
The Theoretical Biologist’s Toolbox

Quantitative Methods for Ecology and Evolutionary Biology

Mathematical modeling is widely used in ecology and evolutionary biology

and it is a topic that many biologists find difficult to grasp. In this new

textbook Marc Mangel provides a no-nonsense introduction to the skills

needed to understand the principles of theoretical and mathematical bio-

logy. Fundamental theories and applications are introduced using numerous

examples from current biological research, complete with illustrations to

highlight key points. Exercises are also included throughout the text to show

how theory can be applied and to test knowledge gained so far. Suitable for

advanced undergraduate or introductory graduate courses in theoretical and

mathematical biology, this book forms an essential resource for anyone

wanting to gain an understanding of theoretical ecology and evolution.

M A R C M A N G E L is Professor of Mathematical Biology and Fellow of

Stevenson College at the University of California, Santa Cruz campus.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511819872
Downloaded from https://www.cambridge.org/core. Universidad Nacional de Mexico (UNAM), on 25 Mar 2019 at 20:06:55, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511819872
https://www.cambridge.org/core


use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511819872
Downloaded from https://www.cambridge.org/core. Universidad Nacional de Mexico (UNAM), on 25 Mar 2019 at 20:06:55, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511819872
https://www.cambridge.org/core


The Theoretical Biologist’s Toolbox

Quantitative Methods for

Ecology and Evolutionary Biology
Marc Mangel
Department of Applied Mathematics

and Statistics

University of California, Santa Cruz

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511819872
Downloaded from https://www.cambridge.org/core. Universidad Nacional de Mexico (UNAM), on 25 Mar 2019 at 20:06:55, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511819872
https://www.cambridge.org/core


C A M B R I D G E U N I V E R S I T Y P R E S S

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge, CB2 2RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521830454

# Marc Mangel 2006

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2006

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

ISBN-13 978-0-521-83045-4 hardback
ISBN-10 0-521-83045-1 hardback
ISBN-13 978-0-521-53748-3 paperback
ISBN-10 0-521-53748-7 paperback

Cambridge University Press has no responsibility for
the persistence or accuracy of URLs for external or
third-party internet websites referred to in this publication,
and does not guarantee that any content on such
websites is, or will remain, accurate or appropriate.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511819872
Downloaded from https://www.cambridge.org/core. Universidad Nacional de Mexico (UNAM), on 25 Mar 2019 at 20:06:55, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511819872
https://www.cambridge.org/core


To all of my teachers, but especially Susan Mangel.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511819872
Downloaded from https://www.cambridge.org/core. Universidad Nacional de Mexico (UNAM), on 25 Mar 2019 at 20:06:55, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511819872
https://www.cambridge.org/core


use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511819872
Downloaded from https://www.cambridge.org/core. Universidad Nacional de Mexico (UNAM), on 25 Mar 2019 at 20:06:55, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511819872
https://www.cambridge.org/core


Contents

Preface page ix

Permissions xiii

1 Four examples and a metaphor 1

2 Topics from ordinary and partial differential

equations 20

3 Probability and some statistics 80

4 The evolutionary ecology of parasitoids 133

5 The population biology of disease 168

6 An introduction to some of the problems of

sustainable fisheries 210

7 The basics of stochastic population dynamics 248

8 Applications of stochastic population dynamics

to ecology, evolution, and biodemography 285

References 323

Index 369

vii

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511819872
Downloaded from https://www.cambridge.org/core. Universidad Nacional de Mexico (UNAM), on 25 Mar 2019 at 20:06:55, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511819872
https://www.cambridge.org/core


use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511819872
Downloaded from https://www.cambridge.org/core. Universidad Nacional de Mexico (UNAM), on 25 Mar 2019 at 20:06:55, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511819872
https://www.cambridge.org/core


Preface: Bill Mote, Youngblood Hawke,

and Mel Brooks

I conceived of the courses that led to this book on sabbatical in

1999–2000, during my time as the Mote Eminent Scholar at Florida

State University and the Mote Marine Laboratory (a chair generously

funded by William R. Mote, who was a good friend of science). While at

FSU, I worked on a problem of life histories in fluctuating environments

with Joe Travis and we needed to construct log-normal random vari-

ables of specified means and variances. I did the calculation during my

time spent at Mote Marine Laboratory in Sarasota and, while doing the

calculation, realized that although this was something pretty easy and

important in ecology and evolutionary biology, it was also something

difficult to find in the standard textbooks on probability or statistics.

It was then that I decided to offer a six-quarter graduate sequence in

quantitative methods, starting the following fall. I advertised the course

initially as ‘‘Quantitative tricks that I’ve learned which can help you’’

but mainly as ‘‘The Voyage of Quantitative Methods,’’ ‘‘The Voyage

Continues,’’ etc. This book is the result of that course.

There is an approximate ‘‘Part I’’ and ‘‘Part II’’ structure. In the first

three chapters, I develop some basic ideas about modeling (Chapter 1),

differential equations (Chapter 2), and probability (Chapter 3). The

remainder of the book involves the particular applications that inter-

ested me and the students at the time of the course: the evolutionary

ecology of parasitoids (Chapter 4), the population biology of disease

(Chapter 5), some problems of sustainable fisheries (Chapter 6), and the

basics and application of stochastic population theory in ecology, evo-

lutionary biology and biodemography (Chapters 7 and 8).

Herman Wouk’s character Youngblood Hawke (Wouk 1962) bursts

on the writing scene and produces masterful stories until he literally has

nothing left to tell and burns himself out. The stories were somewhere

between the ether and the inside of his head and he had to get them out.

Much the same is true for music. Bill Monroe (Smith 2000) and Bob

Dylan (Sounes 2001) reported that their songs were already present,

either in the air or in their heads and that they could not rest until the

songs were on paper. Mozart said that he was more transcribing music

that was in his head than composing it. In other words, they all had a

ix
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story to tell and could not rest until it was told. Mel Brooks, the

American director and producer, once wrote ‘‘I do what I do because I

have to get it out. I’m just lucky it wasn’t an urge to be a pickpocket.’’

I too have a story to get out, but mine is about theoretical biology, and

once I began writing this book, I could not rest until it was down on paper.

Unlike a novel, however, you’ll not likely read this book in a weekend or

before bed. But I hope that you will read it. Indeed, it took me two years

of once a week meetings plus one quarter of twice a week meetings with

classes to tell the story (in Chapter 1, I offer some guidelines on how to

use the book), so I expect that this volume will be a long-term companion

rather than a quick read. And I hope that you will make it so. Like my

other books (Mangel 1985, Mangel and Clark 1988, Hilborn and Mangel

1997, Clark and Mangel 2000), my goal is to bring people – keen

undergraduates, graduate students, post-docs, and perhaps even a faculty

colleague or two – to a skill level in theoretical biology where they will

be able to read the primary literature and conduct their own research. I do

this by developing tools and showing how they can be used. Suzanne

Alonzo, a student of Bob Warner’s, post-doc with me and now on the

faculty at Yale University, once told me that she carried Mangel and

Clark (1988) everywhere she went for the first two years of graduate

school. In large part, I write this book for the future Suzannes.

Before writing this story, I told most of it as a six quarter graduate

seminar on quantitative methods in ecology and evolutionary biology.

These students, much like the reader for whom I write, were keen to

learn quantitative methods and wanted to get to the heart of the matter –

applying such methods to interesting questions in ecology and evolu-

tionary biology – as quickly as possible. I promised the students that if

they stuck with it, they would be able to read and understand almost

anything in the literature of theoretical biology. And a number of them

did stick through it: Katriona Dlugosch, Will Satterthwaite, Angie

Shelton, Chris Wilcox, and Nick Wolf (who, although not a student

earned a special certificate of quantitude). Other students were able to

attend only part of the series: Nick Bader, Joan Brunkard, Ammon Corl,

Eric Danner, EJ Dick, Bret Eldred, Samantha Forde, Cindy Hartway,

Cynthia Hays, Becky Hufft, Teresa Ish, Rachel Johnson, Matt

Kauffman, Suzanne Langridge, Doug Plante, Jacob Pollock, and Amy

Ritter. Faculty and NMFS/SCL colleagues Brent Haddad, Karen Holl,

Alec MacCall, Ingrid Parker, and Steve Ralston attended part of the

series too (Brent made five of the six terms!). To everyone, I am very

thankful for quizzical looks and good questions that helped me to clarify

the exposition of generally difficult material.

Over the years, theoretical biology has taken various hits (see, for

example, Lander (2004)), but writing at the turn of the millennium,

x Preface: Bill Mote, Youngblood Hawke, and Mel Brooks
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Sidney Brenner (Brenner 1999) said that there is simply no better

description and we should use it. Today, of course, computational

biology is much in vogue (I sometimes succumb to calling myself a

computational biologist, rather than a theoretical or mathematical biol-

ogist) and usually refers to bioinformatics, genomics, etc. Although

these are not the motivational material for this book, readers interested

in such subjects will profit from reading it. The power of mathematical

methods is that they let us approach apparently disparate problems with

the same kind of machinery, and many of the tools for ecology and

evolutionary biology are the same ones as for bioinformatics, genomics,

and systems biology.

I have tried to make this book fun to read, motivated by Mike

Rosenzweig’s writing in his wonderful book on species diversity

(Rosenzweig 1995). There he asserted – and I concur – that because a

book deals with a scientific topic in a technical (rather than popular)

way, it does not have to be thick and hard to read (not everyone agrees

with this, by the way). I have also tried to make it relatively short, by

pointing out connections to the literature, rather than going into more

detail on additional topics. I apologize to colleagues whose work should

have been listed in the Connections section at the end of each chapter,

but is not.

For the use of various photos, I thank Luke Baton, Paulette

Bierzychudek, Kathy Beverton, Leon Blaustein, Ian Fleming, James

Gathany, Peter Hudson, Jay Rosenheim, Bob Lalonde, and Lisa

Ranford-Cartwright. Their contributions make the book both more

interesting to read and more fun to look at. Permissions to reprint figures

were kindly granted by a number of presses and individuals; thank you.

Nicole Rager, a graduate of the Science Illustration Program at UC

Santa Cruz and now at the NSF, helped with many of the figures, and

Katy Doctor, now in graduate school at the University of Washington,

aided in preparation of the final draft, particularly with the bibliography

and key words for indexing.

Alan Crowden commissioned this book for Cambridge University

Press. His continued enthusiasm for the project helped spur me on. For

comments on the entire manuscript, I thank Emma Ådahl, Anders

Brodin, Tracy S. Feldman, Helen Ivarsson, Lena Månsson, Jacob

Johansson, Niclas Jonzen, Herbie Lee, Jörgen Ripa, Joshua Uebelherr,

and Eric Ward. For comments on particular chapters, I thank Per

Lundberg and Kate Siegfried (Chapter 1), Leah Johnson (Chapter 2),

Dan Merl (Chapter 3), Nick Wolf (Chapter 4), Hamish McCallum,

Aand Patil, Andi Stephens (Chapter 5), Yasmin Lucero (Chapter 6),

and Steve Munch (Chapters 7 and 8). The members of my research

group (Kate, Leah, Dan, Nick, Anand, Andi, Yasmin, and Steve)
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undertook to check all of the equations and do all of the exercises, thus

finding bloopers of various sizes, which I have corrected. Beverley

Lawrence is the best copy-editor with whom I have ever worked; she

deserves great thanks for helping to clarify matters in a number of

places. I shall miss her early morning email messages.

In our kind of science, it is generally difficult to separate graduate

instruction and research, since every time one returns to old material,

one sees it in new ways. I thank the National Science Foundation,

National Marine Fisheries Service, and US Department of

Agriculture, which together have continuously supported my research

efforts in a 26 year career at the University of California, which is a

great place to work.

At the end of The Glory (Wouk 1994), the fifth of five novels about

his generation of destruction and resurgence, Herman Wouk wrote

‘‘The task is done, and I turn with a lightened spirit to fresh beckoning

tasks’’ (p. 685). I feel much the same way.

Have a good voyage.
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Chapter 1

Four examples and a metaphor

Robert Peters (Peters 1991) – who (like Robert MacArthur) tragically

died much too young – told us that theory is going beyond the data.

I thoroughly subscribe to this definition, and it shades my perspective

on theoretical biology (Figure 1.1). That is, theoretical biology begins

with the natural world, which we want to understand. By thinking about

observations of the world, we conceive an idea about how it works. This

is theory, and may already lead to predictions, which can then flow back

into our observations of the world. Theory can be formalized using

mathematical models that describe appropriate variables and processes.

The analysis of such models then provides another level of predictions

which we take back to the world (from which new observations may

flow). In some cases, analysis may be insufficient and we implement the

models using computers through programming (software engineering).

These programs may then provide another level of prediction, which

can flow back to the models or to the natural world. Thus, in biology

there can be many kinds of theory. Indeed, without a doubt the greatest

theoretician of biology was Charles Darwin, who went beyond the data

by amassing an enormous amount of information on artificial selection

and then using it to make inferences about natural selection. (Second

place could be disputed, but I vote for Francis Crick.) Does one have to

be a great naturalist to be a theoretical biologist? No, but the more you

know about nature – broadly defined (my friend Tim Moerland at

Florida State University talks with his students about the ecology of

the cell (Moerland 1995)) – the better off you’ll be. (There are some

people who will say that the converse is true, and I expect that they

won’t like this book.) The same is true, of course, for being able to

1
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develop models and implementing them on the computer (although, I

will tell you flat out right now that I am not a very good programmer –

just sufficient to get the job done). This book is about the middle of

those three boxes in Figure 1.1 and the objective here is to get you to be

good at converting an idea to a model and analyzing the model (we will

discuss below what it means to be good at this, in the same way as what

it means to be good at opera).

On January 15, 2003, just as I started to write this book, I attended a

celebration in honor of the 80th birthday of Professor Joseph B. Keller.

Keller is one of the premier applied mathematicians of the twentieth

century. I first met him in the early 1970s, when I was a graduate

student. At that time, among other things, he was working on mathe-

matics applied to sports (see, for example, Keller (1974)). Joe is fond of

saying that when mathematics interacts with science, the interaction is

fruitful if mathematics gives something to science and the science gives

something to mathematics in return. In the case of sports, he said that

what mathematics gained was the concept of the warm-up. As with

athletics, before embarking on sustained and difficult mathematical

exercise, it is wise to warm-up with easier things. Most of this chapter

is warm-up. We shall consider four examples, arising in behavioral and

evolutionary ecology, that use algebra, plane geometry, calculus, and a

tiny bit of advanced calculus. After that, we will turn to two metaphors

about this material, and how it can be learned and used.

Foraging in patchy environments

Some classic results in behavioral ecology (Stephens and Krebs 1986,

Mangel and Clark 1988, Clark and Mangel 2000) are obtained in the

Natural world: 
Observations An idea of how the world works: 

Theory and predictions

Variables, processes: 
Mathematical models

Analysis of the models:  
A second level of prediction

Implementation of 
the models: 

Software engineering

A third level of 
prediction

Figure 1.1. Theoretical biology

begins with the natural world,

which we want to understand.

By thinking about observations

of the world, we begin to

conceive an idea about how it

works. This is theory, and may

already lead to predictions,

which can then flow back into

our observations of the world.

The idea about how the world

works can also be formalized

using mathematical models

that describe appropriate

variables and processes. The

analysis of such models then

provides another level of

predictions which we can take

back to the world (from which

new observations may flow).

In some cases, analysis may

be insufficient and we choose

to implement our models

using computers through

programming (software

engineering). These programs

then provide another level of

prediction, which can also flow

back to the models or to the

natural world.
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study of organisms foraging for food in a patchy environment

(Figure 1.2). In one extreme, the food might be distributed as individual

items (e.g. worms or nuts) spread over the foraging habitat. In another,

the food might be concentrated in patches, with no food between the

patches. We begin with the former case.

The two prey diet choice problem (algebra)

We begin by assuming that there are only two kinds of prey items (as

you will see, the ideas are easily generalized), which are indexed by

i¼ 1, 2. These prey are characterized by the net energy gain Ei from

consuming a single prey item of type i, the time hi that it takes to handle

(capture and consume) a single prey item of type i, and the rate li at

which prey items of type i are encountered. The profitability of a single

prey item is Ei/hi since it measures the rate at which energy is accumu-

lated when a single prey item is consumed; we will assume that prey

(a) (b)

(c)

Figure 1.2. Two stars of foraging experiments are (a) the great tit, Parus major, and (b) the common starling Sturnus

vulgaris (compliments of Alex Kacelnik, University of Oxford). (c) Foraging seabirds on New Brighton Beach,

California, face diet choice and patch leaving problems.

Foraging in patchy environments 3
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type 1 is more profitable than prey type 2. Consider a long period of

time T in which the only thing that the forager does is look for prey

items. We ask: what is the best way to consume prey? Since I know the

answer that is coming, we will consider only two cases (but you might

want to think about alternatives as you read along). Either the forager

eats whatever it encounters (is said to generalize) or it only eats prey

type 1, rejecting prey type 2 whenever this type is encountered (is said

to specialize). Since the flow of energy to organisms is a fundamental

biological consideration, we will assume that the overall rate of energy

acquisition is a proxy for Darwinian fitness (i.e. a proxy for the long

term number of descendants).

In such a case, the total time period can be divided into time spent

searching, S, and time spent handling prey, H. We begin by calculating

the rate of energy acquisition when the forager specializes. In search

time S, the number of prey items encountered will be l1S and the time

required to handle these prey items is H¼ h1(l1S ). According to our

assumption, the only things that the forager does is search and handle

prey items, so that T¼ SþH or

T ¼ S þ h1l1 S ¼ Sð1þ l1h1Þ (1:1)

We now solve this equation for the time spent searching, as a

fraction of the total time available and obtain

S ¼ T

1þ l1h1

(1:2)

Since the number of prey items encountered is l1S and each item

provides net energy E1, the total energy from specializing is E1l1S, and

the rate of acquisition of energy will be the total accumulated energy

divided by T. Thus, the rate of gain of energy from specializing is

Rs ¼
E1l1

1þ h1l1

(1:3)

An aside: the importance of exercises

Consistent with the notion of mathematics in sport, you are developing a

set of skills by reading this book. The only way to get better at skills is

by practice. Throughout the book, I give exercises – these are basically

steps of analysis that I leave for you to do, rather than doing them here.

You should do them. As you will see when reading this book, there is

hardly ever a case in which I write ‘‘it can be shown’’ – the point of this

material is to learn how to show it. So, take the exercises as they come –

in general they should require no more than a few sheets of paper – and

really make an effort to do them. To give you an idea of the difficulty of
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exercises, I parenthetically indicate whether they are easy (E), of med-

ium difficulty (M), or hard (H).

Exercise 1.1 (E)

Repeat the process that we followed above, for the case in which the forager

generalizes and thus eats either prey item upon encounter. Show that the rate of

flow of energy when generalizing is

Rg ¼
E1l1 þ E2l2

1þ h1l1 þ h2l2

(1:4)

We are now in a position to predict the best option: the forager is

predicted to specialize when the flow of energy from specializing is greater

than the flow of energy from generalizing. This will occur when Rs>Rg.

Exercise 1.2 (E)

Show that Rs>Rg implies that

l1 >
E2

E1h2 � E2h1

(1:5)

Equation (1.5) defines a ‘‘switching value’’ for the encounter rate

with the more profitable prey item, since as l1 increases from below to

above this value, the behavior switches from generalizing to speciali-

zing. Equation (1.5) has two important implications. First, we predict

that the foraging behavior is ‘‘knife-edge’’ – that there will be no partial

preferences. (To some extent, this is a result of the assumptions. So if

you are uncomfortable with this conclusion, repeat the analysis thus far

in which the forager chooses prey type 2 a certain fraction of the time, p,

upon encounter and compute the rate Rp associated with this assumption.)

Second, the behavior is determined solely by the encounter rate with the

more profitable prey item since the encounter rate with the less profitable

prey item does not appear in the expression for the switching value.

Neither of these could have been predicted a priori.

Over the years, there have been many tests of this model, and much

disagreement about what these tests mean (more on that below). My

opinion is that the model is an excellent starting point, given the simple

assumptions (more on these below, too).

The marginal value theorem (plane geometry)

We now turn to the second foraging model, in which the world is assumed

to consist of a large number of identical and exhaustible patches contain-

ing only one kind of food with the same travel time between them
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Figure 1.3. (a) A schematic of the situation for which the marginal value theorem applies. Patches of food

(represented here in metaphor by filled or empty patches) are exhaustible (but there is a very large number of them)

and separated by travel time � . (b) An example of a gain curve (here I used the function G(t)¼ t/(tþ3), and (c) the

resulting rate of gain of energy from this gain curve when the travel time � ¼3. (d) The marginal value construction

using a tangent line.
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(Figure 1.3a). The question is different: the choice that the forager faces is

how long to stay in the patch. We will call this the patch residence time,

and denote it by t. The energetic value of food removed by the forager

when the residence time is t is denoted by G(t). Clearly G(0)¼ 0 (since

nothing can be gained when no time is spent in the patch). Since the patch

is exhaustible, G(t) must plateau as t increases. Time for a pause.

Exercise 1.3 (E)

One of the biggest difficulties in this kind of work is getting intuition about

functional forms of equations for use in models and learning how to pick them

appropriately. Colin Clark and I talk about this a bit in our book (Clark and

Mangel 2000). Two possible forms for the gain function are G(t)¼ at/(bþ t) and

G(t)¼ at2/(bþ t2). Take some time before reading on and either sketch these

functions or pick values for a and b and graph them. Think about what the

differences in the shapes mean. Also note that I used the same constants (a and

b) in the expressions, but they clearly must have different meanings. Think

about this and remember that we will be measuring gain in energy units (e.g.

kilocalories) and time in some natural unit (e.g. minutes). What does this imply

for the units of a and b, in each expression?

Back to work. Suppose that the travel time between the patches

is � . The problem that the forager faces is the choice of residence in the

patch – how long to stay (alternatively, should I stay or should I go

now?). To predict the patch residence time, we proceed as follows.

Envision a foraging cycle that consists of arrival at a patch, resi-

dence (and foraging) for time t and then travel to the next patch, after

which the process begins again. The total time associated with one

feeding cycle is thus tþ � and the gain from that cycle is G(t), so that

the rate of gain is R(t)¼G(t)/(tþ �). In Figure 1.3, I also show an

example of a gain function (panel b) and the rate of gain function

(panel c). Because the gain function reaches a plateau, the rate of gain

has a peak. For residence times to the left of the peak, the forager is

leaving too soon and for residence times to the right of the peak the

forager is remaining too long to optimize the rate of gain of energy.

The question is then: how do we find the location of the peak, given

the gain function and a travel time? One could, of course, recognize that

R(t) is a function of time, depending upon the constant � and use

calculus to find the residence time that maximizes R(t), but I promised

plane geometry in this warm-up. We now proceed to repeat a remark-

able construction done by Eric Charnov (Charnov 1976). We begin by

recognizing that R(t) can be written as

RðtÞ ¼ GðtÞ
t þ � ¼

GðtÞ � 0

t � ð��Þ (1:6)
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and that the right hand side can be interpreted as the slope of the line that

joins the point (t, G(t)) on the gain curve with the point (�� , 0) on the

abscissa (x-axis). In general (Figure 1.3d), the line between (�� , 0) and

the curve will intersect the curve twice, but as the slope of the line

increases the points of intersection come closer together, until they meld

when the line is tangent to the curve. From this point of tangency, we

can read down the optimal residence time. Charnov called this the

marginal value theorem, because of analogies in economics. It allows

us to predict residence times in a wide variety of situations (see the

Connections at the end of this chapter for more details).

Egg size in Atlantic salmon and parent–offspring
conflict (calculus)

We now come to an example of great generality – predicting the size of

propagules of reproducing individuals – done in the context of a specific

system, the Atlantic salmon Salmo salar L. (Einum and Fleming 2000).

As with most but not all fish, female Atlantic salmon lay eggs and the

resources they deposit in an egg will support the offspring in the initial

period after hatching, as it develops the skills needed for feeding itself

(Figure 1.4). In general, larger eggs will improve the chances of off-

spring survival, but at a somewhat decreasing effect. We will let x

denote the mass of a single egg and S(x) the survival of an offspring

through the critical period of time (Einum and Fleming used both 28 and

107 days with similar results) when egg mass is x. Einum and Fleming

chose to model S(x) by

SðxÞ ¼ 1� xmin

x

� �a

(1:7)

where xmin¼ 0.0676 g and a¼ 1.5066 are parameters fit to the data.

We will define c¼ (xmin)a so that S(x)¼ 1� cx�a, understanding that

S(x)¼ 0 for values of x less than the minimum size. This function is

shown in Figure 1.5a; it is an increasing function of egg mass, but has a

decreasing slope. Even so, from the offspring perspective, larger eggs

are better.

However, the perspective of the mother is different because she has

a finite amount of gonads to convert into eggs (in the experiments of

Einum and Fleming, the average female gonadal mass was 450 g).

Given gonadal mass g, a mother who produces eggs of mass x will

make g/x eggs, so that her reproductive success (defined as the expected

number of eggs surviving the critical period) will be

Rðg; xÞ ¼ g

x
SðxÞ ¼ g

x
ð1� cx�aÞ (1:8)
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and we can find the optimal egg size by setting the derivative of R(g, x)

with respect to x equal to 0 and solving for x.

Exercise 1.4 (M)

Show that the optimal egg size based on Eq. (1.8) is xopt ¼ fcðaþ 1Þg1=a
and

for the values from Einum and Fleming that this is 0.1244 g. For comparison, the

observed egg size in their experiments was about 0.12 g.

(c)

(b)(a) Figure 1.4. (a) Eggs, (b) a nest,

and (c) a juvenile Atlantic

salmon – stars of the

computation of Einum and

Fleming on optimal egg size.

Photos complements of Ian

Fleming and Neil Metcalfe.
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In Figure 1.5b, I show R(450, x) as a function of x; we see the peak

very clearly. We also see a source of parent–offspring conflict: from the

perspective of the mother, an intermediate egg size is best – individual

offspring have a smaller chance of survival, but she is able to make more

of them. Since she is making the eggs, this is a case of parent–offspring

conflict that the mother wins with certainty.

A calculation similar to this one was done by Heath et al. (2003), in

their study of the evolution of egg size in Atlantic salmon.

Extraordinary sex ratio (more calculus)

We now turn to one of the most important contributions to evolutionary

biology (and ecology) in the last half of the twentieth century; this is

the thinking by W. D. Hamilton leading to understanding extraordinary

sex ratios. There are two starting points. The first is the argument by

R. A. Fisher that sex ratio should generally be about 50:50 (Fisher

1930): imagine a population in which the sex ratio is biased, say towards

males. Then an individual carrying genes that will lead to more daugh-

ters will have higher long term representation in the population, hence

bringing the sex ratio back into balance. The same argument applies if

the sex ratio is biased towards females. The second starting point is the

observation that in many species of insects, especially the parasitic

wasps (you’ll see some pictures of these animals in Chapter 4), the
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Figure 1.5. (a) Offspring survival as a function of egg mass for Atlantic salmon. (b) Female reproductive success for

an individual with 450 g of gonads.
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sex ratio is highly biased towards females, in apparent contradiction to

Fisher’s argument.

The parasitic wasps are wonderfully interesting animals and under-

standing a bit about their biology is essential to the arguments that

follow. If you find this brief description interesting, there is no better

place to look for more than in the marvelous book by Charles Godfray

(Godfray 1994). In general, the genetic system is haplo-diploid, in

which males emerge from unfertilized eggs and females emerge from

fertilized eggs. Eggs are laid on or in the eggs, larvae or adults of other

insects; the parasitoid eggs hatch, offspring burrow into the host if

necessary, and use the host for the resources necessary to complete

development. Upon completing development, offspring emerge from

the wreck that was once the host, mate and fly off to seek other hosts and

the process repeats itself. In general, more than one, and sometimes

many females will lay their eggs at a single host. Our goal is to under-

stand the properties of this reproductive system that lead to sex ratios

that can be highly female biased.

Hamilton’s approach (Hamilton 1967) gave us the idea of an

‘‘unbeatable’’ or non-invadable sex ratio, from which many develop-

ments in evolutionary biology flowed. The paper is republished in a

book that is well worth owning (Hamilton 1995) because in addition to

containing 15 classic papers in evolutionary ecology, each paper is

preceded by an essay that Hamilton wrote about the paper, putting it

in context.

Imagine a population that consists of Nþ 1 individuals, who are

identical in every way except that N of them (called ‘‘normal’’ indi-

viduals) make a fraction of sons r� and one of them (called the

‘‘mutant’’ individual) makes a fraction of sons r. We will say that

the normal sex ratio r� is unbeatable if the best thing that the mutant

can do is to adopt the same strategy herself. (This is an approximate

definition of an Evolutionarily Stable Strategy (ESS), but misses a

few caveats – see Connections). To find r�, we will compute the fitness

of the mutant given both r and r�, then choose the mutant strategy

appropriately.

In general, fitness is measured by the long term number of descen-

dants (or more specifically the genes carried by them). As a proxy for

fitness, we will use the number of grand offspring produced by the

mutant female (grand offspring are a convenient proxy in this case

because once the female oviposits and leaves a host, there is little that

she can do to affect the future representation of her genes).

A female obtains grand offspring from both her daughters and her

sons. We will assume that all of the daughters of the mutant female are

fertilized, that her sons compete with the sons of normal females for
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matings, and that every female in the population makes E eggs. Then the

number of daughters made by the mutant female is E(1� r) and the

number of grand offspring from these daughters is E2(1� r). Similarly,

the total number of daughters at the host will be E(1� r)þNE(1� r�),

so that the number of grand offspring from all daughters is

E2{1� rþN(1� r�)}. However, the mutant female will be credited

with only a fraction of those offspring, according to the fraction of her

sons in the population. Since she makes Er sons and the normal indivi-

duals make NEr� sons, the fraction of sons that belong to the mutant is

Er/(ErþNEr�). Consequently, the fitness W(r, r�), depending upon the

sex ratio r that the female uses and the sex ratio r� that other females use,

from both daughters and sons is

Wðr; r�Þ ¼ E2ð1� rÞ þ E2fð1� rÞ þ Nð1� r�Þg r

r þ Nr�

� �
(1:9)

The strategy r� will be ‘‘unbeatable’’ (or ‘‘uninvadable’’) if the best sex

ratio for the mutant to choose is r�; as a function of r, W(r, r�) is

maximized when r¼ r�. We thus obtain a procedure for computing

the unbeatable sex ratio: (1) take the partial derivative of W(r, r�) with

respect to r; (2) set r¼ r� and the derivative equal to 0; and (3) solve

for r�.

Exercise 1.5 (M)

Show that the unbeatable sex ratio is r� ¼N/2(Nþ 1).

Let us interpret this equation. When N!1, r� ! 1/2; this is under-

standable and consistent with Fisherian sex ratios. As the population

becomes increasingly large, the assumptions underlying Fisher’s argu-

ment are met. How about the limit as N! 0? Formally, the limit as

N! 0 is r� ¼ 0, but this must be biologically meaningless. When N¼ 0,

the mutant female is the only one ovipositing at a host. If she makes

no sons, then none of her daughters will be fertilized. How are we to

interpret the result? One way is this: if she is the only ovipositing

female, then she is predicted to lay enough male eggs to ensure that all

of her daughters are fertilized (one son may be enough). To be sure, there

are lots of biological details missing here (see Connections), but the basic

explanation of extraordinary sex ratios has stood the test of time.

Two metaphors

You should be warmed up now, ready to begin the serious work.

Before doing so, I want to share two metaphors about the material in

this book.
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Black and Decker

Black and Decker is a company that manufactures various kinds of

tools. In Figure 1.6, I show some of the tools of my friend Marv Guthrie,

retired Director of the Patent and Technology Licensing Office at

Massachusetts General Hospital and wood-worker and sculptor.

Notice that Marv has a variety of saws, pliers, hammers, screwdrivers

and the like. We are to draw three conclusions from this collection.

First, one tool cannot serve all needs; that is why there are a variety of

saws, pliers, and screwdrivers in his collection. (Indeed, many of you

probably know the saying ‘‘When the only tool you have is a hammer,

everything looks like a nail’’.) Similarly, we need a variety of tools in

ecology and evolutionary biology because one tool cannot solve all the

problems that we face.

Second, if you know how to use one kind of screwdriver, then you

will almost surely understand how other kinds of screwdrivers are used.

Indeed, somebody could show a new kind of screwdriver to you, and

you would probably be able to figure it out. Similarly, the goal in this

book is not to introduce you to every tool that could be used in ecology

and evolutionary biology. Rather, the point is to give you enough

understanding of key tools so that you can recognize (and perhaps

develop) other ones.

Third, none of us has envisioned all possible uses of any tool – but

understanding how a tool is used allows us to see new ways to use it. The

same is true for the material in this book: by deeply understanding some

of the ways in which these tools are used, you will be able to discover

new ways to use them. So, there will be places in the book where I will

Figure 1.6. The tools of my

friend Marv Guthrie; such tools

are one metaphor for the

material in this book.
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set up a situation in which a certain tool could be used, but will not go

into detail about it because we’ve already have sufficient exposure to

that tool (sufficient, at least for this book; as with physical tools, the

more you use these tools, the better you get at using them).

Fourth, a toolbox does not contain every possible tool. The same is

true of this book – a variety of tools are missing. The main tools missing

are game theoretical methods and partial differential equation models

for structured populations. Knowing what is in here well, however, will

help you master those tools when you need them.

There is one tool that I will not discuss in detail but which is equally

important: what applies to mathematical methods also applies to writ-

ing, once you have used the methods to solve a problem. The famous

statistician John Hammersley (Hammersley 1974), writing about the

use of statistics in decision-making and about statistical professionalism

says that the art of statistical advocacy ‘‘resides in one particular tool,

which we have not yet mentioned and which we too often ignore in

university courses on statistics. The tool is a clear prose style. It is,

without any doubt, the most important tool in the statistician’s toolbox’’

(p. 105). Hammersley offers two simple rules towards good prose style:

(1) use short words, and (2) use active verbs. During much of the time

that I was writing the first few drafts of this book, I read the collected

short stories of John Cheever (Cheever 1978) and it occurred to me that

writers of short stories face the same problems that we face when

writing scientific papers: in the space of 10 or so printed papers, we

need to introduce the reader to a world that he or she may not know

about and make new ideas substantial to the reader. So, it is probably

good to read short stories on a regular basis; the genre is less important.

Cheever, I might add, is a master of using simple prose effectively, as is

Victor Pritchett (Pritchett 1990a, b).

In his book On Writing (King 2000), Stephen King has an entire

section called ‘‘Toolbox’’, regarding which he says ‘‘I want to suggest

that to write to the best of your abilities, it behooves you to construct

your own toolbox and then build up enough muscle so that you can carry

it with you. Then, instead of looking at a hard job and getting discour-

aged, you will perhaps seize the correct tool and get immediately to

work’’ (p. 114). King also encourages everyone to read the classic

Elements of Style (Strunk and White 1979) by William Strunk and

E. B. White (of Charlotte’s Web and Stuart Little fame). I heartily

concur; if you think that you ever plan to write science – or anything

for that matter – you should own Strunk and White and re-read it

regularly. One of my favorite authors of fiction, Elizabeth George, has

a lovely small book on writing (George 2004) and emphasizes the same

when she writes: ‘‘that the more you know about your tools, the better
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you’ll be able to use them’’ (p. 158). She is speaking about the use of

words; the concept is more general.

Almost everyone reading this book will be interested in applying

mathematics to a problem in the natural world. Skorokhod et al. (2002)

describe the difference between pure and applied mathematics as this:

‘‘This book has its roots in two different areas of mathematics: pure

mathematics, where structures are discovered in the context of other

mathematical structures and investigated, and applications of mathe-

matics, where mathematical structures are suggested by real-world

problems arising in science and engineering, investigated, and then

used to address the motivating problem. While there are philosophical

differences between applied and pure mathematical scientists, it is often

difficult to sort them out.’’ (p. v).

In order to apply mathematics, you must be engaged in the world.

And this means that your writing must be of the sort that engages those

who are involved in the real world. Some years ago, I co-chaired the

strategic planning committee for UC Santa Cruz, sharing the job with

a historian, Gail Hershatter, who is a prize winning author (Hershatter

1997). We agreed to split the writing of the first draft of the report

evenly and because I had to travel, I sent my half to her before I had seen

any of her writing. I did this with trepidation, having heard for so many

years about C. P. Snow’s two cultures (Snow 1965). Well, I discovered

that Gail’s writing style (like her thinking style) and mine were com-

pletely compatible. She and I talked about this at length and we agreed

that there are indeed two cultures, but not those of C. P. Snow. There is

the culture of good thinking and good writing, and the culture of bad

thinking and bad writing. And as we all know from personal experience,

they transcend disciplinary boundaries. As hard as you work on mathe-

matical skills, you need to work on writing skills. This is only done,

Stephen King notes, by reading widely and constantly (and, of course, in

science we never know from where the next good idea will come – so

read especially widely and attend seminars).

Mean Joe Green

The second metaphor involves Mean Joe Green. At first, one might

think that I intend Mean Joe Greene, the hall of fame defensive tackle

for the Pittsburgh Steelers (played 1968–1981), although he might

provide an excellent metaphor too. However, I mean the great composer

of opera Giuseppe Verdi (lived 1813–1901; Figure 1.7).

Opera, like the material in this book, can be appreciated at many

levels. First, one may just be surrounded by the music and enjoy it, even

if one does not know what is happening in the story. Or, one may know

Two metaphors 15

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511819872.003
Downloaded from https://www.cambridge.org/core. Universidad Nacional de Mexico (UNAM), on 25 Mar 2019 at 20:06:54, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511819872.003
https://www.cambridge.org/core


the story of the opera but not follow the libretto. One may sit in an easy

chair, libretto open and follow the opera. Some of us enjoy participating

in community opera. Others aspire to professional operatic careers. And

a few of us want to be Verdi. Each of these – including the first – is a

valid appreciation of opera.

The material in this book does not come easily. I expect that readers

of this book will have different goals. Some will simply desire to be able

to read the literature in theoretical biology (and if you stick with it,

I promise that you will be able to do so by the end), whereas others will

desire different levels of proficiency at research in theoretical biology.

This book will deliver for you too.

Regardless of the level at which one appreciates opera, one key

observation is true: you cannot say that you’ve been to the opera

unless you have been there. In the context of quantitative methods,

working through the details is the only way to be there. From the

perspective of the author, it means writing a book that rarely has the

phrase ‘‘it can be shown’’ (implying that a particular calculation is too

difficult for the reader) and for the reader it means putting the time in to

do the problems. All of the exercises given here have been field tested

on graduate students at the University of California Santa Cruz and

elsewhere. An upper division undergraduate student or a graduate

student early in his or her career can master all of these exercises with

perseverance – but even the problems marked E may not be easy enough

to do quickly in front of the television or in a noisy café. Work through

these problems, because they will help you develop intuition. As Richard

Courant once noted, if we get the intuition right, the details will follow

(for more about Courant, see Reid (1976)). Our goal is to build intuition

about biological systems using the tools that mathematics gives to us.

Figure 1.7. The composer

G. Verdi, who provides a

second metaphor for the

material in this book. This

portrait is by Giovanni Boldini

(1886) and is found in the

Galleria Communale d’Arte

Moderna in Rome. Reprinted

with permission.
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The population biology of disease is one of the topics that we will

cover, and Verdi provides a metaphor in another way, too. In a period of

about two years, his immediate family (wife, daughter and son) were

felled by infectious disease (Greenberg 2001). For more about Verdi

and his wonderful music, see Holden (2001), Holoman (1992) or listen

to Greenberg (2001).

How to use this book (how I think you got here)

I have written this book for anyone (upper division undergraduates,

graduate students, post-docs, and even those beyond) who wants to

develop the intuition and skills required for reading the literature in

theoretical and mathematical biology and for doing work in this area.

Mainly, however, I envision the audience to be upper division and first

or second year graduate students in the biological sciences, who want to

learn the right kind of mathematics for their interests. In some sense,

this is the material that I would like my Ph.D. students to deeply know

and understand by the middle of their graduate education. Getting

the skills described in this book – like all other skills – is hard but

not impossible. As I mentioned above, it requires work (doing the

exercises). It also requires returning to the material again and again

(so I hope that your copy of this book becomes marked up and well

worn); indeed, every time I return to the material, I see it in new and

deeper ways and gain new insights. Thus, I hope that colleagues who are

already expert in this subject will find new ways of seeing their own

problems from reading the book. Siwoff et al. (1990) begin their book

with ‘‘Flip through these pages, and you’ll see a book of numbers. Read

it, and you’ll realize that this is really a book of ideas. Our milieu is

baseball. Numbers are simply our tools’’ (p. 3). A similar statement

applies to this book: we are concerned with ideas in theoretical and

mathematical biology and equations are our tools.

Motivated by the style of writing by Mike Rosenzweig in his book

on diversity (Rosenzweig 1995), I have tried to make this one fun to

read, or at least as much fun as a book on mathematical methods in

biology can be. That’s why, in part, I include pictures of organisms and

biographical material.

I taught all of the material, except the chapter on fisheries, in this

book as a six quarter graduate course, meeting once a week for two

hours a time. I also taught the material on differential equations and

disease in a one quarter formal graduate course meeting three times a

week, slightly more than an hour each time; I did the same with the two

chapters on stochastic population theory. The chapter on fisheries is
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based on a one quarter upper division/graduate class that met twice a

week for about two hours.

Connections

In an effort to keep this book of manageable size, I had to forgo making

it comprehensive. Much of the book is built around current or relatively

current literature and questions of interest to me at the timing of writing.

Indeed, once we get into the particular applications, you will be treated

to a somewhat idiosyncratic collection of examples (that is, stuff which

I like very much). It is up to the reader to discover ways that a particular

tool may fit into his or her own research program. At the same time,

I will end each chapter with a sectio n called Con nections that points

towards other literature and other ways in which the material is used.

The marginal value theorem

There are probably more than one thousand papers on each of the mar-

ginal value theorem, the two prey diet choice problem, parent–offspring

conflict, and extraordinary sex ratios. These ideas represent great

conceptual advances and have been widely used to study a range of

questions from insect oviposition behavior to mate selection; many of

the papers add different aspects of biology to the models and investigate

the changes in predictions. These theories also helped make behavioral

ecology a premier ecological subject in which experiments and theory

are linked (in large part because the scale of both theory and observation

or experiment match well). At the same time, the ability to make clear

and definitive predictions led to a long standing debate about theories

and models (Gray 1987, Mitchell and Valone 1990), and what differ-

ences between an experimental result and a prediction mean. Some of

these philosophical issues are discussed by Hilborn and Mangel (1997)

and a very nice, but brief, discussion is found in the introduction of

Dyson (1999). The mathematical argument used in the marginal value

theorem is an example of a renewal process, since the foraging cycle

‘‘renews’’ itself every time. Renewal processes have a long and rich

history in mathematics; Lotka (of Lotka–Volterra fame) worked on

them in the context of population growth.

Unbeatable and evolutionarily stable strategies

The notion of an unbeatable strategy leads us directly to the concept of

evolutionarily stable strategies and the book by John Maynard Smith

(1982) is still an excellent starting point; Hofbauer and Sigmund (1998)
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and Frank (1998) are also good places to look. Hines (1987) is a more

advanced treatment and is a monograph in its own right. In this paper,

Hines also notes that differences between the prediction of a model and

the observations may be revealing and informative, showing us (1) that

the model is inadequate and needs to be improved, (2) the fundamental

complexity of biological systems, or (3) an error in the analysis.

On writing and the creative process

In addition to Strunk and White, I suggest that you try to find Robertson

Davies’s slim volume called Reading and Writing (Davies 1992) and

get your own copy (and read and re-read it) of William Zinsser’s On

Writing Well (Zinsser 2001) and Writing to Learn (Zinnser 1989). You

might want to look at Highman (1998), which is specialized about

writing for the mathematical sciences, as well. In his book, Davies

notes that it is important to read widely – because if you read only the

classics, how do you know that you are reading the classics? There is

a wonderful, and humourous, piece by Davis and Gregerman (1995) in

which this idea is formalized into the quanta of flawedness in a scien-

tific paper (which they call phi) and the quantum of quality (nu). They

suggest that all papers should be described as X:Y, where X is the quanta

of phi and Y is the quanta of nu. There is some truth in this humor:

whenever you read a paper (or hear a lecture) ask what are the good

aspects of it, which you can adapt for your own writing or oral pre-

sentations. The interesting thing, of course, is that we all recognize

quality but at the same time have difficulty describing it. This is the

topic that Prisig (1974) wrestles with in Zen in the Art of Motorcycle

Maintenance, which is another good addition to your library and is in

print in both paperback and hardback editions. In his book, Stephen

King also discusses the creative process, which is still a mystery to most

of the world (that is – just how do we get ideas). A wonderful place

to start learning about this is in the slim book by Jacques Hadamard

(1954), who was a first class mathematician and worried about these

issues too.
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Chapter 2

Topics from ordinary and partial

differential equations

We now begin the book proper, with the investigation of various topics

from ordinary and partial differential equations. You will need to have

calculus skills at your command, but otherwise this chapter is comple-

tely self-contained. However, things are also progressively more diffi-

cult, so you should expect to have to go through parts of the chapter a

number of times. The exercises get harder too.

Predation and random search

We begin by considering mortality from the perspective of the victim.

To do so, imagine an animal moving in an environment characterized

by a known ‘‘rate of predation m’’ (cf. Lima 2002), by which I mean the

following. Suppose that dt is a small increment of time; then

Prffocal individual is killed in the next dtg � mdt (2:1a)

We make this relationship precise by introducing the Landau order

symbol o(dt), which represents terms that are higher order powers of

dt, in the sense that limdt!0½oðdtÞ=dt� ¼ 0. (There is also a symbol

O(dt), indicating terms that in the limit are proportional to dt, in the

sense that limdt!0½OðdtÞ=dt� ¼ A, where A is a constant.) Then, instead

of Eq. (2.1a), we write

Prffocal individual is killed in the next dtg ¼ mdt þ oðdtÞ (2:1b)

Imagine a long interval of time 0 to t and we ask for the probability

q(t) that the organism is alive at time t. The question is only interesting if

the organism is alive at time 0, so we set q(0)¼ 1. To survive to time

20
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tþ dt, the organism must survive from 0 to t and then from t to tþ dt.

Since we multiply probabilities that are conjunctions (more on this in

Chapter 3), we are led to the equation

qðt þ dtÞ ¼ qðtÞð1� mdt � oðdtÞÞ (2:2)

Now, here’s a good tip from applied mathematical modeling. Whenever

you see a function of tþ dt and other terms o(dt), figure out a way to

divide by dt and let dt approach 0. In this particular case, we subtract q(t)

from both sides and divide by dt to obtain

qðt þ dtÞ � qðtÞ
dt

¼ �mqðtÞ � qðtÞoðdtÞ=dt ¼ �mqðtÞ þ oðdtÞ=dt (2:3)

since �q(t)o(dt)¼ o(dt), and now we let dt approach 0 to obtain the

differential equation dq/dt¼�mq(t). The solution of this equation is

an exponential function and the solution that satisfies q(0)¼ 1 is

q(t)¼ exp(�mt), also sometimes written as q(t)¼ e�mt (check these

claims if you are uncertain about them). We will encounter the three

fundamental properties of the exponential distribution in this section

and this is the first (that the derivative of the exponential is a constant

times the exponential).

Thus, we have learned that a constant rate of predation leads to

exponentially declining survival. There are a number of important

ideas that flow from this. First, note that when deriving Eq. (2.2),

we multiplied the probabilities together. This is done when events

are conjunctions, but only when the events are independent (more on

this in Chapter 3 on probability ideas). Thus, in deriving Eq. (2.2),

we have assumed that survival between time 0 and t and survival

between t and tþ dt are independent of each other. This means that

the focal organism does not learn anything in 0 to t that allows it to

better survive and that whatever is attempting to kill it does not

learn either. Hence, exponential survival is sometimes called random

search.

Second, you might ask ‘‘Is the o(dt) really important?’’ My answer:

‘‘Boy is it.’’ Suppose instead of Eq. (2.1) we had written Pr{focal

individual is killed in the next dt}¼mdt (which I will not grace with

an equation number since it is such a silly thing to do). Why is this silly?

Well, whatever the value of dt, one can pick a value of m so that

mdt> 1, but probabilities can never be bigger than 1. What is going

on here? To understand what is happening, you must recall the Taylor

expansion of the exponential distribution

ex ¼ 1þ xþ x2

2!
þ x3

3!
þ � � � (2:4)
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If we apply this definition to survival in a tiny bit of time q(dt)¼
exp(�mdt) we see that

e�mdt ¼ 1� mdt þ ð�mdtÞ2

2!
þ ð�mdtÞ3

3!
þ � � � (2:5)

This gives us the probability of surviving the next dt; the probability

of being killed is 1 minus the expression in Eq. (2.5), which is exactly

mdtþ o(dt).

Third, you might ask ‘‘how do we know the value of m?’’ This is

another good question. In general, one will have to estimate m from

various kinds of survival data. There are cases in which it is possible to

compute m from operational parameters. I now describe one of them,

due to B. O. Koopman, one of the founders of operations research in

the United States of America (Morse and Kimball 1951; Koopman

1980). We think about the survival of the organism not from the

perspective of the organism avoiding predation but from the perspective

of the searcher. Let’s suppose that the search process is confined to a

region of area A, that the searcher moves with speed v and can detect

the victim within a width W of the search path. Take the time interval

[0, t] and divide it into n pieces, so that each interval is length t/n.

On one of these small legs the searcher covers a length vt/n and

sweeps a search area Wvt/n. If the victim could be anywhere in the

region, then the probability that it is detected on any particular leg is

the area swept in that time interval divided by A; that is, the probability

of detecting the victim on a particular leg is Wvt/nA. The probability

of not detecting the victim on one of these legs is thus 1� (Wvt/nA)

and the probability of not detecting the victim along the entire path

(which is the same as the probability that the victim survives the

search) is

Probfsurvivalg ¼ 1�Wvt

nA

� �n

(2:6)

The division of the search interval into n time steps is arbitrary, so we

will let n go to infinity (thus obtaining a continuous path). Here is where

another definition of the exponential function comes in handy:

ex ¼ lim
n!1

1þ x

n

� �n

(2:7)

so that we see that the limit in Eq. (2.6) is exp(�Wvt/A) and this tells us

that the operational definition of m is m¼Wv/A. Note that m must be a

rate, so that 1/m has units of time (indeed, in the next chapter we will

see that it is the mean time until death); thus 1/m is a characteristic time

of the search process.
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Perhaps the most remarkable aspect of the formula for random

search is that it applies in many situations in which we would not expect

it to apply. My favorite example of this involves experiments that Alan

Washburn, at the Naval Postgraduate School, conducted in the late

1970s and early 1980s (Washburn 1981). The Postgraduate School

provides advanced training (M.S. and Ph.D. degrees) for career officers,

many of whom are involved in naval search operations (submarine,

surface or air). Alan set out to do an experiment in which a pursuer

sought out an evader, played on computer terminals. Both individuals

were confined to an square of side L, the evader moved at speed U and

the purser at speed V¼ 5U (so that the evader was approximately

stationary compared to the pursuer). The search ended when the pursuer

came within a distance W/2 of the evader. The search rate is then

m¼WV/L2 and the mean time to detection about 1/m.

The main results are shown in Figure 2.1. Here, Alan has plotted the

experimental distribution of time to detection, the theoretical prediction

based on random search and the theoretical prediction based on exhaus-

tive search (in which the searcher moves through the region in a

systematic manner, covering swaths of area until the target is detected.).

The differences between panels a and b in Figure 2.1 is that in the

former neither the searcher nor evader has any information about the

location of the other (except for non-capture), while in the latter panel

the evader is given information about the direction towards the searcher.

Note how closely the data fit the exponential distribution – including

(for panel a) the theoretical prediction of the mean time to detection

matching the observation. Now, there is nothing ‘‘random’’ in the

search that these highly trained officers were conducting. But when

all is said and done, the effect of big brains interacting is to produce the

equivalent of a random search. That is pretty cool.

Individual growth and life history invariants

We now turn to another topic of long interest and great importance in

evolutionary ecology – characterizing individual growth and its impli-

cations for the evolution of life histories. We start the analysis by

choosing a measure of the state of the individual. What state should

we use? There are many possibilities: weight, length, fat, muscle,

structural tissue, and so on – the list could be very large, depending

upon the biological complexity that we want to include.

We follow an analysis first done by Ludwig von Bertalanffy;

although not the earliest, his 1957 publication in Quarterly Review of

Biology is the most accessible of his papers (from JSTOR, for example).

We will assume that the fundamental physiological variable is mass at
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age, which we denote by W(t) and assume that mass and length are

related according to W(t)¼ �L(t)3, where � is the density of the organ-

ism and the cubic relationship is important (as you will see). How valid

is this assumption (i.e. of a spherical or cubical organism)? Well, there

are lots of organisms that approximately fit this description if you are

willing to forgo a terrestrial, mammalian bias. But bear with the analysis

even if you cannot forgo this bias (and also see the nice books by John

Harte (1988, 2001) for therapy).
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The rate of change of mass is a balance of anabolic and catabolic

factors

dW

dt
¼ anabolic factors� catabolic factors (2:8)

We assume that the anabolic factors scale according to surface area,

because what an organism encounters in the world will depend roughly

on the area in contact with the world. Thus anabolic factors¼ �L2,

where � is the appropriate scaling parameter. Let us just take a minute

and think about the units of �. Here is one example (if you don’t like my

choice of units, pick your own): mass has units of kg, time has units of

days, so that dW/dt has units of kg/day. Length has units of cm, so that

� must have units of kg/day �cm2.

We also assume that catabolic factors are due to metabolism, which

depends on volume, which is related to mass. Thus catabolic factors¼ cL3

and I will let you determine the units of c. Combining these we have

dW

dt
¼ �L2 � cL3 (2:9)

Equation (2.9) is pretty useless because W appears on the left hand side

but L appears on the right hand side. However, since we have the

allometric relationship W(t)¼ �L(t)3

dW

dt
¼ 3�L2 dL

dt
(2:10)

and if we use this equation in Eq. (2.9), we see that

3�L2 dL

dt
¼ �L2 � cL3 (2:11)

so that now if we divide through by 3�L2, we obtain

dL

dt
¼ �

3�
� c

3�
L (2:12)

and we are now ready to combine parameters.

There are at least two ways of combining parameters here, one of

which I like more than the other, which is more common. In the first, we

set q¼ �/3� and k¼ c/3�, so that Eq. (2.12) simplifies to dL/dt¼
q� kL. This formulation separates the parameters characterizing costs

and those characterizing gains. An alternative is to factor c/3� from the

right hand side of Eq. (2.12), define L1¼ �/c, which we will call

asymptotic size, and obtain

dL

dt
¼ c

3�

�

c
� L

� �
¼ kðL1 � LÞ (2:13)
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This is the second form of the von Bertalanffy growth equation. Note

that asymptotic size involves a combination of the parameters charac-

terizing cost and growth.

Exercise 2.1 (E)

Check that the units of q, k and asymptotic size are correct.

Equation (2.13) is a first order linear differential equation. It

requires one constant of integration for a unique solution and this we

obtain by setting initial size L(0)¼ L0. The solution can be found by at

least two methods learned in introductory calculus: the method of the

integrating factor or the method of separation of variables.

Exercise 2.2 (M/H)

Show that the solution of Eq. (2.13) with L(0)¼ L0 is

LðtÞ ¼ L0e
�kt þ L1ð1� e�ktÞ (2:14)

In the literature you will sometimes find a different way of captur-

ing the initial condition, which is done by writing Eq. (2.14) in terms of

a new parameter t0: LðtÞ ¼ L1ð1� e�kðt�t0ÞÞ. It is important to know

that these formulations are equivalent. In Figure 2.2a, I show a sample

growth curve.

For many organisms, initial size is so small relative to asymptotic

size that we can simply ignore initial size in our manipulations of the

equations. We will do that here because it makes the analysis much
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Figure 2.2. (a) von Bertalanffy growth for an organism with asymptotic size 35 cm and growth rate k¼0.25/yr.

(b) Expected reproductive success, defined by F(t)¼ e�mtfL(t)b as a function of age at maturity t.
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simpler. Combining our study of mortality and that of individual growth

takes us in interesting directions. Suppose that survival to age t is given

by the exponential distribution e�mt, where the mortality rate is fixed

and that if the organism matures at age t, when length is L(t), then

lifetime reproductive output is f L(t)b, where f and b are parameters.

For many fish species, the allometric parameter b is about 3

(Gunderson 1997); for other organisms one can consult Calder (1984)

or Peters (1983). The parameter f relates size to offspring number (much

as we did in the study of egg size in Atlantic salmon). We now define

fitness as expected lifetime reproductive success, the product of surviv-

ing to age t and the reproductive success associated with age t. That

is F(t)¼ e�mtf L(t)b. Since survival decreases with age and size asymp-

totes with age, fitness will have a peak at an intermediate age

(Figure 2.2b). It is a standard application in calculus to find the optimal

age at maturity.

Exercise 2.3 (M)

Show that the optimal age at maturity, tm, is given by

tm ¼
1

k
log

mþ bk

m

� �
(2:15)

In Figure 2.3, I show optimal age at maturity as a function of k for

three values of m. We can view these curves in two ways. First, let’s fix
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Figure 2.3. Optimal age at

maturity, given by Eq. (2.15),

as a function of growth rate k,

for three values of mortality

rate m.
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the choice of m and follow one of the curves. The theory then predicts

that as growth rate increases, age at maturity declines. If we fix growth

rate and take a vertical slice along these three curves, the prediction

is that age at maturity declines as mortality decreases. Each of these

predictions should make intuitive sense and you should try to work

them out for yourself if you are unclear about them. An example of

the level of quantitative accuracy of this simple theory is given in

Figure 2.4, in which I shown predicted (by Eq. (2.15)) and observed

age at maturity for about a dozen species of Tilapia (data from Lorenzen

2000). Fish, like people, mature at different ages, so that when we

discuss observed age at maturity, it is really a population concept and

the general agreement among fishery scientists is that the age at matur-

ity in a stock is the age at which half of the individuals are mature. Also

shown in Figure 2.4 is the 1:1 line; if the theory and data agreed

completely, all the points would be on this line. We see, in fact, that

not only do the points fall off the line, but there is a slight bias in that

when there is a deviation the observed age at maturity is more likely to

be greater than the predicted value than less than the predicted value.

Once again, we have the thorny issue of the meaning of deviation

between a theoretical prediction and an observation (this problem will

not go away, not in this book, and not in science). Here, I would offer the

following points. First, the agreement, given the relative simplicity of

the theory, is pretty remarkable. Second, what alternative theory do we

have for predicting age at maturity? That is, if we consider that science

consists of different hypotheses competing and arbitrated by the data

(Hilborn and Mangel 1997) it makes little practical sense to reject an

idea for poor performance when we have no alternative.

Note that both m and k appear in Eq. (2.15) and that there is no way

to simplify it. Something remarkable happens, however, when we com-

pute the length at maturity L(tm), as you should do now.
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Figure 2.4. Comparison of

predicted (by Eq. (2.15)) and

inferred age at maturity for

different species of Tilapia,

shown as an inset, and the 1:1

line. Data from Lorenzen

(2000).
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Exercise 2.4 (E/M)

Show that size at maturity is given by

LðtmÞ ¼ L1
bk

mþ bk

� �
¼ L1

b

bþ m
k

� �
(2:16)

If you were slick on the way to Eq. (2.15), you actually discovered

this before you computed the value of tm. This equation is remarkable,

and the beginning of an enormous amount of evolutionary ecology and

here is why. Notice that L(tm)/L1 is the relative size at maturity.

Equations (2.15) and (2.16) tell us that although the optimal age at

maturity depends upon k and m separately, the relative size at matur-

ity only depends upon their ratio. This is an example of a life history

invariant: regardless of the particular values of k and m for different

stocks, if their ratio is the same, we predict the same relative size

at maturity. This idea is due to the famous fishery scientist Ray

Beverton (Figure 2.5) and has been rediscovered many times. Note

too that since

LðtmÞ ¼ L1ð1� expð�ktmÞÞ ¼ L1 1� exp � k

m
mtm

� �� �

we conclude that if relative size at maturity for two species is the same,

then since m/k will be the same (by Eq. (2.16)) that mtm must be the

same.

