
system through complex networks at the genetic, protein ant metabolic
levels. It is increasingly becoming clear that in addition to the network
description, quantification of the networks is important for linking the
genotype to the phenotype.

Quantification of biological network requires construction of
mathematical models to best describe the operation of the network
(Schauer and Heinrich, 1983; Bailey, 1998; Koshland, 1998). Modeling
and simulation of biological networks are becoming increasingly popular
with models developed based on the quantitative experimental
information of individual components such as time course data, dose
response curves, protein concentrations and binding constants (Asthagiri
and Lauffenburger, 2000; Bhalla, 2003; Eungdamrong and Iyengar,
2004; Sauro and Kholodenko, 2004; Aldridge et al., 2006). Mathematical
models provide a window to study the dynamics, control and design
principles of a system, which eventually helps the system to achieve a
desired state. Models developed can be effectively used to predict the
network behavior, which can be subjected to experimental verification
and further refinement. Models provide an ideal platform to test the
effect of concentration and operating parameters, to study the effect of
network perturbation (in-silico mutation), to analyze the roles and
contributions of different interactions, to predict the emergent properties
of a network and to identify missing information about the system. In
general, a mathematical model developed should be able to generate
valid hypothesis which can drive future experiments. Thus, models assist
in system analysis, hypothesis generation and testing, experimental
data validation and optimal product design. '

MODELING IN SYSTEMS BIOLOGY

The comprehensive understanding based on quantitative experiments
and computational modeling to gain insights into the physiology of a
cellular process is termed as systems biology (Kitano, 2000; Ideker et
al., 2001; Kitano, 2002; Kitano, 2002; Ideker, 2004). One of the grand
challenges in systems biology is to integrate the models of different
nature and various spatiotemporal dynamics with bottom-up models
and depict the exact outcome of the biological network. The systems
approach to problem solving uses both computational and experimental
data and is composed of several steps. These include modeling of the
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system based on information about the interactions between its
components, testing of the model for perturbations in structure and
parameters of the system, and validation of the model by experiments.
Mathematical models can then be used to identify recurring
organizational principles. Interactions identified by in vitro experiments
can lead to candidate models explaining the in vivo mechanisms. System-
level properties depend on time- independent or steady-state stimulus
response curves and temporal behavior of the system. Because cellular
processes are noisy and uncertain, stochastic models may be helpful in
describing them. Stochastic models can delineate the design of the
system, which imparts properties for efficient performance. Here, we
review some of the potential modeling frameworks that will help in
understanding and quantifying biological networks. We draw attention
to basic building blocks present in the pathways, various emergent
properties of the network, modeling techniques and analysis methods
employed in pathway modeling (Goel et al., 2006; Machado et al., 2011,
Cardelli, 2005; Karlebach and Shamir, 2008; Wu, 2009; Noble, 2002).

Modeling Strategy

The objective of the mathematical modeling varies from predicting the
dynamics of a system in response to a stimulus for understanding the
emergent properties of the network. The choice of the quantification
methods depends on the availability of the information that can be used
to build a model. Based upon the quality and quantity of the data
available and the nature of the system, modeling approaches can be
broadly classified into deterministic and stochastic approaches. When
the dynamics of the system is consistent with time and space with exact
reproducibility and consistent with the experimental data then a
deterministic approach is more suitable. Typically biological systems
exhibit noise and are exposed to inherent fluctuations. Therefore, when
there is inconsistency in the data and the system dynamics is noisy
then stochastic modeling is more appropriate. Due to scarcity of
quantitative data from experiments, mathematical models of biological
systems have to depend on qualitative/semi-quantitative data. Input—
output relationship of the network can be measured experimentally
and the mathematical model can be constrained to predict system
parameters to match experimental observation. Further models are
subjected to sensitivity and stability analysis. The predictability of the
models is refined so as to validate the observations from the experiments.
The choice of parameter values depends on the experimental data
obtained from wild type and mutants, while the rest has to be fixed
based on parametric sensitivity analysis. Considering the complexity of
biological system, it will be better to build models for smaller modules of
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Fig. 1: The overall framework for modeling and analysis of Biological network. The
process of modeling starts with precise definition of the problem and acquisition
of relevant data from various sources e.g. omic databases. With the help of
biological databases the pathway are reconstructed and integrated in the form
of network. The hypothesis is generated based on the available knowledge. To
test the hypothesis, the networks are further modeled using several
mathematical techniques such as deterministic or stochastic modeling
approaches. The parameters are estimated using optimization algorithms.
Models are subjected to steady state and dynamic analysis to obtain the
properties of a system. Further the models are validated and refined for their
predictability.
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the network before integrating the modules. This helps in studying the
role and contribution of individual modules towards a network response.
The overall schematic of the modeling and analysis approach is depicted
in Fig. 1. ’

MODELING OF BIOLOGICAL NETWORKS
Graphical Representation

The easiest and the most straightforward way to model a biological
network is to view it as a directed graph (as shown in Fig. 2). The
communities of systems biologists and graphical modelers have
formulated the standards for graphical representations of the biological
systems, termed as Systems Biology Graphical Notation (SBGN). Various
kinds of interactions and the process flow in the biochemical networks
can be represented by the prescribed standards of the SBGN. The SBGN
representations are classified as, Process Description, Entity Relationship
and Activity Flow maps. In the Process Description maps, the events in
the process are shown in the temporal order of the biochemical
interactions. Each unit operation (reaction, transport, activation,
inhibition, catalysis etc) and the species (protein, RNA, genes,
metabolites ete.) in the network are represented by a unique symbol. In
the Entity Relationship map, the relationship of each entity in the
network with other entities is represented irrespective of the temporal
information. The relationships can be the influences of the each
component on other entities present in the network. In case of Activity
Flow representation, the flows of the key information in terms of
interactions between the entities of the network are represented,
irrespective of their state transitions. The information such as activation,
deactivation or up-regulation and down-regulation of the components

Fig. 2: A schematic of graphical representation of biological network. A, B, C are
three components of the network with various interactions. The edges
represent the interactions between these components, and the components
form the nodes of the network. The arrow head represents the activation
influence and the blunted arrow represents the inhibition influence among
the components of the network. Therefore, the graph can be read as, A activates
B, Binhibits A, A inhibits C, C activates B.
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of the network is mainly focused in the Activity Flow representations.
However, the symbols for these representations remain same for all the
three kinds of graphical representations. The detailed list of symbols
can be obtained at Cell Designer software (Funahashi et al., 2008). An
example of the Activity flow graph is given in Fig. 2.

Deterministic Modeling

In deterministic approach of modeling, the system is considered to be
macroscopic, well mixed and the reaction is continuous. This is a
simplification of the chemical reaction, which actually involve discrete,
random collision between molecules. Moreover, the biochemical reaction
occurs inside a cell, where the volume is small. Chemical reaction becomes
deterministic in nature, if the reaction occurred at numerous times per
generation, which average out the randomness. Deterministic models
are broadly described based upon their discrete and continuous nature
with respect to time and space, such as difference equations, ordinary
differential equations, partial differential equations and maps (Breitling
et al., 2008, Cao et al., 2010; Iba, 2008).

Boolean Mddeling

Boolean networks are based on qualitative discrete framework and are
most simple to address the dynamic systems. The model works on the
principle of Boolean logic functions, where variables are quantified as
binary output, i.e. ON or OFF and the value of the one variable is
functionally related via a logical rule to the values of other variable
(Fauré et al., 2006). In case of loop systems the output is based on AND
or OR input functions. Dynamics of the system is generated by updating
the Boolean function, which causes system transition in accordance with
logical rules. In a logical regulatory map, each node represents a protein
or gene and arc (directed edges) with signs (positive/negative)
representing the interaction. Each interaction is characterized by a
source and target which is labeled by an integer (a threshold). This
indicates the specific condition under which the interaction takes place.
If the value of the source variable is equal to threshold, the interaction
is said to be functional and their actions are described by logical
parameters, which defines the activation of target (Kulasiri, 2008). The
dynamics of the system is represented by the state transition graph,
where nodes represent the states of the system and arc represents the
transition between the states. This kind of approach reproduces the
qualitative dynamic behavior of the network system. These models can
equally predict the dynamic trend of the system even without using
detailed kinetic parameters and differential equations.
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The Boolean modeling approach is illustrated by an example as shown
Fig. 8. Fig. 3 (I) shows a synthetic network that consists of three
molecules A, B and C, where in, A has positive effect on C which activates
B. Further, A inhibits B, which inhibits 'C. The Boolean Functions
presenting the above mentioned interactions are listed in Fig. 3(II) and
described further in the truth table (see Fig. 3(III)). Note that 1 and 0
indicate on and off states, respectively. The Boolean functions can be
interpreted as: (1) Bf,(C)=C, represents regulation of Aby C; A=1, ifin
the previous state, C=1; otherwise A =0. (2) Bf3(A,C)= CAND NOT A,
represents regulation of B by both A and C; B=1 only if C =1 and A=0
in the previous state; B=0 otherwise. (3) Bf,(A,B)=A OR NOT B,
represents regulation of C by both A and B; C=1 if A=1 or B =0 in the
previous state; C=0 otherwise.