All of our analysis until this point has been built on the underlying

dynamics in Eq. (2.9), in which we assume that gain scales according

to area, or according to W2/3. For many years, this actually created a

problem because whenever experimental measurements were made, the

scaling exponent was closer to 3/4 than 2/3. In a series of remarkable

papers in the late 1990s, Jim Brown, Ric Charnoff, Brian Enquist, Geoff

West, and other colleagues, showed how the 3/4 exponent could be

derived by application of scaling laws and fractal analysis. Some repre-

sentative papers are West et al. (1997), Enquist et al. (1999), and West

et al. (2001). They show that it is possible to derive a growth model of

the form dW=dt ¼ aW 3=4 � bW from first principles.

Exercise 2.5 (E)

In the growth equation dW=dt ¼ aW 3=4 � bW , set W¼Hn, where n is to be

determined. Find the equation that H(t) satisfies. What value of n makes it

especially simple to solve by putting it into a form similar to the von Bertalanffy

equation for length? (See Connections for even more general growth and

allometry models.)
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Figure 2.5. Ray Beverton as a young man, delivering his famous lectures that began post-WWII quantitative fishery

science, and at the time of his retirement. Photos courtesy of Kathy Beverton.
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Population growth in fluctuating environments
and measures of fitness

We now come to one of the most misunderstood topics in evolutionary

ecology, although Danny Cohen and Richard Lewontin set it straight

many years ago (Cohen 1966, Lewontin and Cohen 1969). I include it

here because at my university in fall 2002, there was an exchange at a

seminar between a member of the audience and the speaker which

showed that neither of them understood either the simplicity or the

depth of these ideas.

This section will begin in a deceptively simple way, but by the end

we will reach deep and sophisticated concepts. So, to begin imagine a

population without age structure for which N(t) is population size in

year t and N(0) is known exactly. If the per capita growth rate is l, then

the population dynamics are

Nðt þ 1Þ ¼ lNðtÞ (2:17)

from which we conclude, of course, that N(t)¼ ltN(0). If the per capita

growth rate is less than 1, the population declines, if it is exactly equal to

1 the population is stable, and if it is greater than 1 the population grows.

Now let us suppose that the per capita rate of growth varies, first in

space and then in time. Because there is no density dependence, the per

capita growth rate can also be used as a measure of fitness.

Spatial variation

Suppose that in every year, the environment consists of two kinds of

habitats. In the poor habitat the per capita growth rate is l1 and in the

better habitat it is l2. We assume that the fraction of total habitat that is

poor is p, so that the fraction of habitat that is good is 1� p. Finally, we

will assume that the population is uniformly distributed across the entire

habitat. At this point, I am sure that you want to raise various objections

such as ‘‘What if p varies from year to year?’’, ‘‘What if individuals can

move from poorer to better locations’’, etc. To these objections, I simply

ask for your patience.

Given these assumptions, in year t the number of individuals

experiencing the poor habitat will be pN(t) and the number of indivi-

duals experiencing the better habitat will be (1� p)N(t). Consequently,

the population size next year is

Nðt þ 1Þ ¼ ðl1pNðtÞ þ l2ð1� pÞNðtÞÞ ¼ fpl1 þ ð1� pÞl2gNðtÞ (2:18)

The quantity in curly brackets on the right hand side of this equation is

an average. It is the standard kind of average that we are all used to
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(think about how your grade point average or a batting average is

calculated). If we had n different habitat qualities, instead of just two

habitat qualities, and let pi denote the fraction of habitat in which the

growth rate is li, then it is clear that what goes in the { } on the right

hand side of Eq. (2.18) will be
Pn

i¼1 pili. We call this the arithmetic

average. (I am tempted to put ‘‘arithmetic average’’ into bold-face or

italics, but Strunk and White (1979) tell me that if I need to do so – to

remind you that it is important – then I have not done my job.) Our

conclusion thus far: if variation occurs over space, then the arithmetic

average is the appropriate description of the growth rate.

Temporal variation

Let us now assume that per capita growth rate varies over time rather

than space. That is, with probability p every individual in the population

experiences the poorer growth rate in a particular year and with prob-

ability 1� p every individual experiences the better growth rate. Let us

suppose that t is very big; it will be composed of t1 years in which the

growth rate was poorer and t2 years in which the growth rate was better.

Since there is no density dependence in this model, it does not matter in

what order the years happen and we write

NðtÞ ¼ ðl1Þt1ðl2Þt2 Nð0Þ (2:19)

If the total time is large, then t1 and t2 should be roughly representative

of the fraction of years that are poorer or better respectively. That is, we

should expect t1 � pt and t2 � (1� p)t. How should you interpret the

symbol � in the previous sentence? If you are more mathematically

inclined, then the law of large numbers allows us to give precise

interpretation of what�means. If you are less mathematically inclined,

this is a case where you can count on your intuition and the world being

approximately fair.

Adopting this idea about the good and bad years, Eq. (2.19)

becomes

NðtÞ ¼ lpt
1 l
ð1�pÞt
2 Nð0Þ ¼ lp

1l
1�p
2

h it

Nð0Þ (2:20)

The quantity in square brackets on the right hand side of this equation is

a different kind of average. It is called the geometric mean (or geometric

average) and it weights the good and bad years differently than the

arithmetic average does. Perhaps the easiest way to see the differences

is to think about the extreme case in which the poorer growth rate is 0.

According to the arithmetic average, individuals who find themselves

in the better habitat will contribute to next year’s population and those
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who find themselves in the poorer habitat will not. On the other hand,

if the fluctuations are temporal, then when a poor year occurs, there is

no reproduction for the population as a whole and thus the population

is gone.

Exercise 2.6 (E/M)

Suppose that l1 is less than 1 (so that in poor years, the population declines).

Show that the condition for the population to increase using the geometric mean

is that l2 > l�p=ð1�pÞ
1 . Explore this relationship as l1 and p vary by making

appropriate graphs. (Do not use three dimensional graphs and recall the advice

of the Ecological Detective (Hilborn and Mangel 1997) that you should expect

to make 10 times as many graphs for yourself as you would ever show to others.)

Compare the results with the corresponding expression making the arithmetic

average greater than 1.

If instead of just two kinds of years, we allow n kinds of years, the

extension of the square brackets in Eq. (2.20) will be
Qn

i¼1 l
pi

i where theQ
denotes a product (much as

P
denotes a sum, as used above).

Now let us return to Eq. (2.17) for which N(t)¼ ltN(0) and recall that

the exponential and logarithm are inverse functions, l¼ exp(log(l)),

which allows us to write N(t) in a different way. In particular we have

N(t)¼ e[log(l)]tN(0), and if we define r¼ log(l), then we have come back

to our old friend from introductory ecology N(t)¼ ertN(0). That is,

if time were continuous, this looks like population growth satisfying

dN/dt¼ rN, in which r is the growth rate. But we can actually learn

some new things about fluctuating environments from this old friend,

because we know that r¼ log(l). In Figure 2.6a, I have plotted growth

rate as a function of l and I have shown two particular values of l that

might correspond to good years and poor years. Note that the line

segment joining these two points falls below the curve (such a curve

is called concave). This means that the growth rate at the arithmetic

average of l is larger than the average value of the growth rates. This

phenomenon is called Jensen’s inequality.

If we have more than two growth rates, then the expression in square

brackets in Eq. (2.20) is replaced by
Qn

i¼1 l
pi

i and if we rewrite this in

terms of logarithms we see that

NðtÞ ¼ exp t
Xn

i¼1

pi logðliÞ
" #

Nð0Þ (2:21)

From this equation, we conclude that the growth rate in a fluctuating

environment is r ¼
Pn

i¼1 pi logðliÞ, which is the arithmetic average of

the logarithm of the per capita growth rates. We thus conclude that for a

fluctuating environment, one either applies the geometric mean directly
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to the per capita growth rates or the arithmetic mean to the logarithm of

per capita growth rates.

What about measuring the growth rate of an actual population? Data

in a situation such as this one would be population sizes over time N(0),

N(1), . . . N(t) from which we could compute the per capita growth rate

as the ratio of population size at two successive years. We would then

replace the frequency average by a time average and estimate the

growth rate according to

r � 1

t
½logðlð0ÞÞ þ logðlð1ÞÞ þ � � � þ logðlðt � 1ÞÞ� (2:22)
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Figure 2.6. (a) The function r¼ log(l) is concave. This implies that fluctuating environments will have lower

growth rates than the growth rate associated with the average value of l. (b) The two color morphs of desert snow

Linanthus parryae are maintained by fitness differences in fluctuating environments. (c) An example of why this

plant is called desert snow. Photos courtesy of Paulette Bierzychudek.
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with the understanding that t is large. Since the sum of logarithms is

the logarithm of the product, the term in square brackets in Eq. (2.22) is

the same as log(l(0)l(1)l(2) . . . l(t� 1)). But l(s)¼N(sþ 1)/N(s), so

that when we evaluate the product of the per capita growth rates, the

product is

logðlð0Þlð1Þlð2Þ . . . lðt� 1ÞÞ
¼ logfðNð1Þ=Nð0ÞÞðNð2Þ=Nð1ÞÞ . . . ðNðtÞ=Nðt � 1ÞÞg ¼ logfNðtÞ=Nð0Þg

However, in a fluctuating environment, the sequence of per capita

rates (and thus population sizes) is itself random. Thus, Eq. (2.22)

provides the value of r for a specific sequence of population sizes. To

allow for others, we take the arithmetic average of Eq. (2.22) and write

r ¼ lim
t!1

1

t
E log

NðtÞ
Nð0Þ

� �� �
(2:23)

This formula is useful when dealing with data and when using simula-

tion models (for a nice example, see Easterling and Ellner (2000)).

A wonderful application of all of these ideas is found in Turelli et al.

(2001), which deals with the maintenance of color polymorphism in

desert snow Linanthus parryae, a plant (Figure 2.6b, c) that plays an

important role in the history of evolutionary biology (Schemske and

Bierzychudek 2001). If you stop reading this book now, and choose to

read the papers, you will also encounter the ‘‘diffusion approximation.’’

We will briefly discuss diffusion approximations in this chapter and

then go into them in great detail in the later chapters on stochastic

population theory.

Before leaving this section, I want to do one more calculation. It

involves a little bit of probability modeling, so you may want to hold off

until you’ve been through the next chapter. Suppose that we do not

know the probability distribution of the per capita growth rate, but we

do know the mean and variance of l, which I shall denote by �l and

Var(l). We begin by a Taylor expansion of r¼ log(l) around its mean

value, keeping up to second order terms:

logðlÞ ¼ logð�lÞ þ 1

l
ðl� �lÞ � 1

�l
2
ðl� �lÞ2 (2:24)

and we now take the expectation of the right hand side. The first term

is a constant, so does not change, the second term vanishes because

Eflg ¼ �l and the expectation of the quantity in round brackets in the

last term is the variance of the per capita growth rate. We thus conclude

r � logð�lÞ � 1

�l
2
VarðlÞ (2:25)
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This is a very useful expression for fitness or growth rate in a

fluctuating environment. The method is often called Seber’s delta

method, for G. A. F. Seber who popularized the idea in ecology (Seber

1982). I first learned about it while working in the Operations

Evaluation Group of the Center for Naval Analyses (Mangel 1982), so

I tend to call it the ‘‘method of Navy math.’’ Whatever you call it, the

method is handy.

The logistic equation and the discrete logistic
map – on the edge of chaos

It is likely true that every reader of this book – and especially any reader

who has reached this point – has encountered the logistic equation

previously. Even so, by returning to an old friend, we have a good

starting point for new kinds of explorations. As in the previous section,

we will begin with relatively simple material but end with remarkably

sophisticated stuff.

The logistic equation

We allow N(t) to represent population size at time t and assume that it

changes according to the dynamics

dN

dt
¼ rN 1� N

K

� �
(2:26)

In this equation, r and K are parameters; K is the population size at which

the growth rate of the population is 0. It is commonly called the carrying

capacity of the population. When the growth rate is 0, births and deaths

are still occurring, but they are exactly balancing each other. The right

hand side of Eq. (2.26) is a parabola, with zeros at N¼ 0 and N¼K and

maximum value rK/4 when N¼K/2, which is called the population size

that provides maximum net productitivity (MNP); see Figure 2.7a.

In order to understand the parameter r, it is easiest to consider the

per capita growth rate of the population

1

N

dN

dt
¼ r 1� N

K

� �
(2:27)

Inspection of the right hand side of Eq. (2.27) shows that it is a

decreasing function of population size and that its maximum value is r,

occurring when N¼ 0. Of course, if N¼ 0, this is biologically mean-

ingless – there won’t be any reproduction if the population size is 0.

What we mean, more precisely, is that in the limit of small population

size, the per capita growth rate approaches r – so that r is the maximum

per capita growth rate.
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Figure 2.7. An illustration of logistic dynamics when r¼0.2 and K¼100. (a) Population growth rate as a function

of population size. (b) Per capita growth rate as a function of population size. (c) Population size versus time for

populations that start above and below the carrying capacity.

The word logistic is derived from the French word logistique, which

means to compute. The scientist and mathematician Verhulst wanted to

be able to compute the population trajectory of France. He knew that

using the exponential growth equation dN/dt¼ rN would not work

because the population grows without bound. This happens because

with exponential growth the per capita growth rate is a constant (r).

We don’t know what Verhulst was thinking, but it might have gone

something like this: ‘‘I know that a constant per capita growth rate will

not be a good representation, and it must be true that per capita growth

rate declines as population size increases. Suppose that per capita
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growth rate falls to zero when the population size is K. What is the

simplest way to connect the points (0, r) and (K, 0)? Of course – a line.

C’est bon.’’ Furthermore, there is only one line that connects the max-

imum per capita growth rate r when N¼ 0 and per capita growth rate¼ 0

when N¼K. There are an infinite number of nonlinear ways that

we could do it. For example, a per capita growth rate of the form

r(1� (N/K)�), for any value of �> 0, works equally well to achieve

the goal of connecting the maximum and zero per capita growth rates.

So, the logistic is not a law of nature, but is a simple and somewhat

unique representation of nature. In Figure 2.7b, I show the per capita

growth rate for the same parameters as in Figure 2.7a.

Let us now think about the dynamics of a population starting at size

N(0) and following logistic growth. If N(0)>K, then the growth rate of

the population is negative and the population will decline towards K.

If N(0)> 0 but small, the population will grow, albeit slowly at first,

but then as population size increases, the growth rate increases too (even

though per capita growth rate is always declining, the product of per capita

growth rate and population size increases until N¼K/2). Once the popu-

lation size exceeds K/2, growth rate begins to slow, ultimately reaching 0

as the population approaches K. We thus expect the picture of population

size versus time to be S-shaped or sigmoidal and it is (Figure 2.7c).

Exercise 2.7 (M)

Although Eq. (2.26) is a nonlinear equation, it can be solved exactly (that is how

I generated the trajectories in Figure 2.7c) and everyone should do it at least

once in his or her career. The exercise is to show that the solution of Eq. (2.26) is

N(t)¼ [N(0)Kert] / [KþN(0)(ert� 1)]. To help you along, I offer two hints (the

method of partial fractions, if you want to check your calculus text). First,

separate the differential equation so that Eq. (2.26) becomes

dN

N 1� N
K

� 	 ¼ rdt

Second, recognize that the left hand side of this expression looks like a common

denominator, so write
1

N 1� N
K

� 	 ¼ A

N
þ B

1� N
K

� 	
where A and B are constants that you determine by creating the common

denominator and simplifying.

The discrete logistic map and the edge of chaos

We now come to what must be one of the most remarkable stories

of good luck and good sleuthing in science. To begin this story,
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I encourage you to stop reading just now, go to a computer and plot the

trajectories for N(t) given by the formula for N(t) in the previous

exercise, for a variety of values of r – let r range from 0.4 to about

3.5. After that return to this reading.

Now let us poke around a bit with the logistic equation by recogniz-

ing the definition of the derivative as a limiting process. Thus, we could

rewrite the logistic equation in the following form:

lim
dt!0

Nðt þ dtÞ � NðtÞ
dt

¼ rN 1� N

K

� �
(2:28)

This equation, of course, is no different from our starting point. But now

let us ignore the limiting process in Eq. (2.28) and simply set dt¼ 1.

If we do that Eq. (2.28) becomes a difference equation, which we can

write in the form

Nðt þ 1Þ ¼ NðtÞ þ rNðtÞ 1� NðtÞ
K

� �
(2:29)

This equation is called the logistic map, because it ‘‘maps’’ population

size at one time to population size at another time. You may also see it

written in the form

Nðt þ 1Þ ¼ rNðtÞ 1� NðtÞ
K

� �

which makes it harder to connect to the original differential equation.

Note, of course, that Eq. (2.29) is a perfectly good starting point, if we

think that the biology operates in discrete time (e.g. insect populations

with non-overlapping generations across seasons, or many species of

fish in temperate or colder waters).

Although Eq. (2.29) looks like the logistic differential equation, it

has a number of properties that are sufficiently different to make us

wonder about it. To begin, note that if N(t)>K then the growth term is

negative and if r is sufficiently large, not only could N(tþ 1) be less than

N(t), but it could be negative! One way around this is to use a slightly

different form called the Ricker map

Nðt þ 1Þ ¼ NðtÞ exp r 1� NðtÞ
K

� �
 �
(2:30)

This equation is commonly used in fishery science for populations with

non-overlapping generations (e.g. salmonids) and misused for other

kinds of populations. It has a nice intuitive derivation, which goes like

this (and to which we will return in Chapter 6). Suppose that maximum

per capita reproduction is A, so that in the absence of density depend-

ence N(tþ 1)¼AN(t), and that density dependence acts in the sense

that a focal offspring has probability f of surviving when there is just
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one adult present. If there are N adults present, the probability that

the focal offspring will survive is f N. Combining these, we obtain

N(tþ 1)¼AN(t)f N(t), which surely suggests a good exercise.

Exercise 2.8 (E/M)

Often we set f N¼ e�bN, so that the Ricker map becomes N(tþ 1)¼AN(t)e�bN(t).

First, explain the connection between f and B and the relationship between the

parameters A, b and r, K. Second, explain why the Ricker map does not have the

nasty property that N(t) can be less than 0. Third, use the Taylor expansion of

the exponential function to show how the Ricker and discrete logistic maps are

connected.

But now let us return to Eq. (2.29) and explore it. To do this, we

begin by simply looking at trajectories. I am going to set K¼ 100,

N(0)¼ 20 and show N(t) for a number of different values of r

(Figure 2.8). When r is moderate, things behave as we expect: starting

at N(0)¼ 20, the population rises gradually towards K¼ 100. However,

when r¼ 2.0 (Figure 2.8c), something funny appears to be happening.

Instead of settling down nicely at K¼ 100, the population exhibits small

oscillations around that value. For r slightly larger (r¼ 2.3, panel d) the

oscillations become more pronounced, but still seem to be flipping back

and forth across K¼ 100. The behavior becomes even more compli-

cated when r gets larger – now there are multiple population sizes that

are consistently visited (Figure 2.8e). When r gets even larger, there

appears to be no pattern, just wild and erratic behavior. This behavior is

called deterministic chaos. It was discovered more or less accidentally

in a number of different ways in the 1960s and 1970s (see Connections).

Before explaining what is happening, I want to present the results

in a different way, obtained using the following procedure. I fixed r.

However, instead of fixing N(0), I picked it randomly and uniformly

(all values equally likely) between 1 and K. I then ran the population

dynamics for 500 time steps and plotted the point (r, N(500)). I repeated

this, with r still fixed, for 50 different starting values, then changed r and

began the process over again. The results, called a bifurcation (for

branching) diagram, are shown in Figure 2.9. When r is small, there

is only one place for N(500) to be – at carrying capacity K¼ 100.

However, once we enter the oscillatory regime, N(500) is never K – it

is either larger or smaller than K. And as r increases, we see that we

jump from 2 values of N(500) to 4 values, then on to 8, 16, 32 and

so forth (with the transition regions becoming closer and closer).

As r continues to increase, virtually all values can be taken by N(500).

You may want to stop reading now, go to your computer and create a

spreadsheet that does this same set of calculations.
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Figure 2.8. Dynamics of the discrete logistic, for varying values of r: (a) r¼0.4, (b) r¼1.0, (c) r¼2.0, (d) r¼2.3,

(e) r¼2.6, (f) r¼3.
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How do we understand what is happening? To begin we rewrite

Eq. (2.29) as

Nðt þ 1Þ ¼ ð1þ rÞNðtÞ � rNðtÞ2

K

and investigate this as a map relating N(tþ 1) to N(t). Clearly if N(t)¼ 0,

then N(tþ 1)¼ 0; also if N(t)¼K(1þ r)/r, then N(tþ 1)¼N(t). In

Figure 2.10, I have plotted this function, for three values of r, when

K¼ 100. I have also plotted the 1:1 line. The three curves and the line

intersect at the point (100, 100), or more generally at the point (K, K).

Using this figure, we can read off how the population dynamics grow.

Let us suppose that N(0)¼ 50, and r¼ 0.4. We can see then that

N(1)¼ 60 (by reading where the line N¼ 50 intersects the curve). We

then go back to the x-axis, for N(1)¼ 60, we see that N(2)¼ 69.6; we

then go back to the x-axis for N(2) and obtain N(3). In this case, it is clear

that the dynamics will be squeezed into the small region between the

curve and the 1:1 line. This procedure is called cob-webbing.

What happens if N(0)¼ 50 and r¼ 2.3? Well, then N(1)¼ 107.5,

but if we take that value back to the x-axis, we see that N(2) is about 89.

We have jumped right across the steady state at 100. From N(2)¼ 89,

we will go to N(3) about 111 and from there to N(4) about 82. The

behavior is even more extreme for the case in which r¼ 3: starting at

N(0)¼ 50, we go to 125 and from there to about 31; from 31 to about 95,

and so forth.
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Figure 2.9. The bifurcation

plot of N(500) versus r; see text

for details.
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This is a very interesting process – one in which simple determi-

nistic dynamics can produce a wide range of behaviors, including

oscillations and apparently random trajectories. These kinds of results

fall under the general rubric of deterministic chaos (see Connections).

A bit about bifurcations

The results of the previous section suggest that when we encounter a

differential or difference equation, we should consider not only the

solution, but how the solution depends upon the parameters of the

equation. This subject is generally called bifurcation theory (because,

as we will see, solutions ‘‘branch’’ as parameters vary). In this section,

we will consider the two simplest bifurcations and some of their impli-

cations. As we discuss the material, do not try to apply biological

interpretations to the equations; I have picked them to make illustrating

the main points as simple as possible. At the end of this section, I will

do one biological example and in Connections point you towards the

literature for other ones.

We begin with the differential equation

dx

dt
¼ x2 � � (2:31)

r = 3.0

r = 2.3

r = 0.4

1:1 line

50

0
0 50

N
100

N
 (t

 +
 1

)

150

100

150 Figure 2.10. Logistic maps for

three different values of r,

allowing us to understand how

simple deterministic dynamics

can lead to oscillations and to

apparently random

trajectories.
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for the variable x(t) depending upon the single parameter �. When we

first encounter a differential equation, we may ask ‘‘What is the solution

of this equation?’’. The trouble is, the vast majority of differential

equations do not have explicit solutions. Given that restriction, a good

first question is ‘‘What are the steady states, that is for what values of

x is dx/dt equal to 0?’’. This is always a good question, and can often be

answered. For the dynamics in Eq. (2.31), the steady states are given by

xs ¼ �
ffiffiffiffi
�
p

. We thus conclude that if �< 0 there are no steady states

(more precisely, there are no real steady states) and that if �� 0 there

are one (when �¼ 0) or two steady states. We will call these steady

solutions branches; there are thus two branches, one of which is positive

and one of which is negative. Along these branches, dx/dt¼ 0. What

about elsewhere in the plane? Between the branches, � is greater than

x2, so we conclude that dx/dt< 0 and that x(t) will decrease, thus

moving towards the lower branch. Anywhere else in the plane � is

less than x2, so that dx/dt> 0 and x(t) will increase; I have summarized

this analysis in Figure 2.11.

Before going on with the analysis, a few stylistic comments. First,

note that I have put x on the ordinate and � on the abscissa. Thus, one

might say ‘‘x is on the y axis, how confusing.’’ However, the labeling of

axes is a convention, not a rule, and one just needs to be careful when

conducting the analysis (more of this to come with the next bifurcation).

Second, I have used x(t) and x interchangeably; this is done for con-

venience (and for avoiding writing things in a more cumbersome

manner). Once again, this is not a problem if one is careful in under-

standing and presentation.

Returning to the figure, imagine that � is fixed, but x may vary, and

that we are at some point along the positive branch. Then dx/dt¼ 0 and

α

Positive branch

Negative branch
x (t ) increasing

x (t ) increasing

x (t ) decreasing

x

–5 0 5 10 15 2520

Figure 2.11. The steady states

of the differential equation

dx/dt¼ x2��, showing the

positive and negative

branches.
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we will stay there forever. However, if we receive a small perturbation

off that branch, interesting things happen. If the perturbation (until

otherwise notified, all perturbations are small) puts us between the

two branches, then x(t) declines and we move towards the negative

branch. If the perturbation puts us above the positive branch, then x(t)

increases and we move away from the positive branch. So, in either

case, a perturbation moves us away from the positive branch. We say

that such a branch is dynamically unstable (or just unstable). A similar

argument shows that perturbations from the negative branch return to it;

we say that the negative branch is stable. What happens when �¼ 0?

The differential equation becomes dx/dt¼ x2, so that x(t) is always

increasing. Thus, if x(0)< 0, x(t) rises towards 0; however if x(0)> 0,

x(t) moves away from 0. We say that such a point is marginally stable;

we also say that the equation dx/dt¼ x2�� is structurally unstable

(these words may appear to be needlessly complex, but think about

them and they make sense) when �¼ 0, because small changes of �

from the value 0 lead to very different properties of the equation (in this

case, either no steady states or two steady states). We also sometimes

say that the stable steady state and unstable steady state coalesce and

annihilate each other (kind of like matter and antimatter) when �¼ 0.

The next most complicated equation involves two parameters and a

cubic in x:

dx

dt
¼ �x3 þ �xþ � (2:32)

where � and � are the parameters of interest. The steady states of this

equation satisfy the cubic equation x3��x� �¼ 0. We will momenta-

rily discuss geometric solutions of this equation, but now begin with a

bit of algebra. A cubic equation has three solutions (by the fundamental

theorem of algebra), of which one may be real and two complex, three

may be real with two equal, or three may be real and unequal. Which

case applies is determined by the value of the discriminant D(�, �)¼
(�2/4)� (�3/27). (You probably once learned this in high school algebra,

but most likely don’t remember it. This is a case where I ask that you

trust me; of course you can also go and check the formula in a book.)

If D(�, �)> 0, then there is one real solution; if D(�, �)¼ 0, then there

are three real solutions, two of which are equal; if D< (�, �) then

there are three real, unequal solutions. Thus, in some sense D(�, �)¼ 0

is a boundary. So, we need to think about the shape of �2¼ 4�3/27,

which is shown in Figure 2.12. This kind of equation (in which the

independent variable appears as a 3/2 power) is called a cusp; hence this

is called the cusp bifurcation or sometimes the cusp catastrophe (see

Connections).
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Now I want to discuss the solution in a more geometric manner,

because learning to think geometrically about these matters is abso-

lutely essential for your understanding of the material. The steady states

of the differential equation (2.32) satisfy x3��x¼ �. In Figure 2.13a,

I plotted the curve y¼ x3��x and the line (actually a number of lines)

y¼ �. Since the steady states correspond to values of x where these are

equal, we conclude that the steady states are values of x for which the

line and the curve intersect. We also see that there may be just one

intersection point (on the left hand branch of the curve or on the right
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α

Figure 2.12. A plot of the

equation �2¼4�3/27, which

is called a cusp. Along the

curves, there are two real

solutions of the cubic (and

thus three steady states of

Eq. (2.32)). Elsewhere, there

are either one real solution or

three real solutions.
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y = β

y = x 
3

 – αx

y

x

Slow 

Fast

(b)

Figure 2.13. (a) The geometric solution of the equation x3��x¼ �. (b) When we append dynamics for �, there is

no longer a steady state, but both x and � change in time.
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hand branch), there may be two intersection points (if the line is tangent

to the curve) or three intersection points (if the value of � falls between

the local maximum and local minimum of the curve). We thus have a

geometric interpretation of the cusp. When the horizontal line is tangent

to the curve, the system is once again structurally unstable: at the point

of tangency there are two steady states, one of which is marginally

stable. However, a small change in either of the parameters leads to a

situation in which there are either three or one steady states.

But this really is not the situation that I wanted to consider. Rather,

I want to consider the situation in which � varies as well. In particular, let

us append the equation d�/dt¼�"x, in which " is a new parameter, to

Eq. (2.32). We will assume that " is small (that is much less than 1), and

we know that when " is set equal to 0 we obtain the cusp bifurcation.

The steady state is now x¼ 0, �¼ 0, but the dynamics are very

interesting. To be explicit, suppose we start on the right hand branch of

the cubic, where the line is above the local maximum, as shown in

Figure 2.13b. If "were 0, the system would stay there. But since " is not

0, things change. In light of x> 0, � will decline (since its derivative

is negative). Thus in the next bit of time, the line will lower a little.

Furthermore, now the line is slightly below the cubic and since

dx/dt¼ �� (x3��x), x declines slightly too. At this new value of x,

d�/dt is still negative, so that both � and x will continue to decline. We

will thus slowly move down along the right hand branch of the cubic

(Figure 2.13b). For how long will this go on? Until we reach the local

minimum of the cubic at x ¼ ffiffiffiffi
�
p

. At this point, � is still declining, but

once it does so there is no intersection between the line and the curve for

positive values of x. We thus predict a rapid transition from the right hand

branch of the cubic to the left hand branch. When we get near the left

hand branch, x is negative so that d�/dt is positive and � begins to rise.

Once again, this happens slowly, along the left hand branch, until the

local maximum is crossed, at which point there will be a rapid transition

back to the right hand branch of the cubic. In other words, we predict

oscillations, and that the oscillations will have a shape that involves a

slowly changing component and a rapidly changing component.

In Figure 2.14, I show the numerical solution of the differential

equations for the case in which �¼ 1, "¼ 0.005 with initial values

x(0)¼ 2 and �(0)¼ x(0)3��x(0). Starting at x(0)¼ 2, we see a slow

decline along the right hand branch of the cubic, until there is a rapid

drop, then a slow rise, and oscillations set in. To help make this point

clearer, Figures 2.14b and c show just parts of the trajectory; in

Figure 2.14c, we most clearly see the slow and fast parts of the oscillation.

Oscillations such as the ones described here are called ‘‘relaxation

oscillations’’ and they arise in many different ecological contexts,
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typically in relationship to some kind of pest outbreak or plankton

bloom (see Connections).

Two dimensional differential equations and the
classification of steady states

Many of the models that we encounter in population biology involve

two or more differential equations of the form dx/dt¼ f (x, y) and
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Figure 2.14. The oscillations induced by allowing the parameter � to slowly change, as described in the text.

Three panels are shown, with increasingly fine resolution in time, so that we can clearly see the slow and fast parts

of the oscillatory system.
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dy/dt¼ g(x, y). Some examples are the Lotka–Volterra predator

(P)–prey (V ) equations

dV

dt
¼ rV 1� V

K

� �
� bPV

dP

dt
¼ cPV � mP

(2:33)

the Lotka–Volterra competition equations

dx

dt
¼ r1x 1� xþ �y

K1

� �

dy

dt
¼ r2y 1� yþ �x

K2

� � (2:34)

and equations that could describe a mutualistic interaction (for example

between ants and butterflies, see Pierce and Nash (1999) or Pierce et al.

(2002); for yuccas and moths see Pellmyr (2003))

dA

dt
¼ raA 1� A

K0 þ K1B

� �

dB

dt
¼ BðrbA� mBÞ

(2:35)

If these equations are not familiar to you, do not despair, but read on –

we shall explicitly consider the first two pairs in what follows.

When considering differential equations such as these in the plane,

one can usefully apply a three step procedure (which is generalized to

systems of higher dimension): understand the steady states, the quali-

tative dynamics, and only then the quantitative dynamics. We will

approach this procedure slowly, beginning with some very specific

examples and then ending with the general case.

We start with a specific example: consider the following system of

differential equations for a pair of variables u(t) and v(t) (don’t try to

ascribe biological meaning to them just now, that will come later on).

du

dt
¼ Au

dv

dt
¼ Dv

(2:36)

The choice of the constants A and D, which may be mysterious now,

will also become apparent later.

The steady states of this system are the values in the (u, v) plane

for which du/dt¼ 0 and dv/dt¼ 0. We can determine by inspection

that the only steady state is the origin (0, 0). Furthermore, we can

determine by inspection that u(t) and v(t) must be exponential functions

of time. Thus, we conclude that u(t)¼ u(0)eAt and that v(t)¼ v(0)eDt.
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(We could also note that du/dv¼Au/Dv, which integrates to Aln(u)¼
Dln(v)þ constant, and which then becomes u¼ cvA/D, where c is a

constant. But we are not going to make a big deal out of this because

it does not help us except in the special case).

What does help us, however, is to think about the exponential

solutions of time in a plane represented by u on the abscissa and v on

the ordinate. This is called the phase plane (Figure 2.15). We will

distinguish three cases. First suppose that A> 0 and D> 0. If we start

the system at u(0)¼ 0 and v(0)¼ 0, then it stays there forever. However,

if we start it anywhere else, both u(t) and v(t) grow in time. We say that

points in the u–v plane ‘‘flow away from the origin.’’ This is represented

by the arrows in Figure 2.15a pointing away from the origin. Note that

we are not trying to characterize the shape of those curves that represent

the flow away from the origin, just that points move away. We call this

an unstable node. Second, suppose that A< 0 and D< 0. Then every-

thing that we just concluded applies, but in reverse. If initial values are

not at the origin, they decline in time; we say that the flow is towards the

origin and that this is a stable node (Figure 2.15b). Third, suppose that

one of A or D is positive and that the other is negative. For concreteness,

I will do the case A< 0 and D> 0 and let you draw the picture for the

other one. Now some interesting things can happen. Note, if we start

exactly on the u-axis, we flow towards the origin. If we start exactly on

the v-axis, we flow away from the origin. For any starting point with

u(0) 6¼ 0 and v(0) 6¼ 0 but close to the origin, we will first flow towards

the origin, kind of ‘‘along the u-axis’’ and then flow away from it ‘‘along

the v-axis.’’ So we see that the u-axis separates the plane into two

regions; these are often called domains of attraction and the u-axis is

called the separatrix. In this case the origin is called a saddle point

(Figure 2.15c), in analogy to real saddles (Figure 2.15d) in which one

falls into the middle of the saddle moving along the back of the horse but

off the saddle moving laterally to the back of the horse.

This case was nice, but perhaps a bit too simple because the

dynamics of u and v were not connected in any way. The next most

complicated case would be linear, but with connection. Here we will go

back to x and y and write

dx

dt
¼ Axþ By

dy

dt
¼ Cxþ Dy

(2:37)

and now I hope you understand my choice of A and D in the previous

discussion. How could we analyze these equations? We might try to

find some combination of x and y so that new variables u¼�xþ �y and

v¼ �xþ �y satisfy du/dt¼A0u and dv/dt¼B0v for some constants
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“Node”
A, D < 0

(b)

v

“Node”
A, D > 0

(a)

u

(c)

“Saddle point”
A < 0, D > 0

(d)

Figure 2.15. The phase plane for the simple dynamical system du/dt¼Au, dv/dt¼Dv. If A and D are both greater

than 0, the origin is an unstable node (panel a). If A and D are both less than 0, the origin is a stable node (panel b).

If one of A or D is positive and the other is negative, the origin is called a saddle point (panel c), in analogy with

actual saddles (panel d; compliments of Gabby Roitberg).
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A0 and B0. Rather than doing that, we will try to generalize what we

have already learned.

I will now show two different ways to get to the same answer.

The first method is completely independent of anything outside of

this book. The second requires that you know a bit of linear algebra.

The first method proceeds as follows. We differentiate the first equation

in Eq. (2.37) with respect to time to obtain d2x/dt2¼A(dx/dt)þ
B(dy/dt)¼A(dx/dt)þB(CxþDy). Now we use the first equation in

(2.37) once again, by noting that y¼ (1/B)[(dx/dt)�Ax]. Combining

these, we obtain a single, second order differential equation for x(t).

Exercise 2.9 (E)

Show that when we combine the last two equations, we obtain

d2x

dt2
� ðAþ DÞdx

dt
þ ðAD� BCÞx ¼ 0 (2:38)

Now, before discussing the solution of this equation, let us think

about some of its properties. Since this is a second order differential

equation, two constants of integration will appear in the solution.

These are called the initial conditions. For the original system, we

might specify x(0) and y(0) (for example, two population sizes), but

for Eq. (2.38) we might specify x(0) and dx/dtjt¼0 (these are an

analogous specification since we know that y ¼ ð1=BÞ dx=dtð Þ � Ax½ �).
Because of the integration constants, there will be many different

solutions of Eq. (2.38). The next exercise, which is called the linear

superposition of solutions, will be extremely useful for the rest of

the chapter.

Exercise 2.10 (E/M)

Suppose that x1(t) and x2(t) are solutions of Eq. (2.38). (That is, each of them

satisfies the differential equation.) Show that X(t)¼ ax1(t)þ bx2(t), where a and

b are constants, is also a solution of Eq. (2.38).

We still have to deal with the matter of finding the solution of

Eq. (2.38). We know that a first order linear differential equation of

the form dx/dt¼Ax has exponential solutions, so let’s guess that the

solution of Eq. (2.38) has the form x(t)¼ x0elt where x0 is a constant

(corresponding to the initial value of x) and we need to find l. If we

accept this guess, then the derivatives of x(t) are dx/dt¼ lx0elt and

d2x/dt2¼ l2x0elt. When we substitute these forms for x(t) and its two

derivatives back into Eq. (2.38), note that both x0 and elt will cancel
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since they appear in all of the terms. We are then left with a quadratic

equation for the parameter l:

l2 � ðAþ DÞlþ AD� BC ¼ 0 (2:39)

Before interpreting Eq. (2.39), I will show a different way to reach it.

For this second method, let us assume that there are certain special

initial values of x(0)¼ u and y(0)¼ v such that x(t)¼ uelt and y(t)¼ velt.

Note that these are clearly not the u and v with which we started this

section. I use them here because in life we are symbol-limited. Given

this form for x(t) and y(t) the derivatives are dx/dt¼ luelt¼ lx(t) and

dy/dt¼ lvelt¼ ly(t). For this reason, l is called an eigenvalue (from the

German word ‘‘eigen’’ meaning similar or equivalent) of the differential

equations (2.37) because when we take the derivatives of x(t) and y(t)

we get back multiples of x(t) and y(t). In a geometrical way, we can think

of a vector that joins the origin and the point (u, v); it is called the

eigenvector, for much the same reason.

Now we substitute these derivatives into Eq. (2.37). Once again, the

exponential terms cancel and when we combine terms we obtain

ðA� lÞuþ Bv ¼ 0

Cuþ ðD� lÞv ¼ 0
(2:40)

One solution of these linear algebraic equations is u¼ v¼ 0. For

there to be other solutions, we recall that the determinant of the coeffi-

cients of u and v must be equal to 0. That is

A� l B

C D� l


 ¼ 0 (2:41)

and when we apply the rule for determinants (i.e. that Eq. (2.41) is

equivalent to (A� l)(D� l)�BC¼ 0) we obtain the same equation for

l, Eq. (2.39).

Equation (2.39) is a quadratic equation, so that we know there are

two solutions, given by the quadratic formula. We will denote these

solutions by l1,2 and they are

l1;2 ¼
ðAþ DÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAþ DÞ2 � 4ðAD� BCÞ

q
2

¼
ðAþ DÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA� DÞ2 þ 4BC

q
2

(2:42)

where, for convention, we will assume that 1 corresponds toþ and

2 to – in the quadratic formula. If we define the discriminant by

D¼ (A�D)2þ 4BC, then we can write that l1;2 ¼
�
ðAþ DÞ �

ffiffiffiffi
D
p �

=2.
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We are now able to classify the steady state (0, 0) of the system given in

Eq. (2.37). Before doing that, let’s have a brief interlude.

Exercise 2.11 (M)

Show that if l is a solution of Eq. (2.42) and that if we set u¼B and v¼ l�A

that Eq. (2.40) is satisfied. Thus, we know how to find the eigenvectors too.

As long as D 6¼ 0, which we will assume in this chapter, the exer-

cises up to this point have allowed us to find the general solution of the

system given by Eq. (2.37):

xðtÞ ¼ c1Bel1 t þ c2Bel2t

yðtÞ ¼ c1ðl1 � AÞel1t þ c2ðl2 � AÞel2t
(2:43)

Although it is nice to have an explicit form for the solution, what is nicer

is that we now know how to classify the steady state.

We begin with the case in which D> 0. Then both of the eigen-

values are real. We conclude that if they are both positive, the origin is

an unstable node. Since solutions will grow exponentially, whichever

eigenvalue is larger will ultimately dominate the behavior of the solu-

tion. If both of the eigenvalues are negative, we conclude that the origin

is a stable node. If one of the eigenvalues is positive and the other is

negative, we conclude that the origin is a saddle point.

When D< 0, the eigenvalues are complex numbers, so if we set

q ¼
ffiffiffiffiffiffi
jDj

p
we can rewrite the eigenvalues as l1,2¼ [(AþD)� iq]/2,

where i ¼
ffiffiffiffiffiffiffi
�1
p

. Consequently, when we compute solutions given by

Eq. (2.43), we will need to consider expressions of the form

exp
ðAþ DÞt þ iqt

2

� �
¼ exp

ðAþ DÞt
2

� �
exp

iqt

2

� �

From this, we see that if AþD, the real part of the eigenvalues, is

negative, then whatever else happens solutions will decline in time. If

AþD is positive, they will grow in time. The question then becomes

how we interpret the exponential of iqt.

For this interpretation, we need a brief reminder. Recall that the

solution of the differential equation d2x/dt2¼�kx involves sines or

cosines. (If you do not recall this, confirm that if x ¼ sinð
ffiffiffiffi
kt
p
Þ or

x ¼ cosð
ffiffiffiffi
kt
p
Þ then the differential equation is satisfied.) Since this

is a linear equation, the general solution must be of the form

c1 sinð
ffiffiffi
k
p

tÞ þ c2 cosð
ffiffiffi
k
p

tÞ, where the ci are constants. Suppose that

we had guessed an exponential solution for this equation, i.e. that

x¼ celt. In this case, the second derivative of x(t) is cl2elt so that we

conclude l must satisfy the equation l2¼�k or that l ¼ �i
ffiffiffi
k
p

. In

other words, exponentials involving
ffiffiffiffiffiffiffi
�1
p

lead to oscillations. Our
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solution is at hand. If D< 0, we now know that the solutions will

oscillate. Such a steady state is called a focus or a spiral point. If

AþD< 0, the focus is stable and if AþD> 0 the focus is unstable.

But, of course, all this work (and it is hard work) only corresponds

to the linear system of equations (2.37) and the equations that we

actually encounter in population biology are nonlinear. What do we

do about this? That is, in general we will have a pair of differential

equations of the form

dx

dt
¼ f ðx; yÞ

dy

dt
¼ gðx; yÞ

(2:44)

and let us suppose that the point (xs, ys) is a steady state of this system so

that f (xs, ys)¼ g(xs, ys)¼ 0. We go forward from Eq. (2.44) by linear-

izing the equations around the steady state. That is, we write

xðtÞ ¼ xs þ ~xðtÞ and that yðtÞ ¼ ys þ ~yðtÞ so that ~xðtÞ and ~yðtÞ measure

the deviations from the steady state. Since the steady states are constant,

we know that dx=dt ¼ d~x=dt and dy=dt ¼ d~y=dt. Now we will Taylor

expand f (x, y) around the steady state and keep only the linear term:

f ðx; yÞ � f ðxs þ ~x; ys þ ~yÞ

¼ f ðxs; ysÞ þ
q
qx

f ðx; yÞjðxs;ysÞ~xþ
q
qy

f ðx; yÞjðxs;ysÞ~y
(2:45)

Now let us consider the three terms in the right hand expression of this

equation. The first term on the right hand side is identically zero,

because (xs, ys) is a steady state. The second term is the partial derivative

of f (x, y) with respect to x, evaluated at the steady state. To help simplify

what we have to write, we will use subscripts for partial derivatives and,

with a slight abuse of notation, replace the second and third terms on

the right hand side of Eq. (2.45) by f xðxs; ysÞ~x and f yðxs; ysÞ~y. A similar

argument shows that gðx; yÞ � gxðxs; ysÞ~xþ gyðxs; ysÞ~y. The point of all

this work is that we can now replace the nonlinear differential equa-

tion (2.44) by a linear system that characterizes the deviations from the

steady state

d~x

dt
¼ f xðxs; ysÞ~xþ f yðxs; ysÞ~y

d~y

dt
¼ gxðxs; ysÞ~xþ gyðxs; ysÞ~y

(2:46)

and we now compare Eq. (2.46) with Eq. (2.37) to determine the values

of A, B, C, and D (note that they are not arbitrary but must match the

various partial derivatives in Eq. (2.46)), from which we can determine

the stability characteristics of the steady states.
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To help make the preceding more concrete, we will first consider

an example, then an exercise. A very simple model for competition

between two types or species x(t) and y(t) is

dx

dt
¼ xð1þ a� x� ayÞ

dy

dt
¼ yð1þ a� y� axÞ

(2:47)

where a is a parameter, which we assume to be positive. From the form

of these equations, we see that the presence of x increases the rate of

change of x and that the presence of both x and y decreases the rate of

change of x (and vice versa for y). We say that x and y are auto-catalysts

for themselves and anti-catalysts for the other type. This thinking

underlay the work of Sir F. C. Frank in his study of spontaneous

asymmetric synthesis (see Connections); Eq. (2.47) is also a simple

analog of the Lotka–Volterra competition equations, in which the

competition is symmetric.

We find the steady states of Eq. (2.47) by setting dx/dt¼ 0 and

dy/dt¼ 0. For the former, we find that x¼ 0 or xþ ay¼ 1þ a. For the

latter, we find that y¼ 0 or yþ ax¼ 1þ a. Thus, (1, 1) is a steady state.

Before conducting an eigenvalue analysis, we use the isoclines (or

more properly, the nullclines, lines on which dx/dt¼ 0 or dy/dt¼ 0)

of the differential equations to understand properties of the solution.

These are shown in Figure 2.16. The steady state (1, 1) can be either

a node (if a< 1) or a saddle point (if a> 1). When a¼ 1, the two

isoclines sit on top of each other and the system is structurally

unstable. Note also that, because x and y are interchangeable in the

two equations, the line y¼ x is a solution of the equations – points on

the line y¼ x move towards (1, 1), regardless of whether it is a node

or a saddle point.

We can now conduct the eigenvalue analysis. In this case f (x,y)¼
x(1þ a� x� ay)¼ x(1þ a)� x2� axy and g(x, y)¼ y(1þ a)� y2�
axy. The partial derivatives are thus fx¼ 1þ a� 2x� ay, fy¼�ax,

gx¼�ay, and gy¼ 1þ a� 2y� ax, and we evaluate these at (1, 1)

in order to obtain A, B, C, and D, so that A¼ 1þ a� 2� a¼�1,

B¼�a, C¼�a, and D¼ 1þ a� 2� a¼�1. We substitute this into

Eq. (2.42) and find that l1;2 ¼ �1� ffiffiffi
a
p

. From the eigenvalue analysis,

we reach the same conclusion as from the phase plane analysis – that

(1, 1) is either a stable node or saddle point, depending upon the value of

a. Thus, in this case, the eigenvalue analysis told us little that we could

not understand from the phase plane. Here’s an example where it tells us

much more.
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Exercise 2.12 (M!H)

Consider the following predator (P)–prey (V ) system

dV

dt
¼ rV 1� V

K

� �
� bPV

dP

dt
¼ cPV � mP

Assume that the biomass of each is measured in numbers of individuals (but

treated as a continuous variable) and time is measured in years. It might be

helpful for what follows to think of rabbits and foxes as the victims and

predators. It might also be helpful, especially for parts (a) and (b), to convert

to per capita growth rates. (a) What are the units of all the parameters?

(b) Interpret the biology of both predator and prey. What must be true about

the relationship between b and c if the system is mammalian predators such as

rabbits and foxes? (c) Conduct an isocline analysis. Note: there are two cases,

depending upon the relationship between K and m/c. Be sure to get both of them

and carefully think about what each means. (d) Classify the steady states of the

system according to their eigenvalues. What does the eigenvalue calculation tell

you that the isocline analysis did not? Once again, there are two cases that

require careful interpretation. (e) What happens to the eigenvalues as K!1?

y

x

dx
dt

< 0

1 + a

1 + a

1 + a
a

1 + a
a

x = y

dy
dt

= 0

(c) a < 1

1 + a

1 + a

1 + a
a

1 + a
a

y

x 

x = y
dy
dt

= 0

dx
dt

= 0

(d) a > 1

y

x

dx
dt

< 0

dx
dt

> 0

1 + a

1 + a
a

(a)

x

y
dy
dt

dy
dt

1 + a

1 + a
a

(b)

< 0

> 0

Figure 2.16. The isocline

analysis of the equations for

spontaneous asymmetric

synthesis/symmetric

competition. In panels (a) and

(b), I show the separate

isoclines for dx/dt¼0 and

dy/dt¼0 and the flow of

points in the phase plane.

When these are put together,

the resulting phase plane

shows either a stable node at

(1,1) (panel c) or a saddle point

(panel d).
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What does this mean for the dynamics of the system? If you want more after this,

do the same kind of analysis for the mutualism described in Eq. (2.35). We will

return to this exercise, in a different context, in Chapter 6.

Diffusion as a random walk

We close this chapter with a discussion of diffusion – first a model of

how the process takes place (this section), then diffusion with linear

population growth (next section), and finally diffusion with nonlinear

population growth. This material is merely an introduction (although

it does help cement many of the ideas we’ve discussed thus far) and

Chapters 7 and 8 will be an extensive study of diffusion processes and

their applications to stochastic population theory. We will also use

occasional references to rules of probability (material from Chapter 3).

We envision a ‘‘random walker’’ whose position is denoted by X(t).

Exactly what is intended by the word ‘‘walking’’ does not matter at this

point – X(t) could equally be the position of an individual in physical

space, the frequency of a genotype, the size of a population, or the price

of a stock. We assume that the walk takes place on a one dimensional

lattice of ‘‘sites’’ (Figure 2.17) that are spaced distance D apart. We will

ultimately let D shrink to 0, but not just yet. The sites will be indexed by

the letter i and we thus measure distance by x¼ i D; for concreteness,

we refer to X(t) as the position of the walker at time t. The walker will

make moves (‘‘jumps’’) at a fixed time interval � , which will also be

allowed to shrink to 0 later in this section. These jumps are character-

ized by a transition function �(s), which is the probability that if the

walker is currently at the site i, it will next be at the site j a distance s

away. For example, if the walker were to move by flipping a fair coin

(e.g. moving left by one step if heads comes up, right by one step if tails

comes up), then �(�1)¼ �(1)¼ 1/2 and �(s)¼ 0 for any other value

of s. If the walker moved by reaching into a bag and pulling one of two

dice, marked left or right, and then rolling the second die to determine

how far to move, then it could move left 1, 2, 3, 4, 5, or 6 sites each with

probability 1/12 and right the same amounts with the same probability.

Given this framework, we define p(x, t)¼ Probability{X(t)¼ x}.

This seems sensible enough, but there is actually a subtlety to it.

When we talk about the walker ‘‘being at a site,’’ we actually mean

within the vicinity of the site. That is, when we say the walker is at

i i + 1 i + 2 i + 3

Δ

( )

Δ
2

Δ
2

Figure 2.17. The lattice of

one dimensional sites for a

random walker. The sites are

separated by distance D and

the walker is allowed to be only

at a site on the lattice, but in

general we may interpret

position as the walker being

within the distance D/2

of a site.
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site iþ 2 in Figure 2.17, we could interpret this to mean that the

walker is within D/2 to the left or D/2 to the right of site iþ 2.

Thus, perhaps a more precise way to think about p(x, t) is that p(x, t)

D is the probability that the walker is within �D/2 of the site i¼ x/D.

This may seem like a lot of pedantry, and to some extent it is for just

now, but thinking carefully about what these things mean will be

enormously helpful later on, when we let the distance between sites

shrink towards 0.

We will now derive an equation for p(x, t). How can the walker be

at spatial point x (site i) at time tþ �? There are many ways, but they

all boil down to this argument: the walker had to be at spatial point y

at time t and take a jump of size |x� y|. We thus define j by y¼ x�Ds.

Assuming that the walker’s location at time t and the size of the

jump are independent of each other allows us to multiply prob-

abilities (you will be reminded of these rules in Chapter 3) so that

we have

pðx; t þ �Þ ¼
X

s

�ðsÞpðx� Ds; tÞ (2:48)

We Taylor expand this equation around the point (x, t) to obtain

pðx; tÞ þ pt� þ oð�Þ ¼
X

s

�ðsÞ pðx; tÞ � Dspxþ
D2

2
s2pxx þ oðD2Þ


 �
(2:49)

where subscripts denote partial derivatives. We simplify this expres-

sion by thinking about the sums. For example, we know thatP
s �ðsÞ ¼ 1 because a jump of some size (including 0) must occur.

Furthermore, since p(x, t) does not depend upon j, we know thatP
s �ðsÞpðx; tÞ ¼ pðx; tÞ

P
s �ðsÞ. This takes care of the first term in

square brackets on the right hand side of Eq. (2.49). The fourth term

will similarly simplify to o(D2). The second and third terms require a

bit more thought. Factoring the things that do not depend upon s out of

the second term allows us to rewrite it as�Dpx

P
s �ðsÞs. We recognize

the sum as the average jump size: that is s is the size of the jump from

site j to site i and �(s) is the chance of making this jump. We will denote

this average by the symbol m1 (for first moment). Exactly the same

kind of argument will apply to the third term on the right hand side

of Eq. (2.49), except that we will have the square of the jump size;

hence we will use the symbol m2 for that summation. We put all this

together by subtracting p(x, t) from both sides of Eq. (2.49), divide by �

and obtain

pt þ
oðDÞ
�
¼ �D

�
m1px þ

D2

2�
m2pxx þ

oðD2Þ
�

(2:50)
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Now we let �! 0, D! 0 and assume that as this happens (m1D) /

�! v, (m2D
2) /�! �2, o(D2) /�! 0, which is the definition of the

quantities v and �2. When we do this, the resulting equation is

pt ¼ �vpx þ
�2

2
pxx (2:51)

With this equation, we have much to talk about (but little to reminisce,

as we will by Chapters 7 and 8). First, let us consider these new

parameters. Since D has units of distance, � has units of time, and

both m1 and m2 are pure numbers (averages of the jump size), we see

that v has units of distance/time – it is a velocity. On the other hand, �2

has units of (length)2/time; these units make it a diffusion coefficient.

Hence, Eq. (2.51) is called a diffusion equation.

We need to discuss one subtlety of this limit. In particular, how is

p(x, t) interpreted now that a set of discrete sites has become a con-

tinuum (as D! 0)? Recall, that we earlier agreed to think of p(x, t) as

the probability that the walker was within �D/2 of the spatial point x

(site i) at time t. In the limit, we interpret p(x, t)dx as the probability that

the walker is within dx of the spatial point x at time t. Since the walker

must be some place, we obtain a normalization condition

ð1
�1

pðx; tÞdx ¼ 1 (2:52)

Equation (2.51) also involves one time derivative and two spatial

derivatives. This means that there are three conditions needed to com-

pletely specify the solution. One is an initial condition: we specify

p(x, 0) – the chance of initially finding the walker at spatial point x.

The choices about boundary conditions depend upon the nature of the

spatial region.

First, suppose that this region is unbounded. It is reasonable to

expect, then, that the chance that the walker can reach�1 in any finite

time is 0. We then specify that p(x, t)! 0 as |x|!�1. Sometimes we

can get a solution of this equation virtually for free, as in the following

exercise.

Exercise 2.13 (M)

Show that

pðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2p�2t
p exp

�ðx� vtÞ2

2�2t

" #
(2:53)

is a solution of the diffusion equation and satisfies the boundary conditions for

an unbounded domain.
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The function p(x, t) defined in Eq. (2.53) is called the Gaussian or

normal distribution with mean vt and variance �2t. If you did the

exercise, you know that it satisfies the boundary conditions and the

differential equation. But how do we know that it satisfies the normal-

ization condition Eq. (2.52)? The following exercise helps with that.

Exercise 2.14 (M/H)

First show that setting u ¼ x� vtð Þ=
ffiffiffiffiffiffiffi
�2t
p

means that the normalization

condition is equivalent to showing that
Ð1
�1 1=

ffiffiffiffiffiffi
2p
p

exp �u2=2ð Þdu ¼ 1

Second, to show that this is true, consider the double integralÐ1
�1
Ð1
�1 exp �u2=2ð Þ exp �w2=2ð Þdudw, switch to polar coordinates in

which r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ w2
p

and evaluate the resulting integral to show that the integral

is 2p.

But we are not done with the solution given by Eq. (2.53). In

Figure 2.18, I have plotted four Gaussian distributions with mean 0

(i.e. v¼ 0 so that the original walk is unbiased in either direction) and

�2t¼ 0.1, 0.5, 1, or 3. As the variance decreases, the curves become

more peaked and centered around the origin. Now the area under each

of this curves is 1 (because of the normalization constant). Let us think

about the limit of p(x, t), for the case in which v¼ 0, as t approaches 0.

The function we are considering is thus ð1=
ffiffiffiffiffiffiffiffiffiffiffiffi
2p�2t
p

Þ exp �x2=2�2tð Þ.
Now, if x 6¼ 0, as t approaches 0, the reciprocal of the square root goes

to infinity, but the exponential function goes to 0 and since exponentials

–5 –4 –3 –2 –1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

p(
x,

 t 
)

Figure 2.18. Gaussian

distributions with mean 0 and

�2t¼0.1, 0.5, 1, or 3.
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decline faster than any algebraic function (something that you need to

remember from calculus), the product goes to 0. However, if x¼ 0, the

exponential term is always equal to 1, but the reciprocal square root still

goes to infinity as t approaches 0. What do we conclude from this

discussion? When v¼ 0, as t! 0 p(x, t) approaches a function �(x)

with these properties ð1
�1

�ðxÞdx ¼ 1

�ðxÞ ¼
0 if x 6¼ 0

1 if x ¼ 0

(2:54)

In physics, a function with these properties is called the Dirac delta

function, named after Paul Dirac (see Connections); in applied mathe-

matics it is called a generalized function, so named by Sir James Lighthill

(Lighthill 1958), although at the time he was just M. J. Lighthill (also

see Connections). We will use generalized functions considerably when

we deal with stochastic population theory in Chapters 7 and 8.

For the time being, this takes care of the infinite domain. What

about a bounded region? That is, suppose that the range that the walker

can take is 0	 x	 L. Once again, we need to apply two spatial condi-

tions. We might have one at x¼ 0 and one at x¼ L, or both at one of the

boundaries. For example, if the walker disappears (is absorbed) at x¼ 0

or x¼ L, we would have the boundary condition p(0, t)¼ p(L, t)¼ 0

because there is no chance of finding the walker at those points.

Suppose, on the other hand, we knew that the walker was always

constrained to stay within (0, L). We then have the condition thatÐ L

0
pðx; tÞdx ¼ 1 and if we differentiate this equation with respect to

time, we obtain
Ð L

0
ptðx; tÞ ¼ 0. We now use Eq. (2.51) to conclude thatÐ L

0
�vpx þ ð�2=2Þpxx½ �dx ¼ 0, which we integrate to obtain

ð�vpÞ þ �
2

2
px


 �
L

x¼0

¼ �vpðL; tÞ þ �
2

2
pxðL; tÞ � �vpð0; tÞ þ �

2

2
pxð0; tÞ


 �

If we want what happens at x¼ 0 and x¼ L to be independent of

each other, the way to do it is to require that each of the terms on the right

hand side are 0, so that we obtain the boundary conditions�vp(L, t)þ
(�2/2)px(L, t)¼ 0 and �vp(0, t)þ (�2/2)px(0, t)¼ 0. In the literature

these are often called ‘‘no flux’’ (from chemical analogies) or ‘‘reflect-

ing’’ boundary conditions. The latter makes sense: the walker is con-

strained to stay between 0 and L, so that when it comes up against x¼ 0

or x¼ L, it must be reflected back into the region, much as a ball

bouncing around in a room will bounce off the walls of the room.