I: Network {11; Truth table

Bfp(A, O Bfc(A, B)
A|lBiC AIBIC
Bfa(C) 11190 1101
ClA 1100 01119
111 o11l1 11001
o]0 01010 001
11: Boolean functions IV: State transgition
PI@=C -2 L0

...................................

T+ TTT> T

Bfa(A, C)=C AND NOT A
Bfo(A. B)=A OR NOT B

Fig. 3: Anexample of Boolean modeling. (I) A synthetic network consists of interactions
between three proteins A, B and C. The edges with arrow indicate positive
influence, while the edges with blunt cap indicate negative influence. (II)
Regulatory Boolean functions that determine the effects of interactions (edges).
(III) Truth Table, listing the states of each protein (1 or 0) based on the previous
states of the all proteins involved in the interactions. (IV) Sequence of state
transitions obtained based on two initial conditions, wherein Ist, IInd and IITrd
element within a state represents state of A, B and C, respectively. -

CONTINUOUS MODELING
Law of Mass Action

The law of mass action states that the rate of the reaction is proportional
to the probability of the collision of the reactants. This probability is
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also proportional to the concentration of reactants to the power of their
molecularity, a number of reactants participating in the specific reaction.
The kinetics selected should be appropriate for the type of biochemical
reaction, in most cases the mass- action kinetics are appropriate which
assume the kinetics of elementary chemical reaction. The equation for
a reversible reaction is given as:

A+B<=>C (1
Vo=kyXC—ky XAXB (2)

where A and B are the interacting species such as a ligand and a receptor
or any two proteins, respectively. While C is the product of the
interaction, V_is the rate of reaction and Kf and K, are rate constants of
forward and backward reactions.

Michaelis Menten kinetics

In an enzyme catalyzed reaction, enzymes form a complex with the
substrate to yield a product (See Eqn. 3). In such reaction if the substrate
concentration is much higher than enzyme concentration where the
enzyme is saturated with substrate, Michaelis Menten kinetics can be
considered under the assumption of quasi steady state approximation
(where the rate of change in enzyme- substrate complex is assumed
zero). For irreversible enzyme kinetics the equation is given by

A+ E <=>AE——>F+P 3
S
V = Vnax (Km+5) (4)

where,in Eq.(3) A, E, AE an P are substrate, enzyme, substrate-enzyme
complex and protein, respectively. In Eq.(4) V, . represent the
maximum reaction rate, ‘S’ represents the substrate concentration, ‘K’
represents Michaelis-Menten constant. In the case of a reversible
reactions the equation takes the form

VeS
_ %) _vre(1-p)
TS T Tira+p (5)
Ks Kp

In Eq.(5) Vf and V_ are the limiting rates in forward and backward
directions, I' is the mass action ratio P/ S under any condition, K is the
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;equilibrium constant, K and K are the Michaelis—-Menten constants

for the substrate and product, o and p substrate and product
concentrations scaled by their Michaelis—Menten constants.

Hill Function

Another rate law which is mostly used in modeling the biological
interaction is the Hills Equation. This equation is used to capture the
cooperativity in bio-molecular reactions. Cooperativity exists when there
are multiple binding sites on the enzymes, receptor and promoters
regions. The bound subunit has the cooperative effect on the binding of
the next subunit by increasing its affinity towards the binding region
(Kulasiri, 2008). The general form of Hill equation is given by Eq. 6.

- _ ("
V = Vg ¥ = vmax * TRINTIE (6)

Whereas the inhibitory effects are modeled as

v = vmax » —2a”__ (7
[kgIm+[L]"

In case of reversible interactions the Hill equation is given by

_ Vfa(l——%)(a-l-ﬁ)”_l
- 1+(a+p)"

(8)

where in Eq. (6 and 7) V _represent the maximum reaction rate, L is
the ligand/TF concentration, K, is the equilibrium dissociation constant
and n is Hill’s coefficient. For Eq. (8) the parameters are as described
for Eq. (5). The input-output relations as depicted in Eq. (6) (v=output
and L=input) are also used to model other bio-molecular interactions,
wherein, corresponding ‘kd’ represents the concentration of input at
which the half of the maximal output response it obtained (also termed
as half saturation constant).

ODE Modeling (Ordinary Differential Equations)

The rate expressions described above can be used to describe the rate of
change of various components in a network. Ordinary differential
equations are commonly used to describe the dynamics of a network
system with various components as variables. This method involves
representing a set of elementary reactions of allosteric interaction,
covalent modification, feedback interactions and transport of proteins
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as a system of chemical reactions. Chemical kinetic rate equations are
used to describe elementary reactions. Each rate equation represents
ordinary differential equation (ODE), (Polynikis et al., 2009) which
specify variation of component concentration with time. In a well mixed
or homogeneous system, the solution of ODE with concentration as
continuous variable forms the basis of deterministic modeling (Aldridge
et al., 2006) .

dC
@ Ve ©

In. Eq. (9), the concentration of component C depends on the
generation (V) and consumption (V) rate of the component, which in
turn depends on the stoichiometry and kinetics of the reaction. Reaction
can be zero order (synthesis), first order (degradation) or non linear,
typically second order reactions or Michaelis Menten type kinetics. To
illustrate the application of ODE for quantification of a biological
network, here we present an example of a simple network (See Fig. 4).
The figure shows a network, which is identical to the one presented in
the description of Boolean Modeling. Here, we considered 6 reactions in
a network, which follows typical mass action kinetics. (1) synthesis of A:
it is dependent on concentration C with a reaction rate K,*C, where K,
is rate constant, (2) degradation of A: it is first order with a rate constant
of K ,; (3) synthesis of B: It is dependent on concentration C with a
reaction rate K;*C , where K} is rate constant; (4) degradation of B: It
is triggered by A; second order with a rate constant K z; (5) synthesis of
C:itis dependent on concentration of A with a reaction rate K,*A, where
KC is rate constant; (8) degradation of C: It is triggered by B; second
order with a rate constant K .. The mass balance equation showing
accumulation rates of A, B and C are shown in the Fig. 4 (II). The rate
constants are listed in Fig. 4(IIT). The differential equations are integrated
numerically and the time profiles of components are shown in Fig. 4(IV).

Compartmental Modeling

Dynamic analysis assumes well mixed system in a cell that yields
temporal variations in the system. However, localization of components
in different compartments in a cell influences the response
characteristics. This necessitates the inclusion of variation in both space
and time, due to different compartments. In compartmental models, a
different compartmentis treated as separate species and transport across
the compartments are modeled as fluxes. Compartmental ODE modeling
can capture the dynamics of spatially restricted reactions, however with
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(1) Network (I1) Equations (I1I1) Parameters

%‘Z} S (K C-Ky*A Ba=0LKq=01;

dB =(Kg)*C-~ K *A*B
dt . .
ac . _ o Initial conditions:
5 =K F*A-Ky¥B*(C
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{IV) Dynamic response of the network
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Fig. 4: (I) A synthetic network consists of interactions between three proteins A, B
and C. The edges with arrow indicate positive influence, while the edges with
blunt cap indicate negative influence. (II) ODE equations describing the effects
of interactions (edges). (IIT) List of parameters and initial conditions (in arbitrary
unit). (IV) Simulation of the model: The legends indicate lines assigned to the
proteins,

assumptions that the transport rate across the compartment also affects
the dynamics of the species in the compartment. Fig. 5 (I) shows two
distinct compartments within a cell namely, cytosol and nucleus, both
of them are assumed to be well mixed individually. In other words,
concentration of any component is identical at each point within a
compartment; however, it varies from compartment to compartment.
Molecule A is able to translocate reversibly from cytosol to nucleus,
whereas molecule B remains in the cytosol only. Therefore, the positive
effect of B, as shown in the network, is limited to the cytosol compartment.
The governing equations and parameters for the network are shown in
Fig. 5 (II and III). Note that the balance of the concentration of A in the
cytosol (Acyt) and nucleus (4 ) involves for correction factor in the
mass balance of A_,and A, since the volume of nucleus and cytosol
are not equal. The resulting dynamics of the various species are shown

in Fig. 5 (IV).
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Fig. 5: (1) Network consists of two compartments, namely cytosol and nucleus. Only
molecule A can translocate reversibly from cytosol to nucleus. B catalyzes the
formation of A, and both A and B are subjected to natural degradation. However
in nucleus, the degradation of A is neglected. (2) ODE equations representing
the network (3) Parameters and Initial conditions used for the simulation (4)
Response of the network.

PDE Modeling (Partial Differential Equations)

The assumptions made for compartmental ODE modeling does not hold
good for non-homogenous systems, where there is explicit dependence
of variable on spatially distributed processes such as a diffusion reaction.
The dynamics of signaling pathway in relation to variation in space
and time can be best described using a partial diffusion equations (PDE)
(Kholodenko, 2006). The concentration of componentsin a compartment
depends on the independent variables, such as diffusion, and
biochemical reactions, which are described by diffusion-reaction
equation.

—=D—+4v (10)

where, in Eq.(10), D represents the diffusion coefficient, C is the
concentration of the component, ¢ is the time, x is the spatial variable
and v represents the resultant rate of generation and consumption of
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the component. Nonlinear PDE requires more parameters as compared
to ODE and also need to specify the boundary conditions in addition to
the initial conditions (Tyson and Kagan, 1988). Moreover, solving PDE
requires more computational time as compared to ODE.

To illustrate PDE modeling we have presented an example in which
the diffusion of the species, A, is only in the horizontal direction. Fig.
6(a) shows the reaction diffusion scheme, wherein, (1) molecule A is
activated at only at two edges of a compartment (at X=0 and X=L) (2) A
is subjected to natural degradation and (3) A is subjected to diffusion
due to concentration gradient only in X direction (i.e., A is well mixed
only in the Y direction). The concentration of A is then a function of
both time (t) and space (X) as shown in Fig. 6. Note that the flux of A at
the two edges (X=L and X=0) is directly proportional to the stimulus
(e.g. 0.1 unit in the example). It should be noted that the incoming flux
of A in the region, other than the two edges, is due to diffusion alone.
Fig. 6(b) shows spatiotemporal distribution of A in the compartment.
Initially, A is not present throughout the compartment. Once the
stimulus is applied at the two edges, the concentration of A increases
with time at each point. Initially the concentration is very low at the
midpoint, however as time passes, the concentration of A at the midpoint
increases due to diffusion.

(a)

®__m Diffusion W

ks

X=0 X=L
(b) Equation and parameters (e) Plot
o 2 e
alAl - K] + D('—--Jél S5 0.25
ot ox* < 0.2
2 ~
K;=01 (secrl,D =102, <015
see &
] mol g 0.1,
JL=0..3A'—,—2———; 2 0.05
{mml?sec o Voo
Boundary conditions: it
0 20 40 60

Flux of A at X=L, and at X=0, Jy=0 Length X(AU)

Fig. 6: (a) Cartoon representation of reaction diffusion scheme in which A is produced
only at two edges of the compartment. Further, A is subject to degradation and
diffusion. (b) Governing equations, parameters and boundary conditions used
for the simulation. (¢) Plot for Spatial profiles at three different time points.
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Stoichiometric Modeling

Mathematical model can also be constructed only based on the
stoichiometry of the biochemical reaction called as stoichiometric model.
Such a model is useful when mechanistic details and kinetic parameters
are not available. Topological structure of the reaction mechanism
indicating which species are linked by reactions forms the basis of
stoichiometric modeling. Such kind of modeling is widely used in
analyzing metabolic networks, which essentially function along with
the signaling network to convert the nutritional input into a cellular
response. The stoichiometric modeling approach is also demonstrated to
be useful for analyzing metabolic network from the perspective of an
input—output relationship, crosstalk, measure of redundancy,
contribution of individual reactions in signaling pathways and
evaluation of co- related reaction rates (Papin and Palsson, 2004). Such
properties essentially depend upon the network structures and the
stoichiometry of the biochemical reactions.

This approach effectively involves formulating stoichiometric matrix
of the network based on the reactions of the network involving allosteric
binding, dimerization, phosphorylation and metabolic reactions. In
stoichiometric modeling approach, quasi steady state approximation is
employed (0 = N.V). Stoichiometry matrix N captures the structural
relationship between the network components. This results in system of
linear equations, which can be solved using linear optimization
techniques (Vinod and Venkatesh, 2008). However, this often results
in infinite number of solutions. To obtain appropriate solution it is
necessary to constrain the optimization based on an objective functions.
Network are subjected to mass balance and thermodynamic constraints
to generate a set of systemic pathways that can fully characterize a
network (Papin and Palsson, 2004). However, major drawback of
stoichiometric models is the limited predictive power due to lack of
regulatory information, which can only be included in the formulation
of a kinetic model (Jamshidi and Palsson, 2010; Kauffman et al., 2003;
Ramakrishna et al., 2001). To illustrate the modeling of metabolic flux,
a general methodology and an example of flux balance analysis for a
synthetic network are described as below.

Following are the steps which are generally followed for development
of a model of metabolic flux and determining unknown variables like
reaction flux or formation rate from the measurement of few other fluxes
by imposing assumptions like pseudo-steady-state condition. The
methodology uses following symbols.

-
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Symbols

Sji: Stoichiometric number corresponding to ith species in jth reaction
M: Total reactions; N: Total species; Rj: jth reaction; X,: ith species

Vj: steady state (S.S.) flux of jth reaction; ‘

r;: Steady state formation (accumulation) rate of ith species

Step 1: Identify all the reactions (R,, R, ... Ry} and their components
X, Xy, o0 X)-

Rl H i:—lil SliXi = 0, RzZi:T SZiXi =0 ....,RM: Zizlf SMiXi =0

Si1 o Sin
Step 2: Obtain the stoichiometricmatrix: T =] ... . .
SM 1 asn SMN

Stoichiometric matrix T is formed based on stoichiometric
coefficients of substrate and product consumed in a particular
elementary reaction. Consider a reaction R,: 4X, — 83X, in which
the stoichiometric coefficient of X, is —4 while of X, is 3, therefore
Sy,;=—4 and S,,=3. ’

Step 3: Obtain equations of flux balance:
[ri] = TT[Vj] (1D

Step 4: Reorienting flux balance equations

'y T
Letr; = <rm>, TT = (T uo ), , by substituting for r; in Eq.(11) we obtain
m,

0
o) = ()
I'm | =
0 Tm,O
where, r is vector of unknown formation rates, r,_ is vector of
measured formation rates 0 is vector of zero for pseudo steady
state metabolites, T, and T, ,0 are transposes of stoichiometric

matrices for the metabolites having unknown and known
formation rates, respectively.

Y] 12
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Step 5: Determination of unknown variables:

r
From (81)=T2V]-, fluxes can be determined as

Vi = (Ty)~ ( ) & fromry, = Ty V;, unknown formation rates
can be determined

In Fig. 7, we provided one example of the above mentioned
methodology to analyze metabolic flux balance, where in, a synthetic
metabolic network consists of 4 reactions and 5 species. Here the number

{I) Metabolic network: (11} List of reactions: (111} Stoichiometric matrix:
R1IX2-K1=0 X IxX1ix2 X38[x4 %5
Rl 1110 010
R2:X4-X2=0 R2 10 10 110
a  wa e R3 0 -1 i1 10
R3:X3-X2=0 /R s R R R B
R4 :X5-X4=0

{IV) Flux balance:

[ ¥x1 -1 -1 0 [
Ty 10 -1 0 o
sl =l 000 1 0 e V'“
3 0 1 0 -1 ‘,ﬁ‘
rxn 0 0 0 1

(V) Reorientation of matrix:
Note: There are nine variables (i.e., rxi and VRj, i=1 to 5 and j=1 to 4}

(Formation rates of X1 and X3 are measured whereas X2 and X4 are assumed to be zero)

Vi rx1 -1 -1 0 0} Xm
- qy x| Viz e ) 1 0 1 0 4, RJ 9
(rxsd= (0 0 0 Ve | SV I ) = { o 1 o I*lve | (2

V[~ 1.1 0 0\ Vit (Ve i 1 1 04Vt

o [ VR2t 11 0 -1 0 rxa ). Vi T S T S ¥ A
From (2): el =l o 0 1 0 s |7 Vs o o 1 o llrel

Viaa 0 6 - 1 Vrxa b\ Ve 1 1 -1 -1 \rx

hence, Vi = 1o+ g V2 = =i — Tez — Py Vg = 1 VRa = Tt — Fag = P — It
here, P =Py =0, and let rygy = -2 rg = 1;
hence, Vay =0+ 1=1; Vig= (-2}~ 0~-1=1;

Ves=1, Vpy=-(-2)~0-1-0=1from{1); () =Vps=1

Fig. 7: Example of Flux balance analysis for a synthetic network. (I) and (IT) shows a
synthetic metabolic pathway and its reactions (IIT) Stoichiometric matrix (IV)
flux balance equations, (V) Reorientation of flux balance equation so that
unknown variables can be explicitly represented as a function of known
variables. :
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of unknowns are 9 (4 reaction fluxes and 5 formation/consumption rates
of species) and number of equations are 5 (flux balance equations),
therefore to determine the unknown variables, the value of 4 variables
need to be fixed. This is achieved in this example by measuring the rate
of formation of X, and X, and assuming steady state condition for X,

and X, in Fig. 7.