Before moving on, I want to introduce one more concept, which we

will use in a slightly different way in the next section, but which you
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will encounter frequently in the literature. To illustrate these ideas, let

us continue with the case of reflecting boundary conditions, and for

simplicity set v¼ 0. Our problem is then to solve pt¼ (�2/2)pxx, given

some initial condition p(x, t)¼ p0(x) and subject to the boundary con-

ditions that px(x, 0)¼ px(L, 0)¼ 0. To do this, let us guess that p(x, t) is

the product of a function of time and a function of space. How do we

know to make this guess? Well, first, generations of other scientists and

mathematicians have tried it and found that it worked. So, we have

history on our side. Second, new things are often discovered by good

guessing. In this book, of course, I am not going to take you down too

many blind roads (that is, bad guesses). The movie The Color of Money

begins with an off-screen voice describing 9 ball pool and continues

‘‘which is to say that in 9 ball luck plays a part. . . but for some players,

luck itself is an art.’’ The same is true of applying mathematical

methods to understand scientific questions. We need good guesses

and good luck that the guess is correct, but sometimes we create our

own luck through experience and thought. The Czech chess instructor

Jan Amos Komensky once said, regarding chess, ‘‘Through play,

knowledge’’ (Pandolfini, 1989, p. xix). It works here too.

Accepting this guess, which is called the method of separation of

variables, means that p(x, t)¼ T(t)S(x), where T(t) is a function depend-

ing only upon time and S(x) is a function depending only upon space.

The diffusion equation then becomes Tt(t)S(x)¼ (�2/2)T(t)Sxx(x),

where I still use subscripts to denote derivatives, although these are

now ordinary (not partial) derivatives. Dividing both sides by T(t)S(x)

we obtain

TtðtÞ
TðtÞ ¼

�2

2

SxxðxÞ
SðxÞ (2:55)

Now, the left hand side of Eq. (2.55) depends only upon time and

the right hand side depends only upon space. What does this mean? It

means that they both had better be independent of both time and space –

each side should be constant. The left hand side also implies that T(t)

must be an exponential function. We do not want the solution of the

diffusion equation to grow without bound in time, because that makes

no sense, so the constant must be negative (or at least not positive).

A way of writing a non-positive number is –n2, where n¼ 0, 1, 2, etc.

Then we know that T(t)� exp(�n2t). The equation that S(x) satisfies

will then become Sxx(x)¼�(2n2/�2)S(x). Since the second derivative

of S(x) is a negative number times S(x), we know that S(x) must involve

sines or cosines. The diffusion equation is a linear equation, so

Exercise 2.10 (on the linear combination of solutions) tell us that the
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most general form of the solution for the equation that S(x) satisfies will

be a mixture of sines and cosines. In particular, we can write

SðxÞ ¼
X

n

Ansin x

ffiffiffiffiffiffiffi
2n2

�2

r !
þ Bncos x

ffiffiffiffiffiffiffi
2n2

�2

r !
(2:56)

where the An and Bn are constants, which we must somehow determine.

The way this is done is explained in the next section.

Diffusion and exponential population growth

We now consider how diffusion and population growth interact. That

is, instead of simply exponential population growth in time or diffusion

in space, we consider population size N(x, t) depending upon both

spatial point x and time t. This population will be characterized by

the equation

Nt ¼
�

2
Nxx þ rN (2:57)

where I have suppressed the dependence of N on x and t. As before,

we will require an initial condition and boundary conditions. We will

assume that N(x, 0) is specified and that the population is confined to

a region [0, L]. In that case the appropriate boundary conditions are

Nx(0, t)¼Nx(L, t)¼ 0.

Before doing any mathematics, let us spend time thinking about

Eq. (2.57). We begin with a profile of population size in time, N(x, 0).

One such a profile (made up by me) is shown in Figure 2.19a. If we

were to describe this profile, we might say that there is a cline of

increasing population size, with some small deviations from what

looks to be a straight line. It is those deviations that we are inter-

ested in learning about, so to focus on them we define the average

population size by �N ¼ ð1=LÞ
Ð L

0
Nðx; 0Þdx and the deviation n(x, 0) by

nðx; 0Þ ¼ Nðx; 0Þ � �N . In Figure 2.19b, I show the scaled value of

n(x, 0), scaled by the average (that is, I am plotting nðx; 0Þ= �N ).

We know that if the population started out completely homoge-

neous in space with initial value �N , then its size at any later time would

be �Nert, so let us define nðx; tÞ ¼ Nðx; tÞ � �Nert. We already know

n(x, 0) and since the boundary conditions for N(x, t) involve derivatives,

we have the same boundary conditions for n(x, t). Regarding the equa-

tion that n(x, t) satisfies, see Exercise 2.15.

Exercise 2.15 (E)

Show that n(x, t) satisfies nt¼ (�2/2)nxxþ rn.
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We now know the equation that n(x, t) must satisfy. But how do

we find the solution? One method would be to make the substitution

n(x, t)¼w(x, t)ert, in which case we find that w(x, t) satisfies the

diffusion equation wt¼ (�2/2)wxx (you can consider this an optional

exercise). One could say that we’ve reduced this problem to the

previous one, which could be solved by separation of variables. But

let’s go on, to see what new insights can be gained.

Another route is the following. Given the result in Eq. (2.56), let

us guess that n(x, t) can be represented by a mixture of sines and

cosines, in which case we might guess a form such as n(x, t) ¼
A(t)sin(wx)þB(t)cos(wx) where the coefficients A(t) and B(t) and the

frequency w need to be determined. Let’s think about the boundary
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Figure 2.19. (a) An initial profile N(x, 0) for a population distributed in space. (b) The relative deviation of the

initial profile from its average. (c) The relative deviation may expand or shrink, depending on the relative strength

of growth and diffusion. Our job is to figure out which is which.
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conditions, which apply to nx(x, t)¼A(t)wcos(wx)�B(t)wsin(wx).

Since cos(0)¼ 1 and sin(0)¼ 0, we can satisfy the boundary condition

at x¼ 0 by picking A(t)¼ 0 for all time. Then to satisfy the boundary

condition at x¼ L, we must have sin(wx)¼ 0. This will be true if wL¼ 0,

wL¼ p, wL¼ 2p, etc. Now, if wL¼ 0, w must be 0, in which case

cos(wx)¼ 1, independent of space. But we have already taken account

of the spatially independent aspects of the solution, so we can ignore

w¼ 0. We thus conclude that wL¼ kp, for k¼ 1, 2, 3, and so forth.

Because of our result on the linear superposition of solutions, this means

that the solution must be

nðx; tÞ ¼
X
k¼1

BkðtÞ cos
kp
L

x

� �
(2:58)

But we still do not know the values of the different Bk(t), which

we call the amplitude of the kth mode. We will find them in two

steps. First, we will derive an equation for each Bk(t). Second, we will

find the initial value Bk(0); together these will tell us the entire solution.

For the first step, we take the partial derivatives of n(x, t) given by

Eq. (2.58)

nt ¼
X
k¼1

d

dt
BkðtÞ cos

kp
L

x

� �
nxx ¼ �

X
k¼1

BkðtÞ
kp
L

� �2

cos
kp
L

x

� �

where I have now used d/dt to denote the time derivative of each of the

Bk(t). If we now substitute these back into the equation for n(x, t), we

obtain

X
k¼1

d

dt
BkðtÞcos

kp
L

x

� �
¼� �

2

2

X
k¼1

BkðtÞ
kp
L

� �2

cos
kp
L

x

� �

þ r
X
k¼1

BkðtÞcos
kp
L

x

� �

This equation will be satisfied if we choose the coefficients Bk(t) to

satisfy

d

dt
BkðtÞ ¼ r � �

2

2

kp
L

� �2
" #

BkðtÞ (2:59)

Equation (2.59) provides us with the main intuition about the inter-

action of diffusion and population growth. We see from this equation

that Bk(t) is an exponential function of time. It is exponentially growing

if r> (�2/2) (kp/L)2, constant if equality holds, and exponentially

declining if r< (�2/2) (kp/L)2. We have thus derived a very precise

relationship between the rate of population growth and the rate of

diffusion. This relationship tells us how the amplitude of the kth mode

66 Topics from ordinary and partial differential equations

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511819872.004
Downloaded from https://www.cambridge.org/core. Universidad Nacional de Mexico (UNAM), on 25 Mar 2019 at 20:06:54, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511819872.004
https://www.cambridge.org/core


grows or declines. The result has nice intuitive appeal: if diffusion is

very strong (so that r< (�2/2) (kp/L)2 even when k¼ 1) then all of the

modes will decline and initial fluctuations in n(x, 0) will smear out over

time. On the other hand, if the diffusion coefficient is not too big, then

for some values of k we will have r> (�2/2) (kp/L)2 and the amplitude

of those modes will grow in time; for other values of k the amplitudes

will decline (and there may be one value of k where exact equality

holds, in which case the amplitude will remain constant). In this case,

the more slowly varying amplitudes will be accentuated and small

deviations in n(x, 0) will be enhanced in time (Figure 2.19c).

To understand what is happening, and to find that pesky value

of Bk(0), it is helpful to think geometrically about the cosine function

(we will get mathematical details in a minute). In Figure 2.20a, I have

plotted y¼ cos(px/L) and y¼ cos(6px/L) for L¼ 10 (the choices k¼ 1,

k¼ 6, and L¼ 10 are arbitrary, and you might want to make your own

similar plots with different values of k). Notice the shape of the plot

for k¼ 1: the curve starts at 1 when x¼ 0, smoothly decreases, passing

through 0 when x¼ 5 and reaches�1 when x¼ 10. The curve is sym-

metric around the line y¼ 0 when x¼ 5: each value of x< 5 has a

certain value of y¼ cos(px/L) and there is a value of x> 5 with exactly

the opposite value. Thus, for example, the integral of y¼ cos(px/L) from

x¼ 0 to x¼ L will be 0 (you could do this, of course, by simply integra-

ting, but understanding the geometry is important). The same is true of

the curve y¼ cos(6px/L), which fluctuates much more between x¼ 0 and

x¼ L but is also symmetrical. In Figure 2.20b, I have plotted the product

y¼ cos(px/L)cos(6px/L), which is also symmetric around the line y¼ 0 at

x¼ 5. So, the integral of this product will also be 0. The situation is

different, however, if we consider the squares y¼ cos2(px/L) or y¼
cos2(6px/L). In this case, of course, there are no negative values. The

more slowly fluctuating cos2(px/L) has much less frenetic changes, but a

remarkable fact from calculus is that their integrals are the same.

To be completely general, I report results for both sine and cosine.

Suppose that j and k are any two integers greater than or equal to 1.

If j 6¼ k

ðL
0

sin
jpx

L

� �
sin

kpx

L

� �
dx ¼

ðL
0

cos
jpx

L

� �
cos

kpx

L

� �
dx ¼ 0

and if j¼ k

ðL
0

sin2 kpx

L

� �
dx ¼

ðL
0

cos2 kpx

L

� �
dx ¼ L

2
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These expressions tell us how to find the initial value of the ampli-

tude of each mode. That is, recall that we know n(x, 0). But we have also

represented n(x, 0) by
P

k¼1Bk(0)cos(kpx/L). If we multiply both n(x, 0)

and its series representation by cos(kpx/L), integrate between 0 and L,

and take advantage of the relationships between the integrals of cosine,

we will obtain

ðL
0

nðx; 0Þcos kpx

L

� �
dx ¼ Bkð0Þ

L

2

and this is the initial condition to go along with the differential equa-

tion (2.59). The Bk(t) are called Fourier coefficients and the series
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Figure 2.20. The key to finding how the amplitudes of different modes are initially set is understanding the cosine

function. In these examples, L¼10 and k¼1 or k¼6. (a) The functions y¼ cos(px/L) or y¼ cos(6px/L). (b) The

product cos(px/L)cos(6px/L). (c) The square cos2(px/L). (d) The square cos2(6px/L).
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representation for n(x, t) called a Fourier series (see Connections). This

completes the story and we now know how diffusion and population

growth interact when population growth is exponential. The story is

quite different when population growth is logistic, as we will see in the

next section.

Diffusion and logistic population growth:
invasions, the Fisher equation, and
traveling waves

We conclude this chapter with a short introduction to a complicated

topic, and one that comes the closest to pure mathematics yet – we are

going to show that a solution to a question exists, but we are not going

to actually find the solution. By way of motivation, we begin with the

empirical phenomenon.

In Figure 2.21a, I show the spatial distribution of the variegated

leafhopper (VLH, Erythroneura variabilis) which is a pest of grapes

in California (Settle and Wilson 1990), during an invasion in which

E. variabilis more or less replaced a congener, the grape leafhopper

E. elegantula. Note that in 1985, the proportion of VLH was 1 for

distances less than about 3 km and dropped to 50% at about 5 km.

However, in 1986 these respective distances are about 7 km
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Figure 2.21. (a) The invasion pattern of a leafhopper in California (after Settle and Wilson 1990; with permission).

Note that 1986 pattern is similar to that of 1985, only shifted to the right. We call this a traveling wave (of invasion).

(b) A caricature of the traveling wave of invasion for three different times. Our goal is to understand how diffusion

and logistic population growth combine to move the initial profile to the right.
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and 20 km; it is as if the entire 1985 graph had shifted to the right.

Figure 2.21b is an idealized example of this phenomenon. The abscissa

is space and the ordinate is a function u(x, t), which will become explicit

in a moment, shown at three different times – the subsequent times have

the same shape, but translated to the right. This kind of spatial–temporal

behavior is called a traveling wave.

R. A. Fisher thought a lot about this question in the context of the

spread of an advantageous allele. That is, imagine a single locus with

two alleles, a and A. Assume that A is more fit, but that the population is

initially mainly a; thus the fitness of the genotype AA is greater than that

of the genotype aa and heterozygotes are somewhere in between.

Suppose that we denote the frequency of A by u(t). Then, in the absence

of spatial effects, the dynamics of u(t) are

du

dt
¼ suð1� uÞ (2:60)

where s> 0 is the selection coefficient, a function of the fitnesses of the

different genotypes AA, Aa and aa. As long as u(0)> 0, so that some of

the advantageous allele is present, we see that u(t) will grow logistically

towards 1.

Fisher modified the dynamics given by Eq. (2.60) to include

space by assuming that there was undirected diffusion in space that

accompanied the logistic growth in time. Hence the resulting equation

would be

ut ¼
�2

2
uxx þ suð1� uÞ (2:61)

We will consider an infinite spatial domain, but defer for a bit the

discussion of boundary conditions. For the initial condition, we assume

u(x, 0) similar to the profile in Figure 2.21b.

To simplify Eq. (2.61) (and to show how exactly the same equation

arises in the discussion of invading organisms, rather than invading

genes), we will begin by scaling variables. First, divide both sides of

the equation by s. The left hand side is now (1/s)(qu/qt), so that if

we defined a new time variable by t0 ¼ st, the left hand side would be

qu/qt0. After division by s, the first term on the right hand side of

Eq. (2.61) will be (�2/2s)(q2u/qx2), so that if we define a new space

like variable by y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2s=�2Þ

p
x the entire equation will become

ut0 ¼ uyyþ u(1� u). Understanding that we are using scaled variables,

we can thus just as easily consider the equation

ut ¼ uxx þ uð1� uÞ (2:62)

which is called the Fisher equation.
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Exercise 2.16 (E)

The model for logistic population growth and non-directed diffusion of an

invading organism would be Nt¼ (�2/2)Nxxþ rN[1� (N/K)]. What scalings

are needed to convert this to the same form as the Fisher equation (2.62)?

Now a traveling wave, such as shown in Figure 2.21b, keeps its

shape as time changes but is displaced. Thus, at some time t, if we want

to know the value of u(x, t), we ask for the corresponding value of u at

the initial time, but at a spatial point that is moved backwards from x. If

the wave is traveling at speed c> 0, then to reach the point x at time t, it

had to start at x� ct at time 0. Thus u(x, t) is only a function, let’s call it

U, of the combination x� ct, which we will call � . In symbols, we write

that u(x, t)¼U(�), where � ¼ x� ct. Then the chain rule tells us

qu/qt¼ (dU/d�)(q� /qt)¼�c(dU/d�) and q2u/qx2¼ d2U/d�2. We thus

are able to convert Eq. (2.62) from a partial differential equation for

u(x, t) to an ordinary differential equation for U(t):

�c
dU

d�
¼ d2U

d�2
þ Uð1� UÞ (2:63)

Since this is a second order equation, we need two conditions to specify

its solution. With reference to Figure 2.21b, recall that we are thinking

about an infinite spatial domain but a finite time domain. Also, with

reference to that figure, at any time, as x!�1, U approaches 1 and as

x!1, U approaches 0. We thus have the conditions that U(�1)¼ 1

and U(1)¼ 0 to go along with Eq. (2.63).

We are not going to try to solve Eq. (2.63), but we will succeed in

analyzing it. The first step in this analysis is to convert it to a system of

ordinary differential equations by introducing W as the derivative of U:

dU

d�
¼ W

dW

d�
¼ �cW � Uð1� UÞ

(2:64)

The steady states of Eq. (2.64) are (U, W)¼ (0, 0) and (1, 0). This is

very handy, since we know that U¼ 1 corresponds to �!�1 and

U¼ 0 corresponds to �!1. The isoclines are also easy to compute: the

line W¼ 0 (i.e. the U-axis) is the isocline for U and the parabola

W¼ [�U(1�U)]/c is the isocline for W. These are shown in

Figure 2.22a and b respectively. Our next step will be to characterize

the steady states.

Exercise 2.17 (E )

Show that the eigenvalues of Eq. (2.64) when linearized around (1, 0)

are l1; 2 ¼ ð�c�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4
p

Þ=2 and when linearized around (0, 0) are

l1; 2 ¼ ð�c�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 4
p

Þ=2.
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Regardless of the value of c, when we linearize around (1, 0) one

eigenvalue will be positive and one will be negative. We thus conclude

that (1, 0) is a saddle point; the isocline analysis tells us that one of the

directions moving away from (1, 0) moves towards (0, 0), as shown in

Figure 2.22c.

Now, the situation around (0, 0) is a little bit more complicated.

First, note that if c< 2, the eigenvalues will be complex, with a

negative real part. This means that (0, 0) will be a stable focus.

However, if the origin is a focus, trajectories will spiral around it –

which includes visiting values of U that are negative. Now, W can be

negative, since it is the derivative of U, but U itself cannot be negative.

We thus conclude on a biological basis that c> 2, in which case the

origin is a stable node. As time increases, trajectories will approach

the origin in the direction of the smaller (in absolute value) of the two

eigenvalues.

Exercise 2.18 (E)

The condition c> 2 pertains to the scaled time and space variables. How does

it translate to the original variables, involving the strength of selection (or

maximum per capita growth rate for the ecological case) and the diffusion

coefficient?

W

U

dU
dτ

> 0

dU
dτ

< 0

dU
dτ

= 0

(a)
W

U

dW
dτ

< 0

dW
dτ

> 0

dW
dτ

= 0

(b)

W

U

(c)
W

U

(d)

Traveling
wave

Figure 2.22. Analysis of the

traveling wave solution of the

Fisher equation. (a) The

isocline for U is the line W¼0.

(b) Isocline for W is the

parabola W¼ [�U(1�U)]/c.

(c) The eigenvalue analysis tells

us that (1,0) is a saddle point

and that if c>2 that (0,0) is a

stable node. (d) The traveling

wave comes out of the saddle

point and moves towards the

stable node.
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For a traveling wave to exist, a trajectory must come out of the

saddle point at (1, 0) and go directly into the stable node at (0, 0) along

the smaller of the two eigenvalues. The results of Exercise 2.11 tell us

that the vector which joins the point (1, 0) and ð1� ";�" ð�cþ½ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4
p

Þ=2�Þ is the eigenvector corresponding to the positive eigen-

value at (1, 0). We move to the point ð1� ";�"½ �cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4
p� 	

=2�Þ
and integrate Eq. (2.64) forward in time, given c> 2. In this way, we

construct the trajectory that comes out of the saddle point directly into

the origin, along its eigenvector (Figure 2.22d).

Connections

Life history invariants

To my knowledge, life history invariants were first made explicit by

Ray Beverton and Sidney Holt in the 1950s, both in their studies of

fishery management and their work on aging (Beverton and Holt 1957,

1959; Beverton 1992). Life history invariants have been rediscovered

many times (and probably will continue to be rediscovered (Roff 1984,

1991)), although Charnov’s book (Charnov 1993) will probably help to

reduce the frequency of rediscovery. In this context, there often arises

confusion between dimensionless parameters and life history invari-

ants. In the context of our work, for example, k/m (or m/k) is a dimen-

sionless variable – because both k and m are rates – but they are not

necessarily invariants of the life history. However, their ratio is an

invariant for relative size at maturity (as explained in the text). In 1994,

Beverton gave a series of lectures at laboratories of the National Marine

Fisheries Service across the USA. These were recently transcribed and

published; they can be found at http://spo.nwr.noaa.gov//.Beverton

Lectures1994/. The papers of Essington et al. (2001) and He and

Stewart (2001) provide a very nice generalization of some of the ideas

we have discussed, with applications to fisheries (which we discuss in

Chapter 6).

Population dynamics in fluctuating environments

The papers of Dan Cohen are still classic in this area, and well worth

reading. One topic that we did not consider here is the situation in

which there is both individual and global variation. Such a situation

arises, for example, when plants experience both microsite variation

as individuals and environmental variation (e.g. weather) across

the population. Rees et al. (2000) develop methods for such a mix of

microsite and temporal variation. Provine’s book about Sewall Wright
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(Provine 1986) is well worth the read. Stearns (2000) has a lovely

discussion of Daniel Bernoulli’s contributions to these ideas (Bernoulli

(1738/1954).

The logistic equation

It is important to know the history of one’s discipline, and for popula-

tion biology there is no better starting point than the book by Kingsland

(1985). She explains how ‘‘logistic’’ enters English from Verhulst

trying to compute (‘‘logistique’’) the population of France.

The Ricker recruitment function

The Ricker recruitment function is widely used in population biology.

Many years ago, Bob Costantino indicated in conversation to me that he

thought the original ideas came from R. N. Chapman, an insect ecolo-

gist, who argued much in the same way that I did concerning the form

of the recruitment function. Citation to Chapman’s work (one example

is Chapman (1928)) can be found in Costantino and Desharnais (1991),

which itself is a rich and informative volume on flour beetles (Tribolium

spp.). An obituary of Ricker (Beamish 2002), who died in 2001 at age

93, noted that he began as an entomologist and that it was only on a post-

doctoral tour of Europe that he became professionally interested in fish

population dynamics.

Chaos and complexity

It is hard, of course, to be awake in the twentyfirst century and not be

aware of chaos theory and complexity (Steven Spielberg’s dinosaur

movie guaranteed that). But it is important to recognize that these

remarkable properties of nonlinear dynamical systems were appreciated

only in the late 1970s (although some of the more mathematical beha-

vior was known long before that). The history by Gleick (1988) is well

worth reading. Strogatz (1994) provides a good introduction to more

mathematical approaches and Stewart (2000) has written a short turn-

of-the-millennium report on the subject.

Bifurcations and catastrophe theory

The solution of the cubic equation, and its associated cusp discriminant,

has an interesting history itself. Guedj (2000) provides a fictionalized

account of this story in a delightful book. Catastrophe theory, popularized

in the 1970s by René Thom and Chris Zeeman, entered our language

74 Topics from ordinary and partial differential equations

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511819872.004
Downloaded from https://www.cambridge.org/core. Universidad Nacional de Mexico (UNAM), on 25 Mar 2019 at 20:06:54, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511819872.004
https://www.cambridge.org/core


again from the French word for sudden change (‘‘catastrophe’’), and in

the mid 1970s the cusp catastrophe attracted lots of mathematicians and

physicists who saw ways of explaining many kinds of biological and

social phenomena without having to know the details of the application

(Kolata 1977). An example of relaxation oscillation in a marine system

is given by James et al. (2003); one of chaos by Chattopadhyay and

Sarkar (2003). The next bifurcation in the one dimensional series is

called the swallowtail (the names in use are still the ones picked by René

Thom (1972/1975)) and corresponds to the steady states of the differ-

ential equation dx/dt¼�x4þ�x2þ �xþ �. Hernandez and Barradas

(2003) put a nice ecological context around bifurcations and cata-

strophes. Readers of this book interested in conservation biology will

surely already know what must be the simplest of the bifurcations (so

simple that it is never even named, but see below), which occurs in the

Levins patch model (Levins 1969, 1970). In this model, one focuses on

the dynamics of the fraction of occupied patches in a metapopulation

connected by dispersal. Patches become extinct at a rate m and are

colonized in proportion to the number of occupied patches with pro-

portionality constant c. The dynamics thus become

dp=dt ¼ cpð1� pÞ � mp ¼ ðc� mÞp� cp2

for which p¼ 0 is always a steady state. There is another steady state

when p¼ (c�m)/c, which makes biological sense only if c>m. It is

easy to see that p¼ 0 is an unstable steady state and that p¼ (c�m)/c is

stable. We thus conclude that as c declines towards m, the two steady

states collide and the unstable steady state at p¼ 0 becomes stable. The

bifurcation picture in this case is simple and I suggest that you try to

draw it. A more complicated version of the Levins model involves the

‘‘rescue effect,’’ in which patches can go extinct in some time interval

and be colonized in that same time interval. The equation for the

dynamics of patches then becomes dp/dt¼ cp(1� p)� [mp/(1þAp)]

where A measures the size of the rescue. By simultaneously sketching

y¼ cp(1� p) and y¼mp/(1þAp) you should convince yourself that

there may be one, two, or three steady states of this system, depending

upon the parameter values. There are, of course, plenty more compli-

cated versions of the Levins model with various applications (Lin

2003). One of my personal favorite examples of situations correspond-

ing to the cusp catastrophe involves work on models of the tuna–dolphin

purse seine fishery that Colin Clark and I did when I was a graduate

student, working for Colin as a research assistant (Clark and Mangel

1979). In this paper, we develop models for the tuna purse seine fishery

and ask the question ‘‘What information does fishery related data give

us about the status of the stock?’’. In cases where a cusp bifurcation may
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occur, the answer can be ‘‘very little.’’ The recently published book of

Bazykin (1998) makes his important work generally available (for many

years, the only English versions were preprints of translated papers). This

book contains a fully complete description of phase planes for predator–

prey, competitive, and mutualistic systems, and a good amount of work

on three species systems. It is well worth looking at. Scheffer et al. (2001)

and Scheffer and Carpenter (2003) discuss the role of the cusp cata-

strophe in ecosystem dynamics.

Differential equations in the phase plane

The case of D¼ 0 requires more mathematics, as do cases in which

periodic orbits (limit cycles) exist surrounding an unstable focus. The

way that one demonstrates the existence of such limit cycles is to show

that the steady state is an unstable focus but that points in the phase plane

far away from the origin move towards it. A variety of good texts at the

next level exist; I suggest that you poke around at a book store and spend

time looking through different ones. A particularly simple example,

which is called the Hopf bifurcation, corresponds to a pair of differential

equations in polar coordinates for angle (	) and radius from the origin (r):

d	

dt
¼ c

dr

dt
¼ a� r2

where c 6¼ 0 and a are constants. In this case, the angular velocity is a

constant c. The dynamics of radius are more interesting. If a< 0, then

dr=dt50 and we see that the origin is a stable focus. However, if a> 0,

the origin is unstable and the circle r ¼ ffiffiffi
a
p

is stable. The parameter a

passing through 0, a stable focus becoming unstable, and the appearance

of a periodic orbit is called a Hopf bifurcation.

Spontaneous asymmetric synthesis

F. C. Frank (see Enderby (1998) to learn more about Frank) envisioned

the equations of spontaneous asymmetric synthesis as a means for the

evolution of optimal activity in biological compounds. That is, the two

types x and y in our equations are dynamically identical, but suppose

that x rotated light clockwise and y rotated light counter clockwise. We

could imagine a situation in which we go from a< 1 to a> 1 in

Eq. (2.47); for example if temperature is inversely related to a, then

as a system cools, the dynamics would change from (1, 1) being a stable

node (and a racemic mixture) to (1, 1) being a saddle point (and
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optically active). However, because of molecular fluctuations, when

this change takes place we do not expect the system to be exactly at

(1, 1). Thus small deviations from (1, 1) will become amplified if a> 1.

This is what Frank meant by spontaneous asymmetric synthesis and

when my first paper on this subject appeared (Mangel and Ludwig

1977) he wrote to me suggesting that I had developed methods for a

problem that he was unable to solve, which was a great treat for a young

scientist. This topic is still of great interest. I encourage you to read

Frank’s original paper (Frank 1953) and a one dimensional version that

predates it by Max Delbrück (Delbrück 1940); some of the more recent

work on this subject – which can also point you towards other literature –

is found in Pincock et al. (1971), Pincock and Wilson (1973), Soai et al.

(1990), Link et al. (1997), Berger et al. (2000), Blackmond et al. (2001),

Siegel (2002) and Singleton and Vo (2002).

More on mutualism

Mutualism has not received the attention it deserves (Wilkinson and

Sherrat 2001), in comparison to predation or competition, but that is

starting to be rectified (Wilson et al. 2003). Margulis and Sagan (2002)

argue that ecology has been too dominated by the metaphors of compe-

tition and predation and that we should, in fact, have more focus on

mutualism and symbiosis. Their argument is an interesting one and the

book a worthwhile read, although their hostility to all mathematical meth-

ods puts this reader off a bit. Law and Dieckmann (1998) show how models

similar to the ones we use here can help us to understand symbiosis.

Diffusion as a random walk

There are many different derivations of the diffusion equation. The one

that I used here follows (Hughes 1995). In biology, of course, we trace

the notion of diffusion to the botanist Robert Brown, who reported the

irregular movement of pollen particles observed under the microscopic

(Brown 1828). Hence, diffusion is often called – even by mathemati-

cians – Brownian motion. In his miraculous year of 1905, Einstein

published papers on the photoelectric effect (for which he was awarded

the Nobel prize), special relativity and Brownian motion (a very nice

reprint of this paper is found in Stachel (1998); there is also a Dover

edition containing it). The paper on Brownian motion is particularly

interesting because at the time he wrote it, there was still discussion

about whether the atomic theory of matter was correct. Einstein won-

dered what the atomic theory of matter would mean for a large particle

surrounded by a large number of randomly moving small ones. In
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answering this question, he derived the solution in Eq. (2.51) and

connected the diffusion coefficient to temperature and Boltzmann’s

constant. Einstein had evidently heard about Brownian motion, but

had not read the paper because he wrote ‘‘It is possible that the motions

to be discussed here are identical with so-called Brownian molecular

motion; however, the data available to me on the latter are so imprecise

that I could not form a judgment on the question’’ (p. 85 in Stachel

(1998)). The history of diffusion itself is quite interesting. As starting

points, I suggest that you look at Wheatley and Augutter (1996) and

Narasimhan (1999), which give two very interesting perspectives. In his

interesting and provocative essay, Simberloff (1980) notes that 1859

was the year of publication of both Origin of Species and of Maxwell’s

work on the statistical distribution of velocities of particles in a gas; thus

beginning the revolutions against determinism in both biology and

physics coincide. We will have much more to say about diffusion and

the random walk in Chapter 7 and 8.

Dirac delta functions and generalized functions

The book by Lighthill (1958) is a gem and well worth owning. The

dedication of this book is wonderful: ‘‘To PAUL DIRAC who saw that

it must be true, LAURENT SCHWARTZ who proved it, and GEORGE

TEMPLE who showed how simple it could be made.’’ Lighthill came to

Vancouver in 1976 or 1977 and when my advisor Don Ludwig and

I went to hear his lecture, Don said to me ‘‘Now, he’s a real applied

mathematician.’’

Separation of variables and Fourier series

The computation that we did for the diffusion equation with linear

population growth is an example of a Fourier series solution of the

diffusion equation. The way that we computed amplitudes of the dif-

ferent modes of cosine is an example of how one finds the Fourier

coefficients. The method of Fourier series is an extremely powerful one

and is used in many different ways in applied mathematics. A good

introductory book on partial differential equations will explain how the

method works in general; see, for example, Haberman (1998). In bio-

logical systems, we may have different boundary conditions, depending

upon the situation (e.g. the size of a cell or a region and the nature of

transport across the boundary). Some of my favorite investigations in

this area involve the interaction of boundary conditions and the result-

ing patterns (Keller 2002, Murray 2003).
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Linear and nonlinear diffusion

The calculation that we have completed is perhaps the simplest example

dealing with pattern formation in biological systems. The classic paper

in this area is due to Alan Turing (Turing 1952). An update c. 1990 is

offered by Murray (1990) and updated again in Murray (2002).

Maynard Smith (1968) offers a nice introduction to this material too;

this was one of the first – if not the first – books on mathematical

biology that I purchased; Harrison (1993) offers the perspective of a

physical chemist turned biologist. The classic reference for linear

population growth and diffusion is Skellam (1951); for a broader his-

torical context, see Toft and Mangel (1991).

The Fisher equation, invasion biology and reaction
diffusion equations

As with life history invariants, the creation of dimensionless combina-

tions of variables is very useful. A good place to start getting more

details about these methods is Lin and Segel (1988 (1974)). One could

study the Fisher equation for different kinds of genetic models, such as

heterozygote superiority, in which case we replace su(1� u) in the

Fisher equation by a function f (u) with the properties that f (0)¼
f (a)¼ f (1)¼ 0 and with the requirement that u¼ a be a stable steady

state, or heterozygote inferiority, in which u¼ a is an unstable steady

state. The literature on reaction–diffusion equations is enormous. And

once one begins with systems that involve two variables and two spatial

dimensions, the variety of interesting patterns and solutions is nearly

endless. The books by Grindrod (1996), Kot (2001), and Murray (2002)

are a good place to start learning about these; the paper by Levin and

Segel (1985) is a classic. An interesting alternative approach for logistic

growth in space and time is offered in the paper by Law et al. (2003);

Medvinsky et al. (2002) and McLeod et al. (2002) use such models to

understand plankton blooms; by Klein et al. (2003) to understand patterns

of pollen dispersal, and by Kot et al. (1996) to understand invasions.
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Chapter 3

Probability and some statistics

In the January 2003 issue of Trends in Ecology and Evolution, Andrew

Read (Read 2003) reviewed two books on modern statistical methods

(Crawley 2002, Grafen and Hails 2002). The title of his review is

‘‘Simplicity and serenity in advanced statistics’’ and begins as follows:

One of the great intellectual triumphs of the 20th century was the discovery

of the generalized linear model (GLM). This provides a single elegant and

very powerful framework in which 90% of data analysis can be done.

Conceptual unification should make teaching much easier. But, at least in

biology, the textbook writers have been slow to get rid of the historical

baggage. These two books are a huge leap forward.

A generalized linear model involves a response variable (for

example, the number of juvenile fish found in a survey) that is described

by a specified probability distribution (for example, the gamma distribu-

tion, which we shall discuss in this chapter) in which the parameter

(for example, the mean of the distribution) is a linear function of other

variables (for example, temperature, time, location, and so on).

The books of Crawley, and Grafen and Hails, are indeed good ones,

and worth having in one’s library. They feature in this chapter for the

following reason. On p. 15 (that is, still within the introductory chapter),

Grafen and Hails refer to the t-distribution (citing an appendix of their

book). Three pages later, in a lovely geometric interpretation of

the meaning of total variation of one’s data, they remind the reviewer

of the Pythagorean theorem – in much more detail than they spend on

t-distribution. Most of us, however, learned the Pythagorean theorem

long before we learned about the t-distribution.
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If you already understand the t-distribution as well as you under-

stand the Pythagorean theorem, you will likely find this chapter a bit

redundant (but I encourage you to look through it at least once). On the

other hand, if you don’t, then this chapter is for you. My objective is to

help you gain understanding and intuition about the major distributions

used for general linear models, and to help you understand some tricks

of computation and application associated with these distributions.

With the advent of generalized linear models, everyone’s power to

do statistical analysis was made greater. But this also means that one

must understand the tools of the trade at a deeper level. Indeed, there are

two secrets of statistics that are rarely, if ever, explicitly stated in

statistics books, but I will do so here at the appropriate moments.

The material in this chapter is similar to, and indeed the structure of

the chapter is similar to, the materia l in chapter 3 of Hilbo rn and Mangel

(1997). However, regarding that chapter my colleagues Gretchen

LeBuhn (San Francisco State University) and Tom Miller (Florida

State University) noted its denseness. Here, I have tried lighten the

burden. We begin with a review of probability theory.

A short course in abstract probability theory,
with one specific application

The fundamentals of probability theory, especially at a conceptual

level, are remarkably easy to understand; it is operationalizing them

that is difficult. In this section, I review the general concepts in a way

that is accessible to readers who are essentially inexperienced in prob-

ability theory. There is no way for this material to be presented without

it being equation-dense, and the equations are essential, so do not skip

over them as you move through the section.

Experiments, events and probability fundamentals

In probability theory, we are concerned with outcomes of ‘‘experi-

ments,’’ broadly defined. We let S be all the possible outcomes (often

called the sample space) and A, B, etc., particular outcomes that might

interest us (Figure 3.1a). We then define the probability that A occurs,

denoted by Pr{A}, by

PrfAg ¼ Area of A

Area of S
(3:1)

Figuring out how to measure the Area of A or the Area of S is where the

hard work of probability theory occurs, and we will delay that hard work

until the next sections. (Actually, in more advanced treatments, we

replace the word ‘‘Area’’ with the word ‘‘Measure’’ but the fundamental
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notion remains the same). Let us now explore the implications of this

definition.

In Figure 3.1a, I show a schematic of S and two events in it, A and

B. To help make the discussion in this chapter a bit more concrete,

in Figure 3.1b, I show a die and a ruler. With a standard and fair die, the

set of outcomes is 1, 2, 3, 4, 5, or 6, each with equal proportion. If

we attribute an ‘‘area’’ of 1 unit to each, then the ‘‘area’’ of S is 6

and the probability of a 3, for example, then becomes 1/6. With the

ruler, if we ‘‘randomly’’ drop a needle, constraining it to fall between

1 cm and 6 cm, the set of outcomes is any number between 1 and 6. In

this case, the ‘‘area’’ of S might be 6 cm, and an event might be something

like the needle falls between 1.5 cm and 2.5 cm, with an ‘‘area’’ of 1 cm, so

that the probability that the needle falls in the range 1.5–2.5 cm is 1 cm/

6 cm¼ 1/6.

Suppose we now ask the question: what is the probability that either

A or B occurs. To apply the definition in Eq. (3.1), we need the total area

of the events A and B (see Figure 3.1a). This is Area of AþArea of B –

overlap area (because otherwise we count that area twice). The overlap

area represents the event that both A and B occur, we denote this

probability by

PrfA;Bg ¼ Area common to A and B

Area of S
(3:2)

so that if we want the probability of A or B occurring we have

PrfA or Bg ¼ PrfAg þ PrfBg � PrfA;Bg (3:3)

and we note that if A and B share no common area (we say that they are

mutually exclusive events) then the probability of either A or B is the

sum of the probabilities of each (as in the case of the die).

S

A

B1
B2

B3

(c)
S

A

B

(a) (b)

Figure 3.1. (a) The general set up of theoretical probability consists of a set of all possible outcomes S, and the

events A, B, etc., within it. (b) Two helpful metaphors for discrete and continuous random variables: the fair die

and a ruler on which a needle is dropped, constrained to fall between 1 cm and 6 cm. (c) The set up for

understanding Bayes’s theorem.
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Now suppose we are told that B has occurred. We may then ask,

what is the probability that A has also occurred? The answer to this

question is called the conditional probability of A given B and is denoted

by Pr{AjB}. If we know that B has occurred, the collection of all

possible outcomes is no longer S, but is B. Applying the definition in

Eq. (3.1) to this situation (Figure 3.1a) we must have

PrfAjBg ¼ Area common to A and B

Area of B
(3:4)

and if we divide numerator and denominator by the area of S, the right

hand side of Eq. (3.4) involves Pr{A, B} in the numerator and Pr{B} in

the denominator. We thus have shown that

PrfAjBg ¼ PrfA;Bg
PrfBg (3:5)

This definition turns out to be extremely important, for a number

of reasons. First, suppose we know that whether A occurs or not

does not depend upon B occurring. In that case, we say that A

is independent of B and write that Pr{AjB}¼ Pr{A} because know-

ing that B has occurred does not affect the probability of A occurring.

Thus, if A is independent of B, we conclude that Pr{A, B}¼
Pr{A}Pr{B} (by multiplying both sides of Eq. (3.5) by Pr{B}).

Second, note that A and B are fully interchangeable in the argument

that I have just made, so that if B is independent of A, Pr{BjA}¼ Pr{B}

and following the same line of reasoning we determine that

Pr{B, A}¼ Pr{B}Pr{A}. Since the order in which we write A and B

does not matter when they both occur, we conclude then that if A and B

are independent events

PrfA;Bg ¼ PrfAgPrfBg (3:6)

Let us now rewrite Eq. (3.5) in its most general form as

PrfA;Bg ¼ PrfAjBgPrfBg ¼ PrfBjAgPrfAg (3:7)

and manipulate the middle and right hand expression to conclude that

PrfBjAg ¼ PrfAjBgPrfBg
PrfAg (3:8)

Equation 3.8 is called Bayes’s Theorem, after the Reverend Thomas

Bayes (see Connections). Bayes’s Theorem becomes especially useful

when there are multiple possible events B1, B2, . . . Bn which themselves

are mutually exclusive. Now, PrfAg ¼
Pn

i¼1 PrfA;Big because the Bi

are mutually exclusive (this is called the law of total probability).

Suppose now that the Bi may depend upon the event A (as in
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Figure 3.1c; it always helps to draw pictures when thinking about

this material). We then are interested in the conditional probability

Pr{BijA}. The generalization of Eq. (3.8) is

PrfBijAg ¼
PrfAjBigPrfBigXn

j¼1

PrfAjBjgPrfBjg
(3:9)

Note that when writing Eq. (3.9), I used a different index (j) for the

summation in the denominator. This is helpful to do, because it reminds

us that the denominator is independent of the numerator and the left

hand side of the equation.

Conditional probability is a tricky subject. In The Ecological

Detective (Hilborn and Mangel 1997), we discuss two examples that

are somewhat counterintuitive and I encourage you to look at them

(pp. 43–47).

Random variables, distribution and density functions

A random variable is a variable that can take more than one value, with

the different values determined by probabilities. Random variables

come in two varieties: discrete random variables and continuous ran-

dom variables. Discrete random variables, like the die, can have only

discrete values. Typical discrete random variables include offspring

numbers, food items found by a forager, the number of individuals

carrying a specific gene, adults surviving from one year to the next. In

general, we denote a random variable by upper case, as in Z or X, and a

particular value that it takes by lower case, as in z or x. For the discrete

random variable Z that can take a set of values {zk} we introduce

probabilities pk defined by Pr{Z¼ zk}¼ pk. Each of the pk must be

greater than 0, none of them can be greater than 1, and they must sum

to 1. For example, for the fair die, Z would represent the outcome of

1 throw; we then set zk¼ k for k¼ 1 to 6 and pk¼ 1/6.

Exercise 3.1 (E)

What are the associated zk and pk when the fair die is thrown twice and the

results summed?

A continuous random variable, like the needle falling on the ruler,

takes values over the range of interest, rather than discrete specific

values. Typical continuous random variables include weight, time,

length, gene frequencies, or ages. Things are a bit more complicated

now, because we can no longer speak of the probability that Z¼ z,

because a continuous variable cannot take any specific value (the area
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of a point on a line is 0; in general we say that the measure of any

specific value for a continuous random variable is 0). Two approaches

are taken. First, we might ask for the probability that Z is less than or

equal to a particular z. This is given by the probability distribution

function (or just distribution function) for Z and usually denoted by an

upper case letter such as F(z) or G(z) and we write:

PrfZ � zg ¼ FðzÞ (3:10)

In the case of the ruler, for example, F(z)¼ 0 if z< 1, F(z)¼ z / 6 if z

falls between 1 and 6, and F(z)¼ 1 if z> 6. We can create a distribution

function for discrete random variables too, but the distribution function

has jumps in it.

Exercise 3.2 (E)

What is the distribution function for the sum of two rolls of the fair die?

We can also ask for the probability that a continuous random

variable falls in a given interval (as in the 1.5 cm to 2.5 cm example

mentioned above). In general, we ask for the probability that Z falls

between z and zþDz, where Dz is understood to be small. Because of

the definition in Eq. (3.10), we have

Prfz � Z � zþ�zg ¼ Fðzþ�zÞ � FðzÞ (3:11)

which is illustrated graphically in Figure 3.2. Now, if Dz is small, our

immediate reaction is to Taylor expand the right hand side of Eq. 3.11

and write

Prfz � Z � zþ�zg ¼ ½FðzÞ þ F 0ðzÞ�zþ oð�zÞ� � FðzÞ

¼ F0ðzÞ�zþ oð�zÞ
(3:12)

where we generally use f (z) to denote the derivative F0(z) and call

f (z) the probability density function. The analogue of the probability

density function when we deal with data is the frequency histogram

that we might draw, for example, of sizes of animals in a population.

The exponential distribution

We have already encountered a probability distribution function, in

Chapter 2 in the study of predation. Recall from there, the random

variable of interest was the time of death, which we now call T, of an

organism subject to a constant rate of predation m. There we showed that

PrfT � tg ¼ 1� e�mt (3:13)

F(z)

z z + Δz

}Pr{z ≤ Z ≤ z + dz}

Figure 3.2. The probability that

a continuous random variable

falls in the interval [z, zþDz] is

given by F (zþDz)� F (z) since

F (z) is the probability that Z is

less than or equal to z and

F (zþDz) is the probability that

Z is less than or equal to zþDz.

When we subtract, what

remains is the probability that

z�Z� zþDz.
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and this is called the exponential (or sometimes, negative exponential)

distribution function with parameter m. We immediately see that

f(t)¼me�mt by taking the derivative, so that the probability that the

time of death falls between t and tþ dt is me�mtdtþ o(dt).

We can combine all of the things discussed thus far with the follow-

ing question: suppose that the organism has survived to time t; what is

the probability that it survives to time tþ s? We apply the rules of

conditional probability

Prfsurvive to time t þ sjsurvive to time tg ¼
Prfsurvive to time t þ s; survive to time tg

Prfsurvive to time tg

The probability of surviving to time t is the same as the probability that

T> t, so that the denominator is e�mt. For the numerator, we recognize

that the probability of surviving to time tþ s and surviving to time t is

the same as surviving to time tþ s, and that this is the same as the

probability that T> tþ s. Thus, the numerator is e�m(tþ s). Combining

these we conclude that

Prfsurvive to t þ sjsurvive to tg ¼ e�mðtþsÞ

e�mt
¼ e�ms (3:14)

so that the conditional probability of surviving to tþ s, given survival to

t is the same as the probability of surviving s time units. This is called

the memoryless property of the exponential distribution, since what

matters is the size of the time interval in question (here from t to tþ s,

an interval of length s) and not the starting point. One way to think about

it is that there is no learning by either the predator (how to find the prey)

or the prey (how to avoid the predator). Although this may sound

‘‘unrealistic’’ remember the experiments of Alan Washburn described

in Chapter 2 (Figure 2.1) and how well the exponential distribution

described the results.

Moments: expectation, variance, standard deviation,
and coefficient of variation

We made the analogy between a discrete random variable and the

frequency histograms that one might prepare when dealing with data

and will continue to do so. For concreteness, suppose that zk represents

the size of plants in the kth category and fk represents the frequency of

plants in that category and that there are n categories. The sample mean

(or average size) is defined as �Z ¼
Pn

k¼1 fkzk and the sample variance

(of size), which is the average of the dispersion ðzk� �ZÞ2 and usually

given the symbol �2, so that �2 ¼
Pn

k¼1 fkðzk � �ZÞ2.
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These data-based ideas have nearly exact analogues when we con-

sider discrete random variables, for which we will use E{Z} to denote

the mean, also called the expectation, and Var{Z} to denote the variance

and we shift from fk, representing frequencies of outcomes in the data, to

pk, representing probabilities of outcomes. We thus have the definitions

EfZg ¼
Xn

k¼1

pkzk VarfZg ¼
Xn

k¼1

pkðzk � EfZgÞ2 (3:15)

For a continuous random variable, we recognize that f (z)dz plays

the role of the frequency with which the random variable falls between z

and zþ dz and that integration plays the role of summation so that we

define (leaving out the bounds of integration)

EfZg ¼
ð

zf ðzÞdz VarfZg ¼
ð
ðz� EfZgÞ2f ðzÞdz (3:16)

Here’s a little trick that helps keep the calculus motor running

smoothly. In the first expression of Eq. (3.16), we could also write

f (z) as � (d / dz)[1�F(z)], in which case the expectation becomes

EfZg ¼ �
ð

z
d

dz
ð1� FðzÞÞ

� �
dz

We integrate this expression using integration by parts, of the formÐ
udv ¼ uv�

Ð
vdu with the obvious choice that u¼ z and find a new

expression for the expectation: EfZg ¼
Ð
ð1� FðzÞÞdz. This equation

is handy because sometimes it is easier to integrate 1�F(z) than zf(z).

(Try this with the exponential distribution from Eq. (3.13).)

Exercise 3.3 (E)

For a continuous random variable, the variance is VarfZg ¼
Ð
ðz� EfZgÞ2

f ðzÞdz. Show that an equivalent definition of variance is Var{Z}¼E{Z2}�
(E{Z})2 where we define EfZ2g ¼

Ð
z2f ðzÞdz.

In this exercise, we have defined the second moment E{Z 2} of Z.

This definition generalizes for any function g(z) in the discrete and

continuous cases according to

EfgðZÞg ¼
Xn

k¼1

pkgðzkÞ EfgðZÞg ¼
ð

gðzÞf ðzÞdz (3:17)

In biology, we usually deal with random variables that have units.

For that reason, the mean and variance are not commensurate, since

the mean will have units that are the same as the units of the random

variable but variance will have units that are squared values of the units

of the random variable. Consequently, it is common to use the standard

deviation defined by
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SDðZÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðZÞ

p
(3:18)

since the standard deviation will have the same units as the mean. Thus,

a non-dimensional measure of variability is the ratio of the standard

deviation to the mean and is called the coefficient of variation

CVfZg ¼ SDðZÞ
EfZg (3:19)

Exercise 3.4 (E, and fun)

Three series of data are shown below:

Series A: 45, 32, 12, 23, 26, 27, 39

Series B: 1401, 1388, 1368, 1379, 1382, 1383, 1395

Series C: 225, 160, 50, 115, 130, 135, 195

Ask at least two of your friends to, by inspection, identify the most variable

and least variable series. Also ask them why they gave the answer that they did.

Now compute the mean, variance, and coefficient of variation of each series.

How do the results of these calculations shed light on the responses?

We are now in a position to discuss and understand a variety of other

probability distributions that are components of your toolkit.

The binomial distribution: discrete trials
and discrete outcomes

We use the binomial distribution to describe a situation in which the

experiment or observation is discrete (for example, the number of

Steller sea lions Eumatopias jubatus who produce offspring, with one

pup per mother per year) and the outcome is discrete (for example, the

number of offspring produced). The key variable underlying a single

trial is the probability p of a successful outcome. A single trial is called a

Bernoulli trial, named after the famous probabilist Daniel Bernoulli (see

Connections in both Chapter 2 and here). If we let Xi denote the outcome

of the ith trial, with a 1 indicating a success and a 0 indicating a failure

then we write

Xi ¼
1 with probability p

0 with probability 1� p
(3:20)

Virtually all computer operating systems now provide random numbers

that are uniformly distributed between 0 and 1; for a uniform random

number between 0 and 1, the probability density is f(z)¼ 1 if 0� z� 1

and is 0 otherwise. To simulate the single Bernoulli trial, we specify

p, allow the computer to draw a uniform random number U and if
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U< p we consider the trial a success; otherwise we consider it to be

a failure.

The binomial distribution arises when we have N Bernoulli trials.

The number of successes in the N trials is

K ¼
XN

i¼1

X i (3:21)

This equation also tells us a good way to simulate a binomial distribu-

tion, as the sum of N Bernoulli trials.

The number of successes in N trials can range from K¼ 0 to K¼N,

so we are interested in the probability that K¼ k. This probability is

given by the binomial distribution

PrfK ¼ kg ¼ N

k

� �
pkð1� pÞN�k (3:22)

In this equation N

k

� �
is called the binomial coefficient and represents the

number of different ways that we can get k successes in N trials. It is

read ‘‘N choose k’’ and is given by N

k

� �
¼ N !=k!ðN � kÞ!, where N! is

the factorial function.

We can explore the binomial distribution through analytical and

numerical means. We begin with the analytical approach. First, let us

note that when k¼ 0, Eq. (3.22) simplifies since the binomial coeffi-

cient is 1 and p0¼ 1:

PrfK ¼ 0g ¼ ð1� pÞN (3:23)

This is also the beginning of a way to calculate the terms of the binomial

distribution, which we can now write out in a slightly different form as

PrfK ¼ kg ¼ N !

k!ðN � kÞ! pkð1� pÞN�k

¼ N !ðN � ðk � 1ÞÞ
kðk � 1Þ!ðN � ðk � 1ÞÞ! pk�1p

ð1� pÞN�ðk�1Þ

1� p

(3:24)

To be sure, the right hand side of Eq. (3.24) is a kind of mathematical

trick and most readers will not have seen in advance that this is the way

to proceed. That is fine, part of learning how to use the tools is to

apprentice with a skilled craft person and watch what he or she does and

thus learn how to do it oneself. Note that some of the terms on the right

hand side of Eq. (3.24) comprise the probability that K¼ k� 1. When

we combine those terms and examine what remains, we see that

PrfK ¼ kg ¼ N � k þ 1

k

p

1� p
PrfK ¼ k � 1g (3:25)
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Equation (3.25) is an iterative relationship between the probability that

K¼ k� 1 and the probability that K¼ k. From Eq. (3.23), we know

explicitly the probability that K¼ 0. Starting with this probability, we

can compute all of the other probabilities using Eq. (3.25). We will use

this method in the numerical examples discussed below.

Although Eq. (3.24) seems to be based on a bit of a trick, here’s an

insight that is not: when we examine the outcome of N trials, something

must happen. That is
PN

k¼0 PrfK ¼ kg ¼ 1. We can use this observa-

tion to find the mean and variance of the random variable K. The

expected value of K is

EfKg ¼
XN

k¼0

kPrfK ¼ kg ¼
XN

k¼0

k
N

k

 !
pkð1� pÞN�k

¼
XN

k¼1

k
N

k

 !
pkð1� pÞN�k

(3:26)

There is nothing tricky about what we have done thus far, but another

trick now comes into play. We know how to evaluate the binomial sum

from k¼ 0, but not from k¼ 1. So, we will manipulate terms accord-

ingly by first writing the binomial coefficient explicitly and then factor-

ing out Np from the expression on the right hand side of Eq. (3.26)

EfKg ¼
XN

k¼1

k
N !

k!ðN � kÞ! pkð1� pÞN�k

¼ Np
XN

k¼1

ðN � 1Þ!
ðk � 1Þ!ðN � kÞ! pk�1ð1� pÞN�k

(3:27)

and we now set j¼ k� 1. When k¼ 1, j¼ 0 and when k¼N, j¼N� 1.

The last expression in Eq. (3.27) becomes a recognizable summation:

EfKg ¼ Np
XN�1

i¼0

N � 1

j

� �
p jð1� pÞN�1�j (3:28)

In fact, the summation on the right hand side of Eq. (3.28) is exactly 1.

We thus conclude that E{K}¼Np.

Exercise 3.5 (M)

Show that Var{K}¼Np (1�p).

Next, let us think about the shape of the binomial distribution. That

is, since the random variable K takes discrete values from 0 to N, when

we plot the probabilities, we can (and will) do it effectively as a

histogram and we can ask what the shape of the resulting histograms

might look like. As a starting point, you should do an easy exercise that

will help you learn to manipulate the binomial coefficients.
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Exercise 3.6 (E)

By writing out the binomial probability terms explicitly and simplifying show

that

PrfK ¼ k þ 1g
PrfK ¼ kg ¼ ðN � kÞp

ðk þ 1Þð1� pÞ (3:29)

The point of Eq. (3.29) is this: when this ratio is larger than 1,

the probability that K¼ kþ 1 is greater than the probability that K¼ k;

in other words – the histogram at kþ 1 is higher than that at k. The

ratio is bigger than 1 when (N� k)p> (kþ 1)(1� p). If we solve

this for k, we conclude that the ratio in Eq. (3.29) is greater than 1

when (Nþ 1)p> kþ 1. Thus, for values of k less than (Nþ 1)p� 1,

the binomial probabilities are increasing and for values of k greater

than (Nþ 1)p� 1, the binomial probabilities are decreasing.

Equations (3.25) and (3.29) are illustrated in Figure 3.3, which

shows the binomial probabilities, calculated using Eq. (3.25), when

N¼ 15 for three values of p (0.2, 0.5, or 0.7).

In science, we are equally interested in questions about what things

might happen (computing probabilities given N and p) and inference or

learning about the system once something has happened. That is,

suppose we know that K¼ k, what can we say about N or p? In this

case, we no longer think of the probability that K¼ k, given the para-

meters N and p. Rather, we want to ask questions about N and p, given

the data. We begin to do this by recognizing that Pr{K¼ k} is really

Pr{K¼ kjN, p} and we can also interpret the probability as the like-

lihood of different values of N and p, given k. We will use the symbol ~L

to denote likelihood. To begin, let us assume that N is known. The

experiment we envision thus goes something like this: we conduct N

trials, have k successes and want to make an inference about the value of

p. We thus write the likelihood of p, given k and N as

~Lðpjk;NÞ ¼ N

k

� �
pkð1� pÞN�k (3:30)

Note that the right hand side of this equation is exactly what we have

been working with until now. But there is a big difference in interpreta-

tion: when the binomial distribution is summed over the potential values

of k (0 to N), we obtain 1. However, we are now thinking of Eq. (3.30) as

a function of p, with k fixed. In this case, the range of p clearly has to be

0 to 1, but there is no requirement that the integral of the likelihood from

0 to 1 is 1 (or any other number). Bayesian statistical methods (see

Connections) allow us to both incorporate prior information about

potential values of p and convert likelihood into things that we can

think of as probabilities.
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Only the left hand side – the interpretation – differs. For both

historical (i.e. mathematical elegance) and computational (i.e. likelihoods

often involve small numbers), it is common to work with the logarithm of

the likelihood (called the log-likelihood, which we denote by L). In this

case, of inference about p given k and N, the log-likelihood is

Lðpjk;NÞ ¼ log
N

k

� �
þ k logðpÞ þ ðN � kÞ logð1� pÞ (3:31)

Now, if we think of this as a function of p, the first term on the right

hand side is a constant – it depends upon the data but it does not depend

upon p. We can use the log-likelihood in inference to find the most

likely value of p, given the data. We call this the maximum likelihood

k
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Figure 3.3. The binomial probability distribution when N¼15 and p¼0.2 (panel a), p¼0.5 (panel b),

or p¼0.7 (panel c).
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estimate (MLE) of the parameter and usually denote it by p̂. To find the

MLE for p, we take the derivative of L(pjk, N) with respect to p, set the

derivative equal to 0 and solve the resulting equation for p.

Exercise 3.7 (E)

Show that the MLE for p is p̂ ¼ k=N . Does this accord with your intuition?

Since the likelihood is a function of p, we ask about its shape. In

Figure 3.4, I show L(pjk, N), without the constant term (the first term on

the right hand side of Eq. (3.31) for k¼ 4 and N¼ 10 or k¼ 40 and

N¼ 100. These curves are peaked at p¼ 0.4, as the MLE tells us they

should be, and are symmetric around that value. Note that although the

ordinates both have the same range (10 likelihood units), the mag-

nitudes differ considerably. This makes sense: both p and 1� p are

less than 1, with logarithms less than 0, so for the case of 100 trials we are

multiplying negative numbers by a factor of 10 more than for the case of

10 trials.