Stochastic Modeling

Contrary to deterministic processes, many biological reactions occur
infrequently leading to fluctuations, which can be attributed to inherent
randomness in the molecular interactions which lead to stochastic nature
of the reaction (El-Samad and Khammash, 2010). Lesser numbers of
molecules and limited diffusion due to the structural organization of
the cell contribute toward the fluctuation of biochemical reaction (Savant,
2007). Stochastic modelling approach involves predicting the probability
of collision between molecules resulting in reactions at discrete time
intervals (Gillespie, 2008). Stochastic modelling can be performed using
stochastic differential equations , stochastic simulation algorithms and
molecular dynamics simulation (Kulasiri, 2008). Stochastic models can
be broadly characterized based upon their nature of random variables
and probability distribution functions such as different kinds of
Markovian processes and Monte-Carlo methods.

Master Equation Models

The discrete probability distribution of reaction as function of time is
described by chemical master equation (CME) (Gillespie, 1977; Ridwan
et al., 2004). The master equations are derived from the Markov
properties of chemical reactions by writing differential form of Chaman-
Kolmogorov equation (Kampen, 1992). They assume the well mix system
in which only one reaction occurs at infinitesimal time interval. Based
on physical considerations master equation transform rates of chemical
reactions into rates of transition probabilities which depicts the way in
which the state of system changes with changes in probability distribution
with time (Kulasiri, 2008). The general form of Chemical master
equation can be given by

opx) _ N
2D ijl[aj (X —v) P(X —v;3t) —q COP(X; £)] (13)

where, P(x,t) is the probablhty of the system state X(¢)=x at time t, a; is
propensity function and v; is state change vector or stoichiometric Vector
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Although these equations are difficult to solve analytically there are
methods to solve them numerically by using stochastic simulation
algorithms (SSA). One key simulation technique is the stochastic
simulation approach to chemical reactions developed by Gillespie (1977)
which implements Monte-Carlo method for getting the exact numerical
solution (Gillespie, 1977). The other way is to approximate the CME to
Fokker-Planck equation and Linear noise approximation and solve it
numerically (El-Samad and Khammash, 2010).,, However, stochastic
representations are complicated in nature and hence the system can be
modeled as continuous reactions before attempting using stochastic
simulations.

Stochastic Simulation Algorithm (SSA)/Gillespie Algorithm

Gillespie algorithm is used for obtaining numerical solutions for
stochastic equations such as CME (Chemical Master Equations)
(Gillespie, 2008). It is used to simulate the discrete probability distribution
of the reactions in the network with respect to time (Gillespie, 1977). It
follows Monte-Carlo method in which initially the defined number of
reacting species is set to zero simulation time. Based on current
abundance of the reacting species the propensity of each probable
reaction is calculated. These propensities are used to simulate the time
required for next reaction to occur and the simulation time is upgraded
accordingly. Then random selection of reaction events is carried out
with the probabilities in proportionate with reaction propensities and
the number of reacting species is updated accordingly followed by
recording time and state of the system. This process is repeated till the
simulation ends with the exhaustion of reacting species. This algorithm
precisely monitors the dynamics of each and every species which requires
large amount of simulation time and makes the algorithm slow. Efforts
are being made to increase the speed of these algorithms by certain
approximations and leaping the time values in the simulation
(Wilkinson, 2009; El-Samad and Khammash, 2010; Kulasiri, 2008)

Stochastic Differential Equations (SDE)/ Chemical Langevin
Equation (CLE)

It is computationally quite expensive to stochastically simulate large
and complex reaction network containing fast reactions. Chemical
Langevin equations replaces the large differential equations with small
stochastic equations which are easier to solve compared to CME. These
models account for the external fluctuations in the system by introducing
a noise term in the rate equation (Khanin and Higham, 2008). It has
been demonstrated that even the CMEs can give rise to CLE under
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specific conditions wherein intrinsic noise in the system is approximated.
The general form of Chemical Langevin equation is given by

.
+ M
Rﬁ‘i‘) - zj=1”faf(X(t)) + z}':lm/aj(X(t)) [ (4

where, a; is propensity function , v ; is state change vector or stoichiometric
vector and I, ‘ white noise’ term. This equation is also called as ‘white
noise ¢ form of CLE where the second term in the equation defines the
randomness of noise in the system (Kulasiri, 2008). To illustrate the
methodology of CLE modeling we provide below an example of an
enzyme-substrate reaction. Fig. 8(I) shows reaction scheme; enzyme E
associates with substrate S to form a complex ES, which gets either
converted to product P or dissociated back to E and S. The CLE equation
of the scheme is shown in the Fig. 8(III). The parameters and random
number description is also shown in the Fig. 8 V). The simulation results
shows comparison of product concentration profiles obtained by the
deterministic and stochastic modeling. It can be seen that in the product
profile for the case of stochastic simulation fluctuates around mean profile
(deterministic profile). This is due to the addition of the noise terms in
each differential equation (last term in Eq. 15).

MISCELLANEOUS MODELING

Molecular Dynamics Simulation

Biological interactions can be modeled using molecular dynamic
simulation. It can account for the spatio-temporal evolution of both
reacting and non reacting interaction in the network. This approach is
extensively used in modeling folding and stability of proteins,
conformational changes in proteins, enzymatic reactions, transport
processes in biological systems and provides static and dynamic properties
of the molecules based on the interactions (Martin and McCammon,
2002). This approach can be applied to the modeling of biological
networks where only the dynamics of the reacting species are considered
by assuming uniform spatial distribution (El-Samad and Khammash,

2010).

Rule-Based Formalisms

Knowledge-based or rule-based simulation formalisms allows higher
variety of knowledge about the system to be expressed in a single
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(I) Reaction network: {II) Steichiometric matrix

E]1S ES|P
Rt [~1]-1 10
Rz | 1] 1] ~1]¢
Ra | 11 0 -1]1

{ITD) Stochastic differential equation model
] rreh - P rr gy * . .
Ay = SFpysyry (Ythidt + Tha Sj\;)tj YendWiit) {15}

where Yi is concentration of species i(i=E,8,ES,P) 5; is an array of stochiometric
coefficients for reaction j(j=R1,R2,R3), 1y is deterministic rate of reaction j for the
given concentration at time t, which are as following:

r1=k1*8*E; r2=k2*ES; r3=k3*ES; dW indicates an infinitesimal for Brownian path W

(white noise term), which is obtained by following equation

AW = ~dF * RV{0,1), where RV is random variable from a distribution between
0 and 1; dt is a small time step.

(IV) Comparison of deterministic and (V) Parameters and initial conditions:

stochastic results

s R ¥

kil=; k2=0.1; k=3=0.01; (units are
arbitrary)

E=100;8S=100; P =0, ES = 0;

Here we considered poison distribution
in RV{0, 1)

Product P(AU)

e
)0 5 1

Time (AU)

The simulation was done up to 10 units
and dt was taken as 1/30 unit.

Fig.8: CLE modeling approach applied to an enzyme-substrate reaction scheme. (I)
Reaction network wherein, substrate S associates with enzyme E to form a
complex ES. ES can undergo either dissociation or another reaction in which
product P is formed along with enzyme E. (II) Stoichiometric matrix where
rows corresponding to reaction and columns correspond to species, each element
is stoichiometric coefficient of a species involved in a specific reaction (III)
Model description (IV) Simulation results showing comparison for profiles P
obtained in CLE modeling and deterministic modeling.(V) Parameters used for
the simulation.

formalism. For example, the logical and physical structure of a gene
such as the relative position of the regulatory sites at which transcription
isinitiated, prevented, and aborted, can be conveniently represented in
the rule-based approach (Jong, 2002; Gutierrez-Rios et al., 2003).
Basically, rule-based formalisms consist of two components, a set of facts
and a set of rules that are stored out in a knowledge base. Facts express
knowledge about the objects of a regulatory system. The rules in the

IR it 0,5 A i
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knowledge base consist of two parts, a condition part and an action
part. The condition part expresses conditions in terms of properties of
objects; while the action part operates upon the objects, e.g., by changing
a property of an existing object. ’

Cellular Automata Models

Cellular automata (CA) models are lattice based models which perform
complex computations using local information about the mechanistic
details of the system. CA uses discrete lattice cells, each cell representing
one possible discrete state (Gilbert et al., 2006). The lattice cells are
defined based on optimal dimensions of system at particular time, based
on which the fate of neighboring lattice space is decided. At discrete
unit time, cell updates its current state by transition-rules. CA can be
applied for biophysical simulations (David et al., 2005; Gordon et al.,
2005) base upon simple rules defined by the modeler. It essentially
doesn’t require development of differential equations and are much more
easier computationally as compared to their mathematical counterparts.

Spatial and Agent Based Models

Spatio-temporal models such as Agent based modeling (Zambonelli and
Omicini, 2004) and Spatial modeling are some of the other techniques
to which modelers are resorting to understand the complex dynamics of
the biological networks (Gilbert et al., 2006). Agent-based models are
the software agents which represent the discrete elements of the models.
Using various artificial intelligence (Fei-Yue, 2005) paradigms such as
artificial neural networks, these entities incorporate the spatio-temporal
attributes of the elements. Spatial modeling is applied for time-space
driven events such as travelling waves in biological process (wound
healing and immunological systems), mechano-chemical theory of
morphogenesis, pattern formations and spatial distributions using plot
samples (Murray, 2003).

Model Parameter Estimation

There are several variables in the system which govern the dynamics
of the system but do not represent the system state. The variables that
define the state of the system are called as the state variables while
those define the system dynamics are called as system parameters. The
process of parameter estimation is also called as ‘Model calibration’
(Markschies, 2008). Rate constants, diffusivities, equilibrium constants
and physical properties of the components are said to be system
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parameters. It is essential to know this information for the simulation
and analysis of model. Searching through literature and databases along
with manual evaluation is primary way to get the parameters. However
most of these are unknown and are difficult to measure experimentally.
In such situation sometimes constructing the black box model is helpful
wherein the system inputs are tried to correlate with the system output
with various hypotheses (Sriram, 2010). If this approach doesn’t work
one can resort to reverse engineering techniques where observable
information can be retracted to evaluate the system parameters. One
can even try iterative process with assuming some initial guess and
after many iterations and experimental validation the system parameters
can be deduced, however this approach is limited by the smaller sample

space.

Model Optimization and Validation

In cases of large number of parameter estimation, sophisticated
computational techniques such as optimization methods and algorithms
are widely used. The goal of parameter estimation using optimization
technique is to locate the optimum for the ODE models and find the
possible parameters that minimize the difference between experimental
and simulation results which can be given as

00 _ 3%¢

min®(9), = — =
q)( ) % 96’ 280 6T

(16)

where function ®(0) represents the goodness of fit between experiment
and simulation, it is a scalar function of the parameter vector 6. J is
partial derivative of objective function (partial derivative matrix; a
Jacobian), H is a Hessian matrix containing second derivative of
objective function with respect to pairs of parameters.

This kind of parameters estimated by simulation to match
experimental results is called as ‘in-sample fit’. Sometimes, to evaluate
the simultaneous effect of multiple parameters on the system, the higher
order partial derivatives of the objective function with respect to each
variable are taken which is represented by the Hessian matrix (Sriram,
2010). This kind of approach is implemented using Gradient search
optimization algorithms. Various sophisticated algorithms using
probabilistic approach and Monte-Carlo methods have been developed
for optimizing biological data which are also prone to noise.

Although the parameters obtained from this technique might fit the
experimental data, sometimes they fail to evaluate the models

i
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predictability. To tackle this problem we need to make newer predictions

and compare with new experimental data. After many iterations certain

set of parameters are obtained that can well be fit to models predictive
ability under various conditions. Such a process is called as ‘out- sample

fit’ or model validation where the models can precisely predict the

experimental output under varied conditions. Thus obtained model can

be more reliable to simulate the outcome of complex systems (Markschies,

2008).

MODEL ANALYSIS
Steady State Analysis

Kinetic modeling of biochemical reactions can be simplified considerably
if the overall reaction is studied with the aid of the quasi-steady-state
or equilibrium approximations. The system is said to be at steady state
if the concentration of system components do not change with time.
Steady state behavior of the system can be obtained by setting the
derivatives of all concentrations zero and solving a set of non linear
algebraic equations simultaneously. The general form of equation can
be given by

d[Xss]
dt

=V, —kIX*]=0 (17

where, X* is the steady state concentration of the component, V_ is the
rate of production and K, is the degradation rate. Steady state modeling
approach provides insights into the emergent properties of the network
and also helps to identify the role and contribution of individual
regulatory structures. To illustrate utility of the steady state modeling,
we have discussed different kinds of analysis with examples.

Parameter Estimation

Often steady state modeling is used to obtain parameter which can
further be used for the dynamic modeling. We have provided one
example of parameter estimation by steady state modeling, wherein, a
hill equation is assumed to represent relationship between two molecules
x and y. The parameters are estimated by fitting the steady-state
predictions of the model to some known data points. The table in Fig. 9
shows data points for concentration of y and x. We assumed that
concentration of y is related to the concentration of x with a Hill function
and therefore estimated the Hill coefficient (n) and the half saturation
constant Km.
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(I} Data table: (IT) Linearization plot

x: Input, y: Output 9
y | x] ¥ 1
0] 0 |06|0525
0.1]0.001] 0.7 | 0.635 50
020012 | 0.8 | 0.759 %-1
0.3 0.060 | 0.9 | 0.845 3 g
0.4 0159 | 1 |0.885
- -3
0.5|0325| 2 |1.000
? 11 0.6 0.1

LogloX)

Fig. 9: (1) Data table listing concetration of x and y, where in x is changed and y is
measured at steady state 2) The linear Plot of log (X) vs log (Y), where X and
Y are as mentioned in the manuscript.

The hill function of x relating to y, which can be given as:

xn
lety = —X—, (19)
Ymax —Y

then Hill equation relationship between x and y can be written in terms
of X and Y as following

X n
Y = (E) (20)
Taking log10 on both sides gives,
log(Y) =n+*log(X) —n=*log(K,)

The constants n and K now can be obtained by plotting Log(Y) vs
Log(X) for the given data points and then estimating the slope and the
intercept of the fitted straight line. Fig. 9 (II) shows the linear
relationship between log(Y) and Log(X) for the given data points, for
which Slope=3.830 and intercept (i.e., -n*log(K, ),) = 0.877; hence Hill
coefficient n=3.83 and half saturation constant K _=0.590 (See Fig. 9).

ANALYSIS OF AMPLIFICATION AND ULTRA-SENSITIVITY

For the input-output relationships between two variables, one can
analyse signal amplification and ultra-sensitivity of the relationship by
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fitting Hill function as described in the previous section. The Hill function
with lesser Km as compared to the normal (half saturation constant)
suggests that signal amplification is higher, while the higher value (more
than 1) of the Hill coefficient ‘n’ suggests that the input-output
relationship is ultrasensitive. Fig. 10 compares steady-state input-output
curves (i.e. dose response curves) for various values of hill function
parameters Km and n. It can be seen from the Fig. 10(I), that; 1) for the
given K (i.e. K _=0.2) response curve is more like a on/off switch for
n=4, while it is graded for n=1, therefore the input-output relationship
given by the Hill function with n=4 can be termed as ultrasensitive. In
Fig. 10 (II), for the given n (say n=4) the response is switched on earlier
for the case with lower K, value (i.e. K,=0.2), therefore signal
amplification in the relationship given by a Hill function with low half
saturation constant is higher compare to the one with higher half
saturation constant. -

O w ], RIN(.2 s——nzzd) Kin=0.2 (n s 124 KAy =0,2 e ¢4 k=06
1 1
5 08 P X
~ 0.6 - = 0.6

El El

% 0.4 / *34 0.4
© 02 4 o 0.2

0 - - 0 ) y

0 0.2 04 06 08 1 4] 0.2 0.4 0.6 0.8 1

Input (AUD) Input (AU)

Fig. 10: Effect of Hill coefficients and half saturation constants on the input-output
relationship. Dose response curves representing I) Ultra-sensitivity - the solid
curve represents the sensitive response with the Hill coefficient n=4 as
compared to the dashed curve that represents graded response with Hill
coefficient n=1. Note that the K is identical in both the cases. IT) Amplification-
solid curve represents the amplified response with half saturation constant
k, =0.2, as compared to the dashed curve with K, = 0.6. Note that the n identical
in both the cases.