The most impressive thing about the two curves is the way that they

move downward from the MLE. When N¼ 10, the curve around the

MLE is very broad, while for N¼ 100 it is much sharper. Now, we could

think of each value of p as a hypothesis. The log-likelihood curve is then

telling us something about the relative likelihood of a particular value

of p. Indeed, the mathematical geneticist A. W. F. Edwards (Edwards

1992) calls the log-likelihood function the ‘‘support for different values

of p, given the data’’ for this very reason (Bayesian methods show how

to use the support to combine prior and observed information).
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Figure 3.4. The log-likelihood function L(pjk, N), without the constant term, for four successes in 10 trials (panel a)

or 40 successes in 100 trials (panel b).
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Of course, we never know the true value of the probability of

success and in elementary statistics learn that it is helpful to construct

confidence intervals for unknown parameters. In a remarkable paper,

Hudson (1971) shows that an approximate 95% confidence interval can

be constructed for a single peaked likelihood function by drawing a

horizontal line at 2 units less than the maximum value of the log-

likelihood and seeing where the line intersects the log-likelihood func-

tion. Formally, we solve the equation

Lðpjk;NÞ ¼ Lðp̂jk;NÞ � 2 (3:32)

for p and this will allow us to determine the confidence interval. If the

book you are reading is yours (rather than a library copy), I encourage

you to mark up Figure 3.4 and see the difference in the confidence

intervals between 10 and 100 trials, thus emphasizing the virtues of

sample size. We cannot go into the explanation of why Eq. (3.32) works

just now, because we need to first have some experience with the

normal distribution, but we will come back to it.

The binomial probability distribution depends upon two parameters,

p and N. So, we might ask about inference concerning N when we know

p and have data K¼ k (the case of both p and N unknown will close this

section, so be patient). The likelihood is now ~LðN jk; pÞ, but we can’t

go about blithely differentiating it and setting derivatives to 0 because

N is an integer. We take a hint, however, from Eq. (3.29). If the ratio
~LðN þ 1jk; pÞ=~LðN jk; pÞ is bigger than 1, then Nþ 1 is more likely than

N. So, we will set that ratio equal to 1 and solve for N, as in the next exercise.

Exercise 3.8 (E)

Show that setting ~LðN þ 1jk; pÞ=~LðN jk; pÞ ¼ 1 leads to the equation

ðN þ 1Þð1� pÞ=ðN þ 1� kÞ ¼ 1

Solve this equation for N to obtain N̂ ¼ ðk=pÞ � 1. Does this accord with your

intuition?

Now, if N̂ ¼ ðk=pÞ � 1 turns out to be an integer, we are just plain

lucky and we have found the maximum likelihood estimate for N. But if

not, there will be integers on either side of (k / p)� 1 and one of them

must be the maximum likelihood estimate of N. Jay Beder and I

(Mangel and Beder 1985) used this method in one of the earliest

applications of Bayesian analysis to fish stock assessment.

Suppose we know neither p nor N and wanted to make inferences

about them from the data K¼ k. We immediately run into problems with

maximum likelihood estimation, because the likelihood is maximized if

we set N¼ k and p¼ 1! Most of us would consider this a nonsensical
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result. But this is an important problem for a wide variety of applica-

tions: in fisheries we often know neither how many schools of fish are in

the ocean nor the probability of catching them; in computer program-

ming we know neither how many bugs are left in a program nor the

chance of detecting a bug; in aerial surveys of Steller sea lions in Alaska

in the summer, pups can be counted with accuracy because they are on

the beach but some of the adults are out foraging at the time of the

surveys, so we are confident that there are more non-pups than counted,

but uncertain as to how many. William Feller (Feller 1971) wrote that

problems are not solved by ignoring them, so ignore this we won’t. But

again, we have to wait until later in this chapter, after you know about

the beta density, to deal with this issue.

The multinomial distribution: more than one
kind of success

The multinomial distribution is an extension of the binomial distribu-

tion to the case of more than two (we shall assume n) kinds of outcomes,

in which a single trial has probability pi of ending in category i. In a total

of N trials, we assume that ki of the outcomes end in category i. If we let

p denote the vector of the different probabilities of outcome and k

denote the vector of the data, the probability distribution is then an

extension of the binomial distribution

PrfkjN ; pg ¼ N !Qn
i¼1

ki!

Yn

i¼1

p
ki

i

The Poisson distribution: continuous trials
and discrete outcomes

Although the Poisson distribution is used a lot in fishery science, it is

named after Poisson the French mathematician who developed the

mathematics underlying this distribution and not fish. The Poisson

distribution applies to situations in which the trials are measured con-

tinuously, as in time or area, but the outcomes are discrete (as in number

of prey encountered). In fact, the Poisson distribution that we discuss

here can be considered the predator’s perspective of random search and

survival that we discussed in Chapter 2 from the perspective of the prey.

Recall from there that the probability that the prey survives from time 0

to t is exp(�mt), where m is the rate of predation.

We consider a long interval of time [0, t] in which we count

‘‘events’’ that are characterized by a rate parameter l and assume that

in a small interval of time dt,
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Prfno event in the next dtg ¼ 1� ldtþ oðdtÞ
Prf1 event in the next dtg ¼ ldtþ oðdtÞ

Prfmore than one event in the next dtg ¼ oðdtÞ
(3:33)

so that in a small interval of time, either nothing happens or one event

happens. However, in the large interval of time, many more than one

event may occur, so that we focus on

pkðtÞ ¼ Prfk events in 0 to tg (3:34)

We will now proceed to derive a series of differential equations for

these probabilities. We begin with k¼ 0 and ask: how could we have no

events up to time tþ dt? There must be no events up to time t and then

no events in t to tþ dt. If we assume that history does not matter, then it

is also reasonable to assume that these are independent events; this is an

underlying assumption of the Poisson process. Making the assumption

of independence, we conclude

p0ðt þ dtÞ ¼ p0ðtÞð1� ldt � oðdtÞÞ (3:35)

Note that I could have just as easily written þo(dt) instead of �o(dt).

Why is this so (an easy exercise if you remember the definition of

o(dt))? Since the tradition is to write þo(dt), I will use that in what

follows.

We now multiply through the right hand side, subtract p0(t) from

both sides, divide by dt and let dt! 0 (our now standard approach)

to obtain the differential equation

dp0

dt
¼ �lp0 (3:36)

where I have suppressed the time dependence of p0(t). This equation

requires an initial condition. Common sense tells us that there should be

no events between time 0 and time 0 (i.e. there are no events in no time),

so that p0(0)¼ 1 and pk(0)¼ 0 for k> 0. The solution of Eq. (3.36) is an

exponential: p0(t)¼ exp(�lt), which is identical to the random search

result from Chapter 2. And it well should be: from the perspective of the

predator, the probability of no prey found time 0 to t is exactly the same

as the prey’s perspective of surviving from 0 to t. As an aside, I might

mention that the zero term of the Poisson distribution plays a key role

in analysis suggesting (Estes et al. 1998) that sea otter declines in the

north Pacific ocean might be due to killer whale predation.

Let us do one more together, the case of k¼ 1. There are precisely

two ways to have 1 event in 0 to tþ dt: either we had no event in 0 to t

and one event in t to tþ dt or we had one event in 0 to t and no event in

t to tþ dt. Since these are mutually exclusive events, we have
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p1ðt þ dtÞ ¼ p0ðtÞ½ldt þ oðdtÞ� þ p1ðtÞ½1� ldt þ oðdtÞ� (3:37)

from which we will obtain the differential equation dp1 / dt¼ lp0� lp1,

solved subject to the initial condition that p1(0)¼ 0. Note the nice inter-

pretation of the dynamics of p1(t): probability ‘‘flows’’ into the situation

of 1 event from the situation of 0 events and flows out of 1 event (towards

2 events) at rate l. This equation can be solved by the method of an

integrating factor, which we discussed in the context of von Bertalanffy

growth. The solution is p1(t)¼ lte�lt. We could continue with k¼ 2, etc.,

but it is better for you to do this yourself, as in Exercise 3.9.

Exercise 3.9 (M)

First derive the general equation that pk(t) satisfies, using the same argument that

we used to get to Eq. (3.37). Second, show that the solution of this equation is

pkðtÞ ¼
ðltÞk

k!
e�lt (3:38)

Equation (3.38) is called the Poisson distribution. We can do with it

all of the things that we did with the binomial distribution. First, we note

that between 0 and t something must happen, so that
P1

k¼0 pkðtÞ ¼ 1

(because the upper limit is infinite, I am going to stop writing it). If

we substitute Eq. (3.38) into this condition and factor out the expon-

ential term, which does not depend upon k, we obtain

e�lt
P

k¼0 ðltÞk=k! ¼ 1

or,bymultiplying throughby theexponentialwehave
P

k¼0 ðltÞk=k! ¼ elt.

But this is not news: the left hand side is the Taylor expansion of the

exponential elt, which we have encountered already in Chapter 2.

We can also readily derive an iterative rule for computing the terms

of the Poisson distribution. We begin by noting that

Prfno event in 0 to tg ¼ p0ðtÞ ¼ e�lt (3:39)

and before going on, I ask that you compare this equation with the first

line of Eq. (3.33). Are these two descriptions inconsistent with each

other? The answer is no. From Eq. (3.39) the probability of no event in 0

to dt is e�ldt, but if we Taylor expand the exponential, we obtain the first

line in Eq. (3.33). This is more than a pedantic point, however. When

one simulates the Poisson process, the appropriate formula to use is

Eq. (3.39), which is always correct, rather than Eq. (3.33), which is only

an approximation, valid for ‘‘small dt.’’ The problem is that in computer

simulations we have to pick a value of dt and it is possible that the value

of the rate parameter could make Eq. (3.33) pure nonsense (i.e. that the

first line is less than 0 or the second greater than 1).
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Once we have p0(t) we can obtain successive terms by noting that

pkðtÞ ¼ e�lt ðltÞk

k!
¼ lt

k
e�lt ðltÞk�1

ðk � 1Þ!

 !
¼ lt

k
pk�1ðtÞ (3:40)

and we use Eq. (3.40) in an iterative manner to compute the terms of the

Poisson distribution, without having to compute factorials.

We will now find the mean and second moments (and thus the var-

iance) of the Poisson distribution, showing many details because it is a

good thing to see them once. The mean of the Poisson random variable K is

EfKg ¼
X
k¼0

k
e�ltðltÞk

k!
¼ e�lt ðltÞ þ 2ðltÞ2

2!
þ 3ðltÞ3

3!
þ 4ðltÞ4

4!
þ � � �

" #

and we now factor (lt) from the right hand side, simplify the fractions,

and recognize the Taylor expansion of the exponential distribution

EfKg ¼ e�ltðltÞ 1þ ðltÞ þ ðltÞ2

2!
þ ðltÞ3

3!
þ � � �

" #
¼ e�ltðltÞelt ¼ lt (3:41)

Finding the second moment involves a bit of a trick, which I will

identify when we use it. We begin with

EfK2g ¼
X
k¼0

k2 e
�ltðltÞk

k!
¼ e�lt

X
k¼0

k
ðltÞk

ðk � 1Þ!

and as before we write out the last summation explicitly

EfK2g ¼ e�lt ðltÞ þ 2ðltÞ2

1!
þ 3ðltÞ3

2!
þ 4ðltÞ4

3!
þ � � �

" #

¼ e�ltðltÞ 1þ 2ðltÞ þ 3ðltÞ2

2!
þ 4ðltÞ3

3!
þ � � �

" #

¼ e�ltðltÞ d

dðltÞ ðltÞ þ d

dðltÞ ðltÞ2 þ d

dðltÞ
ðltÞ3

2!
þ d

dðltÞ
ðltÞ4

3!
þ � � �

" #

¼ e�ltðltÞ d

dðltÞ lt 1þ lt þ ðltÞ2

2!
þ ðltÞ3

3!
þ � � �

 !( )" #
(3:42)

and we now recognize, once again, the Taylor expansion of the expo-

nential in the very last expression so that we have

EfK2g ¼ e�ltðltÞ d

dðltÞ ðlteltÞ ¼ e�ltðltÞ½elt þ ltelt� ¼ lt þ ðltÞ2 (3:43)

and we thus find that Var{K}¼ lt, concluding that for the Poisson

process both the mean and variance are lt. The trick in this derivation

comes in the third line of Eq. (3.42), when we recognize that the sum
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could be represented as the derivative of a different sum. This is a handy

trick to know and to practice.

We can next ask about the shape of the Poisson distribution. As with

the binomial distribution, we compare terms at k� 1 and k. That is, we

consider the ratio pk(t) / pk� 1(t) and ask when this ratio is increasing by

requiring that it be bigger than 1.

Exercise 3.10 (E)

Show that pk(t) / pk� 1(t)> 1 implies that lt> k. From this we conclude that the

Poisson probabilities are increasing until k is bigger than lt and decreasing

after that.

The Poisson process has only one parameter that would be a candi-

date for inference: l. That is, we consider the time interval to be part of

the data, which consist of k events in time t. The likelihood for l is
~Lðljk; tÞ ¼ e�ltðltÞk=k! so that the log-likelihood is

Lðljk; tÞ ¼ �lt þ k logðltÞ � logðk!Þ (3:44)

and as before we can find the maximum likelihood estimate by setting

the derivative of the log-likelihood with respect to l equal to 0 and

solving for l.

Exercise 3.11 (E)

Show that the maximum likelihood estimate is l̂ ¼ k=t. Does this accord with

your intuition?

As before, it is also very instructive to plot the log-likelihood

function and examine its shape with different data. For example, we

might imagine animals emerging from dens after the winter, or from

pupal stages in the spring. I suggest that you plot the log-likelihood

curve for t¼ 5, 10, 20, and k¼ 4, 8, 16; in each case the maximum

likelihood estimate is the same, but the shapes will be different.

What conclusions might you draw about the support for different

hypotheses?

We might also approach this question from the more classical

perspective of a hypothesis test in which we compute ‘‘p-values’’

associated with the data (see Connections for a brief discussion and

entry into the literature). That is, we construct a function P(ljk, t) which

is defined as the probability of obtaining the observed or more extreme

data, when the true value of the parameter is l. Until now, we have

written the probability of exactly k events in time interval 0 to t as pk(t),

understanding that l was given and fixed. To be even more explicit, we

could write pk(tjl). With this notation, the probability of the observed or
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more extreme data when the true value of the parameter l is now

Pðljk, tÞ ¼
P1

j¼k pjðtjlÞ where pj (tjl) is the probability of observing j

events, given that the value of the parameter is l. Classical confidence

intervals can be constructed, for example, by drawing horizontal lines at

the value of l for which P(ljk, t)¼ 0.05 and P(ljk, t)¼ 0.95.

I want to close this section with a discussion of the connection

between the binomial and Poisson distributions that is often called the

Poisson limit of the binomial. That is, let us imagine a binomial

distribution in which N is very large (formally, N!1) and p is very

small (formally, p! 0) but in a manner that their product is constant

(formally, Np¼ l; we will thus implicitly set t¼ 1). Since p¼ l / N, the

binomial probability of k successes is

Prfk successesg ¼ N !

k!ðN � kÞ!
l
N

� �k

1� l
N

� �N�k

and now let us simplify the factorials and the fraction to write

Prfk successesg ¼ NðN � 1ÞðN � 2Þ . . . ðN � k þ 1Þ
k!

lk

Nk
1� l

N

� �N�k

which we now rearrange in the following way

Prfk successesg ¼ NðN � 1ÞðN � 2Þ . . . ðN � K þ 1Þ
Nk

lk

k!

1� l
N

� �N

1� l
N

� �k
(3:45)

and now we will analyze each of the terms on the right hand side. First,

N(N� 1)(N� 2) . . . (N� kþ 1), were we to expand it out would be a

polynomial in N, that is it would take the form N kþ c1N k� 1þ . . ., so

that the first fraction on the right hand side approaches 1 as N increases.

The second fraction is independent of N. As N increases, the denomi-

nator of the third fraction approaches 1, and the numerator, as you recall

from Chapter 2, the limit as N!1 of [1� (l / N)]N is exp(� l). We

thus conclude that in the limit of large N, small p with their product

constant, the binomial distribution is approximated by the Poisson with

parameter l¼Np (for which we set t¼ 1 implicitly).

Random search with depletion

In many situations in ecology and evolutionary biology, we deal with

random search for items that are then removed and not replaced (an

obvious example is a forager depleting a patch of food items, or of

mating pairs seeking breeding sites). That is, we have random search but

the search parameter itself depends upon the number of successes and

decreases with each success. There are a number of different ways of
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characterizing this case, but the one that I like goes as follows (Mangel

and Beder 1985). We now allow l to represent the maximum rate at

which successes occur and " to represent the decrement in the rate

parameter with each success. We then introduce the following

assumptions:

Prfno success in next dtjk successes thus farg ¼ 1� ðl� "kÞdt þ oðdtÞ

Prfexactly one success in next dtjk successes thus farg ¼ ðl� "kÞdt þ oðdtÞ

Prfmore than one success in the next dtjk events thus farg ¼ oðdtÞ
(3:46)

which can be compared with Eq. (3.33), so that we see the Poisson-like

assumption and the depletion of the rate parameter, measured by ".

From Eq. (3.46), we see that the rate parameter drops to zero when

k¼ l / ", which means that the maximum number of events that can

occur is l / ". This has the feeling of a binomial distribution, and that

feeling is correct. Over an interval of length t, the probability of k

successes is binomially distributed with parameters l / " and 1� e� "t.

This result can be demonstrated in the same way that we derived the

equations for the Poisson process. The conclusion is that

Prfk events inð0; tÞg ¼
l
"

k

� �
ð1� e�"tÞkðe�"tÞN�k (3:47)

which is a handy result to know. Mangel and Beder (1985) show how to

use this distribution in Bayesian stock assessment analysis for fishery

management.

In this chapter, we have thus far discussed the binomial distribution,

the multinomial distribution, the Poisson distribution, and random

search with depletion. None will apply in every situation; rather one

must understand the nature of the data being analyzed or modeled and

use the appropriate probability model. And this leads us to the first

secret of statistics (almost always unstated): there is always an under-

lying statistical model that connects the source of data to the observed

data through a sampling mechanism. Freedman et al. (1998) describe

this process as a ‘‘box model’’ (Figure 3.5). In this view, the world

consists of a source of data that we never observe but from which we

sample. Each potential data point is represented by a box in this source

population. Our sample, either by experiment or observation, takes

boxes from the source into our data. The probability or statistical

model is a mathematical representation of the sampling process.

Unless you know the probability model, you do not fully understand

your data. Be certain that you fully understand the nature of the trials

and the nature of the outcomes.
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The negative binomial, 1: waiting for success

In the next three sections, we will discuss the negative binomial dis-

tribution, which is perhaps one of the most versatile probability dis-

tributions used in ecology and evolutionary biology. There are two quite

different derivations of the negative binomial distribution. The first,

which we will do in this section, is relatively simple. The second, which

requires an entire section of preparation, is more complicated, but we

will do that one too.

Imagine that we are conducting a series of Bernoulli trials in which

the probability of a success is p. Rather than specifying the number of

trials, we ask the question: how long do we have to wait before the kth

success occurs? That is, we define a random variable N according to

PrfN ¼ njk; pg ¼ Probability that the kth success occurs on trial n (3:48)

Now, for the kth success to occur on trial n, we must have k� 1

successes in the first n� 1 trials and a success on the nth trial. The

probability of k� 1 successes in n� 1 trials has a binomial distribution

with parameters n� 1 and p and the probability of success on the nth

trial has probability p and these are independent of each other. We thus

conclude

Source of data (population)

Experiment or
observation

Probability
or statistical

model

1 2

3

n4 12 18 ...

Observed  data (sample) 

4

...

N – 1
N

Figure 3.5. The box model of Freedman et al. (1998) is a useful means for thinking about probability and

statistical models and the first secret of statistics. Here I have a drawn a picture in which we select a sample of size n

from a population of size N (sometimes so large as to be considered infinite) using some kind of experiment or

observation; each box in the population represents a potential data point in the sample, but not all are chosen.

If you don’t know the model that will connect the source of your data and the observed data, you probably are

not ready to collect data.
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PrfN ¼ njk; pg ¼ n� 1

k � 1

� �
pk�1ð1� pÞn�k

p ¼ n� 1

k � 1

� �
pkð1� pÞn�k

(3:49)

This is the first form of the negative binomial distribution.

The negative binomial distribution, 2: a Poisson
process with varying rate parameter and
the gamma density

We begin with a simple enough situation: imagine a Poisson process in

which the parameter itself has a probability distribution. For example,

we might set up an experiment to monitor the emergence of Drosophila

from patches of rotting fruit or vegetables in which we have controlled

the number of eggs laid in the patch. Emergence from an individual

patch could be modeled as a Poisson process but because individual

patch characteristics vary, the rate parameter might be different for

different patches. In that case, we reinterpret Eq. (3.38) as

Prfk events in ½0; t�jlg ¼ ðltÞk

k!
e�lt (3:50)

and we understand that l has a probability distribution. Since l is a

naturally continuous variable, we assume that it has a probability

density f(l). The product Pr{k eventsjl} f(l)dl is the probability that

the rate parameter falls in the range l to lþ dl and we observe k events.

The probability of observing k events will be the integral of this product

over all possible values of the rate parameter. Since it only makes sense

to think about a positive value for the rate parameter, we conclude that

Prfk events in ½0; t�g ¼
ð1
0

ðltÞk

k!
e�ltf ðlÞdl (3:51)

Equation (3.51) is often referred to as a mixture of Poisson processes.

To actually compute the integral on the right hand side, we need to make

further decisions. We might decide, for example, to replace the contin-

uous probability density by an approximation involving a discrete

number of choices of l.

One classical, and very helpful, choice is that f (l) is a gamma

probability density function. And before we go any further with the

negative binomial distribution, we need to understand the gamma

probability density for the rate parameter. There will be some detail,

and perhaps some of it will be mysterious (why I make certain choices),

but all becomes clear by the end of this section.
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A gamma probability density for the rate parameter has two para-

meters, which we will denote by � and � and has the mathematical form

f ðlÞ ¼ ��

�ð�Þ e
��ll��1 (3:52)

Since l is a rate, we conclude that � must be a time-like variable for

their product to be dimensionless (the precise meaning of � will be

determined below). Similarly, � must be dimensionless. In this equa-

tion, � (�) is read ‘‘the gamma function of nu’’. Thus, before going on,

we need to discuss the gamma function.

The gamma function

The gamma function is one of the classical functions of applied mathe-

matics; here I will provide a bare bones introduction to it (see

Connections for places to go learn more). You should think of it in the

same way that you think about sin, cos, exp, and log. First, these functions

have a specific mathematical definition. Second, there are known rules

that relate functions with different arguments (such as the rule for com-

puting sin(aþ b)) and there are computational means for obtaining their

values. Third, these functions are tabulated (in the old days, in tables of

books, and in the modern days in many software packages or on the web).

The same applies to the gamma function, which is defined for z> 0 by

�ðzÞ ¼
ð1
0

sz�1e�sds (3:53)

In this expression, z can take any positive value, but let us start with the

integers. In fact, let us start with z¼ 1, so that we consider �ð1Þ ¼Ð1
0

e�sds ¼ 1. What about z¼ 2? In that case �ð2Þ ¼
Ð1

0
se�sds, which

can be integrated by parts and we find �(2)¼ 1. We shall do one more,

before the general case: �ð3Þ ¼
Ð1

0
s2e�sds, which can be integrated by

parts once again and from which we will see that �(3)¼ 2. If you do a

few more, you should get a sense of the pattern: for integer values of z,

�(z)¼ (z� 1)!. Note, then, that we could write the binomial coefficient

in Eq. (3.49) as

n� 1

k � 1

� �
¼ ðn� 1Þ!
ðk � 1Þ!ðn� kÞ! ¼

�ðnÞ
�ðkÞ�ðn� k þ 1Þ

For non-integer values of z, the same kind of integration by parts

approach works and leads us to an iterative equation for the gamma

function, which is

�ðzþ 1Þ ¼ z�ðzÞ (3:54)
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Finally, since f (l) is a probability density, its integral must be equal to 1

so that we can think of the gamma function as a normalization constant,

as in
Ð1

0
f ðlÞdl ¼ 1 from which we concludeð1

0

��

�ð�Þ e
��ll��1dl ¼ ��

�ð�Þ

ð1
0

e��ll��1dl ¼ 1 (3:55)

Thus, the right hand integral in Eq. (3.55) allows us to see thatð1
0

e��ll��1dl ¼ �ð�Þ=��

which will be very handy when we find the mean and variance of the

encounter rate. Note that we have just taken advantage of the informa-

tion that f (l) is a probability density to do what appears to be a very

difficult integral in our heads! Richard Feynman claimed that this trick

was very effective at helping him impress young women in the 1940s

(Feynman 1985).

Back to the gamma density

Now that we are more familiar with the gamma function, let us return to

the gamma density given by Eq. (3.52). As with the gamma function, I

will be as brief as possible, so that we can get back to the negative

binomial distribution. In particular, we will examine the shape of the

gamma density and find the mean and variance.

First, let us think about the shape of the gamma density (Figure 3.6).

When �¼ 1, the algebraic term disappears and the gamma density is the

same as the exponential distribution. When � > 1, the term l�� 1 pins

f (0)¼ 0 so that the gamma density will rise and then fall. Finally, when

� < 1, f (l)!1 as l! 0. We thus see that the gamma density has a

wide variety of shapes.

If we let L denote the random variable that is the rate of the Poisson

process, then

Ef�g ¼
ð1

0

l
��

�ð�Þ e
��ll��1dl ¼ ��

�ð�Þ

ð1
0

e��ll�dl ¼ ��

�ð�Þ
�ð� þ 1Þ
��þ1

¼ �

�

(3:56)

Be certain that you understand every step in this derivation (refer to

Eq. (3.55) and to the equation just below it if you are uncertain).

Exercise 3.12 (E/M)

Use the same procedure to show that E{L2}¼ �(�þ 1) /�2 and consequently

that Var{L}¼ � /�2¼ (1 / �)E{L}2.

The result derived in Exercise 3.12 has two important implications.

The first is a diagnostic tool for the gamma density. That is
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logðVarð�ÞÞ ¼ � logð�Þ þ 2 logðEf�gÞ (3:57)

so that a logarithmic plot of variance versus mean will have a slope of 2

when the underlying random variable has a gamma density (but the

converse is not true – see Dick (2004)). This is an example of a mean-

variance power relationship; more details are provided in Connections.

Second, the coefficient of variation of L is directly found from

Eq. (3.56) and Exercise 3.12:

CVf�g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varf�g

p
Ef�g ¼

ffiffiffiffi
�
�2

p
�
�

¼ 1ffiffiffi
�
p (3:58)
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Figure 3.6. The gamma density has a wide variety of shapes depending upon the parameter �. Here I have

shown three densities, with �¼1 and �¼0.8 (panel a), �¼1 (panel b) or �¼2 (panel c).
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so that larger values of � imply less relative variation in the distribution

of the encounter rate. Let us thus conduct a thought experiment in which

we hold the mean �l ¼ �=� constant (fixed from some other rule, for

example), but allow �!1 (obviously, then�must increase too). What

happens to the probability density f(l)? The density is becoming more

and more peaked around the mean, because the coefficient of variation

is getting smaller and smaller. In other words, f(l) will approach a delta-

function centered at the mean �l.

It has been a long, but worthwhile, detour.

Return to the negative binomial distribution

We are now ready to compute the probability of k events, as called for

in Eq. (3.51). Using the gamma density we have

Prfk eventsg ¼
ð1
0

ðltÞk

k!
e�lt ��

�ð�Þ e
��ll��1dl ¼ tk��

k!�ð�Þ

ð1
0

e�lð�þtÞlkþ��1dl

(3:59)
and now we recognize that

ð1
0

e�lð�þtÞlkþ��1dl ¼ �ð� þ kÞ=ð�þ tÞ�þk

(why: because it is just like the integral following Eq. (3.55) except that

� and � are replaced by �þ k and �þ t). Consequently, we conclude

PrfK ¼ kg ¼ ��

ð�þ tÞ�þk

tk

k!

�ð� þ kÞ
�ð�Þ (3:60)

Equation (3.60) is the second form of the negative binomial distribution.

The mean and variance of K are found using Eq. (3.60) in the same

way that we found the mean and variance for the binomial or Poisson

distributions. For the negative binomial distribution they are

EfKg ¼ �

�
t � mðtÞ

VarfKg ¼ mðtÞ þ mðtÞ2

�

(3:61)

Note that I have introduced the mean m(t). Clearly only two of the three

of �, �, or m(t) are independent. For a variety of reasons, both opera-

tional and historical, it is good to work with m(t), sometimes written just

as m, and �.

The mean of the negative binomial distribution is always bigger

than the variance (for the Poisson distribution, recall, they are equal).

We say then that the data are overdispersed and that � is a measure of the
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overdispersion and hence is called the overdispersion parameter

(eschewing the recommendation of Strunk and White about noun

adjectives). Earlier, we concluded that if �/� is held fixed, but that

�!1 then the probability density for l will converge to a delta

function centered on the mean �l. Equation (3.61) is telling us the

same information: that the overdispersion parameter increases, the

mixture of Poisson distributions becomes more and more concentrated

at a single value of the rate parameter and so the mean of the negative

binomial distribution approaches the mean of the appropriate Poisson

process. Indeed, as an optional (H) exercise, some readers may wish to

show that in the limit of �!1, Eq. (3.60) becomes the Poisson

distribution.

Although I like to use the parameters � and �, there are other forms

commonly used in the ecological literature. Perhaps the most common

is the ‘‘m, k’’ form that gained considerable popularity through the

seminal book of Sir Richard Southwood (Southwood 1978). For reasons

that will become clear momentarily, let us start using the random

variable N for the number of events and rewrite Eq. (3.60) as

PrfN ¼ ng ¼ �

�þ t

� ��
t

�þ t

� �n
1

n!

�ð� þ nÞ
�ð�Þ (3:62)

and now introduce the mean m¼ (� /�)t by dividing numerator and

denominator of the first two fractions on the right hand side of

Eq. (3.62) by � and then multiplying by �. We obtain

PrfN ¼ ng ¼ �ð� þ nÞ
n!�ð�Þ

�

� þ m

� ��
m

� þ m

� �n

¼ �ð� þ nÞ
n!�ð�Þ

� þ m

�

� ��� m

� þ m

� �n
(3:63)

In the ecological literature, the overdispersion parameter is often repre-

sented by the symbol k in which case Eq. (3.63) becomes

PrfN ¼ ng � pnðm; kÞ ¼
�ðk þ nÞ
n!�ðkÞ

k

k þ m

� �k
m

k þ m

� �n

(3:64)

and we will use this form of the negative binomial distribution in our

study of host–parasitoid dynamics and of disease.

From Eq. (3.64) the probability of no events is obtained by setting

n¼ 0

p0ðm; kÞ ¼
k

k þ m

� �k

(3:65)

This is a remarkable, if apparently innocuous, formula.
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Exercise 3.13 (E)

Construct three plots of p0(m, k) (y-axis) vs. m (x-axis) as m runs from 10 to 500

for k¼ 10, 2, and 1. Interpret your results.

Next, we use Eqs. (3.64) and (3.65) to obtain an iterative equation

relating subsequent terms, as we did for the Poisson and binomial

distributions

pjðm; kÞ ¼
jþ k � 1

j

� �
m

k þ m

� �
pj�1ðm; kÞ (3:66)

Figure 3.7 is a comparison of the Poisson and negative binomial

distributions. Here, I have set the mean equal to 10. The Poisson

distribution is thus peaked around 10 and relatively symmetrical. The

negative binomial distribution, with the same mean, becomes more and

more skewed as the overdispersion parameter decreases from 5 to 0.5

(panels (b–d) in Figure 3.7). For k¼ 0.5 (Figure 3.6d), there is more than

a 20% chance of 0 events, even though the mean is 10! Consequently,

the probability of a large number of events (say 20–30 or even more) is

considerable. Figure 3.8, in which I have plotted the cumulative dis-

tribution as if it were a continuous one, is another way of representing

the idea. Notice that the cumulative values of the negative binomial are

much higher than the cumulative values of the Poisson distribution for

small values of the number of events and that they rise much more

slowly than the Poisson for larger number of events. For example, at 20

events, the Poisson cumulative (with mean 10) is essentially 1, but the

two negative binomial distributions that I have shown have nearly 20%

of the probability still to be accounted.

We will close this section with an all too brief discussion of some

aspects of inference involving the negative binomial. Let’s begin with

Eq. (3.61), for which the data would be the mean �K and sample variance

S2
K of a collection of random variables with a negative binomial

distribution, for which we would want to estimate the parameters m

and �. If we replace the mean and variance in Eq. (3.61) by the sample

average and sample variance and then solve Eq. (3.61) for the para-

meters, we obtain the method of moments estimates of the parameters,

which are m̂ ¼ �K and � ¼ ð �KÞ2=ðS2
K � �KÞ. These estimates are simple,

but not very accurate. More accurate estimates can be obtained by

using maximum likelihood procedures with Eq. (3.60), but they are

somewhat beyond the scope of what I want to do here. One good place

to read about maximum likelihood for the negative binomial is

Kendall and Stuart (1979) (which is also a generally good book).

Dick (2004) discusses some modern methods for estimating the

parameters.
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There is one additional kind of inference that we should discuss,

however. For this, let us return to Eq. (3.60) and recall its origins: we

assumed a Poisson process, conditioned on the value of the rate para-

meter and assumed that the rate parameter had a gamma distribution.

So, we can ask the question: given that we have observed k events, what

does this tell us about the rate parameter? Formally, we want to find

Pr{l�L� lþ dljk events in 0 to t}; we call this the posterior distribu-

tion of the rate parameter, given the data, and denote it by the symbol

fp(l j(k, t))dl. We apply the definitions of conditional probability and

Bayes’s theorem:
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Figure 3.7. Comparison of Poisson and negative binomial frequency distributions. Panel (a) shows the Poisson

distribution with mean¼10. Panels (b), (c), and (d) show negative binomial distributions with the same

mean but with overdispersion parameter 5, 1, and 0.5 respectively. Note that although the abscissas are all the

same, the ordinates differ.
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fpðljðk; tÞÞdl ¼
Prfl � � � lþ dl; k events in 0 to tg

Prfk events in 0 to tg

¼ Prfk events in 0 to tjlgf ðlÞdl
Prfk events in 0 to tg

(3:67)

The key here is the transition from the numerator in the upper

expression to the one in the lower expression, which relies on the

definition of conditional probability, Pr{A, B}¼ Pr{AjB}Pr{B}, and

recalling that f(l)dl¼ Pr{l�L� lþ dl}. Now, we know each of the

probabilities that are called for on the right hand side of Eq. (3.67):

the probability of k events given l is Poisson, the probability density for

l is gamma, and the probability of k events is negative binomial.

Substituting the appropriate distributions, we have

fpðljkÞ ¼

ðltÞk
k! e�lt ��

�ð�Þ e
��ll��1

� �
��

ð�þ tÞ�þk

tk

k!

�ð� þ kÞ
�ð�Þ

(3:68)

Although this equation looks to be a bit of a mess, it actually simplifies

very nicely and easily to become

fpðl j kÞ ¼
ð� þ tÞ�þ k

�ð� þ kÞ e�ð�þ tÞll�þ k�1 (3:69)
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Figure 3.8. The cumulative

distribution function for the

Poisson (mean¼10) and

negative binomial (mean¼10,

two different values of the

overdispersion parameter)

plotted, for convenience, as

continuous functions.
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We recognize this as another gamma density, with changed parameters: we

started with parameters � and �, collected data of k events in 0 to t, and

update the parameters to �þ t and �þ k, while keeping the same distribu-

tion for theencounter rate. In the Bayesian literature, we say that the gamma

density is the conjugate prior for the Poisson process (see Connections).

The normal (Gaussian) distribution: the standard
for error distributions

We now turn to the normal or Gaussian distribution, which most readers

will have encountered previously – both in other sources and in our

discussion of the physical process of diffusion in Chapter 2. For that

reason, I will not belabor matters and repeat much of what you already

know, but will quickly move on to what I hope are new matters.

However, some introduction is required.

The density function for a random variable X that is normally

distributed with mean � and variance �2 is

f ðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2p�2
p exp �ðx� �Þ

2

2�2

 !
(3:70)

Note that I could have taken the square root of the variance, but chose to

leave it within the square root. A particularly common and useful version

is the normal distribution with mean 0 and variance 1; we denote this by

N(0, 1) and write X�N(0, 1) to indicate that the random variable X

is normally distributed with mean 0 and variance 1. In that case,

the probability density function becomes f ðxÞ ¼ 1=
ffiffiffiffiffiffi
2p
p

exp �x2=2ð Þ.
Indeed, it is easy to see that if a random variable Y is normally distributed

with mean� and variance�2 then the transformed variables X¼ (Y��) /�

will be N(0, 1); we can make a normal random variable Y with specified

mean and variance from a X�N(0, 1) by setting Y¼�þ �X.

Exercise 3.14 (E)

Demonstrate the validity of the previous sentence.

We already know that f (x) given by Eq. (3.70) will approach a Dirac

delta function centered at � as �! 0. Recall that in Chapter 2

(Exercise 2.14), you showed where the normalization factor 1=
ffiffiffiffiffiffi
2p
p

comes from by considering the product

I ¼
ð1
�1

e�
x2

2 dx

2
4

3
5 ð1
�1

e�
y2

2 dy

2
4

3
5
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and then converting to polar coordinates in which r2¼ x2þ y2, dxdy¼
rdrd�, and r ranges from 0 to1 and � ranges from 0 to 2p.

Abramowitz and Stegun (1974) give a variety of computational

approximations for the normal probability density function in terms of

ZðxÞ ¼ 1ffiffiffiffiffiffi
2p
p exp � x2

2

� �
PðxÞ ¼ 1ffiffiffiffiffiffi

2p
p

ðx
�1

exp � s2

2

� �
ds

QðxÞ ¼ 1ffiffiffiffiffiffi
2p
p

ð1
x

exp � s2

2

� �
ds

(3:71)

It should be apparent that P(x)þQ(x)¼ 1. In general, most of the

computational formulae are not particularly transparent and, I suspect,

were developed as much by trial and error as by formal analysis. There

is one formula, however, which is easily understood and important; this

is the behavior of Q(x) when x is large. Recall from introductory

statistics that hypothesis testing involves asking for the probability of

obtaining the observed or more extreme data, given a certain hypothesis

(whether this is a sensible question or not is, to some extent, one of the

central disputes between frequentist and Bayesian statistics; see

Connections for more details).

To be very specific, if somewhat trivial, let us suppose that we

observe a single realization, x, of the random variable X and want to test

the hypothesis that X�N(0, 1). Our data consist of the observation x,

which we will assume is positive, and the hypothesis is tested by

computing the probability of obtaining a value of x or more extreme.

That is, we need to evaluate Q(x). The key to the computation lies in

recognizing that

exp � s2

2

� �
¼ � 1

s

d

ds
exp � s2

2

� �	 


so that we can write the integral in Q(x) as

ð1
x

exp � s2

2

� �
ds ¼

ð1
x

� 1

s

d

ds
exp � s2

2

� �	 
� �
ds

We now integrate the right hand side by parts ð
Ð

udv ¼ uv�
Ð

vduÞ
with u¼� 1 / s and v¼ exp(� s2/2) to obtain

QðxÞ ¼ 1ffiffiffiffiffiffi
2p
p 1

x
exp � x2

2

� �
þ
ð1
x

1

s
exp � s2

2

� �
ds

2
4

3
5 (3:72)

Now when x is big, the integrand on the right hand side of Eq. (3.72) is

surely smaller than the original integrand. To deal with this integral, we

integrate by parts again, which makes the resulting integrand even

smaller. Repeated application of integration by parts will give us what
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is called an asymptotic expansion (see Connections for more about

asymptotic expansions) of Q(x) when x is large, which can be written as

QðxÞ ¼ ZðxÞ
x

1� 1

x2
þ 3

x4
� ð3Þð5Þ

x6
þ � � �

� �
(3:73)

and we note that the terms inside the brackets will rapidly decrease

when x is even just moderately large (compute them, say for x¼ 4 or 5

and convince yourself). We will use this kind of asymptotic expansion

in our study of stochastic population theory.

Gauss popularized the use of the normal distribution as an error

distribution when we make measurements (he spent a lot of time

observing the motion of the planets and stars). The simplest such

model might go as follows. Imagine that we take n measurements of a

constant but unknown quantity M, which we want to estimate from

these measurements, denoted by Yi, i¼ 1, 2, . . . n. As a start on the

estimation procedure, we could pick values of M, denoted by m, and ask

how well a particular value matches the data. We thus need a means to

characterize the error between the observations and our choice m. Gauss

recognized that the characterization should be positive, so that errors of

one sign do not counter errors of the other sign. One choice for the error

between the ith observation and m would then be jYi�mj, but the

absolute value has some mathematical properties that make it hard to

work with. The next simplest choice is (Yi�m)2, and this is what we

settle upon. It is the squared error between a single observation and our

estimate of the unknown parameter. The combined squared errors are

then a function SSQ(m) of the estimate of the unknown parameter,

given the data:

SSQðmÞ ¼
Xn

i¼1

ðY i � mÞ2 (3:74)

and it is sensible to conclude that the best estimate for M is the value of

m that minimizes the sum of squared deviations.

Exercise 3.15 (E)

Show that SSQ(m) is minimized when m is the sample average 1=n
Pn

i¼1 Y i.

Suppose that our first five data points are 6.4694, 5.096, 6.0359,

5.3725, 6.5354. The curve marked n¼ 5 in Figure 3.9 shows SSQ(m)

using these data. Now imagine that we collect another five data points:

6.5529, 5.7963, 3.945, 6.1326, 7.5929. The curve marked n¼ 10 in

Figure 3.9 shows SSQ(m) using all 10 points. Both curves have a

minimum around 6 (which is the true value of M used to simulate the

data). The curve marked n¼ 10 is uniformly higher than that marked
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n¼ 5 and this is to be expected since there are twice as many data points

in the former case. But the curve marked n¼ 10 is also steeper than that

marked n¼ 5: it rises from our best estimate of approximately 6 in a

sharper manner than the curve marked n¼ 5. Based on our experience

with likelihood, and Hudson’s formula (Eq. (3.32)), we would expect

that the steepness should tell us something about the likelihood of

different values of m.

To answer that question, that is to be able to assess the likelihood of

different values of m rather than just find the best estimate, we need to

introduce a statistical model. And what would the simplest model be?

How about this one:

Y i ¼ mþ X i (3:75)

where Xi is N(0, 1). If we accept Eq. (3.75) as the statistical model, then

the sum of squared deviations is the same as
Pn

i¼1 ðX iÞ2.

The sum of the squares of n normally distributed random variables

is a new statistical quantity for us. It is called the chi-square distribution

with n degrees of freedom and has probability distribution function

PðzjnÞ ¼ Prf�2 � zjng ¼ 1

2
n
2� n

2

� � � ðz
0

t
n�2

2 e�
1
2dt (3:76)

Although Eq. (3.76) is complicated, there is nothing in it new to us

(except wondering how this distribution is derived, which is beyond the
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Figure 3.9. The sum of squared

deviations for estimate of an

unknown value M by the data

6.4694, 5.096, 6.0359,

5.3725, 6.5354, 6.5529,

5.7963, 3.945, 6.1326,

7.5929. The curve marked

n¼5 uses only the first

5 values; that marked n¼10

uses all 10 data points.
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scope of the book – and I am sorry that this is an exception to the rule of

self-containment). We can use Eq. (3.76) to associate a probability with

any observed value of SSQ(m). As with the normal distribution, we are

often interested in Q(zjn)¼ 1�P(zjn) since this will give us the prob-

ability of observing a value of �2 greater than z. Many software pro-

grams provide built-in routines for computation of Q(zjn).

Before leaving this simple example, let us consider it from an

explicit likelihood-based perspective. That is, we wish to compute the

likelihood of the data, given a particular value of m. We rely again on

the notion that Xi¼ Yi�m is normally distributed with mean 0 and

variance 1, so that the likelihood is

~LðY 1; Y 2; Y 3; . . . Y njmÞ ¼
Yn

i¼1

1ffiffiffiffiffiffi
2p
p exp �ðY i � mÞ2

2

 !
(3:77)

and the log-likelihood is

LðY 1; Y 2; Y 3; . . . Y njmÞ ¼ �
Xn

i¼1

1

2
logð2pÞ þ ðY i � mÞ2

2
(3:78)

and from these equations, we see that the likelihood is maximized by

making the sum of squared deviations as small as possible. That is, if the

error distribution is normally distributed and the variance is known,

then estimating the mean by maximum likelihood or by minimizing the

sum of squared deviations is exactly the same.

Linear regression, least squares and total least
squares: measurement errors in both x and y

Before moving on, I want to briefly discuss linear regression and least

squares (which most readers are probably familiar with) and total least

squares (probably not). The set up is that we have a set of data consisting

of a set of observations of a putative causative variable X and response

variable Y; the data are thus pairs {Xi,Yi} for i¼ 1, . . ., n. The question is

this: how do we characterize the relationship between X and Y ?

The first possible answer is that there is no relationship between the

two. If we were to write a formal statistical model, a natural choice is

Y i ¼ aþ Zi (3:79)

where the parameter a is to be determined and we assume that Zi is

normally distributed with mean 0 and variance �. We already know that

the maximum likelihood estimate of a is the same as the value that

minimizes the sum of squared deviations
Pn

i¼1 ðY i � aÞ2 and that this

estimate is the same as the sample average. Let us denote that estimate

by â. We can then compute the residual sum of squared errors according
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to
Pn

i¼1 ðY i � âÞ2. This quantity can be thought of as the amount of

variability in the data that is not explained by the model from Eq. (3.79).

Second, we might assume that there is a linear relationship bet-

ween the causative and response variables, so that the formal statistical

model is

Y i ¼ aþ bX iþZi (3:80)

where we now must determine the parameter b – and this is crucial – we

assume that the causative variable Xi is measured with certainty.

Proceeding as before, we can compute either the sum or squared devia-

tions SSQ(a, b) or the log-likelihood L(a, b). They are

SSQða; bÞ ¼
Xn

i¼1

ðY i � a� bX iÞ2

Lða; bÞ ¼ �n logð�Þ þ 1

2
logð2pÞ

	 

� 1

2�2

Xn

i¼1

ðY i � a� bX iÞ2
(3:81)

and we see that once again maximizing the likelihood is the same as

minimizing the sum of squared deviations. To do that, we take the

derivatives of SSQ(a, b) first with respect to a, then with respect to b,

and set them equal to 0, in order to obtain equations for the maximum

likelihood estimates for a and b.

Exercise 3.16 (E/M)

Show that the maximum likelihood estimates for a and b are the solution of the

equations

Pn
i¼1

Y i ¼ nâþ b̂
Pn
i¼1

X i

Pn
i¼1

X iY i ¼ â
P
i¼1

X i þ b̂
Pn
i¼1

X 2
i

(3:82)

and then solve these equations for the maximum likelihood values of the

parameters.

Once we have computed these parameters, the remaining variation,

which is unexplained by the linear model, is
Pn

i¼1 ðY i � â� b̂X iÞ2. We

might then ask if the linear model is an improvement over no model at

all. One way of assessing this is to ask how much the variation is

explained by the linear model, relative to the constant model. The

common way to do that is with the ratio

r2 ¼ 1�

Pn
i¼1

ðY i � â� b̂X iÞ2

Pn
i¼1

ðY i � âÞ2
(3:83)

Linear regression, least squares and total least squares 117

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511819872.005
Downloaded from https://www.cambridge.org/core. Universidad Nacional de Mexico (UNAM), on 25 Mar 2019 at 20:06:54, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511819872.005
https://www.cambridge.org/core


where we understand that the âs in the fraction are different – coming

from minimizing the sum of squares in the linear model (numerator)

or the constant model (denominator). This ratio is the fraction of the

variance explained by the linear model relative to the constant model

and is a handy tool for measuring how much understanding we have

gained from the increase in complexity of the model.

The least squares procedure that we have been discussing is called

ordinary least squares (OLS) and works under the presumption that the

causative variables are measured without error. But often that condition

cannot be guaranteed – we simply cannot measure the Xi accurately.

The general formulation of this problem, in terms of a statistical model,

is very complicated (see Connections) and is called the errors in vari-

ables problem. However, we can discuss an extension of least squares,

called total least squares, to this case. In ordinary least squares

(Figure 3.10) we minimize the vertical distance between the regression

line y¼ aþ bx and the data points (that is, we assume no error in the

measurement of X ). In total least squares, we minimize the actual distance

between the data points and the regression line. That is, we let {xĉi, yĉi}

denote the point on the regression line closest to the data point {Xi, Yi}, and

find it by choosing
Pn

i¼1 ðX i � xĉiÞ2 þ ðY i � yĉiÞ
2

to be a minimum. To

operationalize this idea, we need to find the closest point. The line has

slope b, so that the line segment perpendicular to the regression line will

have slope �1 / b and the equation of the line joining the data and the

closest point is (Yi� yĉi) / (Xi� xĉi)¼� (1 / b). Since we know that the

closest point is on the regression line y¼ aþ bx we conclude that

Y i � ðaþ bxĉiÞ
X i � xĉi

¼ � 1

b
(3:84)

y

x

y = a + bx

Minimize this 
distance = TLS

}{

Minimize this
distance = OLS

Figure 3.10. In ordinary least

squares (OLS) we minimize the

vertical distance between the

regression line y¼aþbx and

the data points. In total least

squares (TLS), we minimize the

actual distance between the

data points and the regression

line.
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and view this as an equation for xĉi. We solve Eq. 3.84 for xĉi and obtain

xĉi ¼
1

ð1þ b2Þ
½X i þ bðY i � aÞ� (3:85)

and then yĉi¼ aþ bxĉi. We thus know the description of the closest

points in terms of the data and the parameters, and can now evaluate the

sum of squares and minimize it over the choice of parameters. For more

details about this, see Connections.

The t-distribution and the second secret of statistics

We now come to the t-distribution, presumably known to most readers

because they have encountered the t-test in an introductory statistics

course. The apocrypha associated with this distribution is fascinating

(Freedman et al. 1998): all agree that W. S. Gossett (1876–1936) worked

for Guiness Brewery, developed the ideas, and published under the name

of ‘‘Student.’’ Whether he did this to keep industrial secrets (Yates 1951)

or because his employers did not want him to be doing such work so that

he tried to keep it secret from them, is part of the legend. According to

Yates (1951), Gossett set out to find the exact distribution of the sample

standard deviation, of the ratio of the mean to the standard deviation, and

of the correlation coefficient. He was trained as a chemist, not a mathe-

matician, and ended up using experiment and curve fitting to obtain the

answers (which R. A. Fisher later proved to be correct).

There are three ways, of increasing complexity, of thinking about the

t-distribution. The first is a simple empirical observation: very often –

especially with ecological data – the normal distribution does not give a

good fit to the data because the tails of the data are ‘‘too high.’’ That is,

there are too many data points with large deviations for the data to be

likely from a normal distribution.

The second is this: whenever we take measurements with error (i.e.

almost always when we take measurements), we need to estimate the

standard deviation of the normal distribution assumed to characterize the

errors. But with a limited number of measurements, it is hard to estimate

the standard deviation accurately. And this is the second secret of statis-

tics: we almost never know the standard deviation of the error distribution.

The third approach is a more formal, mathematical one. To begin,

we note that if Y is normally distributed with mean 0 and variance �2,

then X¼ Y/� will be normally distributed with mean 0 and variance 1.

Now, when we take a series of measurements and compute the squared

deviations, we will end up with a chi-square random variable. If we let

�n
2 denote a chi-square random variable with n degrees of freedom

and X denote a N(0, 1) random variable, then the ratio T ¼ X=�n
2 is
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said to be a Student’s t-random variable with n degrees of freedom. It

has probability density function

f ðtÞ ¼ c 1þ t2

n

� ��nþ1
2

(3:86)

where c is a normalization constant, chosen so that
Ð1
�1 f ðtÞdt ¼ 1.

I have not explicitly written it out because c involves the beta function,

which we have not encountered yet, but will soon.

Since c is a constant, we can learn a bit about f (t) by examining

Eq. (3.86) as a function of t. For example, note that f (t) is symmetrical

because t appears only as a square; thus we conclude that f (�t)¼ f (t)

and from that E{T}¼ 0. Second, recalling the definition of the exponen-

tial function and writing f (t) as f ðtÞ ¼ c 1þ ðt2=nÞ½ ��1=2
1þ ðt2=nÞ½ ��n=2

we conclude that as n!1, f ðtÞ ! ce�t2=2, which is the normal prob-

ability density function. Finally, and this we cannot see from Eq. (3.86)

so you have to take my word for it (and that of Abramowitz and Stegun

(1974), p. 948), Var{T}¼ n/(n� 2), which goes to 1 as n goes to infinity,

but is larger than 1. Clearly, we need n> 2 for the variance to be

defined; the t-distribution with one degree of freedom is also known

as the Cauchy distribution. In Figure 3.11 I show the t-distribution for

n = 10

n = 4

t

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
0–4 –3 –2 –1 1 2 3 4

f (
t)

Figure 3.11. The t-distribution

with n¼4 or n¼10 degrees of

freedom. Note that the shape is

normal-like, but that the tails

are ‘‘fatter’’ when n¼4.

120 Probability and some statistics

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511819872.005
Downloaded from https://www.cambridge.org/core. Universidad Nacional de Mexico (UNAM), on 25 Mar 2019 at 20:06:54, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511819872.005
https://www.cambridge.org/core


n¼ 4 and n¼ 10. The key features to see from this graph are the normal-

like shape and the difference in the tails of the distribution.

Freedman et al. (1998) offer a decision tree (reproduced in

Figure 3.12) that can guide one’s thinking about when to characterize

the data using the normal distribution, the t-distribution, some other

probability distribution, or going for professional counseling.

The log-normal distribution and non-negative
measurements

We are still not done with the normal distribution and its variants,

because very often we take measurements that can only have positive

values. Thus our very first, and simplest model, in Eq. (3.75),

Yi¼mþXi where m is fixed but unknown and Xi are N(0, 1), will fail

when the observed values are required by biological or physical law to

be positive (e.g. masses, lengths, or gene frequencies).

The way to avoid breaking natural law is to use the log-normal

distribution, which we construct as follows. First, note that if

Figure 3.12. The decision tree

recommended by Freedman

et al. (1998) for deciding when

to use the normal distribution,

the t-distribution, another

distribution, or go for help.

Here a ‘‘large’’ amount of

current data means upwards of

25 measurements or so.

Reprinted with permission.
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X�N(0, 1), then � X will be normally distributed with mean 0 and

variance �2. We then define a new random variable Y by

Y ¼ Ae�X (3:87)

so that log(Y ) is normally distributed with mean log(A) and variance �2.

Now, although X takes values from�1 to1, the exponential will only

take values from 0 upwards. Thus, although E{X}¼ 0, we conclude that

E{Y}>A. As it happens, we can compute all of the moments for Y in

one calculation, which is pretty snazzy. That is, let us consider

EfY ng ¼ EðAnen�X Þ ¼ AnEðen�X Þ (3:88)

so that we have to compute

Eðen�X Þ ¼ 1ffiffiffiffiffiffi
2p
p

ð1
�1

expðn�xÞ exp � 1

2
x2

� �
dx

¼ 1ffiffiffiffiffiffi
2p
p

ð1
�1

exp � 1

2
x2 þ n�x

� �
dx

(3:89)

We now use a technique from high school algebra, completing the

square, by recognizing that

1

2
x2 � n�x ¼ 1

2
½x2 � 2n�x� ¼ 1

2
½ðx� n�Þ2 � n2�2� (3:90)

and using Eq. (3.90) in Eq. (3.89), we have

Eðen�X Þ ¼ 1ffiffiffiffiffiffi
2p
p

ð1
�1

exp � 1

2
ðx� n�Þ2 þ n2�2

2

� �
dx ¼ exp

n2�2

2

� �
(3:91)

and we have thus shown that if Y is defined by Eq. (3.87), then

E{Y n}¼Anexp(n2�2/2), from which we can compute the mean and

the variance.

This calculation also suggests that if we want to create a log-

normally distributed random variable with a specified mean A, rather

than using Eq. (3.87), we should use the definition

Y ¼ Aexp �X � 1

2
�2

� �
(3:92)

Exercise 3.17 (E)

Show that if Y is defined by Eq. (3.92) then E{Y}¼A and

VarfAg ¼ A2ðe�2 � 1Þ. Note that these two relationships will be sufficient to

find A and � so that we can construct a log-normally distributed random

variable with any mean and variance desired.

122 Probability and some statistics

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511819872.005
Downloaded from https://www.cambridge.org/core. Universidad Nacional de Mexico (UNAM), on 25 Mar 2019 at 20:06:54, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511819872.005
https://www.cambridge.org/core


The beta density and patch leaving

Recall the end of our discussion about the binomial distribution: that if

we had data of only k successes, then the maximum likelihood estimates

for N and p are N¼ k and p¼ 1, but these are just plain silly. We will

now show how to get around this problem by using the beta probability

density. This probability density will be defined below, but first let’s

examine a slightly different motivation for the beta density, based on a

question in foraging theory.

Imagine a forager moving in a patchy environment, seeking food

that comes in discrete units, such as seeds. This same example also

applies to a foraging parasitoid, seeking hosts in which to place its eggs;

we will d iscus s para sitoids i n g reat deta il in the nex t ch apte r. Whe n t he

forager enters a new patch, the probability of finding food, P, will be

unknown, although there might be a prior distribution for it, perhaps

described by the environmental average or the forager’s history until now.

In the current patch, the forager collects data that consist of having

found S¼ s items in A¼ a attempts at finding food. Clearly, the natural

estimate of P is s/a. If P¼ p were known, the probability of the data

(s, a) is given by the binomial distribution

Prfðs; aÞjpg ¼ a

s

� �
psð1� pÞa�s (3:93)

We now ask: ‘‘given the data (s, a), what can be said about P?’’. That is,

we want to know the probability that P falls in the interval [p, pþ dp]

given the data (s, a) of s successes in a attempts at finding food. We

followed a similar line of reasoning when discussing the Poisson pro-

cess in which the rate parameter was unknown. Recall that the idea is we

begin with a prior probability density for the unknown parameter and

use the data and Bayes’s Theorem to update the prior and construct the

posterior probability density for the parameter, given the data.

If we denote the prior by f0(p) with the interpretation that

f0( p)dp¼ Pr{ p�P� pþ dp}, the posterior distribution is computed

from Bayes’s Theorem

f ð pjdataÞdp ¼ Prfp � P � pþ dp; datag
Prfdatag ¼ Prfdatajpgf 0ðpÞdp

Prfdatag (3:94)

Using Eq. (3.93) and dividing by dp gives

f ð pjðs; aÞÞ ¼

a

s

� �
psð1� pÞa�s

f 0ðpÞ

ð1
0

a

s

� �
psð1� pÞa�s

f 0ðpÞdp

(3:95)
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As before, we need to pick a choice for the prior before we can go any

further. The classical answer to this choice is to use the beta density with

parameters � and �, defined according to

f 0ðpÞ ¼
�ð�þ �Þ
�ð�Þ�ð�Þ p

��1ð1� pÞ��1 (3:96)

The reason for this choice will become clear momentarily. Just a

few details about it. First, the beta function B(�, �) is defined

by Bð�; �Þ ¼
Ð 1

0
p��1ð1� pÞ��1dp, so that

f 0ðPÞ ¼ ½1=Bð�; �Þ�p��1ð1� pÞ��1

(which also tells us how to relate the beta and gamma functions).

Second, the mean and variance of P are given by

EfPg ¼ �

�þ � VarfPg ¼ ��

ð�þ �Þ2ð�þ � þ 1Þ
(3:97)

Third, the shape of the beta density varies according to the choices of

the parameters (Figure 3.13). Fourth (Abramowitz and Stegun 1974,

p. 944), if �2
1 and �2

2 are chi-squared random variables with �1 and �2

degrees of freedom respectively, then the ratio �2
1=ð�2

1 þ �2
2Þ has a beta

probability density with parameters �¼ v1/2 and �¼ v1/2.

Why pick the beta probability density? The following exercise

should answer the question.

Exercise 3.18 (E/M)

Show that if f0(p) is a beta probability density with parameters � and � and that

the data are s successful searches in a attempts, then the posterior probability

density for P obtained from Eq. (3.96) is also a beta density, with updated

parameters �þ s and �þ a� s. Clark and Mangel (2000) provide further

elaborations of how this updating result can be used in the prediction of patch

leaving rules.

We close with one more consideration of that pesky problem of

estimation of N and p for the binomial distribution, given k successes.