Analysis for the Robustness

Robustness of the network can be defined based on its capacity to restrict
the variation in the steady state response with respect to the variation
in the input. Various network structures (e.g. negative feedback loop,
incoherent feed forward loop (IFFL)), play a role in the robustness of
the system in maintaining the variable around a fixed value. Fig. 11 (I)
shows one such IFFL, wherein, activator A and Inhibitor B are up-
regulated by the stimulus S. Both A and B act antagonistically on
molecule R, wherein, A enhances level of R whereas B reduces it. The




306 Biotechnology Vol. 4: Applied Synthetic Biology

governing equations of the network are shown in the Fig. 11(II). The
robustness of the network in maintaining R at a fixed value can be
tested by obtained the steady state equations (see Fig. 11(III)) of R in
terms of other variables and parameters. By substituting for activator’s
and inhibitor’s concentration in terms of stimulus S, one can obtain
concentration of R in terms of parameter and stimulus. For the given
case, as both activator and inhibitor depends on S with a similar order
of reaction (i.e. first order), the substitutions give equation of R in which
stimulus effect is eliminated. Hence this system ‘can be considered as
very robust with respect to external disturbance. Fig. 11(IV) shows dose
response curves for A, B and R. It can be seen that while A and B
increase with stimulus S, the level of R is maintained at fixed value.

(I) Dynamic equations
= kals] - kgalAl

(1) Network having incoherent
feed forward loop

dt

dB ) Lo

—(17 = k[[S} - k(ﬂ{B]

AR ; ’
§=mmwwmm

(IV) Steady state equations
o AT o B

(IT1) Steady state equations

o kals] -
[A] = -2 2 100 B
kaa g 10 o
Rilsl - el
(B = 215 i =
Rz %
S 0 10 100
] _kald] =01
“kyrlBl log(S)

Fig. 11: (I) Incoherent feed-forward loop showing activation and deactivation of Rby A
and B, respectively. Both A and B are activated by a common stimulus S. (II)
Dynamic equations which are used to obtain steady state equation (III)
Reoriented steady state equations (IV) Dose response curves for A, B and R
showing that while A and B varies with stimulus, R remains constant.

Analysis for Multiple Steady States

Biological systems are governed by the highly non-linear functions of
the components involved in the system. Most of the times, the non-
linear equations provides multiples solution, therefore, steady state model
can be analyzed to obtain all real positive roots of the system. These
roots denote the steady states of the model components. Typically linear
stability analysis is used to characterize the nature of the steady states
(stable/ unstable) which is described in the later section (Kapuy et al.,
2009). . :
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To illustrate the utility of steady state modeling to obtain all possible
phases of the system, we have shown here one simple example. The
Fig. 12(I) shows a network motif, wherein, A is subject to activation by
action of S. Further, the activated A restricts the backward reaction
(i.e., deactivation reaction). The governing equations are shown in the
Fig. 12(II) which is obtained by equating the accumulation rate to zero.
This equation is a non-linear algebraic equation which can give multiple
solution of concentration of A. Among those roots, only non-zero and
real roots are feasible. Fig. 12(ITT) shows plot of A for various value of
stimulus. It can be seen that for the stimulus range S=0.05:0.25, there
are three realistic roots (denoted by open triangles, circles and diamonds).
However outside this range there is only one feasible root.

(I} Network (11} Steady state equation and
parameters
. . Km”
| l‘S] (/;T — A%} - K[)A A;ﬁ:}zn" =0
’ Ap=2Kp=15Kn=05n=4
[S] = 0 to 0.3;
(III} Steady state input (8) - Output (A%) Response
2.5
2 000 000000000000
o &
2 15 A
% Aﬁ
g 1 Y-V N
& Fil
3 Aa
w 05 8 a
O
,\n?ﬂﬁﬁ(}(}ﬂ@(}o{}emo
AR
~-0.05 0.05 0.15 0.25 0.35
[8] (Stimulus)

Fig. 12: (I) Network in which A is activated by stimulus S and the activated A inhibits
its own deactivation, thereby making a positive feedback loop. (IT) Governing
equation of the reaction scheme, where A* is activated A. (III) The input
output response showing multiple feasible solutions for A for various values of
stimulus.

Dynamic Analysis

Dynamic behavior of regulatory pathways can be studied by Solving a
set of coupled non-linear ordinary differential equations (ODEs)
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representing the individual components of the system, which is given
by
dc

ZX_N.V
dt (21

where, component concentrations of the network is represented as C =
[cIc2¢3 ...cn]" and reaction rates of the network (flux distribution) is
represented as V = [vIv2v3 ~omJF. s

Individual reaction rates depend on the kinetic description of the
reaction involving regulation of enzymes and kinetic parameters.
Further, N represents the stoichiometric matrix, where rows of the matrix
correspond to network components and columns of the matrix correspond
to reactions with each element of the matrix as the stoichiometric
coefficient of a component in the associated reaction. N is invariant
against time, kinetics and concentrations. Such formulation of the
network is termed as kinetic modeling of regulatory pathways (Vinod
and Venkatesh, 2008). These dynamic models can be analyzed through
parametric variations to study hidden tendency of the system in showing
a particular type of the response (Lee et al., 2008).

Sensitivity Analysis

The models formulated based on the above stated methodologies can be
analyzed by subjecting the model to perturbation in order to understand
the influence of component concentrations and model parameter values
on the overall response of the network. Such an approach is termed as
parametric sensitivity analysis. Systemic behavior is evaluated with
respect to variation in single parameter or multiple parameters, to
evaluate the key parameters in the network and to study robustness of
the network. Sensitivity analysis is carried by two methods: Local
sensitivity analysis and global sensitivity analysis. In local sensitivity
analysis the changes in the model output with respect to small variation
in the parameters are studied. These variations are measured by the
sensitivity coefficients which are the first order derivatives of the model
with respect to model parameters (Cho et al., 2003, Haseltine and
Arnold, 2007; Sumner et al., 2012). The equation for local sensitivity
analysis can be given as

aG(N)
a6

(22)

where N is vector of species concentration, G(IN) is the system output
and 6 is the vector of parameters. ‘
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In biological systems often the parameters including rate constants
and initial concentrations are varied in a large range depending upon
the specific cell types and cellular environments. Therefore the global
sensitivity analysis algorithms are required to handle the possible non-
linear effects of parameters by simultaneous variations of all the
parameters with Monte-Carlo simulations or multi parametric sensitivity
analysis (Keasling, 2008).

Variation of multiple parameters results in multidimensional analysis
with sensitivity of network behavior varying in space. Such an analysis
provides a global view of the network behavior with operating zones
based on the minimization of objective function. The solution space is
represented by hills and valleys, with valleys representing the less
sensitivity region in response to variation in parameters. With the help
of optimization techniques global minima of the objective function can
be determined (Moles, 2003). Such optimization techniques can also be
used to estimate the parameters from experimental results. Moreover,
the reference parameter set of the network can be defined and test
parameter sets can be generated by random variation of parameters.
The sensitivity of the global response can be plotted against the distance
between the reference and test parameter set to get a scatter plot, which
gives the measure of robustness of the network.

Flux Control Analysis

This analysis is more generally termed as Metabolic Control Analysis
(MCA) which is used to quantify the relative control of each system
variable on the network properties. This approach is generally used for
quantifying metabolic networks but can be extended to study the
dynamic properties of all biological networks. The sensitivity of network
is analyzed by evaluating control coefficients for flux and concentration,
elasticity coefficients and the response coefficients for the individual
system components in the network. Control coefficient determines the
control exerted by the activity of single enzyme on the pathway flux
and the internal metabolites. Elasticity coefficient determines the
sensitivity of bio-molecular reactions in the pathway with respect to
local environment such as substrates, products and effectors. Response
coefficient determines the action of the external parameters on the system
variables. The equations for these coefficients are given by

J — ﬂ(_ai) _ ol . -
C; = 7 \aE; =, i=1,2,3..n Flux control coefficient  (23)
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i Sy (0v; dlnlv;
E; = v—k(ﬁ) = %,i:],&&.n, k= 1,2,3,...n Elasticity coefficient (24)
; \0Sk k

R{, = jg(g—{)) = len—nlg , Response coefficient (25)
where J is the system flux, E is the enzyme, S is the metabolite, v, is
reaction rate and P is external parameter (Schuster.and Heinrich, 1992).
The kinetic equations of the bio-molecular reactions are used to
parameterize the control coefficients resulting into response coefficients.
The system response to the perturbation is quantified by summation of
the response coefficients which affect the desired output. This way the
global dynamic properties of the network can be related with the
individual reaction (Wildermuth, 2000; Steuer and Junker, 2008).

Linear Stability Analysis

In previous sections, we have shown that the steady state analysis can
be used to provide information about number of realistic roots (steady
solutions) for the system. However, to determine the nature of the
solution, i.e. stable or unstable, linear stability analysis is used. Fig. 13
(shows various steps of linear stability analysis as following 1)
establishing the network (Fig. 13 (I)); 2) obtaining differential equations
of the network (Fig. 13 (II)); 3) obtain Jacobian of the system, which is
matrix corresponding to partial derivative of steady equation with respect
to variable (Fig. 13 (III)); 4) obtain roots of the steady state equation of
the system; 5) obtain Eigenvalues for the possible roots of the steady
state equations; Eigenvalues can be obtained by solving characteristic
equation of the system as shown in the Fig. 13 (IV).