If we assume that N is uniformly distributed (see Raftery (1988) for the

case where N has a Poisson prior), that p has a beta density with

parameters � and � and that the probability of k events is binomially

distributed given p and N, then the posterior distribution for N and p,

found in a manner analogous to Eq. (3.97) is proportional to
n

k

� �
pkþ��1ð1� pÞN�kþ��1

, which is nice and well behaved (e.g. we

can find sensible maximum posterior estimates for both N and p, but we

won’t do that here – on to parasitoids!).
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Connections

Thomas Bayes and the frequentist–Bayesian
debate in statistics

The two main approaches to statistical analysis are called frequentist

(usually associated with R. A. Fisher and Jerzy Neyman) and Bayesian

(associated with the Reverend Thomas Bayes). Fisher is well known to

biologists because of his work on genetics (Hotelling (1951) gives an

interesting perspective of 50 years ago, which was then 25 years after

the publication of Fisher’s book on statistical methods for scientists);
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Figure 3.13. The beta probability density with mean 1/2 can be U-shaped (�¼ �¼0.8, panel a), flat (�¼�¼1,

panel b), bell-shaped (�¼�¼2, panel c) or peaked and asymmetrical (�¼4, �¼2, panel d).

Connections 125

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511819872.005
Downloaded from https://www.cambridge.org/core. Universidad Nacional de Mexico (UNAM), on 25 Mar 2019 at 20:06:54, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511819872.005
https://www.cambridge.org/core


Bayes is less well known to biologists, but is becoming more so. Bayes

was a British minister born in 1702. His essay on ‘‘solving a problem in

the doctrine of chances’’ was published posthumously and is generally

hard to get, so it was republished in 1958 by Biometrika, with a nice

historical introduction (Barnard and Bayes 1958). Frequentist and

Bayesian statistics differ in both operational (how one does certain

kinds of calculations) and philosophical (what exactly one is trying to

accomplish) aspects. It is impossible to review the issues here in any

comprehensive manner; the articles by Suter (1996), Ludwig et al.

(2001) and Ellison (1996, 2004) and the book by Taper and Lele (2004)

point out the variety of issues and towards the primary literature. Here,

we shall briefly focus on just one question that allows us to see the

difference. When dealing with any kind of statistics, we have both data

(D) and hypotheses (H). The approach of classical, frequentist statistics,

is to ask questions about the probability of the data, given a hypothesis.

That is, formally we compute Pr{DjH}. For example, a standard

hypothesis test (with a 5% significance value) asks: what is the prob-

ability of obtaining these or more extreme data, given that the hypo-

thesis is true? If this probability is less than 5%, then the hypothesis is

rejected (the choice of 5% is arbitrary, but now more or less accepted).

The alternative approach is to ask what kind of support the data provide

for the hypothesis. Formally, we compute Pr{HjD}. The big problem is

that in general Pr{DjH} 6¼ Pr{HjD} so that testing a statistical hypo-

thesis often does not give us what we need for scientific understanding.

This difficulty has been recognized for a long time (Yates 1951, Royall

1997) but it is only with modern computing that application of the

Bayesian approach in general has become practicable. (Another way

to think about the difference is that frequentists believe that unknown

parameters are fixed and real and that the data are drawn from a

distribution of possible observations while Bayesians believe that the

data are real and that the unknown parameters are drawn from a

distribution.) The second difference between frequentist and Bayesian

statistics is how we deal with prior information. In many problems

arising in ecology or evolutionary biology, we have such prior informa-

tion. For example, when managing a fish stock, we may know life

history information for similar stocks or the same species elsewhere;

when computing an evolutionary tree, we may know something about

the relationships between different species in the tree. Bayesian statis-

tics provides a consistent means for dealing with this prior information,

while frequentist statistics does not. A general introduction to the

Bayesian approach is the book by DeGroot (1970); while old, is still a

great read and one of the classic texts in the field. Efron (2005) offers a

view for the twentyfirst century. Bayesian approaches are now used
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extensively in phylogeny and evolutionary biology (Huelsenbeck and

Ronquist 2001, Huelsenbeck et al. 2001) and in fishery management

(McAllister et al. 1994, McAllister and Kirkwood 1998a, b, 1999,

McAllister et al. 2001).

More about likelihood

Likelihood underlies both frequentist and Bayesian approaches to sta-

tistics. The books by Edwards (1992) and Royall (1997) are key sources

that belong on one’s shelf. Here, I want to make one general connection

to what we have done already. Suppose that we have data Xi, i¼ 1, 2, . . .

n, from a probability density function f(x, p) where p is a parameter to be

estimated from the data. The likelihood of the parameter given the

data is then ~Lð pjfX igÞ ¼
Qn

i¼1 f ðX ijpÞ and the log-likelihood is

LðpjfXigÞ ¼
Pn

i¼1 logð f ðXijpÞÞ. Suppose that we find the maximum

likelihood estimate of the parameter in the usual way by setting the

derivative of the log-likelihood with respect to p equal to 0 and solving

for p. We then obtain a maximum likelihood estimate for the parameter

that depends upon the data. If one Taylor expands around the maximum

likelihood estimate, keeping only the first two terms, the result is a

quadratic – reminding us of the sum of squared deviations and the

Gaussian likelihood. This is the reason that ‘‘asymptotic normal theory’’

is such a powerful statistical tool – for most cases when there is a

considerable amount of data a normal approximation can prevail

because of the Taylor expansion.

The gamma and beta functions

The gamma function is one of the classical functions used in applied

mathematics. If you don’t yet own it, Abramowitz and Stegun (1974) is

a very good investment (it is also coming to the web someday soon); it

will stand by you for man y years. In Chapte r 6 there is all about the

gamma function and its close relatives. These special functions often

arise in the solution of different kinds of ordinary or partial differential

equations. One should learn to think about them in the same way that

one thinks about the simpler functions such as log, exp, or the trigono-

metric functions.

Mean-variance power laws

In the ecological literature, the mean-variance power laws are most

often associated with the name L. R. Taylor, who popularized them in
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the study of the spatial distributions of insect populations. His 1984

review (Taylor 1984) is still well worth reading, as are the series of

papers published in the late 1970s and early 1980s (Taylor et al. 1978,

1979, 1980). The general ideas have a rich and long history in applied

mathematical statistics (Greenwood and Yule 1920, Anscombe 1950).

A generally used diagnostic for a mean variance power law is to use a

log–log plot (variance of the data versus the mean of the data). In

Figure 3.14 I show an example of such a diagnostic plot.

Conjugate priors; non-informative priors

The gamma density as a prior for the Poisson parameter or the beta

density as the prior for the binomial parameter are called conjugate

priors. The meaning is this: we begin with a density (say the gamma),

collect data (from a Poisson process), and update using Bayes’s theorem

to end with a posterior that is also the same type of density, but with

changed parameters. We say that the density is ‘‘closed’’ during updat-

ing. When computation was very difficult to do, conjugate priors played

a key and important role in Bayesian analysis because they allowed
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Figure 3.14. The diagnostic for

a mean-variance power law is a

log–log plot of variance versus

mean, as shown here for some

groundfish survey data from

the West Coast of North

America (with thanks to

E. J. Dick). When the slope is 2,

the diagnostic suggests

gamma/negative binomial

models may be appropriate.
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operational implementation of the Bayesian approach. Modern com-

putational methods allow us to operationalize Bayesian approaches

without resort to conjugate priors. Another common prior used in

Bayesian analysis is called the non-informative prior. The rough idea

with these is that one chooses the prior so that the location but not

the shape of the posterior is changed by the data; this is not the same

as choosing a uniform prior. A simple illustration of these differences

is provided by Mangel and Beder (1985). For more general details,

I suggest any of Martz and Waller (1982), Leonard and Hsu (1999), or

Congdon (2001).

Asymptotic expansions

The calculation that we did for normal cumulative distribution function

when x was large is an example of an asymptotic expansion, in which

one exploits the largeness (or smallness, since then the reciprocal will

be large) of a variable or parameter to obtain approximations to the

solution of an equation or evaluation of an integral. This is a standard

tool in classical applied mathematics (see, for example, de Bruijn

(1981), Bleistein and Handelsman (1975), Bender and Orszag (1978),

or Lin and Segel (1988 (1974))). As shown with our simple example,

such expansions can be very powerful and give intuition about much

more complicated quantities. We will use asymptotic expansions in our

study of stochastic population theory in Chapter 8.

Testing your methods with simulated data
and then some of the real data

The analysis of models is pretty much a science, but the development of

models is an art. There has grown up a large literature concerning

‘‘model validation,’’ which generally intends that one tests or validates

the model by comparison with the data. Here, I offer three suggestions

about testing a model that you have developed (also see Mangel et al.

(2001)). First, always try to test the assumptions that go into the model

independent of the predictions of the model. Second, always test your

model or method with simulated data in which you know exactly what is

happening. If the method does not work on simulated data, it is almost

surely not going to work on real data. Third, set aside some of your data

at the beginning of an analysis. Estimate parameters with the remainder

and then use the set-aside data as a means of testing the predictions of

the method. Hilborn and Mangel (1997) discuss model size and model

validation in more detail.
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Total least squares and errors in variables

Schnute (1993) explains how one can construct likelihood models when

both the independent and dependent variable are measured with error.

The key to these approaches is to assume that one knows the ratio of

the variance of X to the variance in Y. Ludwig (1999) applies this

approach to questions of extinction times (a topic that we shall visit

in Chapter 8).

Using the t-distribution in ecological models and Bayesian
updating of the parameter

Our simplest statistical model involving a normal random variable was

Y¼mþX, where m is unknown and to be estimated and X was a

normally distributed random variable. A more complicated version, in

which Y is constrained to be positive, is log(Y )¼ log(m)þX. However,

ecological or evolutionary data are often non-normal, with tails that are

fatter than normal. This suggests that we might work with the model

Y¼mþ T�, where T� is a random variable following a t-distribution

with � degrees of freedom. (Alternatively, of course, we might work

with log(Y )¼ log(m)þ T�.) Carpenter et al. (1999) used such an

approach in development of a model for the eutrophication of a lake.

Furthermore, we know that as �!1, T�!X, so that by applying

Bayesian methods, we can allow the data to tell us the kind of error

distribution to use (see Gelman et al. (1995) pp. 350–361).

Model selection via likelihood ratio, AIC and BIC

In ecology and evolutionary biology, we often do not know the pre-

cisely correct form of the model to use for a situation. (This differs, for

example, from classical mechanics, which often gives rise to physics

envy in biologists, but only slightly – see the Epilogue in Mangel and

Clark (1988)). It is thus worthwhile to have a variety of models and

allow the data to arbitrate among them.

As an example, suppose that we are interested in a species accumu-

lation curve that relates the number of species to the number of indivi-

duals in a sample. We might construct a wide variety of models (Flather

1996, Burnham and Anderson 1998) all of the fundamental form

Sj¼ f (Ij)þXj, where S, I, and X are respectively the number of species

in a sample, the number of individuals in a sample and a normally

distributed random variable with mean 0 and unknown variance (which

is one parameter that we need to estimate). In this case, the model is

f (I); some candidates with the number of parameters (which is 1, for the
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variance, plus the number of parameters in the functional form) are

shown in the following table.

Form of f(I) Number of parameters

aIb 3

aþ blog(I) 3

aI / (bþ I) 3

a(1� exp(� bI)) 3

a� bcI 4

(aþ bI) / (1þ cI) 4

a(1� exp(� bI))c 4

a(1� [1þ cId]� b) 5

It is silly to think that one of these models is ‘‘right’’ or ‘‘true’’ –

they are all approximations to nature. It is not silly, however, to expect

that some of these models will be better descriptions of nature than

others. Also that some of these models are nested, in the sense that one

can obtain one of the models from another by setting a parameter equal

to 0. Other of these models are not nested at all because there is no way

to travel between them by eliminating parameters. When models are

nested, the appropriate way to compare them is to use the likelihood

ratio test (Kendall and Stuart 1979). When the models are not nested,

the Aikaike Information Criterion or one of its extensions (Burnham

and Anderson 1998) is the appropriate tool to use. The AIC, and its

various extensions, is built from the maximized log-likelihood, given

the data, and the number of parameters in the model. The basic AIC is

given by AIC ¼ �2 logfLðp̂jX Þg þ 2K, where p̂ is the MLE estimate of

the parameters given the data X, and K is the number of parameters. One

minimizes the AIC across the choice of models. The choice of mini-

mizing AIC, rather than maximizing �AIC, and the use of 2 in the

definition are both the results of history. Burnham and Anderson (1998)

recommend the use of AIC differences defined by �i¼AICi�min AIC,

where AICi is the AIC for model i and min AIC is the minimum AIC,

over the different models. They suggest that models for which the

difference is less than about 2 have substantial support from the data,

those with differences in the range 4–7 have considerably less support,

and those with differences greater than 10 have essentially no support

and can be omitted from future consideration. Furthermore, it is possi-

ble to compute AIC weights from the differences of AIC values accord-

ing to the formula wi ¼ expð��iÞ=
Pm

j�1 expð��jÞ, where m is the

number of models. Note that if we ignored the number of parameters,
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the weight would simply be a measure of the relative likelihoods, as if

we were doing a Bayesian calculation in which each model had the

same prior probability. There is, in fact, a Bayesian viewpoint for the

information criterion, called the Bayesian Information Criterion (BIC)

in which one assumes equal prior probability for the different models

and very broad prior distributions for the parameters (Schwarz 1978,

Burnham and Anderson 1998, p. 68). This information criterion is

BIC ¼ �2 logfLðp̂jX Þg þ K logðNÞ, where N is the number of data

points. There is also a correction for the AIC when the number of

parameters is comparable to the number of data points (also see

Burnham and Anderson). Burnham and Anderson (1998) is a volume

well worth owning. The use of AIC or its extension is becoming popular

in the ecological literature as a means of selecting the best of disparate

models (Morris et al. 1995, Klein et al. 2003).
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Chapter 4

The evolutionary ecology of parasitoids

Insect parasitoids – those insects that deposit their eggs on or in the

eggs, larvae or adults of other insects and whose offspring use the

resources of those hosts to fuel development – provide a rich area of

study for theoretical and mathematical biology. They also provide a

broad collection of examples of how the tools developed in the pre-

vious chapters can be used (and they are some of my personally

favorite study species; the pictures shown in Figure 4.1 should help

you see why).

There is also a rich body of experimental and theoretical work on

parasitoids, some of which I will point you towards as we discuss

different questions. The excellent books by Godfray (1994), Hassell

(2000a), and Hochberg and Ives (2000) contain elaborations of some of

the material that we consider. These are well worth owning. Hassell

(2000b), which is available at JSTOR, should also be in everyone’s

library.

It is helpful to think about a dichotomous classification scheme for

parasitoids using population, behavioral, and physiological criteria

(Figure 4.2). First, parasitoids may have one generation (univoltine)

or more than one generation (multivoltine) per calendar year. Second,

females may lay one egg (solitary) or more than one egg (gregarious)

in hosts. Third, females may be born with essentially all of their eggs

(pro-ovigenic) or may mature eggs (synovigenic) throughout their

lives (Flanders 1950, Heimpel and Rosenheim 1998, Jervis et al.

2001). Each dichotomous choice leads to a different kind of life

history.
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(a) (b)

(c) (d)

(e)

Figure 4.1. Some insect parasitoids and insects that have life histories that are similar to parasitoids. (a) Halticoptera

rosae, parasitoid of the rose hip fly Rhagoletis basiola, (b) Aphytis lingannensis, parasitoid of scale insects, and

(c) Leptopilinia heterotoma, parasitoid of Drosophila subobscura. (d, e) Tephritid (true) fruit flies have life styles that are

parasitoid-like: adults are free living, but lay their eggs in healthy fruit. The larvae use the resources of the fruit for

development, then drill a hole out of the fruit and burrow into the ground for pupation. Here I show a female rose

hip fly R. basiola (d) ovipositing, and two males of the walnut husk fly R. compleata (e) fighting for an oviposition site

(the successful male will then try to mate with females when they come to use the oviposition site). The black trail

under the skin of the walnut is the result of a larva crawling about and creating damage between the husk and the

shell as it uses the resource of the fruit.
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The Nicholson–Bailey model and its generalizations

The starting point for our (and most other) analysis of host–parasitoid

dynamics is the Nicholson–Bailey model (Nicholson 1933, Nicholson and

Bailey 1935) for a solitary univoltine parasitoid. We envision that hosts are

also univoltine, in a season of unit length, in which time is measured

discretely and in which H(t) and P(t) denote the host and parasitoid popula-

tions at the start of season t. Each host that survives to the end of the season

produces R hosts next year. The parasitoids search randomly for hosts, with

search parameter a, so that the probability that a single host escapes parasit-

ism from a single parasitoid is e�a. Thus, the probability that a host escapes

parasitism when there are P(t) parasitoids present at the start of the season is

e�aP(t). These absolutely sensible assumptions lead to the dynamical system

Hðt þ 1Þ ¼ RHðtÞe�aPðtÞ

Pðt þ 1Þ ¼ HðtÞð1� e�aPðtÞÞ
(4:1)

Note that in this case the only regulation of the host population is by the

parasitoi d. Hassell ( 2000a , Table 2.1) gives a list of 11 other sensi ble

assumptions that lead to different formulations of the dynamics.

The first question we might ask concerns the steady state of Eq. (4.1),

obtained by assuming that H(tþ 1)¼H(t) and P(tþ 1)¼P(t). These are

easy to find.

Exercise 4.1 (E)

Show that the steady states of Eqs. (4.1) are

�P ¼ 1

a
logðRÞ �H ¼ R

aðR� 1Þ logðRÞ (4:2)

(a) Generations per year:

(c)  Egg production after emergence:

(b) Eggs per host:

Univoltine

Multivoltine

Pro-ovigenic
Synovigenic

(d) Combining the characteristics:

Multivoltine

Univoltine

Solitary
Gregarious Synovigenic

Pro-ovigenic

Gregarious
Solitary

=0
>0

>1
1

1

>1

Figure 4.2. A method of

classifying parasitoid life

histories according to

population, behavioral and

physiological criteria.
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which shows that R> 1 is required for a steady state (as it must be) and that

higher values of the search effectiveness reduce both host and parasitoid steady

state values.

The sad fact, however, is that this perfectly sensible model gives

perfectly nonsensical predictions when the equations are iterated forward

(Figure 4.3): regardless of parameters, the model predicts increasingly

wild oscillations of population size until either the parasitoid becomes

extinct, after which the host population is not regulated, or both host and

parasitoid become extinct. To be sure, this sometimes happens in nature,

usually this is not the situation. Instead, hosts and parasitoids coexist with

either relative stable cycles or a stable equilibrium.

In a situation such as this one, one can either give up on the theory or

try to fix it. My grade 7 PE teacher, Coach Melvin Edwards, taught us

that ‘‘quitters never win and winners never quit,’’ so we are not going to

give up on the theory, but we are going to fix it. The plan is this: for the

rest of this section, we shall explore the origins of the problem. In the

next section, we shall fix it.

As a warm-up, let us consider a discrete-time dynamical system of

the form

Nðt þ 1Þ ¼ f ðNðtÞÞ (4:3)

where f (N) is assumed to be shaped as in Figure 4.4, so that there is a

steady state �N defined by the condition �N ¼ f ð �NÞ. To study the stability

of this steady state, we write NðtÞ ¼ �N þ nðtÞ where n(t), the perturba-

tion from the steady state, is assumed to start off small, so that

jnð0Þj� �N . We then evaluate the dynamics of n(t) from Eq. (4.3) by

Taylor expansion of the right hand side keeping only the linear term

�N þ nðt þ 1Þ ¼ f ð �N þ nðtÞÞ � f ð �NÞ þ df

dN

����
�N

nðtÞ (4:4)

Figure 4.3. Although the Nicholson–Bailey model seems to be built on quite sensible assumptions, its predictions are

that host and parasitoid population sizes will oscillate wildly until either the parasitoids become extinct (panel a,

H(1)¼25, P(1)¼8, R¼2 and a¼0.06) and the host population then grows without bound, or the hosts become

extinct (panel b, H(1)¼25, P(1)¼8, R¼1.8 and a¼0.06), after which the parasitoids must become extinct. (c) Some

host–parasitoid systems exhibit this kind of behavior. On the left hand side, I show the population dynamics

of the bruchid beetle Callosobruchus chinesis in the absence of a parasitoid (note that this really cannot match

the assumptions of the Nicholson–Bailey model, because there is regulation of the population in the absence

of the parasitoid); on the right hand side, I show the beetle and its parasitoid Anisopteromalus calandre. In this case, the

cycles are indeed very short. (d) On the other hand, many host–parasitoid systems do not exhibit wild oscillations and

extinction. Here I show the dynamics of laboratory populations of Drosophila subobscura and its parasitoid Asobara

tabida. The data for panels (c) and (d) are compliments of Dr. Michael Bonsall, University of Oxford. Also see Bonsall

and Hastings (2004).

45
ο

N

N

f (N )

N

Figure 4.4. The stability of the

steady state of the one

dimensional dynamical system

N(tþ1)¼ f(N(t)) is determined

by the derivative of f(N)

evaluated at the steady state �N.
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Since �N ¼ f ð �NÞ and setting f N ¼ df =dN j �N we conclude that n(t)

approximately satisfies

nðt þ 1Þ ¼ f N nðtÞ (4:5)

and we conclude that the steady state will be stable, in the sense that

perturbations from it decay, if j f N ð �NÞj51.

Exercise 4.2 (E)

For more practice determining when a steady state is stable, do the computation

for the discrete Ricker map

Nðt þ 1Þ ¼ NðtÞexp r 1� NðtÞ
K

� �� �

and show that the condition is |1� r|< 1, or 0< r< 2.

But we have a two dimensional dynamical system. Since what

follows is going to be a lot of work, we will do the analysis for the

more general host–parasitoid dynamics. Basically, we do for the steady

state of a two dimensional discrete dynamical system the same kind of

analysis that we did for the two dimensional system of ordinary differ-

ential equations in Chapter 2. Because the procedure is similar, I will

move along slightly faster (that is, skip a few more steps) than we did in

Chapter 2. Our starting point is

Hðt þ 1Þ ¼ RHðtÞ f ðHðtÞ;PðtÞÞ
Pðt þ 1Þ ¼ HðtÞð1� f ðHðtÞ;PðtÞÞÞ

(4:6)

which we assume has a steady state ð �H ; �PÞ. We now assume that

HðtÞ ¼ �H þ hðtÞ and PðtÞ ¼ �Pþ pðtÞ, substitute back into Eq. (4.6),

Taylor expand keeping only linear terms and use o(h(t), p(t)) to repre-

sent terms that are higher order in h(t), p(t), or their product to obtain

�H þ hðt þ 1Þ ¼ Rð �H þ hðtÞÞ½ f ð �H ; �PÞ þ f H hðtÞ þ f PpðtÞ� þ oðhðtÞ; pðtÞÞ
�Pþ pðt þ 1Þ ¼ ð �H þ hðtÞÞ½1� f ð �H ; �PÞ � f H hðtÞ � f PpðtÞ� þ oðhðtÞ; pðtÞÞ

(4:7)

where f H ¼ ðq=qHÞf ðH ;PÞjð �H ; �PÞ and fP is defined analogously.

Now, from the definition of the steady states we know that
�H ¼ R �Hf ð �H ; �PÞ, which also means that Rf ð �H ; �PÞ ¼ 1, and that
�P ¼ �Hð1� f ð �H ; �PÞÞ. We now use these last observations concerning

the steady state as we multiply through, collect terms, and simplify

to obtain
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hðt þ 1Þ ¼ hðtÞð1þ R �Hf H Þ þ R �Hf PpðtÞ þ oðhðtÞ; pðtÞÞ
pðt þ 1Þ ¼ hðtÞ 1� ð1=RÞ � �Hf Hð Þ � �Hf PpðtÞ þ oðhðtÞ; pðtÞÞ

(4:8)

Unless you are really smart (probably too smart to find this book of any

use to you), these equations should not be immediately obvious. On the

other hand, you should be able to derive them from Eqs. (4.7), with the

intermediate clues about properties of the steady states in about 3–4

lines of analysis for each line in Eqs. (4.8). If we ignore all but the linear

terms in Eqs. (4.8) we have the linear system

hðt þ 1Þ ¼ ahðtÞ þ bpðtÞ
pðt þ 1Þ ¼ chðtÞ þ dpðtÞ

(4:9)

with the coefficients a, b, c, and d suitably defined; as before, we can

show that this is the same as the single equation

hðt þ 2Þ ¼ ðaþ dÞhðt þ 1Þ þ ðbc� adÞhðtÞ (4:10)

by writing h(tþ 2)¼ ah(tþ 1)þ bp(tþ 1), p(tþ 1)¼ ch(t)þ dp(t)¼
ch(t)þ (d/b)(h(tþ 1)� ah(t)) and simplifying. (Once again you should

not necessarily see how to do this in your head, but writing it out should

make things obvious quickly.) If we now assume that h(t)� lt (there is

actually a constant in front of the right hand side, as in Chapter 2, but

also as before it cancels), we obtain a quadratic equation for l:

l2 � ðaþ dÞlþ ad � bc ¼ 0 (4:11)

which I am going to write as l2� �lþ �¼ 0 with the obvious identi-

fication of the coefficients. Also as before, Eq. (4.11) will have two

roots, which we will denote by l1 ¼ ð�=2Þ þ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 4�

p
=2Þ and

l2 ¼ ð�=2Þ � ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 4�

p
=2Þ. The steady state will be stable if pertur-

bations from the steady state become smaller in time, this requires that

|l1,2|< 1. We will now find conditions on the coefficients that makes

this true. The analysis which we do follows Edelstein-Keshet (1988),

who attributes it to May (1974). We will do the analysis for the case in

which the eigenvalues are real (i.e. for which �2� 4�); this is our first

condition. Figure 4.5 will be helpful in this analysis. The parabola

l2� �lþ � has a minimum at �/2, and because we require

�1< l2<�/2< l1< 1 we know that one condition for stability is that

|�/2|< 1, so that |�|< 2. The parabola is symmetric around the mini-

mum. Now, if the roots lie between –1 and 1, the distance between the

minimum and either root, which I have called D1, must be smaller than

the distance between the minimum and –1 or 1, depending upon
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whichever is closer. Thus, for example, for the situation in Figure 4.5 we

must have 1� �=2j j >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 4�

p
=2; if we square both sides of this

expression the condition becomes 1� |�|þ (�2/4)> (�2/4)� � and this

simplifies to 1þ � > |�|. Our first condition was �2� 4� and we have

agreed that |�|< 2 so that �2< 4. Therefore, 4>�2� 4�, so that 1>�

or 2> 1þ �. When we combine the two conditions, we obtain the

criterion for stability that (Edelstein-Keshet 1988)

2 > 1þ � > j�j (4:12)

Hassell (2000a) gives (his Eqs. (2.2), (2.3)) the application of this

condition to the general Eqs. (4.6).

In the case of Nicholson–Bailey dynamics, f (H, P)¼ exp(�aP), so

that fH¼ 0 and fP¼�aexp(�aP); these need to be evaluated at the

steady states and the coefficients a, b, c, and d in Eq. (4.9) evaluated

so that we can then determine � and �.

Exercise 4.3 (M/H)

For Nicholson–Bailey dynamics show that �¼ 1þ [log(R)/(R� 1)] and that

�¼Rlog(R)/(R� 1). Then show that since R> 1, 1þ � >�. However, also

show that 1þ � > 2 by showing that � > 1 (to do this, consider the function

g(R)¼Rlog(R)�Rþ 1 for which g(1)¼ 0 and show that g0(R)> 0 for R> 1)

thus violating the condition in Eq. (4.12), and thus conclude that the Nicholson–

Bailey dynamics are always unstable.

What biological intuition underlies the instability of the

Nicholson–Bailey model? There are two answers. First, the per capita

search rate of the parasitoids is independent of population size of

parasitoids (which are likely to experience interference when popula-

tion is high). Second, there is no refuge for hosts at low density – the

fraction of hosts killed depends only upon the parasitoids and is

independent of the number of hosts. We now explore ways of stabiliz-

ing the Nicholson–Bailey model.

–1 0λ λ 1

β
2

D2

y = λ  – βλ + γ

D1

_ +

Figure 4.5. The construction

needed to determined when

the solutions of the equation

l2��lþ �¼0 have absolute

values less than 1, so that the

linearized system in Eq. (4.9)

has a stable steady state.
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Stabilization of the Nicholson–Bailey model

I now describe two methods that are used to stabilize Nicholson–Bailey

population dynamics, in the sense that the unbounded oscillations dis-

appear. Note that we implicitly define that a system that oscillates but

stays within bounds is stable (Murdoch, 1994). The methods of stabili-

zation rely on variation and refuges.

Variation in attack rate

The classic (Anderson and May 1978) means of stabilizing the

Nicholson–Bailey model is to recognize that not all hosts are equally

susceptible to attack, for one reason or another. To account for this

variability, we replace the attack rate a by a random variable A, with

E{A}¼ a, so that the fraction of hosts escaping attack is exp(�AP).

However, to maintain a deterministic model, we average over the

distribution of A; formally Eq. (4.1) becomes

Hðt þ 1Þ ¼ RHðtÞEAfe�APðtÞg
Pðt þ 1Þ ¼ HðtÞð1� EAfe�APðtÞgÞ

(4:13)

where EA{ } denotes the average over the distribution of A. For the

distribution of A, we choose a gamma density with parameters � and k.

We then know from Chapter 3 that the resulting average of exp(�AP(t))

will be the zero term of a negative binomial distribution, so that

EAfe�APðtÞg ¼ �

�þ P

� �k

(4:14)

Since the mean of a gamma density with parameters � and k is k/�, it

would be sensible for this to be the average value of the attack rate so

that a¼ k/�; we choose �¼ k/a. We then multiply top and bottom of

the right hand side of Eq. (4.14) by k/� to obtain

Hðt þ 1Þ ¼ RHðtÞ k

k þ aPðtÞ

� �k

Pðt þ 1Þ ¼ HðtÞ 1� k
kþaPðtÞ

h ik
� �

(4:15)

This modification of the Nicholson–Bailey model is sufficient to stabi-

lize the population dynamics (Figure 4.6). To help understand the

intuition that lies behind this stabilization, I note the following remark-

able feature (Pacala et al. 1990): the stabilization occurs as long as

the overdispersion parameter k< 1. I have illustrated this point in
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Figure 4.7, showing that if k¼ 0.99 the dynamics are stable (the oscilla-

tions have decreasing amplitude), but if k> 1 they are not (the oscilla-

tions have increasing amplitude).

Recall that the coefficient of variation of the gamma density with

parameters � and k is 1=
ffiffiffi
k
p

, so that k< 1 is equivalent to the rule that the

coefficient of variation is greater than 1. Pacala et al. (1990) call this the

CV2> 1 rule (but also see Taylor (1993) who notices that the specific

properties of the dynamics will depend not only upon k but also upon R).

Also recall that when k< 1, the probability density for the attack rate is

large when the attack rate is small 0. This means that arbitrarily small

values of the attack rate have substantial probability associated with
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Figure 4.6. Allowing for variation in the attack rate by assuming that it follows a gamma density, so that the fraction of

hosts escaping parasitism is the zero term of the negative binomial distribution, stabilizes the Nicholson–Bailey

dynamics. All parameters are as in Figure 4.3b, except that the mean attack rate is now a¼0.06 and the

overdispersion parameter k is 0.99 (panel a), 0.5 (panel b), or 0.2 (panel c).
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them, even though the mean attack rate is held constant. But very small

attack rates mean that some hosts are essentially invulnerable to attack

or that a refuge from attack exists. A host refuge is clearly one way to

stabilize the dynamics. For example, the stable dynamics shown in

Figure 4.3d involve a 30% refuge for the host.

Multiple attacks may provide a different kind of refuge

Solitary parasitoids lay only a single egg in a host, but often they do not

perfectly discriminate when laying eggs (Figure 4.8). When that hap-

pens, there will be larval competition with the host (Taylor 1988a, b,
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Figure 4.7. The dynamics determined by Eq. (4.14) when k¼0.99 (panel a), 1.01 (panel b), or 1.02 (panel c) showing

that the dynamics are unstable when k>1. All other parameters as in Figure 4.6. In each case, the hosts are the upper

curve, the parasitoids the lower curve.
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1993) and this competition may have profound effects on the dynamics

of the parasitoids, with associated effects on the dynamics of the host.

Taylor (1988a, b, 1993) provides a general treatment of the effects of

within-host competition; here we will consider a simplification that Bob

Lalonde (University of British Columbia, Okanagan Campus) taught me.

Let us suppose that a host that is attacked and receives only one

parasitoid egg produces a parasitoid in the next generation with cer-

tainty, but that hosts that receive more than one egg fail to produce a

parasitoid because of competition between the parasitoid larvae within

the host (that is, they fight each other to the point of being unable to

complete development but kill the host too). Now the standard

Nicholson–Bailey dynamics correspond to random search, so that the

probability that a host receives exactly one egg is a aP(t) exp(�aP(t)).

Thus, the original Nicholson–Bailey dynamics become

Hðt þ 1Þ ¼ RHðtÞe�aPðtÞ

Pðt þ 1Þ ¼ HðtÞaPðtÞe�aPðtÞ (4:16)

The first line in Eq. (4.16) corresponds to hosts that escape parasitism

entirely (the zero term of the Poisson distribution); the second line

Figure 4.8. The parasitoid

Nasionia vitrepennis is solitary

and attacks a variety of hosts

(shown here are pupae of

Phormia regina). However,

sometimes more than one egg

is laid in a host, in which case

larval competition of the

parasitoids occurs.

Photographs compliments of

Robert Lalonde, University of

British Columbia, Okanagan

Campus.

144 The evolutionary ecology of parasitoids

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511819872.006
Downloaded from https://www.cambridge.org/core. Universidad Nacional de Mexico (UNAM), on 25 Mar 2019 at 20:06:55, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511819872.006
https://www.cambridge.org/core


corresponds to hosts that receive exactly one parasitoid egg. These

dynamics stabilize the Nicholson–Bailey distribution (Figure 4.9)

because a new kind of refuge is provided through regulation of the

parasitoid population.

Exercise 4.4 (M)

Show that if a fraction � of multiple attacks on hosts lead to the emergence of a

parasitoid, then Eqs. (4.16) are replaced by

Hðt þ 1Þ ¼ RHðtÞe�aPðtÞ

Pðt þ 1Þ ¼ HðtÞaPðtÞe�aPðtÞ þ HðtÞð1� e�aPðtÞ � aPðtÞe�aPðtÞÞ�
(4:17)

then explore the dynamical properties of Eqs. (4.17) by iterating them forward.

As a hint: be certain to use sufficiently long time horizons that allow you to see

the full range of effects.

There are other means of stabilizing the Nicholson–Bailey

dynamics; these include various kinds of density dependence (Hassell

2000a, b) and spatial models (see Connections).

More advanced models for population dynamics

In many biological systems generations overlap so that a population

of hosts and parasitoids simultaneously consists of eggs, larvae, pupae

and adults. In that case, a more appropriate formulation of the models
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Figure 4.9. If multiple attacks

on a host lead to no emergent

parasitoids, the Nicholson–

Bailey dynamics are stabilized.
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involves differential, rather than difference, equations and delays to

account for development in the different stages (Murdoch et al. 1987,

MacDonald 1989, Briggs 1993). There have been literally volumes

written about these approaches; in this section I give a flavor of how

the models are formulated and analyzed. In Connections, I point

towards more of the literature.

Our goal is to capture the dynamics of hosts and parasitoids in

continuous time with overlapping generations. Figure 4.10 should be

helpful. After a host egg is laid, there is a development time TE, during

which the egg may be attacked by an adult parasitoid. Surviving eggs

become larvae and then pupae (both of which are not attacked by the

parasitoid) with a development time TL, after which they emerge as

adults with average lifetime TA. Parasitoids are characterized in a

similar way. It is customary to use different notation to capture the

various stages of the host life history, so we now introduce the following

variables

EðtÞ ¼ number of host eggs at time t

LðtÞ ¼ number of host larvae at time t

AðtÞ ¼ number of adult hosts at time t

PðtÞ ¼ number of adult parasitoids at time t

(4:18)

We will derive equations for each of these variables. The rate of change

of eggs, dE/dt, is the balance between the rate at which eggs are

produced (assumed to be proportional to the adult population size,

with no density dependent effects) and the rate at which eggs are lost.

Eggs are lost in three ways: due to parasitism (assumed to be propor-

tional to both the number of eggs and the number of parasitoids), due to

Host 
Eggs

Host
Larvae,
Pupae

Host
Adults

Juvenile
Parasitoids

Adult
Parasitoids

TE TL

TJ

Eggs

Eggs

Figure 4.10. A diagrammatic

formulation of the life history of

hosts (horizontal) and

parasitoids (vertical) with

overlapping generations,

useful for the continuous time

model. Here TE and TL are the

development times of host

eggs and larvae; the

development time of the

parasitoid from egg to adult

consists of some time as an egg

and development time TJ as a

juvenile.
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other sources of mortality, not related to the parasitoid, and due to

survival through development and movement into the larval class,

which we denote by ME(t), for maturation of eggs at time t.

Combining these different rates, we write

dEðtÞ
dt
¼ rAðtÞ � aPðtÞEðtÞ � �EEðtÞ �MEðtÞ (4:19)

The new parameters in this equation, r, a, and �E have clear interpreta-

tions as the per capita rate at which adults lay eggs, the per capita attack

rate by parasitoids and the non-parasitoid related mortality rate. Note

that I have written the argument of these equations explicitly on both

sides of Eq. (4.19). The reason becomes clear when we explicitly write

the maturation function. Eggs that mature into larva at time t had to be

laid at time t� TE and survived from then until time t. The rate of egg

laying at that earlier time was rA(t� TE) and if we assume random

search by parasitoids and other sources of mortality, the probability of

survival from the earlier time to time t is exp½�
Ð t

ðt�tEÞ ðaPðsÞ þ �EÞds�.
Combining these, we conclude that

MEðtÞ ¼ rAðt � TEÞ exp �
ðt

ðt�tEÞ

ðaPðsÞ þ �EÞds

2
64

3
75 (4:20)

The same kind of logic applies to the larval stage, for which the rate of

change of larval numbers is a balance between maturation of eggs into

the larval stage, maturation of larvae/pupae into the adult stage, and

natural mortality. Hence, we obtain

dLðtÞ
dt
¼ MEðtÞ �MLðtÞ � �LLðtÞ (4:21)

where, in analogy with Eq. (4.20), we have

MLðtÞ ¼ MEðt � TLÞ expð��LTLÞ (4:22)

Adult hosts are produced by maturing larvae and lost due to natural

mortality, so that

dAðtÞ
dt
¼ MLðtÞ � �AAðtÞ (4:23)

and this completes the description of the host population dynamics.

The reasoning is similar for the parasitoids. Adult parasitoids

emerge from eggs that were laid at a time TP before the current time

and that survive to produce a parasitoid (assumed to occur with prob-

ability � and disappear due to natural mortality), so that we have

dPðtÞ
dt
¼ a�Eðt � TPÞPðt � TPÞ � �PPðtÞ (4:24)
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Equat ions ( 4.19 )–(4.24 ) constitut e the descrip tion of a host para-

sitoid system with overlapping generations and potentially different

developmental periods. They are called differential-difference equa-

tions, for the obvious reason that both derivatives and time differences

are involved. What can we say about these kinds of equations in

general? Three things. First, finding the steady states of these equations

is easy. Second, the numerical solution of these equations is harder than

the numerical solution of corresponding solutions without delays

(although some software packages might do this automatically for

you). Third, the analysis of the stability of these kinds of equations is

much, much harder than the work we did in Chapter 2 or in this chapter

until now. However, these are important tools so that we now consider a

simple version of such an equation and in Connections, I point you

towards literature with more details.

Our analysis will focus on the logistic equation with a delay and will

follow the treatment given by Murray (2002). We consider the single

equation

dN

dt
¼ rNðtÞ 1� Nðt � �Þ

K

� �
(4:25)

for which the delay � is fixed and for which K is a steady state. As we did

in the past, we write N(t)¼Kþ n(t), and assume that n(0) is small.

Substituting this N(t)¼Kþ n(t) into Eq. (4.25) leads to

dn

dt
¼ rðK þ nðtÞÞ 1� K þ nðt � �Þ

K

� �
¼ rðK þ nðtÞÞ � nðt � �Þ

K

� �
(4:26)

and if we keep only the linear term, we need to understand the

dynamics of

dn

dt
¼ �rnðt � �Þ (4:27)

Note that in order to reach Eq. (4.27) we have assumed that both n(t)

and n(t� �) are small. This could be a big assumption , but our goal in

this analysis is – to some extent – to determine when it fails, which

occurs when the deviation n(t) grows in time. As before, we start with

the guess n(t)¼ celt and substitute this into Eq. (4.27).

Exercise 4.5 (E/M)

Show that l has to satisfy the equation l¼� re�lt and then explain why if � is

sufficiently small there is a solution of this equation corresponding to decay

towards the steady state (it may be easiest to sketch a graph with l on the x-axis

and y¼ l or y¼�re�l� on the y-axis and look for their intersections and note

that if � ¼ 0 then l¼�r).
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To further increase our intuition, note the following. Suppose

we knew that n(t)¼Acos(pt/2�), so that dn/dt¼� (Ap/2�)sin(pt/2�).

Furthermore, n(t� �)¼Acos[(pt/2�)� (p/2)] and if we recall the

angle addition formula from trigonometry, cos(aþ b) ¼ cos(a)cos(b)þ
sin(a)sin(b), we conclude that n(t� �)¼�Asin(pt/2�) from which

we conclude that in this specific case dn/dt¼ (p/2�)n(t� �). Thus, if

we start with an oscillatory solution, we know that we can derive a

differential equation similar to Eq. (4.27). This suggests that we might

seek oscillatory solutions for the more general delay-differential

equations.

An oscillatory solution would mean that we assume l¼�þ i!,

where � is the amplitude of the oscillations and ! is the frequency of

the oscillations. We take this and use it in Eq. (4.27) to obtain

�þ i! ¼ �re�ð�þi!Þ� ¼ �re��� e�i!� ¼ �re��� ½cosð!�Þ � i sinð!�Þ� (4:28)

We now equate that the real and imaginary parts to obtain equations for

� and !:

� ¼ �re��� cosð!�Þ ! ¼ re��� sinð!�Þ (4:29)

We want to understand the conditions for which �< 0, which will mean

that the dynamics are stable. From the first equation in (4.29), we

conclude that one condition for �< 0 is that !� < p/2. Furthermore,

we know that when � ¼ 0, we have the solution �¼�r, !¼ 0, so that

perturbations decay without oscillation. The classic result is that the

steady state N(t)¼K of Eq. (4.25) is stable if 0< r� < p/2 (see Murray

2002, p. 19; I have not been able to find a better way to explain the

derivation, so simply send you there). If the condition is violated, then

perturbations from the steady state will exhibit oscillatory behavior.

Although the logistic equation with a delay seems to be highly simplis-

tic, it both provides insight for us and, in some cases, leads to good fits

between theory and data. In Figure 4.11, I show the fit obtained by May

(1974) to the data of Nicholson (1954) on the Australian sheep-blowfly
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Figure 4.11. Figure based on

data from Nicholson (1954) on

blowfly population dynamics

that were fit by May (1974) to

the logistic equation with a

delay. Reprinted with

permission.
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Lucilia cuprina. In this case, the theory with r� ¼ 2.1 provides a

remarkably good fit to the data, given the simplicity of the model, and

since the stability condition is violated, the steady state is unstable and

we expect oscillations around it.

Evolution of host choice in parasitoids

Hosts that are attacked by parasitoids will come in a range of varieties.

For example, hosts will vary in size and larger hosts will often provide

more hemolymph for developing parasitoids than smaller hosts. When

the hosts are pupae (and thus do not move around), hosts that are in the

sun may provide quicker development times for the parasitoids than

those that are in the shade (and if they are not hidden may also provide

higher risks of mortality). For solitary parasitoids, then, an issue is in

which kind of host to lay eggs.

Gregarious parasitoids have an additional problem of how many

eggs to lay in a host. More eggs in a host may imply more daughters, but

they could be smaller, and since size is tied to fecundity, the overall

representation of genes in future generations may be reduced. For

example, Rosenheim and Rosen (1992) studied clutch size in Aphytis

lingnaensis, which attacks scale insects that are pests of citrus. They

found that the average size of a daughter emerging from a clutch of size

c laid in a host was S(c)¼max{0.2673–0.0223c, 0} and that the number

of eggs a female can lay depends upon her size according to

E(S)¼max{181.8S–26.7, 0}, where max {A, B} means take the larger

of A or B. Thus, for example, there is a minimum size below which a

female does not have any eggs. A simple measure of fitness for an

ovipositing female is the number of grand-offspring produced from a

clutch of size c and this is cE(S(c)). This computation (Figure 4.12)

shows that for a gregarious parasitoid there may be an optimal number

of eggs to lay in a single host.

In the early 1980s, Eric Charnov and Sam Skinner recognized that

many of the ideas from foraging theory could be applied to understand

the evolution of host choice in parasitoids (Charnov and Skinner 1984,

1985, 1988). I subsequently wrote on similar topics; the relevant chap-

ters in Mangel and Clark (1988) and Clark and Mangel (2000) are entry

points to the broader literature. In this section, we will consider a

relatively simple version of these kinds of models, which will set up

the next two sections as well as introduce new methods.

We begin with a pro-ovigenic, univoltine, solitary parasitoid in

which the season length is T and the parasitoid has two different kinds

of hosts to attack. Oviposition in host type i leads to an offspring in the

next generation with probability fi and we assume that host type 1 is
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better, in the sense that f1> f2, and that hosts are encountered at different

rates. Because there is one generation per year, we choose as a measure

of fitness the expected lifetime reproductive success of the parasitoid

and ask for the pattern of host acceptance that maximizes expected

reproductive success. The question is interesting because both time

within the season and current egg complement may affect the oviposi-

tion behavior. For example, early in the season, we might anticipate that

females will be more choosy, for the same egg complement, than late in

the season. We also might predict that females with many eggs will be

less choosy than those with fewer eggs. The question is then how are we

able to more formally characterize these predictions and use them in

guiding our thinking about additional theory, experiments and field

work.

The method we use is called stochastic dynamic programming

(SDP, see Connections for more details; in a previous draft I apologized –

perhaps to Strunk and White – for using a noun adjective. But Nick

Wolf, upon reading this apology, wrote ‘‘I don’t see the problem:

‘programming’ is a noun (a gerund, actually), ‘dynamic’ is an adjective

modifying ‘programming’, and ‘stochastic’ is an adjective acting as an

adverb because it modifies another adjective. No problem!’’) and is very

straightforward in this particular case. To begin, we define a fitness

function F(x, t) as the maximum expected reproductive success from the

current time t until T (when the season ends) given that the egg
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Figure 4.12. The potential

number of grandoffspring

produced from the daughters

of a clutch of size c, for the

Aphytis data of Rosenheim and

Rosen (1992).
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complement at time t is X(t)¼ x. Here ‘‘maximum’’ refers to the choices

over alternative oviposition behaviors at a particular time and egg

complement, and ‘‘expected’’ refers to the mathematical average over

possible host encounters and natural mortality. Thus, expected lifetime

reproductive success at emergence is F(x, 1).

We will work in discrete time, and characterize the probability of

encountering a host of type i in an unit of time by li, so that the sum

l1þ l2, which must be less than or equal to 1, is a measure of the

richness of the environment. We assume that the probability of surviv-

ing a single period of time is e�m, where m is the rate of mortality.

Since the season ends at time T, there is no gain in fitness thereafter

and any eggs that the parasitoid holds are wasted. This end of season

condition is represented mathematically by

Fðx; TÞ ¼ 0 (4:30)

For previous times, we need to think about the balance between current

and future fitness. At any previous time t, three mutually exclusive

events may occur: no host is encountered, host type 1 is encountered or

host type 2 is encountered. If no host is encountered (with probability

1� l1� l2) and the parasitoid survives, she will start the next time

interval with the same number of eggs. If a host of type 1 (the better

host) is encountered we assume that she oviposits in it; if she survives to

the next period she begins that period with one less egg. If a host type 2

is encountered, the parasitoid may reject the host (thus beginning the

next period with the same number of eggs, but having gained no fitness

from the encounter) or she may oviposit in (thus beginning the next

period with one fewer egg but having gained fitness from the encoun-

ter). We assume that the order of the processes is oviposition, then

survival (so that she always gets credit for an oviposition, even if she

does not survive to the next period). These three possibilities and their

consequences lead to a relationship between fitness at time t and at time

tþ 1:

Fðx; tÞ ¼ð1� l1 � l2Þe�mFðx; t þ 1Þ þ l1½ f 1 þ e�mFðx� 1; t þ 1Þ�
þ l2 maxfe�mFðx; t þ 1Þ; f 2 þ e�mFðx� 1; t þ 1Þg (4:31)

Equation (4.31) is called an equation of stochastic dynamic program-

ming. We solve this equation backwards in time, since F(x, T ) is known.

Hence, this method is called ‘‘backwards induction’’; details of doing

this can be found in Mangel and Clark (1988) and Clark and Mangel

(2000).

Note that each term on the right hand side involves current accu-

mulation to fitness (which may be 0 if no host is encountered) and future

accumulations of fitness, discounted by the chance of mortality. The
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most interesting term, of course, is the third one in which the balance is

complicated by the loss of an egg that can be used in the future

accumulation of fitness.

The solution of this equation generally must be done by numerical

methods, which means that specific parameter values must be chosen.

For Eq. (4.31), these parameters are the encounter and mortality rates,

the fitnesses associated with oviposition in the two kinds of hosts, the

time horizon and the maximum egg complement that the parasitoid may

have. Once these are specified, the solution of Eq. (4.31) comes rapidly

(Figure 4.13a), especially these days: in Mangel and Clark (1988), we

had to introduce a variety of means for getting around the limited

computer power of then extant machines and software.

Although Figure 4.13a is interesting, we are often more interested in

the behavior of the parasitoids than in their lifetime reproductive success.

Happily, predictions about behavior come freely as we solve Eq. (4.31).

That is, when we consider the maximization step in this equation, we also

determine the predicted optimal behavior b�(x, t), which is to either

accept the inferior host or reject it for oviposition at time t when

X(t)¼ x. We thus are able to construct a boundary curve that separates

the x� t plane into regions in which the parasitoid is predicted to reject

the inferior host and regions in which the parasitoid is predicted to

accept the inferior host (Figure 4.13b). Studying this figure as we move

horizontally (forward in time with egg complement fixed), we see a

formalization of the intuition that individuals are predicted to become

less choosy as time increases. Holding time constant and moving verti-

cally upwards, we see a formalization of the intuition that individuals are

predicted to become less choosy as they have higher egg complements.

How might such an idea be tested? One method is to use a photoperiod

manipulation to signal to the parasitoids that it is either earlier or later in

the season than it is. For example, by rearing parasitoids in a late summer

photoperiod, we send the signal that t is closer to T than it actually is and

the consequence would be that if the real point in the x� t plane were at A

in Figure 4.13b, we predict that the parasitoids will behave as if they were

located at point B in the plane. That is, the photoperiod manipulation is

predicted to cause parasitoids that would otherwise reject an inferior host

to accept it. Roitberg et al. (1992) did exactly that manipulation, using a

theory somewhat more complicated than the one here. The more elaborate

theory lead to a wide range of predictions and the experimental results

were in concordance with the predictions.

Our predictions will change as parameters vary. For example, in

Figure 4.13c, I show the boundary curves for the previous case in which

the mortality rate was 0.05 and for the case in which the mortality rate is

0.10. In the latter case, we predict that the balance between current and
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future reproduction should favor current reproduction (because the

chance of surviving to achieve future reproduction is lower) and that

the parasitoids will accept inferior hosts both earlier and at lower egg

complements. Roitberg et al. (1993) tested these ideas in an experiment

that simulated an impending thunder storm (via a dropping barometric

pressure), which has the potential of high mortality rates for small

insects, and found that the predictions and experimental results were

once again consistent.
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Figure 4.13. The total lifetime expected reproductive success F(x, 1) (panel a) and the boundary for oviposition in the

inferior host (panel b) obtained by the solution of Eq. (4.31) for the parameters l1¼0.3, l2¼0.3, m¼0.05, T¼40,

f1¼1, f2¼0.3, and maximum egg complement 20. If egg complement exceeds the boundary value at a particular

time, we predict that the parasitoid will oviposit in the inferior host; otherwise we predict that she will reject the

inferior host. (c) The boundary curve changes as parameters change. When mortality increases, the balance between

current and future fitness shifts towards current fitness and thus the boundary curve lowers.
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Exercise 4.6 (M/H)

Write your own program to solve Eq. (4.31) and create the boundary curve.

Then conduct numerical experiments to investigate how the boundary curve

varies as you change parameters. It is always good to make a prediction by

thinking about the result that you anticipate before you run the code. (If you

need help getting the coding going, I suggest that you consult Mangel and

Clark (1988) and Clark and Mangel (2000).)

In nature we do not observe boundary curves or states. Rather we

observe behaviors manifested in time. One way of capturing these beha-

vioral observations is through the simulation of a large number of indivi-

duals that followtherulesgeneratedbythedynamicprogrammingequation.

Colin Clark and I (Mangel and Clark 1988, Clark and Mangel 2000) called

such individual based models forward iterations (see Connections for more

about these), to distinguish them from the backward iterations that generate

the decision rules. To implement them, we envision simulating a large

number, N, of individuals in which the egg complement of individual i at

time t is denoted by Xi (t). We then use the random number generator to

connect the state of each individual at time t to time t� 1. If we let the state

�1 correspond to death, the forward state dynamics associated with

Eq. (4.31) are: X(tþ 1)¼�1 if the parasitoid does not survive from t to

tþ 1; X(tþ 1)¼X(t) if no host is encountered or an inferior host is encoun-

tered and the parasitoid survives from t to tþ 1; and X(tþ 1)¼X(t)� 1 if a

superior host is encountered or an inferior host is encounteredand accepted.

By simulating forward, we are able to track variables that are measurable in

the field or laboratory such as behaviors, mean egg complements, and

survival. Sometimes these can even be done by purely analytical (Markov

Chain) methods; see MangelandClark (1988) and Houston and McNamara

(1999) for examples, but many times simulation is required because the

analytical methods are simply too hard.

Exercise 4.7 (M/H)

Use the solution of the backward iteration from Exercise 4.6 in a forward

iteration and use that forward iteration to predict population level properties

that might be of interest to you in a field or laboratory setting.

Combining behavior and population dynamics

Population dynamics interest us and behavior interests us; how much

more interesting then would be the combination of behavior and popu-

lation dynamics? At the same time, the study of population dynamics is

hard and the study of behavior is hard. How much more difficult then
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will be the combination of behavior and population dynamics? Pretty

difficult, but as the example in this section shows, we can make some

progress. This example draws heavily on a paper by Bernie Roitberg

and me (Mangel and Roitberg 1992). Citations to other literature on this

subject are found in Connections.

We return to Eq. (4.1), which connects the annual dynamics of hosts

and parasitoids. In order to incorporate behavior, we need to think about

both the annual time scale (as in Eq. (4.1)) and about a time scale within

the season, which we shall denote by s (Figure 4.14). Thus, the season

runs from s¼ 0 to s¼ S (which we might set equal to 1 to obtain exactly

the same form as Eq. (4.1)) and we now think of the populations as

H(t, s) and P(t, s), the number of hosts and parasitoids at time s within

year t. First, we observe that to obtain the between-season Nicholson–

Bailey dynamics, we solve the within-season dynamics

dH

ds
¼ �aPðt; sÞHðt; sÞ Hðt; 0Þ ¼ H0

dP

ds
¼ 0 Pðt; 0Þ ¼ P0

(4:32)

in the sense that the solution of these equations is Eqs. (4.1) when we

couple the appropriate within- and between-season dynamics by linking

H(t, S) with H(tþ 1, 0) and P(t, S) with P(tþ 1, 0). Our first insight thus

comes virtually for free: the Nicholson–Bailey dynamics assume a

constant number of parasitoids throughout the season. How might this

occur? We could assume, for example, that parasitoids are emerging

from last season’s hosts at the same rate at which they are dying during

this season. This assumption means that we can think of the number of

parasitoids as a function only of the season and not worry about para-

sitoid numbers within the season.

In order to incorporate behavior, we require some kind of variation

in the hosts. Following the lead of the previous section, let us assume

that hosts come in two phenotypes in which the first phenotype is

preferred, for whatever biological reasons. We thus consider the

dynamics of H1(t, s) and H2(t, s), the numbers of superior and inferior

Seasonal time scale

Annual time scale

t – 1 t t + 1

s = 0 s = S, s = 0 s = S, s = 0

Figure 4.14. In order to couple

behavior and population

dynamics, we need to think

about annual time scales (on

which Nicholson–Bailey

dynamics occur) and within-

season time scales (on which

behavior occurs).
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hosts at time s within year t. To capture parasitoid behavior, we assume

that there is a time s� (which we will find) before which only the

superior hosts are attacked and after which both hosts are attacked.

The within-season dynamics in Eq. (4.32) must now be expanded to

account for these two cases. We will assume that parasitoids search

randomly and that when both hosts are attacked, they are attacked in

proportion to their initial abundance (so that the parasitoid cannot

distinguish between previously attacked hosts and unattacked hosts).

The dynamics for the two host types thus become

dH1

ds
¼
�aPðtÞH1ðt; sÞ for s5 s�

�a
H1ðt; 0Þ

H1ðt; 0Þ þ H2ðt; 0Þ

� �
PðtÞH1ðt; sÞ for s � s�

(4:33a)

and

dH2

ds
¼

0 for s5 s�

�a
H2ðt; 0Þ

H1ðt; 0Þ þ H2ðt; 0Þ

� �
PðtÞH2ðt; sÞ for s � s�

(4:33b)

and solution of these equations will tell us the within-season population

dynamics of hosts, given the behavior of the parasitoids.

Equations (4.33) are linear equations and are very easy to solve (so

much so that I do not even make finding the solution an exercise). We

conclude that at the end of season t

H1ðt; SÞ ¼ H1ðt; 0Þ expð�aPðtÞs�Þ exp � H1ðt; 0Þ
H1ðt; 0Þ þ H2ðt; 0Þ

aPðtÞðS � s�Þ
� �

H2ðt; SÞ ¼ H2ðt; 0Þ exp �
H2ðt; 0Þ

H1ðt; 0Þ þ H2ðt; 0Þ
aPðtÞðS � s�Þ

� �
(4:34)

and Eqs. (4.34) tell us the whole story about the within-season effects of

behavior.

Next, we must construct the between-season population dynamics

of hosts and parasitoids. If we assume that each surviving host produces

R offspring, then the total number of hosts at the start of the next season

will be HT(tþ 1, 0)¼R{H1(t, S)þH2(t, S)}, which needs to be distrib-

uted across superior and inferior phenotypes. In general, we might

imagine that these are functions of the total host population, so that

Hi(tþ 1, 0)¼ fi(HT(tþ 1, 0)). The simplest function is a constant pro-

portion and Hassell (1978) called this the ‘‘proportional refuge model’’

because the inferior hosts provide a refuge from attack by parasitoids.

An alternative, which captures density-dependent effects, is

f 2ðHTðt þ 1; 0ÞÞ ¼ !1ð1� expð�!2HTðt þ 1; 0ÞÞÞ (4:35)
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where !1 and !2 are parameters. As total host population declines, the

number that are inferior declines as well.

Next season’s parasitoids emerge from hosts that have been

attacked. If we assume that the parasitoid is solitary, then one offspring

will emerge from a superior host, and one from an inferior host, but only

with probability �. In that case, parasitoid numbers at the start of the

next season are given by

Pðt þ 1Þ ¼ H1ðt; 0Þ � H1ðt; SÞ þ �½H2ðt; 0Þ � H2ðt; SÞ� (4:36)

in which the first two terms on the right hand side of Eq. (4.36) represent

the number of superior hosts attacked and the second two terms repre-

sent the number of inferior hosts attacked.