The sign of Eigenvalues and whether it is real or complex number,
determines the nature of solution of the system. Various cases are shown
in the Fig. 18 (V), where in, the solution is stable if all the Eigenvalues
are real negative numbers and unstable if they are real positive numbers.
For the case of complex Eigenvalues; the solution is asymptotically stable
if real part of the Eigenvalue is negative and it is unstable otherwise.
In case of stable node, as in case of real negative Eigenvalues, the minor
fluctuations in the level of any variable (fluctuation in concentration of
A, B or C) will not result in different steady state or will not make the
system unstable in which concentration keeps on creasing with respect
to time. However in case of un-stable node, as in case of real positive
Eigenvalues, minor fluctuation (whether positive or negative) results
in unstable system. ,
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(IV) Characteristic equations:
JJJ = 31} = 0; where J is matrix of partial derivative as obtained in I1],

1 is unit matrix and & is eigen value. The characteristic equation In our case is a cubic

equation as 23 +cppf + el +ep=0

{V) Eigen values and stability of the system

For Nature of For Natur Iuti

real iy solution image ()% 0 ature of solution
150 Unstable node/ Real ()50 Unstable focus (Oscillations with
g saddle point seal ()= increasing amplitudes)
2i<0 Stable nodg Real (1)<0 Stable focus (Oscillations with

decreasing amplitudes)
Limit cycle (Oscillations with
Real (3)=0 | constant amplitudes)

Multiple solution,
24=0 with stable or
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Fig. 13: (I) A synthetic network consists of interactions between three proteins A, B
and C. The dotted edges indicate possible interactions (positive/negative) (II)
ODE equations that determine the effects of interactions. (IIT) Jacobian matrix,
obtained by partial differentiation of each function (i.e. f1, f2 and £3 in (II)) with
respect to the amount of each protein (i.e. A, B and C). (IV) List of possible
cases classified according to the sign of Eigenvalues and also based on whether
the Eigenvalue is real or values. The sign of real and imaginary part of value
determine the nature of solution.

Bifurcation Analysis

Dynamic analysis methods such as stability and bifurcation analysis
are often used to identify the qualitative changes occurring in a non-
linear dynamical system with respect to parameter variation (Doedel,
1991; Chickarmane et al., 2007). The dynamics of the system changes
qualitatively either with system returning to original steady state called
stable steady state or become unstable or shift to new steady state under
perturbation. Such qualitative change in the location and stability of
steady states is determined by the parameter values of the system with
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different possibilities emerging in different parameter ranges (Goldbeter,
1996; Tyson, 1996). :

Bifurcation analysis traces down the qualitative changes which
occurs at points in the parameter space called bifurcation points
(Zumsande and Gross, 2010; Sriram, 2010). The set of non-linear
differential equation is solved at steady state and the stability of steady
state is determined based on the Eigenvalues of Jacobian matrix. The
most common bifurcations in biochemical networks are saddle node
bifurcation and Hopfbifurcation, which usually leads to bistability and
limit cycle oscillations, respectively (Vinod and Venkatesh, 2008). We
have further illustrated two bifurcations commonly observed in biological

systems.

Saddle nodel Limit point bifurcation

Limit point bifurcation analysis is used for investigating the transition
points where the system behavior changes from stable to unstable. This
essentially determines the thresholds where system behaves like switch
and looses mono-stability. It happens when one real Eigenvalue of the
Jacobian matrix crosses the imaginary plane (Gardner et al., 2000).

Figure 14(I) shows network which consist of interaction between A
and B. A exerts positive effect on the B, which in turn reduces
deactivation of A. Thus there is a positive feedback loop in the system.
Such positive feedback loop, is known to show bistability, wherein, two
stable nodes are possible for a given value of a parameter. We presented
here procedures to obtain the critical value of the parameter which
separates two natures of the system i.e., monostability and bistability.
Fig. 14(II) shows governing equations of the network which can be
used to obtain roots of the system for various values of parameter K,
i.e., the degradation rate constant of A. Note that we have fixed other
parameters and have shown effect of parameter K, , only. Further, the
Eigenvalues can be obtained for each value of K, by using the Jacobian
as shown in the Fig. 14(II1). Note that the functions f; and f, are steady
state equations of A and B, respectively. Since f; is function of K, the
partial derivatives df,/dA and df,/dB are also dependent on the
parameter K, ,. We can obtain the characteristic equation as a function
of A, B and K,,,. Thus there are three equations (two steady state
equations and one characteristic equation) and four unknowns (A, B,
K, and Eigenvalue). Fixing K, therefore provides Eigenvalue which
can be analyzed as described in the previous section. Fig. 14 (IV and V)
shows the plot of Eigenvalue and A as a function of parameter K,
respectively. It can be seen that for K, <0.55, there is only one
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Eigenvalue and its sign is negative. This suggests that there is only one
feasible root and it is a stable node. However for 1> K, [0.55,1] there
are three Eigenvalues; two have negative signs suggesting two stable
nodes and one has positive sign suggesting a saddle point (unstable
node). Thus this suggests that system can achieve two distinct stable
solutions over a range of K. This is termed as bistability and the critical
point after which there are multiple roots is termed as bifurcation point.
This bifurcation is specified as saddle-node bifurcation because after
bifurcation point two additional roots are created namely saddle and
stable node.

{I) Network (II} Dynamic equations
dA Km"
ez KA — AF) — KpgA¥ e
ot aldr=4 DA% By K
dB
— = KpA¥ ~ K,
7 B DB
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We present here, bifurcation with respect to
parameter Kpa
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Characteristic equation |J —~ 11| = 0; 22 L’f}, S5 e a8 + ah = ()
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Fig. 14: (I) A network motif involving two molecules A and B. A has positive effect on
B, which inhibits deactivation of A. Thus there is a positive feedback loop in the
system. (II) Dynamic equations representing the network (III) Procedure for
obtaining Eigenvalues (IV) Real part of Eigenvalue as a function of parameter
Ky, (V) Steady state A as a function of Kpy,.
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Supercritical Hopf bifurcation

Hopf bifurcation analysis determines the parameter values that are
responsible for the transition of the system from stable steady state to
oscillatory behavior. It determines the thresholds of the point where
the system dynamics tend to oscillate leading to periodic solutions
(Garcia-Ojalvo et al., 2004; Hasty, 2002). This happens when the pair
of imaginary Eigenvalues crosses the imaginary plane in the phase
plane diagram. At this point the real part of the leading Eigenvalues is
zero. As described in the previous as section, selection of parameter
value can give distinct number of feasible solution in the system. There
is another class of bifurcations in which the number of feasible solutions
may not vary with parameters, however, the nature of solution could
vary. Supercritical hofp bifurcation is one such type, wherein, the nature
of solution changes to stable focus from stable limit cycle or vice a versa.
A limit cycle is a dynamic nature of solution in which the solution oscillates
between two values. A stable limit cycle is the one in which the stable
oscillations are maintained and the amplitude do not change with time.
Note that the amplitude may increase or decrease with parameter
depending on the parameter values.

Figure 15(I) shows a network that consist of SO, S1 and R, wherein,
R activates SO, which in turn, activates S1. SO, increases its own
activation by an autocatalytic action. Further, there is a negative
feedback on S0, mediated by S1. Such system with coupled auto-positive
and negative feedback is known to demonstrate oscillations (Ferrell et
al., 2011). We will analyze the system for the conditions in which the
oscillation dies out or are maintained. Such analysis can be done using
Eigenvalue analysis as describe earlier. Fig. 15(II) shows dynamic
equation which are used to obtain Eigenvalues as show in the Fig. 15
(ITI). It should be noted that the Eigenvalue of this system is a complex
number and the figure shows only the real part of the complex
Eigenvalue. It can be seen from the figure that, at k;;=0.48 the
Eigenvalue changes its sign (positive to negative). This point is termed
as Hofp bifurcation point as solution transform from stable focus to
limit cycle. It should be noted that there are many other systems in
which the stable focus may be lost to an unstable focus, in which the
amplitude of oscillation increase with time, however there always exists
a point at which limit cycle exists. Unlike the limit cycle for the current
system, such limit cycle is termed as unstable limit cycle. Fig. 15 (IV,V
& VI) show temporal profiles of SO for three distinct values of kdl,
wherein, for kd1 values higher than Hopf point, the system shows
damped oscillations; for kd1 lower or equal to Hopf point, system shows
sustained oscillations, with increase in amplitude at lower kd1.
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(I) Network (I1) ODE model and parameters
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Fig. 15: Network showing interaction between two molecules S0 and S1, wherein, S0
undergoes activation due to stimulus R; S0 has auto-positive feedback and a
negative feedback due S1; and S1is activated by S0. (II) ODE modeling capturing
above mentioned interactions (III) Plot of Eigenvalue vs kd1, wherein, kd1is
degradation rate constant of S0. (IV), (V) and (VI) are simulations results for
kd1=0.55, 0.48 and 0.24, respectively.

System Identification

Often, known engineering principles are used to identify the key
properties of the biological systems. The identification of the system is
performed using, experimental and analytical techniques which involve
application of the specific nature of inputs such as step change, wave,
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impulse and ramp input. By application of dynamic analysis, the response
obtained to these inputs are further analyzed to and obtain the response
parameters such as, time constant, rise time, peak time, frequency
response and amplitude response. Such kind of analysis enables to
obtain the insights on the control structures prevailing in the biological
networks. ' ’

Hierarchical regulation analysis .

Apart from the above kinds of conventional analysis, biological systems
need in depth analysis of the contributing networks. In hierarchical
regulation analysis the contributions of various regulatory process are
quantified based upon their molecular interaction networks and the
output of the individual system (Westerhoff, 2006). It provides a platform
for integrating the experimental data obtained at the various levels
from metabolism, signaling and genetic analysis by various high-
throughput methods. It becomes very essential to correlate the system
outcome with various network levels to understand the mechanistic
behavior that leads to certain phenotypes (Kuile and Westerhoffm, 2001;
Even et al., 2003; Rossell et al., 2005, 2006). Most of the omics data can
be analyzed using this approach and can be correlated to each other.
This kind of analysis helps in dynamic analysis of the system with larger
variations in the system parameters at various regulatory levels. By
using hierarchical analysis we can understand how the information is
processed at various network levels and precisely quantify the impact
of each kind of network.

Model simulation

Simulation of biological system depends on the powerful numerical
analysis methods to retrieve the solution of set of non-linear
mathematical equations (ODEs, PDEs, stochastic, algebraic equations).
Biological analysis softwares are publicly available for deterministic and
stochastic simulations and for model analysis such as parameter
estimation, parameter sensitivity analysis and bifurcation analysis. The
details of the software are available in the www.sbml.org. Majority of
them are graphical user interface (GUI) based modeling environment
and provides an opportunity for user with limited computational and
mathematical background to simulate the biological systems. Biological
models can also be analyzed using general mathematical programming
environment such as MATAB and MATHEMATICA (Ullah et al., 2006;
Schmidt et al., 2007). The modeling environments also provide a
provision to translate the developed mathematical models into Systems
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Biology Markup Language (SBML), which facilitates the exchange of
models among the modeling community.

Modeling tools

Here, we enlist useful software tools and platforms helpful for analyzing
biological networks. '

1. Cell designer, (Funahashi, 2007, 2003): 1t is a platform used to
build and visualize the biochemical networks. It is a tool that can
be used for modeling and simulation aided with graphical user
interface. Several kind of analysis can be performed with
synchronization to SBML. ,

2. COGRIM, (Clustering of Genes into Regulons using Integrated
Modeling), (Chen et al., 2007): It allows clustering of genes into
regulons using integrated modeling. It is based on Bayesian
hierarchical model and Gibbs sampling implementation that
integrates gene expression, ChIP binding, and transcription factor
motif data. ;

3. GeneACT, (Cheung et al., 2006): 1t provides detection of
evolutionarily conserved transcription factor binding sites or
microRNA target sites that are either unique or over-represented
in differentially expressed genes from the DNA microarray data.

4. BNArray,(Chen et al., 2006): It facilitates the construction of gene
regulatory networks from DNA microarray data by using Bayesian
networks.

5. Jeell, (Spieth et al., 2006): It is Java-based framework for inferring
regulatory networks from time series data.

6. SynTReN, (den Bulcke and Moor, 2006): 1t is a generator of
synthetic gene expression data for design and analysis of structure
learning algorithms. It models different types of biological
interactions and produces biologically plausible synthetic gene
expression data.

7. EXAMINE (EXpression Array MINing Engine), (Deng et al.,
2005): It infers gene regulatory networks from time-series gene
expression data sets.

8. DBRF-MEGN method (Difference-Based Regulation Finding -
Minimum Equivalent Gene Network), (Kyoda et al., 2004): Tt is
implementation of an algorithm for deducing minimum equivalent
gene networks from large-scale gene expression profiles of gene
deletion mutants. '




10.

11.

12.

13.

14.

15.

16.

17.
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. CADLIVE (Computer-Aided Design of LIVing systEms), (Kurata

et al., 2005): It allows construction of a large-scale biochemical
network based on simulation-directed notation.

BioTapestry Editor, (Longabaugh et al., 2005): 1t is Java-based
interactive tool for building, visualization and simulation of genetic
regulatory networks.

Cytoscape,(Shannon et al., 2003): It is open source bioinformatics
software platform for visualizing molecular interaction networks
and integrating these interactions with gene expression profiles
and other state data. Various plugins in Cytoscape have also been
developed e.g. BioNetBuilder (Avila-Campillo et al., 2007),
NetMatch (Ferro et al., 2007), CABIN (Singhal and Domico, 2007).

Gaggle, (Shannon et al., 2006): Is is an open-source software
system for integrating bioinformatics software and data sources,
for example, KEGG, BioCyc, String and software such as
Cytoscape, Data Matrix Viewer, R statistical environment, and
TIGR Microarray Expression Viewer.

The Firegoose, (Bare, 2007): 1t provides two-way integration of
diverse data from different bioinformatics web resources with
desktop applications. The Firegoose is an extension to the Mozilla
Firefox web browser and it enables data transfer between web
sites and desktop tools. ‘
SiC (The Silicon Cells), (Snoep, 2009): It provides capability of
computer simulations of biochemical networks in specific cells based
on experimentally determined rate laws and parameter values.

GEPASI, (Mendes, 1997): It is a software package for modeling
biochemical systems. It simulates the kinetics of systems of
biochemical reactions and provides a number of tools to fit models
to data, optimize any function of the model, perform metabolic
control analysis and linear stability analysis.

Systems Biology Toolbox of MATLAB, (Schmidt and Jirstrand,
2005): The Systems Biology Toolbox for MATLAB offers an open
and user extensible environment, wherein prototype, new
algorithms, new applications for the analysis and simulation of
biological systems can be developed and shared.

SBML, (Evans, 2000): The Systems Biology Markup Language
(SBML) is a computer-readable format for representing models of
biochemical reaction networks. SBML is applicable to metabolic
networks, cell-signaling pathways, regulatory networks. It
simplifies the model sharing and integration across wide range of
applications. Further, many different software have extended their
environment to include SBML support. ’
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SUMMARY

Understanding the design principles of biological network means a
paradigm shift from evaluating interaction map of a network to
quantifying the network interactions for gaining operational insights
into cellular regulation. The process of modeling starts with precise
definition of the problem that a researcher is going to address. The
required data are gathered from various sources such as experiments,
literature and omics databases. The pathways and interactions obtained
from databases are reconstructed and integrated in the form of a
network. The final network is developed that constitutes components
from genetic, signaling and metabolic levels which are involved in the
specific network. Based upon the acquired information suitable
hypothesis are generated. To test this hypothesis, appropriate model
development is essential. In absence of sufficient kinetic information,
stoichiometric modeling is used to characterize the reaction fluxes which
are based on steady state assumption and principle of mass balance.
These methods are extensively applied for metabolic networks under
the headings of Metabolic Flux analysis and Flux balance analysis. To
study the dynamics of the system (time course evolution) kinetic modeling
is preferred. Based upon the quality and quantity of the date available,
kinetic modeling approaches such as deterministic modeling and
stochastic modeling can be used. Parameter values are essential in
obtaining quantitative match between simulation results and
experimental data. These parameters are obtained from literature,
experiments and estimates obtained through optimization techniques
and algorithms. Models need to be analyzed for their stability and
sensitivity. Models are subject to perturbation analysis by perturbing
various ranges of the parameters. There are several model analysis
techniques such as steady state analysis, dynamic analysis, sensitivity
analysis, flux control analysis and bifurcation analysis. The models are
simulated and the model predictions are validated with experimentally
observed phenotypes and further refined to fine tune the predictability
by the iterative processes.

Models provide an ideal platform to test the effect of concentration
and operating parameters, to study network perturbation (in-silico
mutation), to analyze the roles and contributions of different
interactions, to predict the emergent properties of the network and to
identify the missing information. Thus, models assist in system analysis,
hypothesis generation and testing, experimental data validation and
optimal product design. '
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