We still need to find s�. If s�¼ 0, then we have the standard

Nicholson–Bailey model and if s�¼ S, then we have a version of

Taylor’s stabilization of the Nicholson–Bailey dynamics because of a

host refuge. To find s� in the more general situation, we will use an

especially simple version of stochastic dynamic programming by

assuming that the parasitoids never run out of eggs (a topic discussed

in the next section). Given that there are a total of HT hosts for the

parasitoid to attack, and the random search assumption of the

Nicholson–Bailey model, we have

Prfencounter a host in a unit interval of timejHT hosts presentg

¼ 1� expð�aHTÞ (4:37)

so that if li(t) is the probability of encountering host type i within one

unit of time in season t, we have

liðtÞ ¼
Hiðt; 0Þ
HTðt; 0Þ

ð1� expð� aHTðt; 0ÞÞÞ (4:38)

and we assume that hosts are sufficiently plentiful that the parasitoid

never re-encounters a previously attacked host (see Exercise 4.8 below).

Now let F(s|t) denote the maximum expected accumulated repro-

duction between within-season time s and S, given host parameters of

season t. We then have F(S|t)¼ 0 and if ms and mo are the probabilities

of mortality during search and oviposition, the dynamic programming

equation is

FðsjtÞ ¼ ð1� l1ðtÞ � l2ðtÞÞð1� msÞFðsþ 1jtÞ þ l1ðtÞf1þ ð1� moÞFðsþ 1jtÞg
þ l2ðtÞmaxf� þ ð1� moÞFðsþ 1jtÞ; ð1� msÞFðsþ 1jtÞg

(4:39)

which we solve backwards, as before.
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Exercise 4.8 (M/H)

Equation (4.39) does not include a physiological state of the parasitoid. How

would it be modified to include egg complement? The equation also does not

include the possibility that a host which is encountered has previously been

attacked. How would it be modified to account for that?

Further exploration of these ideas requires numerical solution; the

parameters that Mangel and Roitberg (1992) fix are 50 parasitoids, 500

hosts at the start of the first season, a season of length 20, host per capita

reproduction R¼ 2, quality of inferior host �¼ 0.1, search parameter

a¼ 0.0001, and mortality probabilities during search and oviposition of

0.001 and 0.2 respectively.

There are at least two ways that we can conceive of viewing the

results. The first is through the host–parasitoid phase plane in which

steady states are represented by single points and oscillatory solutions

by closed orbits (limit cycles). The second is the distribution of s� across

different years. These results are shown in Figure 4.15. We conclude from

Figures 4.15a–c that the dynamics of the interaction between host and

parasitoid can be very rich when behavior and population dynamics are

coupled, including strange attractors such as Figure 4.15c (Mangel and

Roitberg (1992) show some even stranger cases). Perhaps more impor-

tantly, the result of Figure 4.15d, which shows the distribution of s� across

generations and years, tells us that we should expect variation in behavior

of parasitoids in the field. Nature is indeed complicated and variable, but

much of that complication and variation can be captured and understood.

In both this model, Eq. (4.39), and the previous model, Eq. (4.31), a

shift in host preference occurs during the season. However, the mechan-

isms are very different. Here, the shift in host preference occurs because

there is so little time left in the season that � exceeds the loss in lifetime

fitness that occurs when the parasitoid chooses an inferior host, i.e.

� > (mo�ms)F(sþ 1|t). On the other hand, in Eq. (4.31) the shift in host

preference occurs because there is too little time left in the season for the

ovipositing female to find good hosts for all of her eggs. Thus,

Eq. (4.31) involves a mixture of time limitation and egg limitation,

whereas Eq. (4.39) is purely time limitation (via survival). It would be

interesting to design experiments to separate these; in the next section

we consider some additional theory.

Are parasitoids egg- or time-limited?

Parasitoids live in uncertain and risky worlds and natural selection acts

on patterns of development and behavior through expected reproductive

success. One topic of considerable interest in the late 1990s was the
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nature of factors that limit parasitoid reproductive success (a set of

citations to these questions can be found in Driessen and Hemerik

(1992), Heimpel and Collier (1996), Rosenheim (1996), Heimpel and

Rosenheim (1998), Heimpel et al. (1998), Sevenster et al. (1998),

Rosenheim (1999), Rosenheim and Heimpel (2000), and van Baalen

(2000)). Factors limiting parasitoid reproductive success include mor-

tality risk while searching and foraging, egg complement, and time

available for searching for oviposition sites and ovipositing. Natural

selection could act on the latter two through development, either by

increasing the capacity for eggs or the rate of egg maturation or by

selecting for individuals who are more efficient at handling hosts.

Hosts
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Figure 4.15. Linking behavior and population dynamics together leads to a rich panoply of dynamical results.

In panels (a–c), the superior and inferior hosts are determined in a manner that is free of density dependence.

For panel (a), the fraction of superior hosts is 0.5 and the behavior of the parasitoids is determined by the SDP

model Eq. (4.39). For panel (b), the fraction is 0.75 and inferior hosts are never attacked (the proportional refuge

model). For panel (c), the fraction is 0.75 and the behavior of parasitoids is determined by the SDP model. In panel

(d), I show the frequency distribution of s� over 10 000 generations for the case in which the fraction is 0.75.

Reproduced with permission from Mangel and Roitberg (1992).
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We then come to the question: is reproductive success of parasitoids

limited by time or by eggs (that is, are they likely to die with some eggs

still in their bodies, unlaid and thus ‘‘wasted,’’ or are they likely to spend

some of the end of their lives without eggs, but with opportunities for

laying them, thus being reproductively senescent).

One example of how this problem might be attacked is provided by

van Baalen (2000). If at the start of the season there are H(t) hosts and

P(t) parasitoids, then the number of hosts per parasitoid is on average

h(t)¼H(t)/P(t). When the parasitoid searches randomly – as assumed in

the Nicholson–Bailey model – the number of hosts attacked by an

individual parasitoid will follow a Poisson distribution with parameter

a. However, the number of attacks will be limited by either the number

of hosts per parasitoid or the egg complement, e, of the parasitoid. Thus,

the expected number of hosts attacked per parasitoid

Efnumber of hosts attacked per parasitoidg ¼

XminðhðtÞ; eÞ�1

k¼0

k
e�aak

k!
þ

X1
k¼minðhðtÞ; eÞ

minðhðtÞ; eÞ e
�aak

k!
ð4:40Þ

and using this gives a sense of the limitation due either to eggs or to

hosts by comparison with the average egg complement of individual

parasitoids (and provides another way of stabilizing the Nicholson–

Bailey dynamics).

Here, I take a slightly different approach than either van Baalen or

my own work in collaboration with George Heimpel and Jay

Rosenheim (Heimpel et al. 1996, 1998; Rosenheim and Heimpel

2000). We will use the method of stochastic dynamic programming

and begin by considering a pro-ovigenic, univoltine parasitoid. The

expected lifetime reproductive success of such a parasitoid will be

characterized by her maximum egg complement, xmax, and the handling

time per host, h. We can formally write this as F(xmax, 1|h, T ) to

emphasize egg complement, lifetime expected reproductive success at

the beginning of a season of length T when handling time is h.

Now we need to define what is meant by egg limitation and time

limitation. I propose the following: a parasitoid is egg-limited rather

than time-limited if an increase in maximum egg complement of one

egg will increase her lifetime expected reproductive success more

than a decrease in handling time of one unit (appropriately defined)

does. This suggests that there will be a boundary in egg-complement/

handling-time space separating regions in which parasitoids are egg-

limited from those in which they are time-limited, and we are going to

find the boundary, defined by the condition
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Fðxmax; 1jh� 1; TÞ ¼ Fðxmax þ 1; 1jh; TÞ (4:41)

because the left hand side of Eq. (4.41) is expected lifetime fitness with

current maximum egg complement but a decreased handling time and

the right hand side is expected lifetime fitness if handling time were the

same but maximum egg complement were increased by one egg. The

solution of Eq. (4.41) is the sought-after boundary curve h(xmax).

To begin, consider a solitary parasitoid searching for hosts that, as

before, are of two kinds (clearly many generalizations are possible). We

fully characterize the problem by describing the encounter rate and

fitness accrued from oviposition in host type i, li and fi respectively,

and the mortality rate while searching or ovipositing, m. The dynamic

programming equation is then similar to Eq. (4.31):

Fðx; tjh; TÞ¼ ð1� l1 � l2Þe�mFðx; t þ 1jh;TÞ þ l1½ f 1 þ e�mFðx� 1; t þ hjh; TÞ�
þmax l2fe�mFðx; t þ 1jh;TÞ; f 2 þ e�mFðx� 1; t þ hjh;TÞg

(4:42)

Also as before, we solve this equation backwards in time, starting with

the condition that F(x, T |h, T )¼ 0. One additional decision needs to be

made, however, and that concerns how we treat oviposition for situa-

tions in which tþ h> T (so that the oviposition being considered is the

last). The decision that I made for the results presented here is to credit

the parasitoid with this last oviposition, even if she dies immediately

thereafter.

The numerical results that I show correspond to T¼ 100, f1¼ 1,

f2¼ 0.1, l1¼ 0.4, l2¼ 0.4, and m¼ 0.01 or 0.001. (I have also

limited handling time to a maximum of 15 time units.) The boundary

curve (Figure 4.16) separates regions in which another egg would

increase fitness more than a decrease in handling time. The general

shape of the boundary should make sense; for example, parasitoids

with lots of eggs are more likely to be time-limited than egg-limited.

In addition, the dependence of the boundary on mortality rate should

also make sense in that when mortality rates are higher the tendency

will be towards a greater likelihood of time limitation than egg

limitation.

Exercise 4.9 (M/H)

Instead of considering a solitary parasitoid, consider a gregarious parasitoid

which encounters only one kind of host, with probability l per unit time, and

which lays clutches in that host. Let f (c) denote the increment of expected

lifetime reproductive success when she lays a clutch of size c in a host. Explain

why an appropriate dynamic programming equation is
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Fðx; tjh; TÞ ¼ ð1� lÞe�mFðx; t þ 1jh; TÞ
þ l maxcf f ðcÞ þ e�mchFðx� c; t þ chjh; TÞg ð4:43Þ

and identify the other assumptions that are implicitly included in this equation.

(As you might imagine, the results obtained using Eq. (4.43) are similar, but not

identical, to those obtained using Eq. (4.42).)

Let us close by considering how all this might be modified for a

synovigenic parasitoid. In such a case, we require two state variables to

describe the parasitoid: mature eggs (denoted by x) and oocytes

(denoted by y) and also need to specify the egg maturation time � , in

the sense that oocytes mature into eggs at rate 1/� . A very simple

example is one in which in a single period of time the parasitoid either

encounters food (understood to be both protein and carbohydrate) or a

host, with probabilities lf and lh respectively. If she encounters food,

her oocyte reserve is incremented by an amount 	 and if she encounters

a host, her lifetime fitness is incremented by 1 offspring and eggs are

decremented by 1 egg. In such a case, the dynamic programming

equation is (with the dependence on h and T suppressed)

Fðx; y; tÞ ¼ ð1� lh � lfÞe�mF xþ y

�
; y� y

�
; t þ 1

� 	

þ lfe�mF xþ y

�
; y� y

�
þ 	; t þ 1

� 	

þ lh 1þ e�mF xþ y

�
� 1; y� y

�
; t þ 1

� 	n o
ð4:44Þ
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16 Figure 4.16. The boundary

curve implied by Eq. (4.41),

obtained by the numerical

solution of Eq. (4.42). For

values of maximum egg

complement and handling

time that fall below the curve,

the parasitoid is egg-limited, in

the sense that her lifetime

fitness would be incremented

more by an increase in egg

complement than by a

decrease in handling time. For

values above the curve, the

parasitoid is time-limited, in

the sense that lifetime fitness

would be incremented more

by a decrease in handling time

than by an increase in

maximum egg complement.
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and we can now think about time limitation in two contexts: handling

time and egg maturation time. That would be a pretty interesting

project.

Connections

Space can be stabilizing, sometimes destabilizing, and
always interesting

Another means of stabilizing the Nicholson–Bailey model is through

the explicit introduction of space. There is a large literature on such

spatial models; entry points include Hassell and May (1988), Taylor

(1988a, b), Walde and Murdoch (1988), Comins et al. (1992), Adler

(1993), Ruxton and Rohani (1996), and Briggs and Hoopes (2004).

Spatial aspects of host–parasitoid interaction are always interesting.

Delay differential models for host–parasitoid dynamics

The recent volume of Murdoch et al. (2003) is a wonderful general

reference on the topics considered in this chapter. Gordon et al. (1991)

use a delay differential model to understand the synchrony of host and

parasitoid development. Bonsall et al. (2002) use such models to inves-

tigate the roles of ecological trade-offs, resource partitioning and coex-

istence in host–parasitoid assemblages. Delays can enter into the

discrete time models too, for example through age structure (Bellows

and Hassell 1988).

Delay differential equations in general

The simplest such equation is

d

dt
NðtÞ ¼ rNðt � �Þ � mNðtÞ

in which we understand r to be the per-capita reproduction of adults who

require a developmental period of length � , and m is natural mortality.

The still classic text in this area is Bellman and Cooke (1963). Nisbet

and Gurney and their colleagues (see, for example, Gurney et al. (1983),

Nisbet and Gurney (1983), Blythe et al. (1984), Nisbet et al. (1985))

have developed relatively complete methods for formulating population

models with delays (see also May et al. (1974)). MacDonald (1989)

shows how a single differential-difference equation can sometimes be

converted to a system of linear equations without delays.
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Evolution of host choice in parasitoids, marking
pheromones, superparasitism and patch leaving

The parasitoids are a rich source of ideas in ecology and evolutionary

biology; everyone should be excited by them! The examples considered

in the text are literally only the tip of the iceberg. Some of my other

favorite topics include the evolution of pheromones used to mark hosts

after oviposition (Roitberg et al. 1984, Roitberg and Prokopy 1987,

Roitberg and Lalonde 1991); whether parasitoids feed on a host (to

make more eggs) or lay an egg in it (de Bach 1943, Edwards 1954,

Bartlett 1964, Jervis and Kidd 1986, Walter 1988, Rosenheim and

Rosen 1992, Heimpel et al. 1994, Heimpel and Rosenheim 1995,

Heimpel and Collier 1996, McGregor 1997, Giron et al. 2002); whether

parasitoids (or tephritid fruit flies) lay an egg in a host that has already

been attacked (which they can tell because of the marking pheromone,

for example) or, rather, ignore superparasitism of such hosts (Pritchard

1969, Hubbard and Cook 1978, Hubbard et al. 1987, van Alphen et al.

1987, van Alphen and Visser 1990, van Randen and Roitberg 1996);

whether parasitoids will search for oviposition sites or food sites (to find

both carbohydrate, to run the operation, and protein, to make more eggs

if they are synovigenic) (Lewis and Takasu 1990, Waeckers 1994,

Heimpel et al. 1997, Olson et al. 2000); what happens to parasitoids

in the field (Janssen et al. 1988, Janssen 1989); information as a state

variable (Roitberg 1990, Haccou et al. 1991, Hemerik et al. 2002); the

effects of intraspecific competition between ovipositing females, mak-

ing the oviposition behavior a dynamic game (Visser and Rosenheim

1998); the effects of hyperparasitism (parasitoids of parasitoids) on

oviposition behavior (Mackauer and Voekl 1993); the role of sex ratio

in population dynamics (Hassell et al. 1983) and behavior (Olson and

Andow 1997); and patch-leaving behavior (Hemerik et al. 1993,

Rosenheim and Mangel 1994, Vos et al. 1998, Wajnberg et al. 2000,

van Alphen et al. 2003). Stochastic dynamic programming provides a

natural means for making predictions about the interactions of age, egg

complement and behavior. These predictions are also imminently test-

able (Cook and Hubbard 1977, Hubbard and Cook 1978, Marris et al.

1986, Rosenheim and Rosen 1992, Fletcher et al. 1994, Heimpel et al.

1996, Rosenheim and Heimpel 1998, Vos and Hemerik 2003).

Stochastic dynamic programming

The words ‘‘stochastic dynamic programming’’ were invented by the

American mathematician Richard Bellman, who was both incredibly

prolific and incredibly creative (often these do not go together).

Connections 165

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511819872.006
Downloaded from https://www.cambridge.org/core. Universidad Nacional de Mexico (UNAM), on 25 Mar 2019 at 20:06:55, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511819872.006
https://www.cambridge.org/core


Bellman invented the name somewhat before he had the method

(Bellman 1984) and this makes sense if you think that the method is

based on two principles: (1) with probability 1 something will happen;

and (2) whatever happens, act optimally. The origin of the method goes

back at least to the 1800s and the Irish mathematician Hamilton in his

study of the motion of the planets (Courant and Hilbert 1962). The

method of stochastic dynamic programming as a tool in behavioral

ecology was popularized by Colin Clark, Alasdair Houston, John

McNamara and me (Mangel and Clark 1988, Houston and McNamara

1999, Clark and Mangel 2000, McNamara et al. 2001). The parasitoid

problem that we considered is basically one of investment (in this case,

of eggs) in situations with uncertainty (in this case maternal survival).

Such problems abound and the methods have a wide range of applica-

tions in economic settings. One of my favorite volumes is Dixit and

Pindyck (1994). Owen-Smith (2002) gives some interesting applica-

tions of these methods to herbivore diet choice and ecology. More

mathematical sources include Bertsekas (1976), Whittle (1983),

Mangel (1985), Puterman (1994), and Bertsekas (1995).

Individual-based models

Forward iterations of the sort described in the text are examples of

individual-based models (IBMs), which are becoming a common tool in

ecology (DeAngelis and Gross 1992, van Winkle et al. 1998, Railsback

2001). Such models are used to simulate the behavior of many indivi-

duals, so that population processes emerge from individual interactions.

In order to do this, one must have the rules that the individuals follow

and a major question is then, from where do such rules come? One

possibility, of course, is simply to make them up from one’s sense of

how the system works. Another is to use deterministic or stochastic

dynamic programming, as in here, but use the results to predict general

rules of thumb, rather than state and time dependent tables of behavior.

Still another is to use the method of genetic algorithms (Haupt and

Haupt 1998), in which behavior is the result of genetic predispositions

that evolve through simulated genetic processes (Robertson et al. 1998,

Huse et al. 1999, McGregor and Roitberg 2000, Giske et al. 2002,

Strand et al. 2002). Other means of achieving individual adaptation

are described in Belew and Mitchell (1996).

Combining behavior and population dynamics

Ecologists and evolutionists should be interested in behavior because of

its impact on population dynamics (behaviorists, on the other hand, find
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behavior itself interesting). Our analysis of a simple situation shows

how quickly things can become complex. Meier et al. (1994) provide a

more formal mathematical analysis of strange attractors associated with

the classical models of host–parasitoid systems. Comins and Hassell

(1979) aim to bridge the gap between foraging models and population

models and conclude that although foraging behavior is important for

the quantitative details, the qualitative ones do not change much; but

there is still much to be done.
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Chapter 5

The population biology of disease

We now turn to a study of the population biology of disease. We will

consider both microparasites – in which populations increase in hosts by

multiplication of numbers – and macroparasites – in which populations

increase in hosts by both multiplication of numbers and by growth of

individual disease organisms. The age of genomics and bioinformatics

makes the material in this chapter more, and not less, relevant for three

reasons. First, with our increasing ability to understand type and

mechanism at a molecular level, we are able to create models with a

previously unprecedented accuracy. Second, although biomedical

science has provided spectacular success in dealing with disease, failure

of that science can often be linked to ignoring or misunderstanding

aspects of evolution, ecology and behavior (Schrag and Weiner 1995,

de Roode and Read 2003). Third, there are situations, as is well known

for AIDS but is true even for flu (Earn et al. 2002), in which ecological

and evolutionary time scales overlap with medical time scales for

treatment (Galvani 2003).

To begin, a few comments and caveats. At a meeting of the (San

Francisco) Bay Delta Modeling Forum in September 2004, my collea-

gue John Williams read the following quotation from the famous

American jurist Oliver Wendell Holmes: ‘‘I would not give a fig for

simplicity this side of complexity, but I would give my life for simpli-

city on the other side of complexity’’. It could take a long time to fully

deconstruct this quotation but, for our purposes, I think that it means that

models should be sufficiently complicated to do the job, but no more

complicated than necessary and that sometimes we have to become

more complicated in order to see how to simplify. In this chapter, we
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will develop models of increasing complexity. The building-up feeling

of the progression of sections is not intended to give the impression that

more complicated models are better. Rather, the scientific question is

paramount, and the simplest model that helps you answer the question is

the one to aim for.

Furthermore, the mathematical study of disease is a subject with an

enormous literature. As before, I will point you toward the literature in

the main body of the chapter and in Connections. As you work through

this material, you will develop the skills to read the appropriate litera-

ture. That said, there is a warning too: disease problems are inherently

nonlinear and multidimensional. They quickly become mathematically

complicated and there is a considerable literature devoted to the study of

the mathematical structures themselves (very often this is described by

the authors as ‘‘mathematics motivated by biology’’). As a novice

theoretical biologist, you might want to be chary of these papers,

because they are often very difficult and more concerned with mathe-

matics than biology.

There are two general ways of thinking about disease in a popula-

tion. First, we might simply identify whether individuals are healthy or

sick, with the assumption that sick individuals are able to spread infec-

tion. In such a case, we classify the population into susceptible (S),

infected (I ) and recovered or removed (R) individuals (more details on this

follow). This classification is commonly done when we think of micro-

parasites such as bacteria or viruses. An alternative is to classify individuals

according to the parasite burden that they carry. This is typically done

when we consider parasitic worms. We will begin with the former (classes

of individuals) and move towards the latter (parasite burden).

The SI model

As always, it is best to begin with a simple and familiar story. Lest you

think that this is too simple and familiar, it is motivated by the work of

Pybus et al. (2001), published in Science in June 2001. Since this is our

first example, we begin with something relatively simple.

Envision a closed population of size N and let S(t) and I(t) denote

respectively the number of individuals who are susceptible to infection

(susceptibles) and who are infected (infecteds) with the disease at time t.

Since the population is closed, S(t)þ I(t)¼N, which we will exploit

momentarily. New cases of the disease arise when an infected indivi-

dual comes in contact with a susceptible individual. One representation

of this rate of new infections is bSI, which is called the mass action

formulation of transmission, and which we will discuss in more detail in

the next section. Note that because the population is closed, the rate of
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new infections is also b(N� I)I; this is often called the force of infec-

tion. We assume that individuals lose infectiousness at rate v, so that the

rate of loss of infected individuals is vI. Combining these, we obtain an

equation for the dynamics of infection:

dI

dt
¼ bIðN � IÞ � vI (5:1)

If we combine the linear terms together we have

dI

dt
¼ IðbN � vÞ � bI2 (5:2)

and we see from this equation that if bN< v, the number of infecteds

will decline from its initial value. However, if bN> v, then Eq. (5.2) is

the logistic equation, written in a slightly different format (what would

the r and K of the logistic equation be in terms of the parameters in

Eq. (5.2)?). The resulting dynamics are shown in Figure 5.1. If bN< v,

the disease will not spread in the population, but if it does spread, the

growth will be logistic – an epidemic will occur, leading to a steady

level of infection in the population Ī ¼ (bN� v)/b. Furthermore,

whether the disease spreads or not can be determined by evaluating

bN/v without having to evaluate the parameters individually. Pybus

et al. (2001) fit this model to a number of different sets of data

on hepatitis C virus.

Since the population is closed, we could also work with the fraction

of the population that is infected, i(t)¼ I(t)/N. Setting I(t)¼Ni(t) in
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Figure 5.1. The solution of the

SI model (Eq. (5.1)) is logistic

growth if bN> v and decline

of the number of infected

individuals if bN< v.

Parameters here are N¼500,

v¼0.1 and b¼2v/N or

b¼0.95v/N.
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Eq. (5.1) gives N(di/dt)¼ bNi(N�Ni)� vNi and if we divide by N, and

set �¼ bN we obtain

di

dt
¼ �ið1� iÞ � vi (5:3)

as the equation for the dynamics of the infected fraction. Note that the

parameter � has the units of a pure rate, whereas b has somewhat funny

units: 1/time-individuals-infected, such as per-day-per-infected indivi-

dual. I have more to say about this in the next section.

Now let us consider these disease dynamics from the perspective of

the susceptible population. Furthermore, suppose that the initial number

of infected individuals is 1. We can then ask, if the disease spreads in the

population, how many new infections will occur as a result of contact

with this one individual? Since the rate of new infections is bIS,

the dynamics for S(t) are dS/dt¼�bIS, which we will solve with the

initial condition S(0)¼N� 1, holding I(t)¼ 1. This will allow us to

ask how many cases arise, approximately, from the one infected indivi-

dual (you could think about why this is approximate). The solution

for the dynamics of susceptibles under these circumstances is

S(t)¼ (N� 1)exp(�bt). Recall that the recovery rate for infected indi-

viduals is v, so that 1/v is roughly the time during which the one

infected individual is contagious. The number of susceptible individuals

remaining at this time will be S(1/v)¼ (N� 1)exp(� b/v), so that

the number of new cases caused by the one infected individual is

S(0)� S(1/v)¼ (N� 1)� (N� 1)exp(�b/v)¼ (N� 1)(1� exp(�b/v)).

If we assume that the population is large, so that N� 1�N and we

Taylor expand the exponential, writing exp(�b/v)� 1�(b/v), we

conclude that the number of new infections caused by one infected

individual is approximately Nb/v. This value – the number of new

infections caused by one infected individual entering a population of

susceptible individuals – is called the basic reproductive rate of the

disease and is usually denoted by R0. Note that R0> 1 is the condition

for the spread of the disease, and it is exactly the same condition that we

arrived at by studying the Eq. (5.2) for the dynamics of infection. In this

case, R0 tells us something interesting about the dynamics of the disease

too, since we can rewrite Eq. (5.1) as (1/v)(dI/dt)¼ (R0� 1)I� (b/v)I2;

see Keeling and Grenfell (2000) for more on the basic reproductive rate.

Characterizing the transmission between
susceptible and infected individuals

Before going any further, it is worthwhile to spend time thinking about

how we characterize the transmission of disease between infected and
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susceptible individuals. This is, as one might imagine, a topic with an

immense literature. Here, I provide sufficient information for our needs,

but not an overall discussion – see the nice review paper of McCallum

et al. (2001) for that.

In the previous section, we modeled the dynamics of disease trans-

mission by bIS. This form might remind you of introductory chemistry

and of chemical kinetics. In fact, we call this the mass action model for

transmission. Since dS/dt =�bIS, and the units of the derivative are

individuals per time, the units of b must be 1/(time)(individuals); even

more precisely, we would write 1/(time)(infected individuals). Thus,

b is not a rate, but a composite parameter.

The simplest alternative to the mass action model of transmission is

called the frequency dependent model of transmission, in which we

write dS/dt¼�b(I/N)S. Now b becomes a pure rate, because I/N has no

units. Note that we assume here that the rate at which disease transmis-

sion occurs depends upon the frequency, rather than absolute number,

of infected individuals. If we were working with an open, rather than

closed, population in which infected individuals are removed by death

or recovery, instead of N we could use Iþ S.

A third model, which is phenomenological (that is, based on data

rather than theory) is the power model of transmission, in which we

write dS/dt¼�bS pI q where p and q are parameters, both between 0 and

1. In this case, the units of b could be quite unusual.

A fourth model, to which we will return in a different guise, is the

negative binomial model of transmission, for which

dS

dt
¼ �kS log 1þ bI

k

� �
(5:4)

where k is another parameter – and is intended to be exactly the over-

dispersion parameter of the negative binomial distribution. This model

is due to Charles Godfray (Godfray and Hassell 1989) who reasoned as

follows. Over a unit interval of time, let us hold I constant and integrate

Eq. (5.4) by separating variables

dS

S
¼ �k log 1þ bI

k

� �
dt

Sð1Þ ¼ Sð0Þ exp log 1þ bI

k

� ��k
 !

¼ Sð0Þ 1þ bI

k

� ��k

¼ Sð0Þ k þ bI

k

� ��k

¼ Sð0Þ k

k þ bI

� �k

(5:5)

so that we see that in one unit of time, the fraction of susceptibles

escaping disease is given by the zeroth term of the negative binomial

distribution.
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As in Chapter 3, where you explored the negative binomial distri-

bution, it is valuable here to understand the properties of the negative

binomial transmission model.

Exercise 5.1 (M)

(a) Show that as k!1, the negative binomial transmission model approaches

the mass action transmission model. (Hint: what is the Taylor expansion of

log(1þ x)? Alternatively, set k¼ 1/x and apply L’Hospital’s rule.) (b) Define

the relative rate of transmission by

RðkÞ ¼
kS log 1þ bI

k

� �
bIS

and do numerical investigations of its properties as k varies. (c) Note, too, that

your answer depends only on the product bI, and not on the individual values

of b or I. How do you interpret this? (d) The force of infection is now

kSlog(1þ (bI/k)). Holding S and I constant, investigate the level curves of the

force of infection in the b� k plane.

In most of what follows, we will use the mass action model for

disease transmission. In the literature, mass action and frequency

dependent transmission models are commonly used, but rarely tested

(for an exception, see Knell et al. 1996). Because of this, one must be

careful when reading a paper to know which is the choice of the author

and why.

The SIR model of epidemics

The mathematical study of disease was put on firm footing in the early

1930s in a series of papers by Kermack and McKendrick (1927, 1932,

1933); a discussion of these papers and their intellectual history,

c. 1990, is found in R. M. Anderson (1991). When Kermack and

McKendrick did their work, computing was difficult, so that good

thinking (analytic ability, finding closed forms of solutions and their

approximations) was even more important than now (of course, one

might argue that since these days it is so easy to blindly solve a set of

equations on the computer, it is even more important now to be able to

think about them carefully).

We consider a closed population in which individuals are either

susceptible to disease (S), infected (I) or recovered or removed by

death (R). Since the population is closed, at any time t we have

S(t)þ I(t)þR(t)¼N. If we assume mass action transmission of the

disease and that removal occurs at rate v, the dynamics of the disease

become
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dS

dt
¼�bIS

dI

dt
¼ bIS � vI

dR

dt
¼ vI

(5:6)

and in general, the initial conditions would be S(0)¼ S0, I(0)¼ I0 and

R(0)¼N� S0� I0 (since the population may already contain indivi-

duals who have experienced and recovered from the disease).

Let us begin with the special case of S(0)¼N� 1 and I(0)¼ 1. As in

the model of hepatitis, we can ask the following question: how many

new cases of the disease are caused directly by this one infected individual

entering a population in which everyone else is susceptible. We proceed

in very much the same way as we did with hepatitis. If we set I¼ 1 in the

first line of Eq. (5.6), the solution is S(t)¼ (N� 1)exp(�bt). The one

infected individual is infectious for a period of time approximately equal

to 1/v, at which time the number of susceptibles is (N� 1)exp(�b/v).

The number of new cases caused by this one infected individual is

then N� 1� [(N� 1)exp(�b/v)]¼ (N� 1)(1� exp(�b/v)) and if we

Taylor expand the exponential, keeping only the linear term, and

assume that the population is large so that N� 1�N we conclude that

R0� bN/v, just as with the model for hepatitis C.

Now let us think about Eq. (5.6) in general. The only steady state for

the number of infected individuals is I¼ 0, but there are two choices for

the steady states of S: either S¼ 0 (in which case an epidemic has run

through the entire population) or S¼ v/b (in which case an epidemic has

run its course, but not every individual became sick). We would like to

know which is which, and how we determine that. The phase plane for

Eq. (5.6) is shown in Figure 5.2, and it is an exceptionally simple phase

plane. Indeed, from this phase plane we conclude the following remark-

able fact: if S(0)> v/b then there will be a wave of epidemic in the

population in the sense that I(t) will first increase and then decrease.

Note that this condition, S(0)> v/b, is the same as the condition that

I

S

dI
dt

< 0

v
b

dS
dt

= 0

dS
dt

=

dI
dt

> 0

dI
dt

= 0

dI
dt

= 0

(a)

v
b

I

S

(b)Figure 5.2. The phase plane for

the SIR model. This is an

exceptionally simple phase

plane: since dS/dt is always

negative, points in the phase

plane can move only to the left.

If S(0)> v/b, then I(t) will

increase, until the line S¼ v/b is

crossed. If S(0)< v/b, then I(t)

only declines.
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R0> 1. Thus the heuristic analysis and the phase plane analysis lead to

the same conclusion. This remarkable result is called the Kermack–

McKendrick epidemic theorem. Note that once again, the threshold

depends upon the number of susceptible individuals, not the number

of infected individuals.

We can actually do more by noting that dI/dS¼ (dI/dt)/(dS/dt) from

which we conclude
dI

dS
¼ �1þ v

bS
(5:7)

If we think of I as a function of S, then I will takes its maximum when

dI/dS¼ 0; this occurs when S¼ b/v. We already know this from the

phase plane, but Eq. (5.7) allows us to find an explicit representation for

I(t) and S(t).

Exercise 5.2 (E/M)

Separate the variables in Eq. (5.7) to show that

IðtÞ þ SðtÞ � v

b
logðSðtÞÞ ¼ Ið0Þ þ Sð0Þ � v

b
logðSð0ÞÞ (5:8)

Note that this equation allows us to find the relationship between I(t) and S(t) at

any time in terms of their initial values.

How about computation of trajectories? That involves the solution

of Eq. (5.6.) We might work with the variables S(t) and I(t) themselves,

which could involve dealing with relatively large numbers. For those

who want to write their own iterations by treating the differential

equation as a difference equation, I remind you of the warning that we

had in Chapter 2 on the logistic equation. The following observation is

helpful. If we set S(tþ dt)¼ S(t)exp(�bI(t)dt), then in the limit that

dt! 0, we get back the first line of Eq. (5.6) (if this is unclear to you,

Taylor expand the exponential, subtract S(t) from both sides, divide by

dt and take the limit). This reformulation also provides a handy inter-

pretation: exp(�bI(t)dt)< 1 and can be interpreted as the fraction of

susceptible individuals who escape infection in the interval (t, tþ dt)

when the number of infected individuals is I(t).

However, because the population is closed and R(t)¼N� S(t)� I(t),

we can focus on fraction of susceptible and infected individuals, rather

than absolute numbers. That is, if we set S(t)¼ s(t)N, I(t)¼ i(t)N and

�¼ bN as in Eq. (5.3), the first two lines of Eq. (5.6) become

ds

dt
¼��is

di

dt
¼�is� vi

(5:9)
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to which we append initial conditions s(0)¼ s0 and i(0)¼ i0. Note that

the critical susceptible fraction for the spread of the epidemic is now

v/�. These equations can be solved by direct Euler iteration or by more

complicated methods, or by software packages such as MATLAB.

Exercise 5.3 (M)

Solve Eqs. (5.9) for the case in which the critical susceptible fraction is 0.4, for

values of s(0) less than or greater than this and for i(0)¼ 0.1 or 0.2.

Kermack and McKendrick, who did not have the ability to compute

easily, obtained an approximate solution of the equations characterizing

the epidemic. To do this, they began by noting that since the population

is closed we have dR/dt¼ vI¼ v(N� S�R), which at first appears to be

unhelpful. But we can find an equation for S in terms of R by noting the

following

dS

dR
¼ dS

dt

� ��
dR

dt

� �
¼ � b

v

� �
S (5:10)

and so we see that S, as a function of R, declines exponentially with R;

that is S(R)¼ S(0)exp(�(b/v)R). When we use this in the equation for R,

we thus obtain

dR

dt
¼ v N � Sð0Þ exp � bR

v

� �
� R

� �
(5:11)

to which we add the condition R(0)¼N� S0� I0 and from which we

would like to find R(t), after which we compute S(t)¼ S(0)exp(�(b/v)

R(t)) and from that I(t)¼N� S(t)�R(t). However, Eq. (5.11) cannot be

solved either. In order to make progress, Kermack and McKendrick

(1927) assumed that bR� v (how do you interpret this condition?), so

that the exponential could be Taylor expanded. Keeping up to terms of

second order in the expansion, we obtain

dR

dt
¼ v N � Sð0Þ 1� bR

v
þ 1

2

b

v

� �2

R2

 !
� R

" #
(5:12)

and this equation can be solved (Davis 1962). In Figure 5.3, I have

reprinted a figure from Kermack and McKendrick’s original paper,

showing the general agreement between this theory and the observed

data, the solution of Eq. (5.12) (although their notation is slightly

different than ours), and their comments on the solution.

To close this section, and give a prelude to what will come later in

the chapter, let us ask what will happen to the dynamics of the disease if

individuals can either recover or die. Thus, let us suppose that the
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mortality rate for the disease is m. The dynamics of susceptible and

infected individuals are now

dS

dt
¼�bIS

dI

dt
¼ bIS � ðvþ mÞI

(5:13)

and the basic reproductive rate of the disease is now R0¼ bS0/(vþm).

How might the mortality from the disease, m, be connected to the rate at

which the disease is transmitted, b? We will call m the virulence or the

900
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Weeks

25 30

Figure 1. Deaths from plague in the island of Bombay over the period 17 December 1905
to 21 July 1906. The ordinate represents the number of deaths per week, and the abscissa
denotes the time in weeks. As at least 80–90% of the cases reported terminate fatally, the ordinate 
may be taken as approximately representing dz/dt as a function of t. The calculated curve 

 

   We are, in fact, assuming that plague in man is a reflection of plague in rats, and 
that with respect to the rat: (1) the uninfected population was uniformly susceptible; 
(2) that all susceptible rats in the island had an equal chance of being infected; (3) 
that the infectivity, recovery, and death rates were of constant value throughout the 
course of sickness of each rat; (4) that all cases ended fatally or became immune; (5) that
the flea population was so large that the condition approximated to one of contact infection.
None of these assumptions are strictly fulfilled and consequently the numerical equation can only
be a very rough approximation. A close fit is not to be expected, and deductions as to the actual values 
of the various constants should not be drawn. It may be said, however, that the calculated curve,
which implies that the rates did not vary during the period of epidemic, conforms roughly to the

y = 
dz
dt

 = 890 sech2(0.2t – 3.4)

observed figures.

is drawn from the formula:

Figure 5.3. Reproduction of Figure 1 from Kermack and McKendrick (1927), showing the solution of Eq. (5.12)

and a comparison with the number of deaths from the plague in Bombay. Reprinted with permission.
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infectedness and assume that the contagiousness or infectiousness is a

function b(m) with shape shown in Figure 5.4. The easiest way to think

about a justification for this form is to think of m and b(m) as a function

of the number of copies of the disease organism in an infected indivi-

dual. When the number of copies is small, the chance of new infection is

small, and the mortality from the disease is small. As the number of

copies rises, the virulence also rises, but the contagion begins to level

off because, for example, the disease organism is saturating the exhaled

air of an infected individual.

If we accept this trade-off, the question then becomes what is the

optimal level of virulence? To answer this question, which we will do

later, we need to decide the factors that will determine the optimal level,

and then figure out a way to find the optimal level. For example, is

making m as large as possible optimal for the disease organism? I leave

this question for now, but you might want to continue to think about it.

In this section, we considered a disease that is epidemic: it enters a

population, and runs it course, after which there are no infected individuals

in the population. We now turn to a case in which the disease is endemic –

there is a steady state number of infected individuals in the population.

The SIRS model of endemic diseases

We now modify the basic SIR model to assume that recovered indivi-

duals may lose resistance to the disease and thus become susceptible

again, but continue to assume that the population is closed. Assuming

that the rate at which resistance to the disease is lost is f, the dynamics of

susceptible, infected, and recovered individuals becomes

dS

dt
¼�bIS þ f R

dI

dt
¼ bIS � vI

dR

dt
¼ vI � f R

(5:14)

One possible steady state for this system is I¼R¼ 0 and S¼N, in

which case we conclude that the disease is extirpated from the popula-

tion. If this is not the case, we then set R¼N� S� I and work with the

dynamics of susceptible and infected individuals:

dS

dt
¼ �bIS þ f ðN � S � IÞ

dI

dt
¼ bIS � vI

(5:15)

b(m )
Contagiousness

m
Virulence

Figure 5.4. The assumed

relationship between

contagion or infectiousness,

b(m) and virulence or

infectedness, m.
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The number of infected individuals is at a steady state if �S ¼ v=b. We

then set dS/dt¼ 0 and solve for the steady state number of infected

individuals (this is why the assumption of a closed population is such a

nice one to make):

�I ¼ f ðN � �SÞ
b �S þ f

(5:16)

and if we evaluate this at the steady number of susceptible individuals,

we obtain

�I¼ f N � ðv=bÞ½ �
vþ f

(5:17)

so that we conclude the steady number of infecteds is positive if N> v/b

(a quantity which should now be familiar). That is, we have determined a

condition for endemicity of the disease, in the sense that the steady state

number of infected individuals is greater than 0.

The next question concerns the dynamics of the disease. In

Figure 5.5, I show the phase plane for the case in which the disease is

predicted to be endemic. The phase plane suggests that we should, in

general, expect oscillations in the case of an endemic disease – that is

periodic outbreaks that are not caused by anything other than the

fundamental population biology of the disease.

Furthermore, from this analysis we conclude that, although whether

the disease is endemic or not depends only upon the ratio v/b and the

size of the population N, the level of endemicity (determined by the

steady state number of infected individuals) will also depend, as

Eq. (5.17) shows us, upon the ratio v/f. Through this analysis, we thus

learn what critical parameters to measure in the study of an endemic

disease.

A numerical example is found in the next section.

Adding demography to SIR or SIRS models

Until now, we have ignored all other biological processes that might

occur concomitantly with the disease. One possibility is population

growth and mortality that is independent of the disease. There are

many different ways that one may add demographic processes to the

SIR or SIRS models. Here, I pick an especially simple case, to illustrate

how this can be done and how the conclusions of the previous sections

might change.

When adding demography, we need to be careful and explicit about

the assumptions. Let us assume that (1) only susceptible individuals

reproduce, and do so at a density-independent rate r, (2) all individuals

I

N

dS
dt

= 0

v
b

dI
dt

= 0

Figure 5.5. The phase plane

for the SIRS model for the case

in which the disease is

predicted to be endemic.
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experience mortality � that is independent of the disease with r>�, and

(3) there is no disease-dependent mortality. In that case, the SIR equa-

tions (5.6) become

dS

dt
¼�bIS þ ðr � �ÞS

dI

dt
¼ bIS � vI � �I

dR

dt
¼ vI � �R

(5:18)

The term representing demographic process of net reproduction is

(r��)S. Other choices are possible; for example we might assume

that both susceptible and recovered individuals could reproduce, that

all individuals can reproduce (still with no vertical transmission) or that

birth rate is simply a constant (e.g. proportional to N). Each of these

could be justified by a different biological situation and may lead to

different insights than using Eqs. (5.18); �I and �R are demographic

sources of mortality. If one particularly appeals to you, I encourage you

to redo the analysis that follows with the assumption that you find most

attractive.

We proceed to find the steady states by setting the left hand side

of Eqs. (5.18) equal to 0. When we do this, we obtain (from dS/dt¼
dI/dt¼ dR/dt¼ 0 respectively)

�I ¼ r � �
b

�S ¼ vþ �
b

�R ¼ v�I

�
¼ v

�

r � �
b

	 

(5:19)

We learn an enormous amount just from the steady states. First,

recall that for the SIR model without demography, the only steady state

is I¼ 0. However, from Eqs. (5.19), we conclude that in the presence of

demographic factors, a disease that would be epidemic becomes ende-

mic. Second, we see that the steady state levels of susceptible, infected,

and recovered individuals depends upon a mixture of demographic and

disease parameters. Third, and perhaps most unexpected, note that the

steady state level of susceptibles is independent of r! (You should think

about the assumptions and results for a while and explain the biology

that underlies it.) It is helpful to summarize the various versions of the

SIR model in a single figure (Figure 5.6). Here I show the SIR model for

an epidemic (panel a), the SIRS model for an endemic disease (which

approaches the steady state in an oscillatory fashion) (panel b), and the

SIR model with demography (panel c). Note the progression of increas-

ing dynamic complexity (also see Connections).

Equations (5.19) beg at least two more questions: first, what is the

nature of this steady state; second, what happens if there is more
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complicated demography? These are good questions, but since I want to

move on to other topics, I will leave them as exercises.

Exercise 5.4 (M/H)

Conduct an eigenvalue analysis of the steady state in Eqs. (5.19). Note that there

will be three eigenvalues. How are they to be interpreted?

Exercise 5.5 (E/M)

How do Eqs. (5.19) change if we assume logistic growth rather than exponential

growth as the demographic term. That is, what happens if we replace (r�m)S

by rS(1� (S/K))?
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Figure 5.6. Solutions of various forms of the SIR model. (a) The basic SIR model for an epidemic (b¼0.005,

v¼0.3; true for panels b and c); (b) the SIRS model for an endemic disease (f¼0.05); and (c) the SIR model with

demography (f¼0, r¼0.1, �¼0.05).
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The evolution of virulence

In the same way that demographic processes can occur simultaneously

with disease processes, evolutionary processes can occur simulta-

neously with ecological processes in the dynamics of a disease.

Although we tend to think of population dynamics and evolution occur-

ring on different time scales, contemporary evolution (evolution

observed in less than a few hundred generations) is receiving more

attention (Stockwell et al. 2003). One of the most impressive and

well-known examples is the AIDS virus, which shows evolution of

drug resistance within patients during the course of their care.

In this section, we will consider three examples, with the goal of

giving you a sense of how one can think about the evolution of virulence.

The optimal level of virulence

Recall that we closed the section on the SIR model with a discussion of

the basic reproductive rate for a disease when the disease related

mortality rate is m and recovery rate is v

R0ðmÞ ¼
bðmÞS0

vþ m
(5:20)

where I have made explicit the dependence of the contagion on the

virulence, still assumed to have the shape as in Figure 5.4. How might

natural selection act on the reproductive rate of a disease? A reasonable

starting point is to assume that the disease strain that spreads the fastest

(i.e. has the greatest value of R0(m)) will be the most prevalent. If we

accept this assumption as a starting point, we then ask for the value of m

that maximizes R0(m) given by Eq. (5.20).

Now you should compare Eq. (5.20) with Eq. (1.6). They are

essentially the same equation: a saturating function of a variable divided

by that variable plus a constant. Thus, from the marginal value con-

struction in Chapter 1, we instantly know how to find the optimal level

of virulence. First, we plot b(m) versus m. Second, we draw the tangent

line from (�v, 0) to the curve b(m). Third, we read the predicted optimal

level of virulence from the intersection of the tangent line and the x-axis

(Figure 5.7). Thus, the marginal value theorem, developed for foraging

in patchy environments, is also useful here.

The unbeatable (ESS) level of virulence

We will now look at the problem in a slightly different manner, from the

perspective of invasions. Recall that the dynamics of the infected
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individuals are dI/dt¼ bIS� (vþm)I from which we conclude that the

steady state level of susceptibles is �SðmÞ ¼ ðvþ mÞ=bðmÞ. Now let us

consider an invader, which is rare and which uses an alternative level of

virulence ~m. Because the invader is rare, we assume that it has no effect

on the steady state level of the susceptible population, and we ask

‘‘when will the invader increase?’’. Under these assumptions,

if Ĩ denotes the number of invaders, the dynamics of the invader are

d~I

dt
¼ bð ~mÞ~ISðmÞ � ðvþ ~mÞ~I (5:21)

and we now substitute for the steady state level of susceptibles and

factor out the number of infecteds to obtain

d~I

dt
¼ ~I bð ~mÞ vþ m

bðmÞ

� �
� ðvþ ~mÞ

� �
(5:22)

and the invader will spread if the term in brackets is greater than 0. This

is true when bð ~mÞ ðvþ mÞ=bðmÞð Þ > ðvþ ~mÞ, which is, of course, the

same as bð ~mÞ=ðvþ ~mÞ > bðmÞ=ðvþ mÞ. We thus conclude that the

strategy that maximizes b(m)/(vþm) is unbeatable because it cannot

be invaded. This is exactly the same condition that arises in the max-

imization of R0. In other words, the strategy that optimizes the basic

reproductive rate is also unbeatable and cannot be invaded. This is a

very interesting result, in part because optimality and ESS analyses may
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Figure 5.7. Marginal value

construction used to find the

optimal level of virulence.
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often lead to different conclusions (Charlesworth 1990, Mangel 1992)

but here they do not.

The coevolution of virulence and host response

As the virulence of the parasite evolves, the host response may also

change. Thus, we have a case of coevolution of parasite virulence and

host response. Here, we develop, in a slightly different manner, a model

due to Koella and Restif (2001) and I encourage you to seek out and read

the original paper.

For the host, we assume a semelparous organism following von

Bertalanffy growth with growth rate k, asymptotic size L1, disease

independent mortality �, and allometric parameter � connecting size

at maturity and reproductive success. With these assumptions, we know

from Chapter 2 that if age at maturity is t, then an appropriate measure

of fitness is F(t)/ e��t (1� e�kt)� and we also know from Chapter 2

that the optimal age at maturity is t�m¼ ð1=kÞ log ð�þ �kÞ=�½ �.
For the disease, we assume horizontal transmission between dis-

ease propagules and susceptible hosts at rate l that is independent of

the number of infected individuals (think of a disease transmitted by

propagules such as spores). The virulence of the disease can be

characterized by an additional level of host mortality �, so that the

mortality rate of infected hosts is �þ�. (Figure 5.8). We then

immediately predict that hosts that are infected will reproduce at a

different age, given by

t�m;i ¼
1

k
log

�þ �þ �k

�þ �

� �

Exercise 5.6 (E/M)

Determine the corresponding values for size at maturity.

Our first prediction is that if there are no constraints acting on age at

maturity, then infected individuals will mature at earlier age (and

Susceptible
individuals

Infected
individuals

Mortality rate μ + αMortality rate μ

Infection rate

λ

Figure 5.8. The infection

process modeled by Koella and

Restif (2001) in their study of the

coevolution of virulence and

host age at maturity. The host

becomes infected by disease

propagules (such as spores)

independent of the density of

other infected individuals.

184 The population biology of disease

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511819872.007
Downloaded from https://www.cambridge.org/core. Universidad Nacional de Mexico (UNAM), on 25 Mar 2019 at 20:06:55, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511819872.007
https://www.cambridge.org/core


smaller size) than non-infected individuals. However, suppose all indi-

viduals are forced to use the same age at maturity (e.g. the physiological

machinery required for maturity is slow to develop, so that the age of

maturity has to be set long in advance of potential infection). We could

then ask, as do Koella and Restif (2001), what is the best age at maturity,

taking into account the potential effect of infection on the way to

maturation.

In that case, we allow the age at maturity to be different from either

of the values determined above and proceed as follows. First, we will

determine the optimal level of virulence for the pathogen, given that the

age of maturity is tm. This optimal level of virulence can be denoted as

�*(tm.). Given the optimal level of virulence in response to an age at

maturity, we then allow the host to determine the best age at maturity.

This procedure, in which the age at maturity is fixed, the pathogen’s

optimal response to an age at maturity is determined, and then the host’s

choice of optimal age at maturity is then determined is a special form

of dynamic game theory called a leader–follower or Stackelberg

game (Basar and Olsder 1982). The general way that these games are

approached is to first find the optimal response of the follower (here the

parasite), given the response of the leader (here the host), and then find

the optimal response of the leader, given the optimal response of the

follower. So, let’s begin.

If hosts mature and reproduce at age tm, then they may become

infected at any time � between 0 and tm. Horizontal transmission of the

disease will then be determined by transmission rate l and the length of

time that that individual is infected. To find the latter, we set

Dðtm; �Þ ¼ Eflength of time an individual is alive; given infection at �g
(5:23)

This interval is composed of two kinds of individuals: those who

survive to reproduction (and thus whose remaining lifetime is tm� �)

and those who die before reproduction. We thus conclude

Dðtm; �Þ ¼ ðtm � �ÞPrfsurvive to reproductiong
þ Eflifetimejdeath before tm; infection at �g

(5:24)

Since the mortality rate of an infected individual is �þ�, the prob-

ability that an individual dies before age s is 1� exp(� (�þ�)s) and the

probability density for the time of death is (�þ�)exp(� (�þ�)s).

Consequently, the expected lifetime of individuals who die before tm

and who are infected at age � is �þ �ð Þ
Ð ðtm��Þ

0
te�ð�þ�Þtdt. The integral

in this expression can be evaluated using integration by parts (or the

1�F(z) trick mentioned in Chapter 3).
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Exercise 5.7 (M)

Evaluate the integral, and combine it with the term corresponding to individuals

who survive to reproduction to show that

Dðtm; �Þ ¼
1

�þ � ½1� e�ð�þ�Þðtm��Þ� (5:25)

Now this equation is conditioned on the time at which an individual

becomes infected, so to find the average duration of the disease, we

need to average over the distribution of the time of infection. Since the

rate of horizontal transmission is l, the probability that an individual is

infected in the interval (� , � þ d�) is le�l�d� . Consequently, the aver-

age duration of infection, when individuals reproduce at age tm is

DðtmÞ ¼
ðtm
0

le�l�e���Dðtm; �Þd� (5:26)

To analyze the evolution of virulence, Koella and Restif separate

transmission of disease propagules by contact between susceptible and

infected hosts (with rate l) and the efficiency of the transmission, which

they denote by �(�) and which is assumed to have the same kind of form

as b(m) that we encountered previously: �(�) = �max�/(�þ�0), where

�max is the maximum efficiency and �0 is the level of virulence at which

half of this efficiency is reached. We then combine Eq. (5.26) with the

efficiency to obtain a measure of the success of horizontal transmission

when the host matures at age tm and the level of virulence is �:

Hðtm; �Þ ¼ "ð�ÞDðtmÞ (5:27)

and we assume that natural selection has acted on virulence to maximize

H(tm, �) with respect to the level of virulence �.

In Figure 5.9, I show the optimal level of virulence (i.e. that

maximizes H(tm, �)) as a function of the age at which the host

reproduces. The results accord with the intuition that we have devel-

oped thus far: slowly developing hosts select for reduced virulence in

parasites because there is more time for the transmission of the

disease. Let us denote the curve in Figure 5.9 by �*(tm), to remind

ourselves that it is the optimal level of parasite virulence when the

hosts mature at age tm.

We now turn to the computation of the optimal age of maturity for

the hosts. Since we have assumed a semelparous host, the appropriate

measure of fitness is expected lifetime reproductive success. Imagine a

cohort of hosts, with initial population size N, and in which all indivi-

duals begin susceptible. At a later time, the population will consist of
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S(t) uninfected individuals and I(t) infected individuals (with S(0)¼N

and I(0)¼ 0). Recall that we assumed that hosts become infected at rate

l, independent of the density of infected individuals. Consequently, the

dynamics for susceptible and infected individuals is slightly different

than before:

dS

dt
¼� ðlþ �ÞS

dI

dt
¼ lS � ½�þ ��ðtmÞ�I

(5:28)

We now solve these equations subject to the initial conditions. The first

equation can be solved by inspection, so that S(t)¼Ne�(lþ�)t. The

solution of the second equation is slightly more complicated. We

separate the case in which l¼�*(tm) and the case in which they are

not equal. In the latter case, we solve the equation for infected indivi-

duals by the use of an integrating factor and we obtain

IðtÞ ¼ l
��ðtmÞ � l

� �
Nð0Þ½e�ðlþ�Þt � e�ð�

�ðtmÞ��Þt�

Exercise 5.8 (M)

For the case in which l = �*(tm) show that IðtÞ ¼ ltmNe�ðlþ�Þtm .

Given S(t) and I(t), we next compute the probability that an indivi-

dual survives to age t as p(t)¼ [S(t)þ I(t)]/N and thus the expected

lifetime reproductive success is FðtmÞ / pðtmÞð1� e�ktmÞ�. We may

then assume that natural selection acts to maximize this expression

through the choice of age at maturity, which you should now be able

to find. This approach differs somewhat from that of Koella and Restif

(2001) and I encourage you to read their paper, both for the approach
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Figure 5.9. Optimal virulence

of the parasites when hosts

mature at age t (reprinted from

Koella and Restif (2001) with

permission). Parameters are

�¼0.15, �max¼5, �0¼0.1,

l¼0.05.
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and the discussion of the advantages and limitations of this model in the

study of the evolution of virulence.

Vector-based diseases: malaria

Diseases that are transmitted from one host to another via vectors rather

than direct contact are common and important. For example (Spielman

and D’Antonio 2001), mosquitoes transmit malaria (Anopheles spp.),

dengue and yellow fever (Aedes spp.), West Nile Virus and filariasis,

the worm that causes elephantitis (Culex spp.) (Figure 5.10). In this

section, we will focus on malaria, which continues to be a deadly

disease, killing more than one million people per year and being wide-

spread and endemic in the tropics. The history of the study of malaria is

itself an interesting topic and the book by Spielman and D’Antonio

(2001) is a good place to start reading the history; Bynum (2002) gives a

two page summary, from the perspective of Ronald Ross. From our

perspective, some of the highlights of that history include the following.

� 1600s: Quinine derived from tree bark in Peru is used to treat the malarial

fever.

� 1875: Patrick Manson uses a compound microscope and discovers the organ-

ism responsible for elephantitis.

� 1880: Pasteur develops the germ theory of disease.

� 1880: Charles Levaran is the first to see the malarial parasite in the blood.

� 1893: Neocide (DDT) is invented by Paul Mueller as a moth killer.

� 1890s–1910s: A world-wide competition for understanding the malarial

cycle involves Ronald Ross (UK), Amico Bignami (Italy), Giovanni Grassi

(Italy), Theobald Smith (US), W. G. MacCallum (Canada). The win is

usually attributed to Ross, who also develops a mathematical model for the

malarial cycle. In 1911 Ross writes the second edition of The Prevention of

Malaria.

� 1939–45: During World War II, atabrine, a synthetic quinine, is developed, as

is chloroquinine; DDT is used as a delouser in prisoner of war camps.

� 1946–1960s: Attempts are made to eradicate malaria and they fail to do so;

resistance to DDT develops.

� 1950s: G. MacDonald publishes his model of malaria and studies the impli-

cations of this model. In 1957 he writes The Epidemiology and Control of

Malaria.

� 1960: The first evidence of resistance of the malaria parasite (Plasmodium

spp.) to chloroquinine is discovered.

� 1962: Rachel Carson’s Silent Spring is published. John McNeil (2000) has

called Silent Spring ‘‘the most important book published by an American.’’ If

you have not read it, stop reading this book now, find a copy and read it.
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� 2000–2010: The World Health Organization (WHO) embarks on a program

called Roll Back Malaria, with the goal of reducing world-wide deaths by 50%.

Malaria is caused by amoeboid parasites Plasmodium; currently

there are four main species that cause human malaria (P. falciparum,

(a)

(b)

(c)

(d)

Figure 5.10. (a) The malarial mosquito Anopheles freeborni (from the Public Health Image Library (PHIL) found at

http://phil.cdc.gov/phil/default.asp thanks to Dr. James Gathany). (b) Egg rafts of the carrier of avian malaria

Culex laticinctus, and (c) Culex attacking a host (both compliments of Dr. Leon Blaustein, Haifa University).

(d) Ookinete of the human malaria parasite Plasmodium falciparum (top-right corner) within the basal region of the

midgut wall of the mosquito vector Anopheles stephensi. The ookinete probably resides within the intercellular space

between adjacent midgut cells, after having passed intracellularly through the midgut epithelial cell that exhibits

abnormal dark staining (compliments of Dr. Luke Baton and Dr. Lisa Ranford-Cartwright, University of Glasgow).
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P. malariae, P. ovale, P. vivax). The parasite itself has a complex life

cycle and has been divided into more than ten separate steps (Oaks

et al. 1991). For our purposes, the malarial cycle might be described as

follows.

� An infected female mosquito seeks a blood meal so that she can make eggs.

The sporozite form of the parasite migrates to the salivary glands of the

mosquito.

� After entering a human host during a biting episode, the sporozites invade the

liver cells and over the next 5–15 days, multiply into a new form (called

merozites) which are released and invade red blood cells. The merozites

reproduce within the red blood cell, ultimately rupturing it (with associated

symptoms of fever and clinical indications of malaria).

� Some of the merozites differentiate into male and female sexual forms (game-

tocytes). These sexual forms are ingested by a different (potentially uninfected)

mosquito during her blood meal. Once inside the mosquito, the gametes fuse to

form a zygote, which migrates to the stomach of the mosquito and ultimately

becomes an oocyst. Over the next week or so, the oocyst grows in the mosquito

stomach, ultimately rupturing and releasing of the order of 10 000 sporozites

which migrate to the salivary glands. And so the process goes.

There are more than 2500 species of mosquito in the world, but

only the genus Anopheles transmits malaria; there are about 60 species

in this genus. The mosquito life cycle consists of egg, larval, pupal and

adult stages. Females require a blood meal for reproduction and deposit

200–1000 eggs in three or more batches, typically into relatively clean

and still water. The development time from egg to adult is 7–20 days,

depending upon species and environmental conditions. Adult survival is

typically of the order of a month or so (especially under good conditions

of high humidity and moderate temperature). The adults seek hosts via

chemical cues that include plumes of carbon dioxide, body odors and

warmth (Oaks et al. 1991).

There exists in the literature what one might call the ‘‘standard

vector model’’ and we shall now derive it, using mosquitoes and

humans as the motivation, but keeping in mind that these ideas are

widely applicable. The key variables are the total population of humans

and mosquitoes, HT and MT respectively, which are assumed to be

approximately constant, and the population of infected humans and

mosquitoes, H and M respectively. The malarial cycle is characterized

by the following parameters.

a¼Biting rate of mosquitoes (bites/time).

b¼ Fraction of bites by infectious mosquitoes on uninfected humans

that lead to infections in humans.
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c¼ Fraction of bites by uninfected mosquitoes on infected humans that

lead to parasites in the mosquito.

r¼Recovery rate of infected humans (rate at which the parasite is

cleared).

�¼Mosquito death rate.

Examples of clearance rates of parasites are found in Anderson and

May (1991; figures 14.2 and 14.3). To begin, we compute the basic

reproductive rate of the disease. Imagine that one human becomes

infected with the parasite. This individual is infectious for an interval

that is roughly 1/r. This infected human will thus be bitten a/r times and if

we assume that the mosquitoes are uniformly distributed across hosts and

that a mosquito only bites each human once, then the number of mosqui-

toes infected from biting this one infected human is ac(MT/HT)(1/r).

Each infected mosquito will make approximately ab(1/�) infectious

bites. Combining these, we conclude that the number of new cases is

R0 ¼ ac
MT

HT

1

r
ab

1

�
¼ a2bc

MT

HT

1

r

� �
1

�

� �
¼ a2

r�
bc

MT

HT
(5:29)

The last re-arrangement of terms in Eq. (5.29) makes the dimensionless

combinations of parameters clear. In the mosquito literature, there is a

tradition of using Z0 for the basic reproductive rate. Perhaps the most

important conclusion from this calculation is that the biting rate enters

as a square, while all other parameters enter linearly. Thus, in general a

given percentage reduction in the biting rate (e.g. by bed nets or by

insect repellent) will have a much greater effect on the basic reproduc-

tive rate of the disease than a similar reduction in any of the other

parameters. This was one of Ross’s arguments for mosquito control as a

means of malaria control.

We now construct the dynamics of infection. We begin with infected

humans, H(t), who come from interactions between infected mosquitoes,

M(t), and uninfected humans, HT�H(t). Assuming that transmission is

characterized by mass action, thus depending upon the number of

mosquitoes infected per human and the number of uninfected humans,

and taking into account the clearance of parasites, we conclude that

dH

dt
¼ ab

M

HT

� �
ðHT � HÞ � rH (5:30)

As in the computation of the basic reproductive rate, we have distributed

infected mosquitoes across the human population. Mosquitoes become

infected in a similar manner: transmission between infected humans and

uninfected mosquitoes. The dynamics of infected mosquitoes become
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dM

dt
¼ ac

H

HT

� �
ðMT �MÞ � �M (5:31)

We will work with infected fractions of the human and mosquito

populations. Dividing Eq. (5.30) by the total human population gives

d

dt

H

HT

� �
¼ ab

MT

HT

� �
M

MT

� �
1� H

HT

� �
� r

H

HT

� �
(5:32)

Note that in making this transition, I have rewritten M/HT so that the

fraction of infected mosquitoes appears on the right hand side of Eq. (5.32).

If we divide Eq. (5.31) by the total mosquito population, we obtain

d

dt

M

MT

� �
¼ ac

H

HT

� �
1� M

MT

� �
� � M

MT

� �
(5:33)

and we now work with variables h(t) and m(t) denoting the fraction of

infected humans and fraction of infected mosquitoes respectively. From

Eqs. (5.32) and (5.33), the dynamics of these infected fractions are

dh

dt
¼ ab

MT

HT

� �
mð1� hÞ � rh

dm

dt
¼ achð1� mÞ � �m

(5:34)

The steady state for the infected human population implies that

m¼ (r/ab)(HT/MT)(h/(1� h)) and this curve is shown in Figure 5.11a.

Note that the slope of the tangent line to this curve at the origin

(or, alternatively, the slope of the linear approximation to this curve)

is (r/ab)(HT/MT). The steady state for the infected mosquito population

implies that m¼ ach/(�þ ach) and this curve is shown in Figure 5.11b.

The slope of this curve at the origin is ac/�. We understand the dyna-

mics of the disease by putting the isoclines together, which I have done

in three ways in Figures 5.11c–e. When the steady state determined by

the intersection of the two isoclines is at a relatively high level of

infection, MacDonald called the malaria ‘‘stable’’ (Anderson and May

1991, p. 397). When the steady state is at a lower level of infection, he

called it ‘‘unstable’’ and it is possible for malaria to become extinct: if

the mosquito isocline starts off below the human isocline, then the only

steady state is the origin.

Malaria persists if the mosquito isocline rises faster than the human

isocline at the origin. We can derive the condition for this to be true in

terms of the slopes; in particular we must have ac/�> (r/ab)(HT/MT)

and combining these terms we conclude that malaria will persist if

(a2bc/�r)(MT/HT)> 1. Compare this with the computation that we did

for the basic reproductive rate and you will see that they are the same: in
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this case the basic reproductive rate also gives us the condition for the

persistence of the disease.

But the dynamics give us much more, particularly the ability to

predict patterns of the transmission of disease. In Figure 5.12, I show a

comparison of the predicted dynamics and those observed for three of

the four Plasmodium parasites in infants following their birth. Given the

simplicity of this model, the agreement is remarkably good. Anderson

and May (1991) provide a variety of elaborations.

Helminth worms

We now turn to helminth worms (Figure 5.13), which have the follow-

ing key properties. First, the parasites generally have complex life

cycles, possibly using many hosts or having a free-living stage.

1

m

1

h

(e) extinct malaria

m

1h

r
ab ((

HT

M T
((slope

(a)

1

m

1

ac
μslope

(b)

h 1

1h

m

1

(c) stable malaria

1

m

1

h

(d) unstable malaria

Figure 5.11. Analysis of the

dynamics of malaria. (a) The

isocline for infected humans,

found by setting dh/dt¼0.

(b) The isocline for infected

mosquitoes, found by setting

dm/dt¼0. Panels (c, d and e)

show three ways that the

isoclines can intersect.
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Second, the actual number of parasites that a host harbors, rather than

just the state of the host (infected or not), is important. Third, the

number of parasites is most commonly overdispersed. That is, let ~W

denote the worm burden carried by a host and think of it as a random

variable. We know from Chapter 3 that if worms were randomly

distributed across hosts ~W would have a Poisson distribution in which

the mean and variance were equal. However, empirical data (an excel-

lent review is given by Shaw and Dobson (1995)) show quite the

contrary: that typically the variance of the worm burden exceeds the

mean. So, the negative binomial distribution – which helped stabilize

host–parasitoid interactions – will have an important role to play here.

In this section, I discuss three models of increasing complexity,

each of which illustrates a different point and gives a sense of how we

use the tools that have been developed. As before, I refer you to the

original literature for more of the details.

The underlying host–worm model

We begin with a classic model due to Roy Anderson and Robert May

(Anderson and May 1978, May and Anderson 1978). These papers

contain eight different models (a basic model and then seven elabora-

tions of it) and total nearly 50 pages, so in this section I can introduce

only the basic model and one of its elaborations. But this should be

sufficient to send you on your way.
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Figure 5.12. Comparison of

the predicted and observed

dynamics of malaria from

Anderson and May (1991).

Reprinted by permission.
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Here, we consider parasites that do not reproduce within the host but

which produce a transmission stage (eggs, spores, cysts) that passes out

of the host before acquisition by the next host. To begin, we assume that

the amount of time that the transmission stage is outside of hosts is very

short (this assumption is relaxed in the next section). In that case, the

dynamic variables are the population of hosts, H(t), and the population of

parasites, P(t). These are treated as deterministic variables, so that the

mean number of parasites per host is P(t)/H(t), even though the under-

lying distribution of worms per host is stochastic. Watch how this is done.

We begin with the dynamics for the host, which we write as follows:

dH

dt
¼ ða� bÞH � parasite induced mortality (5:35a)

(a) (b)

(c) (d)

Figure 5.13. (a) A female red grouse brooding chicks. Detailed field studies and experiments have shown that the

parasites make their prey more vulnerable to predation (Hudson et al. 1992a, Packer et al. 2003). The parasites appear

to interfere with the ability of females to control scent. (b) A young grouse chick infected with ticks Ixodes ricinus.

These ticks can transmit the Louping ill virus that causes 80% mortality and reduces the growth rate of the grouse

population (Hudson et al. 2002, Laurenson et al. 2003). (c) Experimental reductions in the intensity of nematode

infection have shown that parasite removal results in an increase in clutch size, hatching success and survival of grouse

chicks (Hudson 1986, Hudson et al. 1998, 2002). (d) Nematode worms (Trichostrongylus tenuis) burrowing into the

caecal wall of red grouse. These nematodes have a major impact on the fitness of individual hosts to the extent that

they cause morbidity, reduced fecundity and generate population cycles (Hudson et al. 1998, Dobson and Hudson

1992, Hudson et al. 1992b, 1998). Photo compliments of Pete Hudson.
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Here I keep the notation used by Anderson and May, so that a and b are

the parasite-independent per capita rates of host reproduction and mor-

tality. These are clearly not the same a and b that we used in the previous

section, and as I wrestled with presentation of these different models,

I decided that keeping original notation of primary sources was better,

and would also keep you on your intellectual toes. You will see

momentarily why they are separated.

We assume that the host per capita mortality rate due to parasites is

proportional to the parasite burden of the host. Anderson and May

( 1978 , figure 5.1) show data that are convi ncing enough for one to

consider this a good starting assumption. We let p(w) denote the prob-

ability that the worm burden at time t is w. If the per capita host

mortality rate when the worm burden is w is �w, then the expected

mortality rate for the host population is �H(t)Sw=0wp(w), where we

understand that the upper limit of the sum is, in principle (but not in

practice), infinite. We recognize the summation as the average number

of worms per host, which is P(t)/H(t), so that the mortality rate for the

host population is thus �P(t) and the host dynamics are

dH

dt
¼ ða� bÞH � �P (5:35b)

Parasite population growth involves production and transmission.

At very high host densities, we assume that parasite production depends

only upon the parasite per capita per host fecundity l, so that parasite

production at high host density is lH(t)Sw¼0wp(w)¼ lP(t). We correct

this at lower host densities by assuming a type II functional response

and thus assume that the net rate at which parasites are acquired by hosts

is lP(t)[H(t)/(H0þH(t))].

There are three sources of mortality of the parasites. First, there

is an intrinsic per capita mortality rate for the parasites, denoted

by �. Second, since hosts have an intrinsic per capita mortality

rate b, the loss of parasites due to this intrinsic host mortality is

bH(t)Sw¼0wp(w)¼ bP(t). Third, we have the parasite induced host

mortality. Recall our assumption that the mortality rate for a host with

w parasites is �w. When a host with worm burden w dies, the number of

parasites dying is w, so that the rate of loss of parasites due to parasite

induced mortality is �HðtÞ�w¼0w2pðwÞ ¼ �HðtÞEð ~W
2Þ. Combining

parasite production and mortality we obtain the parasite dynamics

dP

dt
¼ lP

H

H0 þ H

� �
� ðbþ �ÞP� �HEð ~W

2Þ (5:36)

In order to make further progress, we have to specify the probability

distribution for parasites per host. The simplest case would be one in
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which each of the parasites were randomly assigned to a host. Although

I have already told you that overdispersion of parasites is common,

let us work with this assumption for now. In that case p(w) is a

Poisson distribution, for which Eð ~WÞ ¼ Varð ~WÞ ¼ PðtÞ=HðtÞ and for

which we then conclude that E ~W
2

	 

¼ PðtÞ=HðtÞð Þ þ PðtÞ=HðtÞð Þ2.

Substituting this expression into Eq. (5.36) we obtain

dP

dt
¼ lP

H

H0 þ H

� �
� ðbþ �ÞP� �H

P

H
þ P2

H2

� �

¼P
lH

H0 þ H
� ðbþ �þ �Þ � �P

H

� �
(5:37)

Equations (5.35b) and (5.37) need to be analyzed. By now, we know the

drill: determine the steady states, examine the isoclines, and compute

the eigenvalues of the system linearized around the steady states.

Exercise 5.9 (E/M)

Show that the steady states are

�P ¼ a� b

�

� �
�H �H ¼ H0ð�þ �þ aÞ

l� ð�þ �þ aÞ (5:38)

subject to the constraint that l> (�þ�þ a).

We will not do the linearization around the steady state here, nor

will I assign it as an exercise (although you might want to do it). Suffice

to say: the eigenvalues are pure complex numbers, so that the steady

state is neutrally stable and the dynamics are purely oscillatory. This

point is illustrated in Figure 5.14a and should you remind you of our

experience with the Nicholson–Bailey model when the fraction of hosts

escaping parasitism was given by the zero term of the Poisson

distribution.

We now turn to the case in which worms have a negative binomial

distribution across hosts. Based on our experience with parasitoids, we

expect that aggregation will stabilize the dynamics. We need to com-

pute the second moment in Eq. (5.36), remembering that for the nega-

tive binomial distribution, the variance is mþ (m2/k).

Exercise 5.10 (M)

Show that when worms have a negative binomial distribution across hosts,

Eq. (5.37) is replaced by

dP

dt
¼ P

lH

H0 þ H
� ðbþ �þ �Þ � �ðk þ 1ÞP

kH

� �
(5:39)
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In Figures 5.14b–d, I show the resulting dynamics for three values

of k (¼ 100, 10, and 1). Note that in each case the dynamics are

stabilized. When one conducts an analysis of the linearized system

(see Anderson and May 1978, Appendix A), a remarkable result

emerges: the eigenvalues have negative real part as long as �/k> 0;

but both of these parameters are positive so we reach the conclusion

that any level of aggregation – meaning any deviation from a comple-

tely random distribution – is sufficient to stabilize the dynamics.

The papers of Anderson and May (1978) and May and Anderson

(1978) are well worth examining, to study the other various cases, for

which you are now set. We, however, move on.
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Figure 5.14. The basic worm model with a Poisson distribution (panel a) or negative binomial distribution of

worms across hosts (panels b, c, and d). Common parameters are a¼2, b¼1, �¼1, H0¼5, �¼0.5, and l¼4

and k¼100 (panel b), 10 (panel c) or 1 (panel d). In each case the parasite population is the one with the larger

maximum size.
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Accounting for the free-living stage

We will now develop, but not analyze, a model that accounts for the

free-living stage of the parasite in more detail. It is based on, but not

identical to, the work of Hudson et al. (1992a, b) and Hudson and

Dobson (1997) which has all of the details, and additional models.

Until now, we have assumed that the transmission of adult parasites

from hosts to hosts occurred with a very short intermediate stage, but

now allow for a longer intermediate stage, understood to be the free-

living eggs or larvae. The dynamical system that we consider is thus

expanded to include hosts, H(t), adult parasites, P(t), and the free-living

stage, which we denote by W(t) to follow the notation in Dobson and

Hudson (1992).

The dynamics of the hosts do not change, but the dynamics of

the parasites do. We assume that the free-living stage, denoted by

W(t), is produced by adult parasites at constant per capita rate l, have

intrinsic natural mortality rate � and are captured by hosts according to a

type II functional response. In such a case, the dynamics of the free-

living stage are

dW

dt
¼ lP� �W � cW

H

H0 þ H
(5:40)

The dynamics of the adult parasites still involve production and mor-

tality. Mortality is unchanged from the previous case, but production is

now determined by the uptake of the free-living stage and so the adult

dynamics become

dP

dt
¼ cWH

H0 þ H
� ðbþ �þ �ÞP� �ðk þ 1ÞP2

kH
(5:41)

Dobson and Hudson (1992) develop models that include larvae with

arrested development (hypobiosis), show how to find the basic repro-

ductive rate of the disease and analyze the dynamic properties of the

model; I refer you to them for the details.

The broader ecological setting

Like other ecological interactions, host–parasite dynamics take place in

a broader ecological setting. Grenfell (1988, 1992) constructed a sce-

nario that connects parasite dynamics and grazing systems, with some

interesting and remarkable conclusions. Here I describe the key features

of a model that is similar, but not identical, to those used by Grenfell

and, as before, you are encouraged to consult the original papers after

this development.
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We imbed the host–parasite dynamics in an herbivore–plant inter-

action. We allow V(t) to denote the biomass of vegetation at time t

and assume that, in the absence of the herbivore, the vegetation grows

logistically. We assume that the herbivores consume vegetation

according to a type II functional response (Grenfell (1988, 1992)

assumed a type III functional response, which makes the analysis

much more complicated – and interesting – so I encourage you to

read his papers) and that herbivore per capita reproduction is propor-

tional to this consumption. We assume that the free living stage of the

parasite can be ignored (Grenfell includes it), so that the simpler host–

parasite dynamics apply. When the plant–herbivore dynamics are

coupled to the host–parasite dynamics, we end up with the system

of equations

dV

dt
¼ rV 1� V

K

� �
� eHV

V 0 þ V

dH

dt
¼ aHV

V 0 þ V
� bH � �P

dP

dt
¼P

lH

H0 þ H
� ðbþ �þ �Þ � �ðk þ 1ÞP

kH

� �
(5:42)

In these equations, the new terms should be easily interpretable by you.

The question, of course, is what does one do with them now that one has

them?

Let us start by thinking about the steady states; we do so by holding the

herbivore population size fixed. Then the equation for vegetative biomass

is uncoupled from all of the others and the steady state of the vegetation is

determined by the solution of rV 1� ðV=KÞð Þ ¼ e �HV=ðV 0 þ V Þ. The

graphical solution of this equation is shown in Figure 5.15. If we think

that e (the maximum per capita consumption rate of the herbivores) and

V0 (the level of vegetative biomass at which 50% of this maximum is

reached) are fixed by the biology of the system, then steady states of the

vegetation are set by the steady state level of the herbivores, �H . The

origin, V¼ 0, is always a steady state but depending upon the values of

herbivores, there may be another steady state.

V K

H increasing

V
K

eHV
V0 + V( (1 –y = rV ,

Figure 5.15. The graphical

solution of rV 1� ðV=KÞð Þ ¼
e �HV=ðV0 þ VÞ for three values

of H.
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Exercise 5.11 (M/H)

Determine the stability of the steady states of V at the origin and at its positive

value, when appropriate.

However, the herbivore population level cannot be manipulated at

will, as I have just done. Rather it comes out of the simultaneous solution

of the three nonlinear equations obtained by setting the left hand side of

Eq. (5.42) equal to 0. We are not going to do that (once again, look at

Grenfell’s papers), but make the following observation: host populations

will decline as parasite populations increase. Thus, the stability of the

plant–herbivore system depends upon the parasites: the parasites function

as top predator in this system! This means, for example, that one wants to

think carefully about actions that will reduce parasite populations. For

example, the indiscriminate application of antihelminth agents might

have exactly the undesired effect of causing the entire system to crash.

Optimal immune responses

The immune system is a remarkable achievement of evolution and

warrants its own careful analysis. Some starting points are Frank

(2002), Schmid-Hempel and Ebert (2003) and Zuk and Stoehr (2002);

also see Connections. In this section, we will explore two ways in which

optimality theory may be applied to immunological response.

T-cell phenotypes in multiple infections

In response to an antigen, the body proliferates T-cells (Graham 2002).

In a very broad brush, the proliferated cells are called T-helper cells and

come in two forms (Mosmann and Sad 1996, Fishman and Perelson

1999): T-helper type 1 (Th1) cells that generally work best against

intracellular parasites or pathogens and T-helper type 2 (Th2) cells that

generally work best against extracelluar parasites or pathogens (Graham

2001). However, this simple description is not uniformly accepted (for a

discussion of whether this is a reliable paradigm or dangerous dogma, see

Romagnani (1996) and Allen and Maizels (1997)). It is agreed, however,

that the two kinds of helper cells have some unique biochemical signals:

interferon gamma (IFN-g) is uniquely associated with Th1 cells and

interleukin4 (IL-4) is uniquely associated with Th2 cells. Consequently,

the ratio, with [x] denoting the concentration of x,

t ¼ ½IFN-g�
½IFN-g � þ ½IL-4� (5:43)

is a measure of the fraction of T-helper type 1 cells in response to an

antigen.
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Graham (2001) asks the following question: suppose that there are a

wide variety of pathogens or parasites that might attack an organism,

and that the ith disease evokes an optimal T-helper response ti, under-

stood to be the fraction of Th1 cells. What will happen when the

organism is simultaneously attacked by n different pathogens or para-

sites? This question is particularly interesting because of the generally

held view of the emergent properties of the immune system. To begin,

we will follow Graham’s model, and then extend it. Suppose that the

probability of surviving attack by the ith parasite or pathogen when the

Th1 response is t is

SiðtÞ ¼ exp½��iðt � tiÞ2� (5:44)

In this equation, �i is a measure of the cost of deviations from the

optimal response. The smaller this value, the less important are deviations

from the optimal mix of T-helper cells. If we assume that the n different

pathogens or parasites affect survival independently, then the probabil-

ity of surviving all of them is

SðtÞ ¼
Yn

i¼1

exp½��iðt � tiÞ2� (5:45)

and our objective is to maximize S(t) by choosing t.

Exercise 5.12 (E)

Show that the optimal mixture of Th1 cells is

t� ¼

Xn

i¼1

ti�i

Xn

i¼1

�i

(5:46)

This equation tells us two important things about the immune

response. First, when a number of pathogens or parasites attack a host,

the optimal response will be a mixture of the individual optimal

responses. Second, this mixture will be weighted by the consequences

of non-optimal response to each disease. Note that if one of the �i is

very large, then the optimal value of t will be very close to the response

of Th1 cells for that parasite or pathogen.

Here is an interesting extension of Graham’s work, due to Steve

Munch. There are some diseases that will kill a host, even if the host

mounts the appropriately optimal response. Thus, we could generalize

Eq. (5.44) to Si(t)¼ �iexp[��i(t� ti)
2] where the parameter �i, with

0<�i	 1, measures the probability of surviving the ith pathogen or

parasite when the optimal response is applied.
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Exercise 5.13 (E/M)

Show that the optimal response when confronted by n different pathogens or

parasites is still given by Eq. (5.46). How is this result to be interpreted? Does

this suggest that we should change the model in some way?

A trade-off between immune response and reproduction

All organisms are constrained by limited resources and this means that

resources used to mount an immune response against a parasite or

pathogen cannot be used for other things. In this section, we will explore

a conceptual model of this trade-off using stochastic dynamic program-

ming. The basic idea is due to Ruth Hamilton, who explored it in her

honors thesis at the University of Edinburgh in the early 1990s. Some

experimental evidence for this trade-off exists (Mosmann and Sad 1996,

Sheldon and Verhulst 1996, Brunet et al. 1998, Lochmiller and

Deerenberg 2000, Moret and Schmid-Hempel 2000, Rolff and Siva-

Jothy 2002).

We characterize the organism under consideration by two variables:

the resources R(t) available for living life and reproduction, and the

parasite burden W(t) at the start of period t. In the absence of parasites,

we assume that resources increase by an amount Y in each time period.

Parasites can have at least three major effects on the organism. First,

parasites may involve a metabolic cost since they use host resources,

which we will assume to be at a fixed rate, a, per parasite. Second,

parasites may increase the probability of mortality. Third, parasites may

decrease reproductive output.

At any time period, the organism may use resources to kill parasites, at

a cost of c per parasite, and at the same time may acquire new parasites

while foraging; the net gain in resources will be denoted by Y. For

simplicity (this is a conceptual model) we will assume that only one

parasite can be acquired in each period. With these assumptions, the dyna-

mics of host resources R(t) when the host kills j parasites in period t are

Rðt þ 1Þ ¼ RðtÞ þ Y � aWðtÞ � cj (5:47)

and the dynamics of the parasite burden W(t) are

Wðt þ 1Þ ¼ WðtÞ � j with probability 1� p

WðtÞ � jþ 1 with probability p
(5:48)

We will assume that if resources drop below a critical value (rc) or

parasites exceed a maximum value (wmax), the organism dies. Resources

are also constrained by a maximum value rmax.

To account for the effect of parasite burden on survival we will

assume that the probability of surviving a single period when the
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parasite burden is W(t) is exp(�m0�m1W(t)). Again for simplicity of

the model, let us assume that the organism is semelparous and repro-

duces at fixed time T. Reproduction at this time will be determined by

both resources and parasite burden.

The approach we take is based on stochastic dynamic programming,

in a somewhat more complicated version than the one of Chapter 4. We

let F(r, w, t) denote the maximum expected value of reproduction at

time T, given that R(t)¼ r and W(t)¼w. At the final time, we assume

that F(r, w, T )¼F1(w)F2(r) where F1(w) is a decreasing function of w

and F2(r) is an increasing function of r.

For times previous to T, the appropriate equation of stochastic

dynamic programming is

Fðr;w; tÞ ¼ maxj½expð�m0 � m0wÞfpFðr þ Y � aw� cj;w� jþ 1; t þ 1Þ
þ ð1� pÞFðr þ Y � aw� cj;w� j; t þ 1Þg� (5.49)

which we now solve backwards in time, in the manner described in

Chapter 4. The solution of this equation generates the expected lifetime

reproductive success for an individual, given its resource level and

parasite burden at any time. More importantly, the process of solving

the equation generates the optimal immune response j*(r, w, t) for

resource level R(t)¼ r and parasite burden W(t)¼w.

As before, the solution must be obtained numerically, so that

one has to choose functional forms and parameter values. For the

results reported here, I used F1(w)¼ 1� (w/wmax)1.5, which is

shown in Figure 5.16a, and �2ðrÞ ¼ r4=ðr4
0 þ r4Þ, which is shown

in Figure 5.16b and the following parameters: rc¼ 2, rmax¼ 25,

r0¼ 0.4rmax, wmax¼ 20, Y¼ 3, p¼ 0.1, m0¼ 0.05, m1¼ 3m0/wmax,

T¼ 20, a¼ 0.2 and c¼ 0.8. Perhaps the most important parameters

for this discussion are the last two, which show that parasites have a

moderate metabolic cost but are expensive to get rid of.

In Figures 5.16c and 5.16d, I show the optimal immune response for

a parasite burden of 4, 8 or 12 at t¼ 1 (the beginning of the interval of

interest) or t¼ 18 (close to reproduction). We draw a number of

conclusions from these figures. First, the immune response is age

and state dependent. Second, even though the organism can afford

to eliminate some parasites, the predicted optimal response may be

not to do so. Third, as age at reproduction is approached, we predict

that the optimal immune response will weaken (as the organism

conserves resources for reproduction). It is not clear that we could

have made these predictions without the model. It is also not clear

how robust these results are without further numerical exploration;

hence the next exercise.
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Exercise 5.14 (M/H)

Write a computer program to solve the stochastic dynamic programming equa-

tion. Then develop a forward Monte Carlo simulation for a population of

individuals in which initial parasite burden is distributed in a negative binomial

fashion with parameters m¼ 4 and k¼ 1. Use the simulation to predict the time

dependence of the mean and variance of the predicted immune response.

Connections

General literature

The study of disease has a long and rich history; it is good to know some

of that. Nuland (1993) is a fine discussion of disease and dying in
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Figure 5.16. (a) The function F1(w) used in the solution of the dynamic optimization model for immune response.

(b) The function F2(r) used in computation. (c) Optimal immune response as a function of parasite burden at t¼1

for W¼12 (triangles), 8 (crosses) or 4 (circles). (d) Optimal immune response at t¼18. Other parameters are

given in the text.
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general. On a more technical level, Anderson (1982) contains a good

survey of material through to about 1980. In recent years, the evolution-

ary perspective to health and medicine has been framed as Darwinian

medicine. Ewald (1994), Nesse and Williams (1994), Williams and

Nesse (1991), and Stearns (1999) provide good introductions from

different perspectives. We have focused on deterministic models, but

there is a rich literature on stochastic epidemics, and there are differ-

ences in outcomes. For example, Rosà et al. (2003) show that while a

deterministic model might predict oscillatory decay to a stable focus, a

stochastic model could show sustained oscillations.

SIR, SIRS models

These models can become quite complex, for example when one takes

age or stage structure into account (Keeling and Grenfell 1997,

Hethcote 2000). But the basic kind of analyses that we conducted

underlie more complicated situations. When we add demography,

the SIR model also allows for vertical transmission of infection

(that is, offspring may be born already infected). In such a case,

we would modify the dynamics of infection in Eq. (5.18) to

dI/dt¼ rqIþ bIS� vI�mI where q is the probability that the offspring

of an infected parent is itself infected. The possibility of bioterrorism

has made understanding these models and making them applicable even

more important (Henderson 1999, Gani and Leach 2001, Meltzer et al.

2001, Enserink 2002, Meltzer 2003, Wynia and Gostin 2002). Some

very interesting, and controversial (Enserink 2003), work is that of

Edward Kaplan and colleagues (Kaplan et al. 2002, Kaplan and

Wein 2003).

Evolution of virulence/evolution of resistance

This is again a topic with an enormous literature. Ewald (1994) and

Frank (1996) provide great introductions to the subject. Other papers

treating different aspects of the evolution of virulence include Antia

et al. (1994), Lenski and May (1994), Antia et al. (1996), Antia and

Lipschitz (1997), Mosquera and Adler (1998), Keeling and Grenfell

(1997), Day (2001), Gandon et al. (2001), Day (2002a, b, c), Ferguson

and Read (2002), Ganusov et al. (2002), Sylvain et al. (2002), Day

(2003), Koella and Boëte (2003) and Day and Proulx (2004). Esteva and

Vargas (2003) study the coexistence of different serotypes of dengue

virus. A recent volume on the management of virulence is Dieckmann

et al. (2002). On the other hand, the whole notion of the management of

virulence is now being questioned (Ebert and Bull 2003).
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Ecological applications of disease models

The recognition of the role of disease (either endemic or epidemic and

thus catastrophic) as a regulator of natural populations has been slow in

coming, perhaps because when disease regulates populations the

dynamics are more complicated than simpler cases of autotrophic

density dependence. However, good entries into the literature now

exist through the papers of Grenfell and Hudson cited above, de

Koeijer et al. (1998, 2004), and Dobson and Foutopoulos (2001).

Species specific examples include papers by Barlow (1993, 2000),

Dwyer and Elkinton (1993), White and Harris (1995), Smith et al.

(1997), Bouloux et al. (1998), Begon et al. (1992, 1998, 1999),

LoGiudice et al. (2003), Sauvage et al. (2003), Smith and Wilkinson

(2002), Morgan et al. (2004) and Sumpter and Martin (2004).

Cultural and behavioral effects

Clearly social behavior and culture play a role in disease transmission,

and the models that we have developed here can be extended to address

them; two examples are the papers of Charles et al. (2002) and Tanaka

et al. (2002).

Vector-based models

Anderson and May (1991) describe a number of elaborations of the

basic model for malaria. Two interesting additional directions are these.

First, recall that within the human host, the Plasmodium parasite has

separate sexes. This suggests the possibility of local mate competition

and sex ratios that deviate from 50:50. Read et al. (1992, 1995) recog-

nized this possibility and applied an extension of Hamilton’s sex ratio

theory to Plasmodium. The development of resistance in Plasmodium to

antimalarial drugs is another topic of considerable interest and oppor-

tunity for modeling (Lipp et al. 2002, Hastings 1997, 2001, Hastings

and McKinnon 1998, Hastings and D’Allesandro 2000, Hastings et al.

2002) and opportunities exist for new kinds of approaches to drug

therapy (Austin et al. 1998, Gardner 2000, 2001). Roitberg and Friend

(1992) initiated a study of the behavioral ecology of the mosquito

vector, using a combination of experiments and theory (mainly based

on stochastic dynamic programming) to examine host seeking behavior

in the vector. Ross’s original papers (Ross 1916, Ross and Hudson

1917a, b) can be obtained at JSTOR and are well worth looking at.

Catteruccia et al. (2003) model the effects of genetically modified

mosquitoes.
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Helminth parasites

More details about parasites with complex life cycles can be found in

Esch et al. (1990).

Cholera

Cholera (and other water borne disease; see Brookhart et al. (2002)) is

an extremely interesting disease for a number of reasons. The pathogen

itself has a remarkable life history (Faruque et al. 2003, Reidl and Klose

2002, Yildiz and Schoolnik 1999), switching between two morphs

(smooth and rugose) for reasons that we still do not understand.

Second, the disease has a free-living stage, in stagnant water, that is key

to transmission patterns (Codeço 2000). Third, the potential effects of

climate change on cholera dynamics are profound (Lipp et al. 2002,

Cottingham et al. 2003). Brookhart et al. (2002) also couple evolution of

virulence and host demography in a different way than we did in the text.

Viral dynamics and AIDS

The same kinds of models that we used in this chapter apply to the study

of viral dynamics, such as HIV. An excellent starting point are the articles

by Perelson and Nelson (1999) and Callaway and Perelson (2002); the

book by Nowak and May (2000) is also a good place to begin.

Optimal immune response

Understanding immune responses from an optimality perspective is

going to be a growth area, since it bridges ecology, immunology, and

epidemiology (Antia and Lipschitz 1997, Hellriegel 2001, Ahmed et al.

2002, Gardner and Thomas 2002, Rolff and Siva-Jothy 2002, 2003,

Wegner et al. 2003). Shudo and Iwasa (2001) treat this question as a

form of inducible defense (also see Gardner and Agrawal (2002)).

Prion disease kinetics

Prion diseases such as mad-cow disease (BSE) or Creutzfeldt–Jakob

disease (CJD) are simultaneously infectious and heritable (Schwartz

2003). The agent in this case appears to be an improperly folded protein

(Hur et al. 2002). The methods developed in this chapter apply to them

too. Entries into the literature are the papers by Eigen (1996), Slepoy

et al. (2001), Valleron et al. (2001), Ferguson et al. (2002), and Masel

and Bergman (2003).
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Space

We have ignored spatial aspects of disease transmission, or treated it

very obliquely. Spatial considerations can be important, and sometimes

paramount. Papers that show how spatial aspects of disease can be

treated include those by White and Harris (1995), Hess (1996),

Kirchner and Roy (1999), Caraco et al. (2001), and Fulford et al. (2002).

Stochastic epidemics

We have ignored stochastic effects in our study of the population

biology of disease, but they can be important. Indeed, some of the

classic papers in stochastic processes (Bailey 1953, Whittle 1955,

Bartlett 1957) deal with stochastic epidemics. The book by Bharucha-

Reid (1997 (1960)) and papers by Nasell (2002) and Rohani et al.

(2002) are good starting points. O’Neill (2002) connects stochastic

epidemics to modern Bayesian and Markov Chain Monte Carlo meth-

ods. These will be especially important when we must deal with new or

re-emerging diseases for which the population parameters are not

known and we simultaneously learn about the disease as we are dealing

with it (Brookhart et al. 2002).
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Chapter 6

An introduction to some of the

problems of sustainable fisheries

There is general recognition that many of the world’s marine and

freshwater fisheries are overexploited, that the ecosystems containing

them are degraded, and that many fish stocks are depleted and in need of

rebuilding (for a review see the FAO report (Anonymous 2002)). There

is also general agreement among scientists, the industry, the public and

politicians that the search for sustainable fishing should receive high

priority. To keep matters brief, and to avoid crossing the line between

environmental science and environmentalism (Mangel 2001b), I do not

go into the justification for studying fisheries here (but do provide some

in Connections). In this chapter, we will investigate various single

species models that provide intuition about the issues of sustainable

fisheries. I believe that fishery management is on the verge of multi-

species and ecosystem-based approaches (see Connections), but unless

one really understands the single species approaches, these will be

mysteries (or worse – one will do silly things).

The fishery system

Fisheries are systems that involve biological, economic and social/

behavioral components (Figure 6.1). Each of these provides a distinc-

tive perspective on the fishery, its goals, purpose and outputs. Biology

and economics combine to produce outputs of the fishery, which are

then compared with our expectations of the outputs. When the expecta-

tions and output do not match, we use the process of regulation, which

may act on any of the biology, economics or sociology. Regulatory

decisions constitute policy. Tony Charles (Charles 1992) answers the

question ‘‘what is the fishery about?’’ with framework of three para-

digms (Figure 6.2). Each of the paradigms shown in Figure 6.2 is a view

of the fishery system, but according to different stakeholder groups.
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Indeed, a large part of the problem of fishery management is that these

views often conflict.

It should be clear from these figures that the study of fisheries is

inherently interdisciplinary, a word which regrettably suffers from

terminological inexactitude (Jenkins 2001). My definition of interdis-

ciplinary is this: one masters the core skills in all of the relevant

disciplines (here, biology, economics, behavior, and quantitative meth-

ods). In this chapter, we will focus on biology and economics (and

quantitative methods, of course) in large part because I said most of

what I want to say about behavior in the chapter on human behavioral

ecology in Clark and Mangel (2000); also see Connections.

Output of
the Fishery

Comparison of Output
and Expectation

Biology

Economics

Sociology/
Behavior

Figure 6.1. The fishery system consists of biological, economic and social/behavioral components; this description

is due to my colleague Mike Healey (University of British Columbia). Biology and economics interact to produce

outputs of the system, which can then be modified by regulation acting on any of the components. Quantitative

methods can help us predict the response of the components to regulation.

Conservation/Preservation
(it's about the fish)

Economic Efficiency
(it's about generation of wealth)

Equity
(it's about distribution of wealth)

Social/Community
(it's about the people)

Figure 6.2. Tony Charles’s view

of ‘‘what the fishery is about’’

encompasses paradigms of

conservation, economics and

social/community. In the

conservation perspective, the

fishery is about preserving fish

in the ocean and regulation

should act to protect those fish.

In the economic perspective,

the fishery is about the

generation of wealth

(economic efficiency) and the

distribution of that wealth

(economic equity). In the social

perspective, the fishery is about

the people who fish and the

community in which they live.
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The outputs of the fishery are affected by environmental uncertainty

in the biological and operational processes (process uncertainty) and

observational uncertainty since we never perfectly observe the system.

In such a case, a natural approach is that of risk assessment (Anand

2002) in which we combine a probabilistic description of the states of

nature with that of the consequences of possible actions and figure out a

way to manage the appropriate risks. We will close this chapter with a

discussion of risk assessment.

Stock and recruitment

Fish are a renewable resource, and underlying the system is the relation-

ship between abundance of the spawning stock (reproductively active

adults) and the number or biomass of new fish (recruits) produced. This

is generally called the stock–recruitment relationship, and we encoun-

tered one version (the Ricker equation) of it in Chapter 2, in the

discussion of discrete dynamical systems. Using S size of the spawning

stock and R for the size of the recruited population, we have

R ¼ aSe�bS (6:1)

where the parameters a and b respectively measure the maximum per

capita recruitment and the strength of density dependence. Another

commonly used stock–recruitment relationship is due to Beverton and

Holt (1957)

R ¼ aS

bþ S
(6:2)

where the parameters a and b have the same general interpretations as

before (but note that the units of b in Eq. (6.1) and in Eq. (6.2) are

different) as maximum per capita reproduction and a measure of the

strength of density dependence. When S is small, both Eqs. (6.1) and

(6.2) behave according to R� aS, but when S is large, they behave very

differently (Figure 6.3).

The Ricker and Beverton–Holt stock–recruitment relationships

each have a mechanistic derivation. The Ricker is somewhat easier,

so we start there. Each spawning adult makes a potential number

of offspring, a, so that aS offspring are potentially produced by S

spawning adults. Suppose that each offspring has probability per spaw-

ner p of surviving to spawning status itself. Then assuming indepen-

dence, when there are S spawners the probability that a single offspring

survives to spawning status is pS. The number of recruits will thus be

R¼ aSpS. If we define b¼ |log( p)|, then pS¼ exp(�bS) and Eq. (6.1)

follows directly, this is the traditional way of representing the Ricker

stock–recruitment relationship (we could have left it as R¼ aSpS).
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To derive the Beverton–Holt stock–recruitment relationship,

let us follow the fate of a cohort of offspring from the time of

spawning until they are considered recruits to the population at time

T and let us denote the size of the cohort by N(t), so that N(0)¼N0

is the initial number of offspring. If survival were density indepen-

dent, we would write dN=dt ¼ �mN for which we know the solution

at t¼ T is NðTÞ ¼ N0e
�mT : This is perhaps the simplest form of a

stock–recruitment relationship once we specify the connection between

S and N0 (e.g. if we set N0¼ f S, where f is per-capita egg production,

and a¼ fe�mT, we then conclude R¼ aS).

We can incorporate density dependent survival by assuming that

m¼m(N)¼m1þm2N for which we then have the dynamics of N

dN

dt
¼ �m1N � m2N 2 (6:3)

and which needs to be solved with the initial condition N(0)¼N0.

Exercise 6.1 (M)

Use the method of partial fractions (that is, write 1=ðm1N þ m2N 2Þ ¼
ðA=NÞ þ ½B=ðm1 þ m2NÞ� to solve Eq. (6.3) and show that

NðTÞ ¼ e�m1T N 0

1þ ðm2=m1Þð1� e�m1T ÞN0

(6:4)

Now set N0¼ f S, make clear identifications of a and b from Eq. (6.2), and

interpret them.

40

35
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20R

15
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0 10 20 30

S

40

Ricker

Beverton–Holt

50 60

5

0

Figure 6.3. The Ricker and

Beverton–Holt stock–

recruitment relationships are

similar when stock size is small

but their behavior at large

stock sizes differs considerably.

I have also shown the 1:1 line,

corresponding to R¼ S (and

thus a steady state for a

semelparous species).
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At this point, we can get a sense of how a fishery model might be

formulated. Although in most of this chapter we will use discrete time

formulations, let us use a continuous time formulation here with the

assumptions of (1) a Beverton–Holt stock–recruitment relationship, and

(2) a natural mortality rate M and a fishing mortality rate F on spawning

stock biomass (we will shortly explore the difference between M and F,

but for now simply think of F as mortality that is anthropogenically

generated). The dynamics of the stock are

dN

dt
¼ aNðt � TÞ

bþ Nðt � TÞ �MN � FN (6:5)

This is a nonlinear differential-difference equation (owing to the lag

between spawning and recruitment) and in general will be difficult to

solve (which we shall not try to do). However, some simple explorations

are worthwhile.

Exercise 6.2 (E)

The steady state population size satisfies aN=ðbþNÞ �MN � FN ¼ 0.

Show that N ¼ a=ðM þ FÞ � b and interpret this result. Also, show that the

steady state yield (or catch, or harvest; all will be used interchangeably) from

the fishery, defined as fishing mortality times population size will be

Y ðFÞ ¼ FN ¼ F
�
a=ðM þ FÞ�b

�
and sketch this function.

There are other stock–recruitment relationships. For example, one

due to John Shepherd (Shepherd 1982) introduces a third parameter,

which leads to a single function that can transition between Ricker and

Beverton–Holt shapes

R ¼ aS

1þ S=bð Þc (6:6)

Here there is a third parameter c; note that I used the parameter b that

characterizes density dependence in yet a different manner. I do this

intentionally: you will find all sorts of functional relationships between

stock and recruitment in the literature, with all kinds of different para-

metrizations. Upon encountering a new stock–recruitment relationship

(or any other function for that matter), be certain that you fully under-

stand the biological meaning of the parameters. A good starting point is

always to begin with the units of the parameters and variables, to make

certain that everything matches.

Each of Eqs. (6.1), (6.2), and (6.6) have the property that when S is

small R� aS, so that when S¼ 0, R¼ 0. We say that this corresponds to

a closed population, because if spawning stock size is 0, recruitment is 0.

All populations are closed on the correct spatial scale (which might be
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global in the case of a highly pelagic species). However, on smaller

spatial scales, populations might be open to immigration and emigration

so that R> 0 when S¼ 0. In the late 1990s, it became fashionable in

some quarters of marine ecology to assert that problems of fishery

management were the result of the use of models that assume closed

populations. Let us think about the difference between a model for a

closed population model and a model for an open population:

dN

dt
¼ rN 1� N

K

� �
or

dN

dt
¼ R0 �MN (6:7)

The equation on the left side is the standard logistic equation, for which

dN=dt ¼ 0 when N¼ 0 or N¼K. The equation on the right side is a

simple model for an open population that experiences an externally

determined recruitment R0 and a natural mortality rate M.

Exercise 6.3 (E)

Sketch N(t) vs t for an open population and think about how it compares to the

logistic model.

For the open population model, dN=dt is maximum when N is small.

Keep this in mind as we proceed through the rest of the chapter; it will not

be hard to convince yourself that the assumption of a closed population is

more conservative for management than that of an open population.

The Schaefer model and its extensions

In life, there are few things that ‘‘everybody knows,’’ but if you are

going to hang around anybody who works on fisheries, you must know

the Schaefer model, which is due to Milner B. Schaefer, and its limita-

tions (Maunder 2002, 2003). The original paper is hard to find, and

since we will not go into great detail about the history of this model,

I encourage you to read Tim Smith’s wonderful book (Smith 1994)

about the history of fishery science before 1955 (and if you can afford it,

I encourage you to buy it). The Schaefer model involves a single

variable N(t) denoting the biomass of the stock, logistic growth of that

biomass in the absence of harvest, and harvest proportional to abun-

dance. We will use both continuous time (for analysis) and discrete time

(for exercises) formulations:

dN

dt
¼ rN 1� N

K

� �
� FN

Nðt þ 1Þ ¼ NðtÞ þ rNðtÞ 1� NðtÞ
K

� �
� FNðtÞ

(6:8)
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If you feel a bit uncomfortable with the lower equation in (6.8) because

you know from Chapter 2 that it is not an accurate translation of the

upper equation, that is fine. We shall be very careful when using the

discrete logistic equation and thinking of it only as an approximation to

the continuous one. On the other hand, for temperate species with an

annual reproductive cycle, the discrete version may be more appropriate.

The biological parameters are r and K; we know from Chapter 2

that, in the absence of fishing, the population size that maximizes the

growth rate is K/2 and that the growth rate at this population size is rK/4.

When these are thought of in the context of fisheries we refer to the

former as the population size giving maximum net productivity (MNP)

and the latter as maximum sustainable yield (MSY), because if we could

maintain the stock precisely at K/2 and then harvest the biological

production, we can sustain the maximized yield. That is, if we then

maintained the stock at MNP, we would achieve MSY. Of course, we

cannot do that and these days MSY is viewed more as an upper limit to

harvest than a goal (see Connections).

Exercise 6.4 (E/M)

Myers et al. (1997a) give the following data relating sea surface temperature (T)

and r for a variety of cod Gadus morhua (Figure 6.4a; Myers et al. 1997b) stocks

(each data point corresponds to a different spatial location). Construct a regres-

sion of r vs T. What explanation can you offer for the pattern? What implications

are there for the management of ‘‘cod stocks’’? You might want to check out

Sinclair and Swain (1996) for the implication of these kind of data.

There is a tradition of defining fishing mortality in Eqs. (6.8) as a

function of fishing effort E and the effectiveness, q, of that effort in

r (per year) T (8C)

0.23 1.75

0.17 0.0

0.27 1.75

0.2 1.0

0.31 2.5

0.15 1.75

0.36 3.75

0.36 3.76

0.6 8.0

0.74 7.0

0.53 5.0

r (per year) T (8C)

0.62 11.00

0.44 7.4

0.24 5.8

1.03 10.0

0.53 6.5

0.26 4.0

0.56 8.6

0.82 6.5

0.8 10.0

0.8 10.0
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removing fish (the catchability) so that F¼ qE. We already know that

MSY is rK/4, but essentially all other population sizes will produce

sustainable harvests (Figure 6.4b): as long as the harvest equals the

biological production, the stock size will remain the same and the

harvest will be sustainable. This is most easily seen by considering

the steady state of Eqs. (6.8) for which rN
�
1� ðN=KÞ

�
¼ qEN : This

equation has the solution N¼ 0, which we reject because it corresponds

to extinction of the stock or solutionN¼K
�
1� ðqE=rÞ

�
: We conclude

that the steady state yield is

Y ¼ qEN ¼ qEK

 
1� qE

r

!
(6:9)

which we recognize as another parabola (Figure 6.5) with maximum

occurring at E� ¼ r/2q.

Exercise 6.5 (E)

Verify that, if E¼E�, then the steady state yield is the MSY value we determined

from consideration of the biological growth function (as it must be).

Furthermore, note from Eqs. (6.8) that catch is FN (¼qEN ), regard-

less of whether the stock is at steady state or not. Hence, in the Schaefer

(a)

N
K

(c)
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r 
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overfishedextinct
(b)

MNP =K/2 K

B
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gi
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w
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r 
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t

qEN
MSY=

r (K/4)

N

rN 1– 

K )( N 

Figure 6.4. (a) Atlantic cod,

Gadus morhua, perhaps a

poster-child for poor fishery

management (Hutchings and

Myers 1994, Myers et al.

1997a, b). (b) Steady state

analysis of the Schaefer model.

I have plotted the biological

production rN (1� (N/K)) and

the harvest on the same graph.

The point of intersection is

steady state population size.

(c) As either effort or catchability

increases, the line y¼ qEN

rotates counterclockwise and

may ultimately lead to a steady

state that is less than MNP,

in which case the stock is

considered to be overfished, in

the sense that a larger stock size

can lead to the same sustainable

harvest. If qE is larger still,

the only intersection point of

the line and the parabola is the

origin, in which case the stock

can be fished to extinction.

EE 
*= 

2q
r

r
qE 

Steady
state yield,

qEK [1–           ]

Figure 6.5. The steady state

yieldY ¼ qEK 1� ðqE=rÞ½ � is a

parabolic function of fishing

effort E.
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model catch per unit effort (CPUE) is proportional to abundance and is

thus commonly used as an indicator of abundance. This is based on the

assumption that catchability is constant and that catch is proportional to

abundance, neither of which need be true (see Connections) but they

are useful starting points. In Figure 6.6, I summarize the variety of

acronyms that we have introduced thus far, and add a new one (optimal

sustainable population size, OSP).

Exercise 6.6 (M)

This multi-part exercise will help you cement many of the ideas we have just

discussed. We focus on two stocks, the southern Gulf of St. Laurence, for which

r¼ 0.15 and K¼ 15 234 tons, and the faster growing North Sea stock for which

r¼ 0.56 and K¼ 185 164 tons (the data on r come from Myers et al. (1997a)

cited above; the data on K come from Myers et al. (2001)). To begin, suppose

that one were developing the fishery from an unfished state; we use the discrete

logistic in Eqs. 6.8 and write

Nðt þ 1Þ ¼ NðtÞ þ rNðtÞ 1� NðtÞ
K

� �
� CðtÞ (6:10)

where C(t) is catch. Explore the dynamics of the Gulf of St. Laurence stock for a

time horizon of 50 years, assuming that N(0)¼K and that (1) C(t)¼MSY, or (2)

C(t)¼ 0.25N(t). Interpret your results. Now suppose that the stock has been

overfished and that N(0)¼ 0.2K. What is the maximum sustainable harvest Cmax

associated with this overfished level? Fix the catch at 0, 0.1Cmax, 0.2Cmax, up to

0.9Cmax and compute the recovery time of the population from N(0)¼ 0.2K to

N(trec)> 0.6K. Make a plot of the recovery time as a function of the harvest level

and try to interpret the social and institutional consequences of your plots.

Repeat the calculations for the more productive North Sea stock. What conclu-

sions do you draw? Now read the papers by Jeff Hutchings (Hutchings 2000,

2001) and think about them in the light of your work in this exercise.

Bioeconomics and the role of discounting

We now incorporate economics more explicitly by introducing the net

revenue R(E) (or economic rent or profit) which depends upon effort,

the price p per unit harvest and the cost c of a unit of effort

RðEÞ ¼ pY � cE ¼ pqEN � cE (6:11)

In the steady state, for which N ¼N ¼ K
�
1� ðqE=rÞ

�
, we conclude that

RðEÞ ¼ pqEK 1� qE

r

� �
� cE (6:12)

We analyze this equation graphically (Figure 6.7), as we did with the

steady state for population size, but in this case there is a bit more to talk

P
op
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at

io
n 

gr
ow

th
 r

at
ed

 
dN

/d
t

MSY

OSP

MNP K0

Depleted

Population size, N

Figure 6.6. The acronym soup.

Over the years, various

reference points other than

MSY (see Connections for

more details) have developed.

A stock is said to be in the

range of optimal sustainable

population (OSP) if stock size

exceeds 60% of K, and to be

depleted if stock size is less

than 30%–36% of K.

pY (E )
or cE

Optimal effort

Bionomic
equilibrium

pY '(E ) = c

Effort

Figure 6.7. Steady state

economic analysis of the net

revenue from the fishery,

which is composed of income

pYðEÞ and cost cE. When these

are equal, the bionomic

equilibrium is achieved; the

value of effort that maximizes

revenue is that for which the

slope of the line tangent to

the parabola is c.
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about. First, we can consider the intersection of the parabola and the

curve. At this intersection point �RðEÞ ¼ 0 from which we conclude that

the net revenue of the fishery is 0 (economists say that the rent is

dissipated). H. Scott Gordon called this the ‘‘bionomic equilibrium’’

(Gordon 1954). It is a marine version of the famous tragedy of the

commons, in which effort increases until there is no longer any money

to be made.

Alternatively, we might imagine that somehow we can control

effort, in which case we find the value of effort that maximizes the

revenue. If we write the revenue as RðEÞ ¼ pY ðEÞ � cE then the

value of effort that maximizes revenue is the one that satisfies

pðd=dEÞY ðEÞ ¼ c, so that the level of effort that makes the line tangent

to pY ðEÞ have slope c is the one that we want (Figure 6.7).

Exercise 6.7 (E/M)

Show that the bionomic level of effort (which makes total revenue equal to 0) is

Eb ¼ ðr=qÞ
�
1� ðc=pqKÞ

�
and that the corresponding population size is

Nb ¼NðEÞ ¼ c=pq. What is frightening, from a biological perspective, about

this deceptively beautiful equation? Does the former equation make you feel

any more comfortable?

Next, we consider the dynamics of effort. Suppose that we assume

that effort will increase as long as R(E)> 0, since people perceive that

money can be made and that effort will decrease when people are losing

money. Assuming that the rate of increase of effort and the rate of

decrease of effort is the same, we might append an equation for the

dynamics of effort to Eqs. (6.8) and write

dN

dt
¼ rN 1� N

K

� �
� qEN

dE

dt
¼ �ð pqEN � cEÞ

(6:13)

which can be analyzed by phase plane methods (and which will be

déjà vu all over again if you did Exercise 2.12). One steady state of

Eqs. (6.13) is N¼ 0, E¼ 0; otherwise the first equation gives the steady

state condition E¼ (r/q)[1� (N/K)] and the second equation gives the

condition N¼ c/pq. These are shown separately in Figure 6.8a and then

combined. We conclude that if K> c/pq (the condition for bionomic

equilibrium and the economic persistence of the fishery), then the

system will show oscillations of effort and stock abundance.

Now, you might expect that there are differences in the rate at which

effort is added and at which effort is reduced. I agree with you and the

following exercise will help sort out this idea.
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Exercise 6.8 (M)

In this exercise, you will explore the dynamics of the Schaefer model when the

effort responds to profit. For simplicity, you will use parameter values chosen

for ease of presentation rather than values for a real fishery. In particular, set

r¼ 0.1 and K¼ 1000 (say tons, if you wish). Assume discrete logistic growth,

written like this

Nðt þ 1Þ ¼ NðtÞ þ rNðtÞ 1� NðtÞ
K

� �
� ð1� e�qEðtÞÞNðtÞÞ (6:14)

where E(t) is effort in year t and q is catchability. Set q¼ 0.05 and E(0)¼ 0.2

and assume that this is a developing fishery so that N(0)¼K. (a) Use a Taylor

expansion of e�qEðtÞ to show that this formulation becomes the Schaefer model

in Eq. (6.8) when qE(t)� 1. Use this to explain the form of Eq. (6.14), rather

than simply qEN for the harvest. (b) Next assume that the dynamics of effort are

determined by profit and set

PðtÞ ¼ pð1� e�qEðtÞÞNðtÞ � cEðtÞ (6:15)

where P(t) is profit in year t; for calculations, set p¼ 0.1 and c¼ 2. Assume that

in years when profit is positive effort increases by an amount DEþ and that in

years when profit is negative it decreases by an amount DE� For computations,

set DEþ¼ 0.2 and DE�¼ 0.1, to capture the idea that fishing capacity is often

irreversible (boats are more rather than less specialized). The effort dynamics

are thus

(c)

N

E

(d)

N

E

E
dN
dt

< 0

dN

(a)

dt
= 0

dN

dt
> 0

K

r /q

N

(b)

dE
dt

= 0

E
dE
dt

< 0
dE
dt

> 0

Nc /pq

Figure 6.8. Phase plane

analysis of the dynamics of

stock and effort. (a, b) The

isoclines for population size

and effort are shown

separately. (c) If K< c/pq, the

isoclines do not intersect and

the fishery will be driven to

economic extinction (N¼K,

E¼0). (d) If K> c/pq, then the

isoclines intersect (at the

bionomic equilibrium) and a

phase plane analysis shows that

the system will oscillate.
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Eðt þ 1Þ ¼ EðtÞ þ�Eþ if PðtÞ > 0

Eðt þ 1Þ ¼ EðtÞ if PðtÞ ¼ 0

Eðt þ 1Þ ¼ EðtÞ þ�E� if PðtÞ5 0

(6:16)

Include the rule that if E(tþ 1) is predicted by Eqs. (6.16) to be less than 0 then

E(tþ 1)¼ 0 and that if E(t)¼ 0, then E(tþ 1)¼DEþ. Iterate Eqs. (6.15) and

(6.16) for 100 years and interpret your results; using at least the following three

plots: effort versus population size, catch versus time, and profit versus time.

Interpret these plots. A more elaborate version of these kinds of ideas, using

differential equations, is found in Mchich et al. (2002).

There is one final complication that we must discuss, whether we

like its implications or not. This is the notion of discounting, which is

the preference for an immediate reward over one of the same value but

in the future (Souza, 1998). The basic concept is easy enough to under-

stand: would you rather receive 100 dollars today or one year from

today, given that you can do anything you want with that money

between now and one year from today except spend it? It does not

take much thinking to figure out that you’d take it today and put it in a

bank account (if you are risk averse), a mutual fund (if you are less risk

averse), or your favorite stock (if you really like to gamble). We can

formalize this idea by introducing a rate � at which future returns are

devalued relative to the present in the sense that one dollar t years in the

future is worth e��t dollars today. That is, all else being equal, when the

discount rate is greater than 0 you would always prefer rewards now

rather than in the future. Thus, discounting compounds the effects of the

tragedy of the commons.

Let us now think about the problem of harvesting a renewable

resource when the returns are discounted. We will conduct a fairly

general analysis, following the example of Colin Clark (Clark 1985,

1990). Instead of logistic dynamics, we assume a general biological

growth function g(N), and instead of C(t)¼ qEN(t) we assume a general

harvest function h(t), so that the dynamics for the stock are

dN=dt ¼ gðNÞ � hðtÞ. A harvest h(t) obtained in the time interval t to

t + dt years in the future has a present-day value h(t)e��tdt, so that the

present value, PV, of all future harvest is

PV ¼
ð1
0

hðtÞe��tdt (6:17)

and our goal is to find the pattern of harvest that maximizes the present

value, given the stock dynamics. In light of those dynamics, we write

hðtÞ ¼ gðNÞ � ðdN=dtÞ so that the present value becomes

Bioeconomics and the role of discounting 221

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511819872.008
Downloaded from https://www.cambridge.org/core. Universidad Nacional de Mexico (UNAM), on 25 Mar 2019 at 20:06:55, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511819872.008
https://www.cambridge.org/core


PV ¼
ð1
0

�
gðNÞ � dN

dt

�
e��tdt

We integrate by parts according to

ð1
0

dN

dt
e��tdt ¼ NðtÞe��t

���1
0
þ
ð1
0

�NðtÞe��tdt

from which we conclude that the present value is

PV ¼
ð1
0

ðgðNÞ � �NÞe��tdt þ Nð0Þ (6:18)

We maximize the present value by maximizing g(N)� �N over N;

the condition for maximization is ðd=dNÞfgðNÞ � �Ng ¼ 0 so that

ðd=dNÞgðNÞ ¼ g0ðNÞ ¼ �. In fact, if you look back to the previous

section, just above Exercise 6.7 and to Figure 6.7 you see that this is

basically the same kind of condition that we had previously reached: the

present value is maximized when the stock size is such that the tangent

line of the biological growth curve has slope � (Figure 6.9a). Since we

know that g0(N) is a decreasing function of N, we recognize that this

argument makes sense only if g0(0)>�. But what if that is not true, as

for example in the case of whales or rockfish, where g0(0)� r may be

0.04–0.08 and the discount rate may be much higher (say even 12% or

15%)? Then the optimal behavior, in terms of present value, is to take

everything as quickly as possible (drive the stock to extinction). This

result was first noted by Colin Clark in 1973 (Clark 1973) using

methods of optimal control theory. In his book on mathematical bio-

economics (Clark 1990, but the first edition published in 1976) he uses

calculus of variations and the Euler–Lagrange equations, and in his

1985 book on fishery modeling (Clark 1985), Colin uses the method of

integration by parts that we have done here.

In a more general setting, we would be interested in discounting a

stream of profits, not harvest, so our starting point would be

PV ¼
ð1
0

ð p� cðNÞÞhðtÞe��tdt (6:19)

where p is the price received per unit harvest and c(N) is the cost of a

unit of harvest when stock size is N. The same kind of calculation leads

to a more elaborate condition (Clark 1990).

There is yet another way of thinking about this question, which

I discovered while teaching this material in 1997, and which led to a

paper with some of students from that class (Mangel et al. 1998) and

which makes a good exercise.

δ2

δ1

g '(N )

N

(b)

g (N )

δN

slope δ

N

(a)

Figure 6.9. (a) The condition

g0(N)� �N maximizes the

present value of harvest as long

as g0(0) is sufficiently big. If it

is not (as for d2 in panel (b),

drawn for a g(N) that may not

be logistic) then the optimal

behavior, in terms of maxi-

mizing present value, is to

drive the stock to extinction.
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Exercise 6.9 (E/M)

If a fishery develops on a stock that is previously unfished, we may assume that

the initial biomass of the stock is N(0)¼K. A sustainable steady state harvest

that maintains the population size at Ns will remove all of the biological

production, so that if h is the harvest, we know

h ¼ rN s 1� N s

K

� �
(6:20)

(a) Show that, in general, solving Eq. (6.20) for Ns leads to two steady states, one

of which is dynamically unstable; to do this, it may be helpful to analyze the

dynamical system Nðt þ 1Þ ¼ NðtÞ þ rNðtÞ
�
1� ðNðtÞ=KÞ

�
� h graphically.

(b) Now envision that the development of the fishery consists of two compo-

nents. First, there is a ‘‘bonus harvest’’ in which the stock is harvested from K to

Ns, which for simplicity we assume takes place in the first year. Second, there is

the sustainable harvest in each subsequent year, given by Eq. (6.20). The harvest

in year t after the bonus harvest is discounted by the factor 1/(1þ d)t. (This is the

common representation of discounting in discrete time models. To connect it

with what we have done before, note that ð1þ �Þ�t ¼ e�t logð1þ�Þ � e��t when �

is small.) Combining these, the present value PV(Ns) of choosing the value Ns

for the steady state population size is

PVðN sÞ ¼ K � N s þ
X1
t¼1

1

ð1þ �Þt
h (6:21)

Now we can factor h out of the summation and then you should verify that

X1
t¼1

1

ð1þ �Þt
¼ 1

�

so that Eq. (6.21) becomes

PVðN sÞ ¼ K � N s þ
1

�
rN s 1� N s

K

� �
(6:22)

(c) Show that the value of Ns that maximizes PV(Ns) is ðK=2Þ 1� ð�=rÞ½ � and

interpret the result. Compare this with the condition following Eq. (6.18). (d) In

order to illustrate Eq. (6.22), use the following data (Clark 1990; pp. 47–49, 65).

Species r K

Antarctic fin whale 0.08 400 000 whales

Pacific halibut 0.71 80.5� 106 kg

Yellowfin tuna 2.61 134� 106 kg

Determine the maximum value of PV(Ns) as � varies by making a matrix in

which columns are labeled by the value of �, rows are labeled by Ns/K and the

entry of matrix is PV(Ns). Let � vary between 0.01 and 0.21 in steps of 0.04 and

let Ns vary between 0 and K in steps of 0.1K. You may also want to measure
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population size in handy units, such as 1000 whales or 106 kg, or as a fraction of

the carrying capacity. Interpret your results.

Age structure and yield per recruit

The models that we have discussed thus far are called production

models because they focus on removing the ‘‘excess production’’ asso-

ciated with biological growth. But that production has thus far been

treated in an exceedingly simple manner. We will now change that.

Models that incorporate individual growth play a crucial role in modern

fishery management, so we shall spend a bit of time showing that

connection. Let us return to Eq. (2.13) and explicitly write a, for age,

instead of t so that L(a) represents length at age a and W(a) represents

weight at age a, still assumed to be given allometrically. Imagine that

we follow a single cohort of fish, with initial numbers N(0)¼R. In the

absence of fishing mortality, the number of individuals at any other age

is given by N(a)¼Re�Ma.

When following a population with overlapping generations, we

introduce N(a, t) as the number of individuals of age a at time t, and

F(a) as the fishing mortality of individuals of age a. The dynamics of

all age classes except the youngest are

Nðaþ 1; t þ 1Þ ¼ e�ðMþFðaÞÞNða; tÞ (6:23)

since next year’s 10 year olds, for example, must come from this

year’s 9 year olds. We assume that pm(a) is the probability that an

individual of age a is mature and reproductively active, and an allo-

metric relationship between length at age L(a) and egg production

(¼cL(a)b, with c and b constants). The total number of eggs produced

in a particular year is

EðtÞ ¼
X

a

pmðaÞcLðaÞbNða; tÞ (6:24)

and we append the dynamics of the youngest age class N(0, tþ 1)¼
N0(E(t)), where N0(E(t)) is the relationship between the number of eggs

produced by spawning adults and the number of individuals in the

youngest age class. For example, in analogy to the Beverton–Holt

recruitment function for we have N0ð0; t þ 1Þ ¼ �EðtÞ=½1þ �EðtÞ�
and in analogy to the Ricker recruitment N 0ð0; t þ 1Þ ¼ �EðtÞe��EðtÞ

;

in both cases the parameters � and � require new interpretations from

the ones that we have given previously. For example, the parameter � is

now a measure of egg to juvenile survival when population size is

low and the parameter � is still a measure of the effects of density

dependence.
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In light of Eq. (6.23), the number of fish of age a that died in year t

is Nða; tÞð1� e�ðMþFðaÞÞÞ, and if we assume that the natural and

anthropogenic components are in proportion to the contribution of

total mortality mþF(a) owing to each, we conclude that a fraction

M=½M þ FðaÞ� of the fish are lost owing to natural mortality and a

fraction FðaÞ=½M þ FðaÞ� of the fish are taken by the fishery. Thus,

the yield of fish of age a in year t is

Y ða; tÞ ¼ FðaÞ
M þ FðaÞNða; tÞð1� e�ðMþFðaÞÞÞWðaÞ (6:25)

where W(a) is the weight of fish of age a; the total yield in year t is

Y ðtÞ ¼
Pamax

a¼0 Y ða; tÞ, where amax is the maximum age to which fish live

(for most of this chapter, I will not write the upper limit).

Very often, we assume ‘‘knife-edge’’ fishing mortality, so that

F(a)¼ 0 if a is less than the age ar at which fish are recruited to the

fishery and F(a)¼F, a constant, for ages greater than or equal to the age

of recruitment to the fishery. Note, too, that there are now two kinds of

recruitment – to the population (at age 0) and to the fishery (at age ar).

Yield per recruit

Let us now follow the fate of a single cohort through time. Why would

we want to do this? Part of the answer is that we are much less certain

about stock and recruitment relationships than we are about survival

from one age class to the next. So, wouldn’t it be nice if we could learn a

lot about sustaining fisheries by simply looking at cohort dynamics and

not stressing about the stock–recruitment relationship? That, at least, is

the hope.

When we follow a single cohort, age a and time t are identical, if we

start the time clock at age 0, for which we fix N(0)¼N0, assumed to be a

known constant. The dynamics of the cohort are exceedingly simple,

since Nðaþ 1Þ ¼ NðaÞe�M�FðaÞ
and if individuals are recruited to the

fishery at age ar and fishing mortality is knife-edge at level F the yield

from this cohort is

Y ðar;FÞ ¼
X
a¼ ar

F

M þ F
NðaÞð1� e�ðMþFÞÞWðaÞ (6:26)

Intuition tells us (and you will confirm in an exercise below) that yield

as a function of F will look like Figure 6.10. When F is small, we expect

that yield will be an increasing function of fishing effort (from a Taylor

expansion of the exponential). As F increases, fewer individuals reach

high age (and large weight), so that yield declines. The slope of the yield

versus effort curve will be largest at the origin and very often you will

F

Y
 (a

r, 
F

 )

Figure 6.10. The yield from a

cohort as a function of fishing

effort.
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encounter rules for setting fishing mortality that are called F0.x, which

means to choose F so that the slope of the tangent line of the yield versus

effort curve is 0.x times the value of the slope at the origin.

Since pm(a) is the probability that an individual of age a is mature,

the number of spawners when the fishing mortality is F and the

age of recruitment to the fishery is ar is Sðar;FÞ ¼
P

a pmðaÞNðaÞ
and the spawning stock biomass produced by this cohort is

SSBðar;FÞ ¼
P

a pmðaÞWðaÞNðaÞ (note that F and ar are actually

‘‘buried’’ in N(a)). The number of spawners and the spawning stock

biomass that we have just constructed will depend upon the initial size

of the cohort. Consequently, it is common to divide these values by the

initial size of the cohort and refer to the spawners per recruit or spawn-

ing stock biomass per recruit.

In the early 1990s, W. G. Clark (Clark 1991, 2002) noted that some

of the biggest uncertainty in fishery management arises in the spawner

recruit relationship. Clark proceeded to simulate a number of different

stock recruitment relationships and studied how the long term yield was

related to the fishing mortality F. In the course of this work, he used the

spawning potential ratio, which is the value of F that makes SSB(F ) a

specified fraction of SSB(0). For many fast growing stocks, a SSB(F ) of

0.35 or 0.40 (that is, 35% or 40%) is predicted to produce maximum

long term yields while for slower growing stocks the value is closer to

55% or 60% (MacCall 2002).

Exercise 6.10 (E/M)

Imagine a stock with von Bertalanffy growth with parameters k¼ 0.25 yr�1,

L1¼ 50 cm, t0¼ 0, M¼ 0.1 yr�1, and a length weight allometry W¼ 0.01 L3,

where W is measured in grams. Assume that no fish lives past age 10.

With knife-edge dynamics for recruitment to the fishery, the dynamics of the

cohort are

Nð0Þ ¼ R

Nðaþ 1Þ ¼ NðaÞe�M for a ¼ 0; 1; 2; . . . ar � 1

Nðaþ 1Þ ¼ NðaÞe�M�F for a ¼ ar to 9

YðaÞ ¼ F

M þ F
ð1� e�M�FÞNðaÞWðaÞ for a > ar

(6:27)

Assume that N0¼ 500 000 individuals. Compute the total yield (in metric

tons¼ 1000 kg) per recruit assuming that fish are recruited to the fishery at

age 2, 3, or 4. Make three separate plots of yield vs fishing effort for the three

different ages of recruitment to the fishery. Pick one of these ages and construct

a table of age vs number of individuals in the presence or absence of fishing.

Next compute the number of spawners per recruit and spawning stock biomass

per recruit, assuming that all individuals mature at age 3. Now convert your code
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to a time dependent problem for the number of fish of age a at time t, N(a, t), by

assuming that recruitment N(0, t) is a Beverton–Holt function of spawning stock

biomass S(t� 1) according to Nð0; tÞ ¼ 3Sðt � 1Þ=½1þ 0:002Sðt � 1Þ� and

repeat the previous calculations.

Salmon are special

Salmon life histories are somewhat different than most fish life his-

tories, and a separate scientific jargon has grown up around salmon life

histories (fisheries science has its own jargon that is distinctive from

ecology although the same problems are studied, and salmon biology

has its own jargon that is somewhat distinctive from the rest of fisheries

science). Eggs are laid by adults returning from some time in the ocean

in nests, called redds, in freshwater. In general (for all Pacific salmon,

but not necessarily for steelhead trout or Atlantic salmon) adults die

shortly after spawning and how long an adult stays alive on the spawn-

ing ground is itself an interesting question (McPhee and Quinn 1998).

Eggs are laid in the fall and offspring emerge the following spring, in

stages called aelvin, fry, and parr. Parr spend some numbers of years in

freshwater and then, in general, migrate to the ocean before maturation.

A Pacific salmon that returns to freshwater for reproduction after one

sea winter or less is called a jack; an Atlantic salmon that returns early is

called a grilse. Salmon life histories are thus described by the notation

X 	 Y meaning X years in freshwater and Y years in seawater.

When individuals die after spawning, we use dynamics that connect

the number of spawners in one generation, S(t), with the number of

spawners in the next generation, S(tþ 1). In the simplest case all

individuals from a cohort will return at the same time and using the

Ricker stock–recruitment relationship we write

Sðt þ 1Þ ¼ aSðtÞe�bSðtÞ (6:28)

In this case (Figure 6.11) the steady state population size at which

S(tþ 1)¼ S(t) satisfies 1 ¼ ae�b �S (see Exercise 6.11 below) and the

stock that can be harvested for a sustainable fishery is the difference

S(tþ 1)� S(t), keeping the stock size at S(t). Thus, the maximum

sustainable yield occurs at the stock size at which the difference

S(tþ 1)� S(t) is maximized (also shown in Figure 6.11).

Salmon fisheries can be managed in a number of different ways. In a

fixed harvest fishery, a constant harvest H, is taken thus allowing

S(t)�H fish to ‘‘escape’’ up the river for reproduction. The dynamics

are then Sðt þ 1Þ ¼ aðSðtÞ � HÞe�bðSðtÞ�HÞ. In a fixed escapement fish-

ery, a fixed number of fish E is allowed to ‘‘escape’’ the fishery and

return to spawn. The harvest is then S(t)�E as long as this is positive

S
(t

 +
 1

)

S(t )

S = (1/b)log(a)
MSY

Figure 6.11. The Ricker stock–

recruitment function is used

when characterizing the

dynamics of salmonid stocks.
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and zero otherwise. With a policy based on a constant harvest fraction,

a fraction q of the returning spawners are taken, making the spawn-

ing stock (1� q) and the dynamics become Sðt þ 1Þ ¼ að1� qÞ
SðtÞe�bð1�qÞSðtÞ. More details about salmon harvesting can be found in

Connections.

Exercise 6.11 (M)

This is a long and multi-part exercise. (a) Show that the steady state of Eq. (6.28)

satisfies �S ¼ ð1=bÞ log ðaÞ. For computations that follow, choose a¼ 6.9 and

b¼ 0.05. (b) Draw the phase plane showing S(t) (x-axis) vs S(t) ( y-axis) and use

cob-webbing to obtain a graphical characterization of the data. (If you do not

recall cob-webbing from your undergraduate days, see Gotelli (2001)). (c) Next,

numerically iterate the dynamics, starting at an initial value of your choice, for

20 years, to demonstrate the dynamic behavior of the system. (d) Show that

Eq. (6.28) can be converted to a linear regression of recruits per spawner of

the form log
�
Sðt þ 1Þ=SðtÞ

�
¼ logðaÞ � bSðtÞ so that a plot of S(t) (x-axis) vs

log
�
Sðt þ 1Þ=SðtÞ

�
( y-axis) allows one to estimate log(a) from the intercept and

b from the slope. (e) My colleague John Williams proposed that Eq. (6.28)

could be modified for habitat quality by rewriting it as Sðt þ 1Þ ¼ ahðtÞSðtÞ
exp
�
�bSðtÞ=hðtÞ

�
, where h(t) denotes the relative habitat, with h(t)¼ 1 corres-

ponding to maximum habitat in year t. What biological reasoning goes into this

equation? What are the alternative arguments? (f) You will now conduct a very

simple power analysis (Peterman 1989, 1990a, b) for habitat improvement.

Assume that habitat has been reduced to 20% of its original value and that

habitat restoration occurs at a rate of 3% per year (so that h(tþ 1)¼ 1.03h(t),

until h(t)¼ 1 is reached). Find the steady state population size if habitat is

reduced to 20% of its original value. Starting at this lower population size,

increase the habitat by 3% each year (without ever letting it exceed 1) and

assume that the population is observed with uncertainty, so that the 95%

confidence interval for population size is 0.5S(t) to 1.5S(t). Use this plot to

determine how long it will be before you can confidently state that the habitat

improvement is having the positive effect of increasing the population size of

the stock. Interpret your result. See Korman and Higgins (1997) and Ham and

Pearsons (2000) for applications similar to these ideas.

Incorporating process uncertainty
and observation error

Thus far, we have discussed deterministic models. In this section, I

discuss some aspects of stochastic models, and offer one exercise to

give you a flavor of them. More details – and a more elaborate version

of the exercise – can be found in Hilborn and Mangel (1997).

Stochastic effects may enter through the population dynamics (pro-

cess uncertainty) or through our observation of the system (observation
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error). For example, if we assumed that biological production, but not

catch, were subject to process uncertainty and that this uncertainty had a

log-normal distribution, then the Schaefer model, Eq. (6.10), would be

modified to

Nðt þ 1Þ ¼ NðtÞ þ rNðtÞ
	

1� NðtÞ
K



eZp � qENðtÞ (6:29)

where Zp is a normally distributed random variable with mean 0 and

standard deviation �p. Our index of abundance is still catch per unit

effort, but this is now observed with error, so that we have an index of

abundance

IðtÞ ¼ qNðtÞeZobs (6:30)

where Zobs is a normally distributed random variable with mean 0 and

standard deviation �obs.

Exercise 6.12 (E)

Referring to Chapter 3 and the properties of the log-normal distribution, explain

why Eq. (6.30) produces a biased index of abundance, in the sense that

E{I(t)}> qN(t). Explain why a better choice in Eq. (6.30) is that Zobs is a

normally distributed random variable with mean �(1/2)(�obs)
2 and standard

deviation �obs. Would this cause you to change the form of Eq. (6.29)?

One of the great quantitative challenges in fishery management

is to figure out practicable means of analysis of models such as

Eqs. (6.29) and (6.30) (or their extensions; see Connections). The

following exercise, which is a simplification of the analysis in Hilborn

and Mangel (1997, chapter 10) will give you a flavor of how the

thinking goes. Modern Bayesian methods allow us to treat process

uncertainty and observation error simultaneously, but that is the subject

for a different book (see, for example, Gelman et al. (1995), West and

Harrison (1997)).

Exercise 6.13 (M)

The Namibian fishery for two species of hake (Merluccius capensis and

M. paradoxus) was managed by the International Commission for Southeast

Atlantic Fisheries (ICSEAF) from the mid 1960s until about 1990. Your analy-

sis will be concerned with the data from the period up to and including ICSEAF

management. Hake were fished by large ocean-going trawlers primarily from

Spain, South Africa, and the (former) Soviet Union. Adults are found in large

schools, primarily in mid-water. While both species are captured in the fishery,

the fishermen are unable to distinguish between them and they are treated as

a single stock for management purposes. The fishery developed essentially
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without any regulation or conservation. Catch per unit effort (CPUE), measured

in tons of fish caught per hour, declined dramatically until concern was

expressed by all the nations fishing this stock. The concern about the dropping

CPUE led to the formation of ICSEAF and subsequent reductions in catch. After

catches were reduced, the CPUE began to increase. In the data used in this

analysis, CPUE is the catch per hour of a standardized class of Spanish trawlers.

Such standardized analysis is used to avoid bias due to increasing gear effi-

ciency or differences in fishing pattern by different classes or nationalities of

vessels. The data are as follows.

Year CPUE Catch (thousands of tons)

1965 1.78 94

1966 1.31 212

1967 0.91 195

1968 0.96 383

1969 0.88 320

1970 0.9 402

1971 0.87 366

1972 0.72 606

1973 0.57 378

1974 0.45 319

1975 0.42 309

1976 0.42 389

1977 0.49 277

1978 0.43 254

1979 0.4 170

1980 0.45 97

1981 0.5 91

1982 0.53 177

1983 0.58 216

1984 0.64 229

1985 0.66 211

1986 0.65 231

1987 0.63 223

(a) To get a sense of the issues, make plots of CPUE vs year (remembering that

CPUE is an index of abundance), catch vs year, and cumulative catch vs year.

(b) You are going to use a Schaefer model without process uncertainty but with

observation error to analyze the data. That is, we assume that the biological

dynamics are given by Eq. (6.10). Ray Hilborn and I treat the case in which both

r and K are unknown, but here we will assume that r is known from other sources

and is r¼ 0.39. However, carrying capacity K is unknown. Assume that the

index of abundance is CPUE and is proportional to biomass; the predicted index
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of abundance is Ipre(t)¼ qN(t), where q is the catchability coefficient. As with r,

Hilborn and I consider the case in which q also has to be determined. To make

life easier for you, assume that q¼ 0.000 45. However, the index Ipre(t) is not

observed. Rather, the observed CPUE is CPUE(t)¼ Ipre(t)e
Z(t) where Z(t) is

normally distributed with mean 0 and standard deviation �. (c) Show that

ZðtÞ ¼ logfCPUEðtÞ � logðIpreðtÞÞg so that the log-likelihood of a single

deviation Z(t) is LðtÞ ¼ �logð�Þ � ð1=2Þlogð2pÞ � ðZðtÞ2=2�2Þ. The total

log-likelihood for a particular value of K is the sum of the single year log-

likelihoods LTðKjdataÞ ¼
P1987

t¼1965LðtÞ, where I have emphasized the depen-

dence of the likelihood for K on the data. (d) Compute the total log-likelihood

associated with different values of carrying capacity K, as K ranges from 2650 to

2850 in steps of 10. To do this, use Eq. (6.10) to determine N(t) for each year,

assuming that the population started at K in 1965. Find the value of K that makes

the total log-likelihood the largest. Denote this value by K� and the associated

total log-likelihood by L�T; it is the best point estimate. Make a plot of LT (x-axis)

vs K (y-axis) and show K� and L�T. (e) From Chapter 3, we know that the 95%

confidence interval for the carrying capacity are the values of K for which the

total log-likelihood LT ¼ L�T � 1:96. Use your plot from part (d) to find these

confidence intervals. (Note: if you look in Hilborn and Mangel (1997), you will

see that the confidence intervals are much broader. This is caused by admitting

uncertainty in r and q, and having to determine � as part of the solution. But

don’t let that worry you. We also used the negative log-likelihood, which is

minimized, rather than the likelihood, which is maximized.) (f) At this point,

you should have estimates for the 95% confidence interval for carrying capacity.

Now suppose that the management objective is to keep the population within the

optimal sustainable region, in which N(t)> 0.6 K from 1988 to 2000 (assume

that you were doing this work in 1988). Determine the catch limit that you

would apply to achieve this goal. Hint: How do you determine the population

size in 1987?

The theory of marine reserves

No-take marine reserves (or marine protected areas), in which all forms

of catch are prohibited, are gaining increasing attention as conservation

and management tools. Rather than provide a comprehensive review,

I point you to recent issues of the Bulletin of Marine Science (66(3),

2000) and Ecological Applications (13(1) (Supplement), 2003). A sum-

mary of these is that there is general agreement that no-take marine

reserves are likely to be effective tools for conservation, but it is still

not clear if they will enhance fishery catches, either in the short-term

or the long-term (Mangel 1998, 2000a, b, c, Botsford et al. 2001,

Lockwood et al. 2002).

In this section, we analyze a relatively simple model for reserves,

because it allows us to use a variety of our tools and to see things in a

new way. Other modeling approaches are discussed in Connections.
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Envision a stock that grows logistically, again in discrete time, in a

known habitat. Rather than fishing in the entire habitat, we set aside

a fraction � of it as a reserve in which there is no fishing. We then allow

a fraction u of the stock in the non-reserve area to be taken by the fishery

(Figure 6.12). If N(t) is the size of the stock at the start of fishing season

t, then after fishing the stock size in the reserve is �N(t) and in the fishing

region is (1��)(1� u)N(t). Hence the total stock after fishing but

before reproduction is �N(t)þ (1��)(1� u)N(t)¼ [1� u(1��)]N(t).

With logistic dynamics, we have

Nðt þ 1Þ ¼ ½1� uð1� �Þ�NðtÞ

þ r½1� uð1� �Þ�NðtÞ 1� ½1� uð1� �Þ�NðtÞ
K

� �
(6:31)

To begin, as always, we ask about the steady state.

Exercise 6.14 (E)

Show that the steady state of Eq. (6.31) is given by

N ¼ K

1� uð1� �Þ 1� uð1� �Þ
rð1� uð1� �ÞÞ

� �
(6:32)

Note that we have already learned something valuable about the

system: I¼ u(1��) is an invariant for the marine reserve in the sense

that the steady state takes the same value, regardless of individual

values of u and � as long as the product remains the same. Thus for

example, if we have a large reserve (making � big) then we can allow a

high fraction of take in the harvest zone and vice versa (i.e. a higher

fraction of a smaller available population in the fishing region). This

observation, also noted by Hastings and Botsford (1999), suggests that

there is an equivalence between protecting area and reducing catch.

Habitat

1 – α
Harvest fraction u

Harvest zone

α
No harvest

Reserve zone

Figure 6.12. A model for

marine reserves involves a

habitat that is divided into a

reserve zone and a harvest

zone. In the harvest zone, a

fraction u of the stock is taken

by the fishery. Following

fishing, the stocks in the two

zones merge for reproduction.

232 An introduction to some of the problems of sustainable fisheries

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511819872.008
Downloaded from https://www.cambridge.org/core. Universidad Nacional de Mexico (UNAM), on 25 Mar 2019 at 20:06:55, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511819872.008
https://www.cambridge.org/core


One objective for the design of a reserve could be that the steady

state given by Eq. (6.32) is a fixed fraction f of the carrying capacity.

The value of that fraction is not something that can be set by quantitative

analysis; it is a policy decision. For example, for a relic population

f¼ 0.1 (or even 0.05 – definition of relic is an open topic); we might

want to ensure that the population is at worst depleted and set f¼ 0.35 or

we might want to ensure that the population is in its optimal sustainable

range and set f¼ 0.6. If we set �N ¼ fK and solve the resulting equation

for f, we obtain

f ¼ 1

1� uð1� �Þ 1� uð1� �Þ
rð1� uð1� �ÞÞ

� �

We should actually like to solve this equation for the reserve fraction,

hence obtaining �( f ), which is the fraction of habitat needed to be

reserve to maintain the population steady state at fK, once f is specified.

This can be done (Mangel 1998); you might set it as an optional

exercise. One interesting question arises if we set f¼ 0; why we will

do this becomes clear momentarily.

Exercise 6.15 (E)

Set f¼ 0 in the previous equation and show that

�ð0Þ ¼ uðr þ 1Þ � r

uðr þ 1Þ (6:33)

We conclude from Eq. (6.33) that if the reserve fraction is greater than �(0) then

the steady state stock size will be greater than 0. Interpret Eq. (6.33) for the case

of very large r. (Of course, to assert that we sustain a fish stock as long as one

individual remains is kind of a silly idea; we should like many more individuals

than 1.) Interpret the case of modest or small r.

There are a number of ways that one can present the information

contained in Eq. (6.32) (Figure 6.13).

There are also many ways in which stochastic effects could enter

into what we have done. One possibility is that the catch fraction in the

harvest region is not fixed but is a random variable U(t). An example of

the distribution of this random variable is shown in Figure 6.14a; the

mean and mode of the catch fraction are about 0.25, but the actual

fraction varies from about 0.1 to 0.45. This should remind us that in

operational situations such as fisheries, fishing mortality can be targeted

but it cannot be controlled (Mangel 2000b).

When there are stochastic effects, the whole notion of sustainability

must change and we have to think in terms of probabilities (Mangel 2000a).

We understand now that the population size after fishing but before
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Figure 6.13. The reserve fraction needed to achieve steady state population sizes that are 20%, 35%, or 60% of

carrying capacity as a function of the harvest fraction outside of the maximum per capita growth rate r¼0.5 (panel a)

or r¼1 (panel b). (c) An alternative way to view the information is to fix reserve size (say at 20%) and see how steady

state population size varies with maximum per capita growth rate and harvest fraction.
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Figure 6.14. (a) The distribution of fishing mortality on herring Clupea harengus (from Patterson (1999)).

(b) The beta density with mean 0.25 and three different values of the coefficient of variation.
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reproduct ion, � N (t ) þ (1 �� )(1 � U( t)) N( t) ¼ [1 � U( t)(1 �� )] N (t ), is

a rando m variable because harve st fraction U (t ) is a rando m variable. Let

us fix the reserve fraction at � , a time hori zon T, and a critica l popu lation

size Nc and define

pðn; t j�; NcÞ ¼PrfN ðsÞ exceeds Nc for all s; t 
 s 
 T j
reserve fraction� and that N ðt Þ¼ng (6:34)

For exampl e, in the case of a developing fisher y, we might assume

that the popul ation start s at carr ying capacity and as a target that we do

not wan t it to fal l below 60% of carryi ng capac ity, so that Nc ¼ 0.6 K.

For the case of an expl oited fisher y, we might change the goal so that

the population does not fall below 35% of carrying capacity, so that

Nc ¼ 0.35 K .

We evaluat e the probab ility defined in Eq. ( 6.33 ) by methods

similar to, and actually easier than , stoc hastic dynam ic program ming.

We have the end condi tion

pðn; T j�; NcÞ ¼  
1 if n � N c
0 otherwise

(6:35)

At any earlier time t, whe n N( t) ¼ n, assume that the rando m vari-

able U (t ) takes the valu e u (whic h will occur wi th probabil ity dete r-

mined by the densi ty function that describ es U( t )). Then the popu lation

size at the sta rt of time p eriod t þ 1 will be g[(1 � u(1 �� ))n] where g( 	 )
is given by the right hand side of Eq. (6.31) and we are interested in the

proba bility of staying above the critica l leve l, starting at this new time

and new popul ation size. (In the next chapter , we will cal l this reasoni ng

‘‘thinking along sample paths.’’) Since the value of U(t)¼ u is deter-

mined by a probability density we have

pðn; tj�;NcÞ ¼ Euf pðg½ð1� uð1� �ÞÞn�; t þ 1j�;NcÞg (6:36)

In order to make Eq. (6.36) operational, we need to pick a distribu-

tion for U(t). Since U(t) is a catch fraction, a natural choice for the

probability distribution is the beta density, some examples of which are

shown in Figure 6.14b.

In year t, when N(t)¼ n and U(t)¼ n, the harvest is (1��)un, so

that if we define C(n, t|�, Nc) to be the accumulated catch between t and

T, given that N(t)¼ n and the reserve fraction �, reasoning similar to

that leading to Eq. (6.36) gives us

Cðn; tj�;NcÞ ¼ Eufð1� �Þunþ Cðg½ð1� uð1� �ÞÞn�; t þ 1j�;NcÞg (6:37)

The first term on the right hand side is a linear function of u; we take its

expectation and write (using ū to denote the mean U(t))

Cðn; tj�;NcÞ ¼ ð1� �Þ�unþ EufCðg½ð1� uð1� �ÞÞn�; t þ 1j�;NcÞg (6:38)
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In Figure 6.15, I show results of calculations using Eqs. (6.36) and

(6.37) (also see Mangel (2000a) where other results are given). Note

that a marine reserve is predicted to sometimes, but not always, increase

catch. However, a reserve is always predicted to improve the probability

of long-term persistence of the stock.

Risk analysis as a framework in fishery systems

Risk analysis (Anand 2002) is the appropriate decision tool when the

science is ambiguous (almost always true in environmental problem

solving) and this is especially true for fisheries (Rosenberg and

Restrepo 1994, Tyutyunov et al. 2002). To illustrate the idea as simply

as possible, imagine a stock for which we know that r¼ 0.12 yr�1 but
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Figure 6.15. A marine reserve with fluctuations in harvest fraction over a planning horizon of 100 years. (a) The

persistence criterion p (K, 1|�, Nc) for critical values of population size 0.6 K or 0.35 K, mean catch fraction 0.2 and

coefficient of variation 50%. (b) The cumulative catch under these circumstances. (c) The persistence criterion

p (0.35 K, 1|�, 0.2 K ) and the cumulative catch when the mean catch fraction is 0.27 and the coefficient of variation

is 50%. Based on Mangel (2000a).
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that carrying capacity is uncertain, known to be either 1000 mt, with

probability p, or 2000 mt, with probability 1� p. In the former case,

the MSY harvest is 30 mt/yr and in the latter case, the MSY har-

vest is 60 mt/yr. Now the average value of carrying capacity is
�K ¼ 1000pþ 2000ð1� pÞ ¼ 1000ð2� pÞ and the average of the

MSY harvest is 30pþ 60(1� p)¼ 30(2� p). However, it is pretty clear,

because of the simplicity of this problem, that if we had to choose a

value of the harvest rate, it would be nonsensical to choose the average

of the MSY harvests. If the true carrying capacity is 1000 mt, then

choosing the average of the MSY harvests will overfish the stock as

long as p> 0. On the other hand, if the true carrying capacity is 2000 mt,

applying the average of the MSY harvest will cause the loss of sustain-

able yield as long as p< 1. Whether it is better to overfish the stock or

lose sustainable yield is a question that cannot be answered by quanti-

tative methods alone (and may not even be within the purview of

quantitative methods (Ludwig et al. 2001)), but it is clear that averaging

uncertain values as a means of attaining a ‘‘consensus’’ value for action

is arbitrary (Mangel et al. 1993).

The procedures of risk analysis recognize that one must be explicit

about the potential states of nature, the actions one takes, and the

consequences of those actions. In the simplest case we have two states

of nature S1, S2; two possible actions, A1, A2; and values Vij¼V(Si, Aj)

that accrue when the state of nature is Si and the action is Aj. These are

best summarized in a table; if p is the probability that the state of nature

is S1, then the table looks like this.

In this table, we have explicitly laid out the states of nature, the

probability of their occurrence and the actions. Each entry in the last

column is the value of a particular action given the state of nature.

We are then able to compute the average values of different actions;

for example, the average value of action A1 will be pV(S1, A1)þ
(1� p)V(S2, A1). The hard work, of course, is filling in the entries in

the table. For example, to estimate the probability of the alternative

states of nature we can use methods of likelihood theory or Bayesian

analysis. To evaluate the effects of alternative actions with uncertainty,

we can use Monte Carlo forward simulations.

Action

State of nature

Average value

S1 S2

Probability p 1�p

A1 V(S1, A1) V(S2, A1) pV(S1, A1)þ (1� p)V(S2, A1)

A2 V(S1, A2) V(S2, A2) pV(S1, A2)þ (1� p)V(S2, A2)
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Connections

The fishery system

It helps to think broadly about the fishery system (Cole-King 1993,

Okey 2003). The recent books of Jennings et al. (2001) and Hart and

Reynolds (2002) are great starting points. Some other entry points

include Gulland (1977, 1988), Wooster (1988), Norse (1993), King

(1995), Olver et al. (1995), Pikitch et al. (1997), McAllister et al.

(1999), Cochrane (2000), Corkett (2002), and Rosenberg (2003).

Zabel et al. (2003) introduced the notion of ecologically sustainable

yield (ESY), defined as the maximum yield of fish that an ecosystem

can sustain without shifting states in the sense of a system with multiple

steady states. Other community-level metrics such as species richness,

evenness, or community resiliency could also be used as ESY targets.

However, because communities change in response to natural processes

in ways that we do not fully understand, and we can never predict the

behavior of communities with absolute certainty, we can and should

improve our understanding of the bounds of expected community

behavior and define ESY within the limits of their predictability.

Smith (1994) provides a history of fishery science before 1955. It is

also helpful to learn about some particular fishery systems, such as the

Northeast Pacific (Trumble 1998), or the Atlantic groundfish fishery

(Boreman et al. 1997). For more quantitative approaches to the subject,

the classic work is Beverton and Holt (1957); updates are Quinn and

Deriso (1999) and Walters and Martell (2004). Some years ago, the

Marine Fisheries Section of the American Fisheries Society republished

Ray Beverton’s 1951 lectures on the use of theoretical models in the

study of the dynamics of exploited fish (Beverton 1994).

Models and data

In thinking about the issues of fishery management, Don Ludwig

(Ludwig 1995) recognized that we will have to use models for manage-

ment, and that the data associated with the fishery system will have both

process uncertainty and observation error. This caused him to raise two

paradoxes:

(1) management for sustained yield cannot be optimal;

(2) effective management models cannot be realistic.

Each paradox is caused by the interaction of data and models and we

still lack complete resolution of those paradoxes (see Mangel et al.

(2001) for some thoughts about resolution).
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Fisherman behavior

Models of the behavior of fishermen are important to know about. I

have not included them here because most of what I would write

is contain ed in Chapte r 7 of Clar k and Mange l ( 2000 ). I espec ially

like the work of Abrahams and Healey (1993), Gillis et al. (1995),

Gillis (1999, 2003), and Babcock and Pitcher (2000); other nice

papers include Healey (1985), Healey and Morris (1992), Holland

and Sutinen (1999), Vestergaard (1996) and Vestergaard et al.

(2003). One of the most important reasons for understanding

behavior, as Gillis and his colleagues and Vestergaard argue, is to

get a sense of the nature of discarding, which causes additional and

often unreported mortality on stock (Perkins and Edwards 1995,

Crowder and Murawski 1998, Harris and Dean 1998, Stratoudakis

et al. 1998). Gillis and Peterman (1998) discuss how the behavior of

fishing vessels affects the interpretation of CPUE. Anderson (1991a, b)

discusses individual transferable quotas. When most broadly inter-

preted, behavior should also include that of scientists (Starr et al.

1998).

Stock, recruitment, and catchability

As mentioned in the text, there are many other stock–recruitment

relationships (a recent review – with both diagnosis and prognosis –

is by Needle (2002)). In the alpha-logistic or z-logistic, we find

Nðt þ 1Þ ¼ NðtÞ þ rNðtÞ 1� NðtÞ=Kð Þzð Þ, where typically z> 1 for

mammals and z< 1 for small fish. As an exercise, you might want to

make sketches of the biological production in each of these cases. One

can build more complicated density dependence into stock–recruitment

relationships (Bjorksted 2000) given the appropriate life history infor-

mation. Schnute and Kronland (1996) describe a management oriented

approach to stock–recruitment relationships. Some of my favorite papers

deal with stock–recruitment models for Pacific sardine Sardinops sagax

(see Jacobson and MacCall (1995), and Jacobson et al. (2001)), and

swordfish (Prager 2002). Amazingly, there is actually still argument

from some quarters that there is no relationship between spawning stock

size and recruitment (e.g. that the main factors driving recruitment are

abiotic, such as climate, or non-autotrophic, such as food web interac-

tions) or that the relationship is extremely weak (Marshall et al. 1998);

also see Hennemuth et al. (1980), Leggett and Deblois (1994), Rickman

et al. (2000), and Chen et al. (2002). Brodziak et al. (2001) give a nice

summary of the debate and a very convincing reply to the charges. In

recent years, stock–recruitment relationships have been parametrized
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by the biomass in the absence of fishing (B0) and the ‘‘steepness,’’

defined to be the fraction of the maximum number of recruits when

the spawning stock biomass is 0.2B0. One generalization of the

Beverton–Holt stock recruitment curve is the ‘‘hockey-stick:’’ a piece-

wise linear relationship that rises linearly until it flattens as a horizontal

line (Barrowman and Myers 2000). Another involves ‘‘depensation,’’ in

which the line R¼ S intersects the stock–recruitment relationship

R¼ f(S) at more than one point, so that there is an unstable steady

state between the origin and a high stable steady state (or even more

steady states). Depensation has been proposed as a possible cause for

the lack of recovery of the northern cod Gadus morhua (Shelton and

Healey 1999). The obituary of Ricker (Beamish 2002) is very interest-

ing. Age-structured models are commonly used in fishery management

as means of estimating stock abundances and setting management

levels; an example is found in Matsuda and Nishimori (2003). A good

starting point for more general approaches is the extended survivors

analysis described by John Shepherd (Shepherd 1999). Jacobson et al.

(2002) describe ways to estimate the fishing mortality that generates

MSY in any stock assessment model. There is a growing literature

applying life history concepts more directly to fishery related problems.

Good entry points are Jennings et al. (1998), Denney et al. (2002), Frisk

et al. (2001), King and McFarlane (2003). We have assumed that catch

per unit effort is proportional to abundance, but there are both theore-

tical and empirical reasons that it might not be (Harley et al. 2001). For

example, if the catch is constrained by operational considerations to be a

fixed amount (say 10 mt) and we recognize that in a small amount of

time the fraction of the stock taken is 1� e�qEDt then it becomes clear

that it will appear that q depends upon the total stock size (taking 10 mt

from a stock with biomass of 100, 1000, or 1 000 000 mt represents very

different fractions). Ray Beverton discusses this issue in depth with

excellent examples in his lecture series http://spo.nwr.noaa.gov/

BevertonLectures1994. In his new book (Clark 2006), Colin Clark

argues that we would be more conservative to assume that catch were

independent of N, so that C¼ qE. An alternative, which to my knowl-

edge has not been investigated, is to think of catch as a functional

response so that C(N)¼ cmaxqEN/(qENþC0). Williams (2002) dis-

cusses the effects of unaccounted discard and incorrectly specified

natural mortality on estimates of spawners per recruit and on the harvest

policies based on spawners per recruit. We have ignored spatial aspects

of stock, recruitment and harvesting, but the reaction diffusion models

that we discussed in Chapter 2 apply; an excellent starting point is

MacCall (1990). Schnute and Richards (2001) have an interesting dis-

cussion on the role of models (and the abuse of models) in stock
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assessment; whether we want to become fishmeticians doing fishmetic

is a different question; also see Mangel et al. (2001).

Targets, thresholds, and reference points

Perhaps a generation ago, MSY was viewed as a ‘‘target for manage-

ment.’’ We are much wiser than that now (Maunder 2002). Whether or

not MSY should be viewed as a target, reference point or limit for

management is a topic that can be addressed by quantitative means;

some entry points are Thompson (1993), Nakken et al. (1996), Schnute

and Richards (1998), Overholtz (1999), Bradford et al. (2000), Caddy

(2002), Hilborn et al. (2002), Ulrich and Marchal (2002), Koeller

(2003) and Prager et al. (2003). A recent issue of the Bulletin of

Marine Science (70(2), 2002) is focussed on targets and thresholds.

Bioeconomics

We have just barely touched on bioeconomics, through our introduction

of the discount rate, bionomic equilibrium and Exercises 6.8 and 6.9.

The subject is very important. Corkett (2002) argues that bioeconomics

is essential for making fishery stock assessment a falsifiable science; the

problem of excess capacity for catching fish is perhaps the most sig-

nificant factor leading to overfishing (Figure 6.16). The classic text in

bioeconomics (and indeed, the one that got the field going) is Clark

(1990; this is the second edition; the first published in the mid 1970s).

Clark (1985) is also superb. As with understanding the specifics of

fishery systems, it is also good to understand specific bioeconomic

models of fishery systems such as New England groundfish

(Overholtz et al. 1995), the southern bluefin tuna fishery (McDonald

et al. 2002), US silver hake fisheries (Helser et al. 1996), English

channel artisinal fisheries (Ulrich et al. 2002a), North Sea flatfish fish-

ery (Ulrich et al. 2002b), traditionally managed Fijian fisheries

(Jennings and Polunin 1996), the Gulf of Mexico red snapper fishery

(Gillig et al. 2001), or the role of individual transferable quotas

(McGarvey 2003).

The role of Bayesian methods

For even the simplest model of the fishery, we have seen that parameters

are confounded (e.g. MSY¼ rK/4) and Bayesian methods provide the

natural way for dealing with problems in which parameters are con-

founded and there is prior information (in fisheries, for example on

similar stocks elsewhere). There is an excellent and growing literature
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on Bayesian methods in stock assessment and fishery management.

Good starting points include Thompson (1992), McAllister et al.

(1994), Ellison (1996), Kinas (1996), McAllister (1996), McAllister

and Ianelli (1997), McAllister and Kirkwood (1998a, b, 1999), Meyer

and Millar (1999a, b), Patterson (1999), Wade (2000), Adkison and

Zhenming (2001), Hammond and O’Brien (2001), Harley and Myers

(2001), McAllister et al. (2001), Dorn (2002), Millar (2002), Rivot et al.

(2001), and Chen et al. (2003). Liermann and Hilborn (1997) apply

Bayesian methods to the analysis of depensation in the stock–recruit-

ment relationship.

More about salmon

There is so much more that I would like to tell you about salmon that it

could be another book. These are remarkable fish because of their

diadromy (migration between freshwater and marine environments;

see McDowall (1988)) and semelparity (in general, just a single
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Figure 6.16. The overcapacity

ratio, defined as the actual

capacity of the fishery divided

by the estimated long-run

sustainable capacity, of various

historical fisheries (data from

Clark 1990) and of the USA as a

whole in 2002 (D. Fluharty,

personal communication).
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reproductive event, the major exception being Atlantic salmon Salmo

salar L.). If one extends from the salmon to the salmonids (thus

including, for example, trout and charr), iteroparity is much more

common. Salmonids are fished both commercially and recreationally.

Because of their interest as sport fish, salmon are described in a number

of well written books for the lay person; some of my favorites are

Ade (1989), Stolz and Schnell (1991), Behnke (1992, 2002), Watson

(1993, 1999), and Greer (1995), Although not about salmon, John

McPhee’s book (McPhee 2002) about shad, which are also diadromous,

is a great joy. If you can find Malloch (1994), which is a reprint of a

1909 publication, it is well worth reading. For more academic treat-

ments on Atlantic salmon consult Mills (1989), and on Pacific salmon

consult Groot and Margolis (1991), Pearcy (1992) and Groot et al.

(1995). Some of the most interesting questions involving salmon are

those relating to the diversity of life histories and early maturation

(usually males) in freshwater before migration to the ocean. Fisher

et al. (1991) discuss the integration of fishery and water resource

management.

Models with process uncertainty and observation noise

Taking into account process uncertainty and observation noise is a

difficult task, somewhat beyond the goal of this chapter. Schnute

(1993) lays out some of the questions via clear and simple examples,

but the methodology of solution rapidly becomes difficult. Entry points

for methods and for some applications include Reed and Simons

(1996), Patterson (1998), Patterson et al. (2001), de Valpine and

Hastings (2002), Hinrichsen (2002), Kehler et al. (2002), Tang and

Wang (2002), Cooper et al. (2003), Lindley (2003), and Mesnil

(2003). As Sinclair et al. (2002a) note, size-selective mortality, density

and temperature form a tangled bank when one tries to understand

length at age, which as we have discussed is fundamental for age-

structured management models. Millar and Meyer (2000) and Schnute

and Kronlund (2002) use an explicit Bayesian approach for this

problem.

Marine reserves

There is a growing literature on both theoretical (Apollorio 1994,

Guenette et al. 1998, Horwood et al. 1998, Guenette and Pitcher

1999, Pezzey et al. 2000, Soh et al. 2000, Lindholm et al. 2001,

Council 2001, Acosta 2002, Apostolaki et al. 2002, Brooks 2002, and
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Lockwood et al. 2002) and empirical (McClanahan and Kauna-Arara

1996, Edgar and Barrett 1999, Jennings 2000, Mosquera et al. 2000,

Paddack and Estes 2000, Sanchez Lizaso et al. 2000, Cote et al. 2001,

Halpern and Warner 2002, Fanshawe et al. 2003, and Shears and

Babcock 2003) aspects of marine reserves. As we have discussed, one

of the important issues with marine reserves is economic (associated

with the suite of questions concerning foregone catch, the effects of

reserves on yield and displaced fishing effort). There is less literature on

this question (Farrow and Sumaila 2002, Rudd et al. 2003) but the topic

is important (Sanchirico et al. 2003).

Fishing as an agent of selection

We have ignored the evolutionary response of stocks to fishing, but

there is a growing literature that fishing acts as a clear agent of selection

and that responses can be rapid (Cardinale and Modin 1999, Cardinale

and Arrhenius 2000, Law 2000, Hutchings 2000, 2001, Sadovy 2001,

and Conover and Munch 2002).

Ecosystem-based approaches to fishery management

We have focussed on single species models because understanding

them is essential if one wants to move forward to models based on

community or ecosystem concepts, as we surely must (Sherman and

Alexander 1989, Sherman et al. 1990, 1991, 1993, Richards and

Maguire 1998, Murawski 2000, Pitcher 2000, Link et al. 2002, Pitcher

et al. 2002, Sinclair et al. 2002b, and Christensen et al. 2003). In the

future, fishery management will likely take an ecosystem-based

approach (Pikitch et al. 2004). We are accumulating some theoretical

and empirical (Gislason 1994, Daskalov 2002) knowledge about eco-

system effects of fishing and ecosystem approaches to management.

Furthermore, management based on an ecosystem approach explicitly

recognizes the role of climate in the production of fish (for examples,

see Healey (1990), Mullan (1993), Bakun (1996), Klyashtorin (1998),

Kuikka et al. (1999), Fiksen and Slotte (2002), Swansburg et al. (2002),

and Williams (2003)).

In the late 1990s, I served on the Ecosystem Advisory Panel

which sent to Congress Ecosystem-based Fishery Management. A Report

to Congress by the Ecosystem Advisory Panel (available, among

other places at my website: http://www.soe.ucsc.edu/~msmangel/ and

http://www.soe.ucsc.edu/~msmangel/eprints_topical.htm). An executive

summary of our conclusions is as follows.
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Basic ecosystem characteristics and operating principles

(1) Prediction

� Prediction is limited. Uncertainty and indeterminacy are fundamental

characteristics of the dynamics of complex adaptive systems. It is not

possible to predict the behaviors of these systems with absolute certainty,

regardless of the amount of scientific effort invested. We can, however,

find the boundaries of expected behavior and improve our understanding

of the underlying dynamics. Thus, ecosystems are not totally predictable,

but they are not totally unpredictable either. There are limits to their

predictability.

(2) Resilience

� Thresholds are real. Ecosystems are finite and exhaustible. But, they

usually have a high buffering capacity and are fairly resilient to stress.

Often, as we begin to apply a stress to an ecosystem, its structure and

behavior may at first not change noticeably. Only after a critical thresh-

old is passed does the system begin to deteriorate rapidly. Since there is

little change initially in behavior with increasing stress, these thresholds

are very difficult to predict before they are reached. The nonlinear

dynamics which cause this kind of behavior are a basic characteristic

of ecosystems.

� Changes can be irreversible. When an ecosystem is radically altered, it

may never return to its original condition, even after the stress is

removed. This phenomenon (called hysteresis) is common in many

complex adaptive systems.

� Diversity is important to ecosystem functioning. The diversity of com-

ponents at the individual, species, and landscapes scales strongly affects

ecosystem behavior. Although the overall productivity of ecosystems

may not change significantly when particular species are added or

removed, their resilience may be affected.

(3) Space and time linkages

� Multiple scales interact. Ecosystems cannot be understood from the

perspective of a single time, space, or complexity scale. At minimum,

both the next larger scale and the next lower scale of interest must be

considered when effects of perturbations are analyzed.

� Components are strongly linked. The components within ecosystems are

linked by flows of materials, energy, and information in complex pat-

terns. The impacts of disrupting these patterns are highly variable and

poorly understood.

� Ecosystem boundaries are open. Ecosystems are thermodynamically

open, far from equilibrium systems, and cannot be adequately understood

without knowledge of their boundary conditions, energy flows, and

internal cycling of nutrients and other materials. Environmental varia-

bility can alter spatial boundaries and energy inputs to ecosystems.
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� Ecosystems change with time. Ecosystems change with time in response

to natural and anthropogenic influences. Different components of eco-

systems change at different rates and can influence the overall structure

of the ecosystem itself. The human component of ecosystems (especially

technology and institutions) changes rapidly, far outstripping the capa-

city for change of other components of the ecosystem.

Social goals

� Apply a precautionary approach. Because predictability is limited and we

now live in a world where humans are an important component of almost all

ecosystems, it is reasonable to assume that human activities will impact

ecosystems at several scales. We should reverse the current burden of proof

and presume that adverse impacts will occur, unless and until it can be shown

otherwise.

� Purchase ‘‘insurance’’. To guard against uncertain adverse impacts we

should purchase ‘‘insurance’’ of various kinds, ranging from the physical

insurance of marine protected areas to the financial insurance of environ-

mental bonds.

� Make local goals compatible with global objectives. Changing human beha-

vior is most easily accomplished by changing the local incentives which

individuals face to be consistent with broader social goals. The lack of

consistency between local incentives and global goals is the root cause of

many ‘‘social traps,’’ including those in fisheries management. Changing

incentives is complex and must be accomplished in culturally appropriate

ways. For example, in western market economies, changing market incen-

tives may be appropriate, but this will not generally be the case for other

cultures.

� Promote participation, fairness and equity in policy and management.

Policies that are developed and implemented with the full participation

and consideration of all stakeholders, including the interests of future

generations, are more likely to be – and to be perceived as – fair and

equitable.

� Treat actions as experiments. Management actions and policies are analogous

to experiments and should be based upon hypotheses about the ecosystem

response. This requires close monitoring of results to determine to what

extent the hypotheses hold.

Risk analysis

Francis and Shotton (1997) offer a general review of the notions of risk

in fishery management; Pielke and Conant (2003) another view based

on ‘‘best-practices’’; Hutchings et al. (1997) discuss the role of science
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and government control of information. One must deeply understand

uncertainty and its implications, at a variety of levels, to proceed with

effective risk analyses. The work of Dovers and colleagues (Dovers and

Handmer 1995; Dovers et al. 1996) is a good starting point. Other

explicit treatments of risk analysis in fisheries include McAllister and

Peterman (1992a, b), Punt and Hilborn (1997), MacCall (1998), Robb

and Peterman (1998), Schnute et al. (2000), van Oostenbrugge et al.

(2001), Jonzen et al. (2002) and Myers et al. (2002).
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Chapter 7

The basics of stochastic population

dynamics

In this and the next chapter, we turn to questions that require the use of

all of our tools: differential equations, probability, computation, and a

good deal of hard thinking about biological implications of the analysis.

Do not be dissuaded: the material is accessible. However, accessing this

material requires new kinds of thinking, because funny things happen

when we enter the realm of dynamical systems with random compo-

nents. These are generally called stochastic processes. Time can be

measured either discretely or continuously and the state of the system

can be measured either continuously or discretely. We will encounter

all combinations, but will mainly focus on continuous time models.

Much of the groundwork for what we will do was laid by physicists

in the twentieth century and adopted in part or wholly by biologists as

we moved into the twentyfirst century (see, for example, May (1974),

Ludwig (1975), Voronka and Keller (1975), Costantino and Desharnais

(1991), Lande et al. (2003)). Thus, as you read the text you may begin to

think that I have physics envy; I don’t, but I do believe that we should

acknowledge the source of great ideas. Both in the text and in Connec-

tions, I will point towards biological applications, and the next chapter

is all about them.

Thinking along sample paths

To begin, we need to learn to think about dynamic biological systems in

a different way. The reason is this: when the dynamics are stochastic,

even the simplest dynamics can have more than one possible outcome.

(This has profound ‘‘real world’’ applications. For example, it means
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that in a management context, we might do everything right and still not

succeed in the goal.)

To illustrate this point, let us reconsider exponential population

growth in discrete time:

X ðt þ 1Þ ¼ ð1þ lÞX ðtÞ (7:1)

which we know has the solution X(t)¼ (1þ l)tX(0). Now suppose that

we wanted to make these dynamics stochastic. One possibility would be

to assume that at each time the new population size is determined by the

deterministic component given in Eq. (7.1) and a random, stochastic

term Z(t) representing elements of the population that come from

‘‘somewhere else.’’ Instead of Eq. (7.1), we would write

X ðt þ 1Þ ¼ ð1þ lÞX ðtÞ þ ZðtÞ (7:2)

In order to iterate this equation forward in time, we need assumptions

about the properties of Z(t). One assumption is that Z(t), the process

uncertainty, is normally distributed with mean 0 and variance �2. In

that case, there are an infinite number of possibilities for the sequence

{Z(0), Z(1), Z(2), . . .} and in order to understand the dynamics we

should investigate the properties of a variety of the trajectories, or

sample paths, that this equation generates. In Figure 7.1, I show ten

such trajectories and the deterministic trajectory.
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Figure 7.1. Ten trajectories

(thin lines) and the

deterministic trajectory (thick

line) generated by Eq. (7.2) for

X(1)¼1, l¼0.05 and �¼0.2.
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Note that in this particular case, the deterministic trajectory is

predicted to be the same as the average of the stochastic trajectories.

If we take the expectation of Eq. (7.2), we have

EfX ðt þ 1Þg ¼ Efð1þ lÞX ðtÞg þ EfZðtÞg ¼ ð1þ lÞEfX ðtÞg (7:3)

which is the same as Eq. (7.1), so that the deterministic dynamics

characterize what the population does ‘‘on average.’’ This identification

of the average of the stochastic trajectories with the deterministic

trajectory only holds, however, because the underlying dynamics are

linear. Were they nonlinear, so that instead of (1þ l)X(t), we had a term

g(X(t)) on the right hand side of Eq. (7.2), then the averaging as in

Eq. (7.3) would not work, since in general E{g(X)} 6¼ g(E{X}).

The deterministic trajectory shown in Figure 7.1 accords with our

experience with exponential growth. Since the growth parameter is

small, the trajectory grows exponentially in time, but at a slow rate.

How about the stochastic trajectories? Well, some of them are close to

the deterministic one, but others deviate considerably from the deter-

ministic one, in both directions. Note that the largest value of X(t) in the

simulated trajectories is about 23 and that the smallest value is about

�10. If this were a model of a population, for example, we might say

that the population is extinct if it falls below zero, in which case one of

the ten trajectories leads to extinction. Note that the trajectories are just

a little bit bumpy, because of the relatively small value of the variance

(try this out for yourself by simulating your own version of Eq. (7.2)

with different choices of l and �2).

The transition from Eq. (7.1) to Eq. (7.2), in which we made the

dynamics stochastic rather than deterministic, is a key piece of the art of

modeling. We might have done it in a different manner. For example,

suppose that we assume that the growth rate is composed of a determi-

nistic term and a random term, so that we write X(tþ 1)¼ (1þ l(t))X(t),

where lðtÞ ¼ �lþ ZðtÞ, and understand �l to be the mean growth rate and

Z(t) to be the perturbation in time of that growth rate. Now, instead of

Eq. (7.2), our stochastic dynamics will be

X ðt þ 1Þ ¼ ð1þ �lÞX ðtÞ þ ZðtÞX ðtÞ (7:4)

Note the difference between Eq. (7.4) and Eq. (7.2). In Eq. (7.4), the

stochastic perturbation is proportional to population size. This slight

modification, however, changes in a qualitative nature the sample paths

(Figure 7.2). We can now have very large changes in the trajectory,

because the stochastic component, Z(t), is amplified by the current value

of the state, X(t).

Which is the ‘‘right’’ way to convert from deterministic to stochastic

dynamics – Eq. (7.2) or Eq. (7.4)? The answer is ‘‘it depends.’’ It depends
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upon your understanding of the biology and on how the random factors

enter into the biological dynamics. That is, this is a question of the art of

modeling, at which you are becoming more expert, and which (the

development of models) is a life-long pursuit. We will put this question

aside mostly, until the next chapter when it returns with a vengeance,

when new tools obtained in this chapter are used.

Brownian motion

In 1828 (Brown 1828), Robert Brown, a Scottish botanist, observed that

a grain of pollen in water dispersed into a number of much smaller

particles, each of which moved continuously and randomly (as if with a

‘‘vital force’’). This motion is now called Brownian motion; it was

investigated by a variety of scientists between 1828 and 1905, when

Einstein – in his miraculous year – published an explanation of

Brownian motion (Einstein 1956), using the atomic theory of matter

as a guide. It is perhaps hard for us to believe today but, at the turn of the

last century, the atomic theory of matter was still just that – considered

to be an unproven theory. Fuerth (1956) gives a history of the study of

Brownian motion between its report and Einstein’s publication.

Beginning in the 1930s, pure mathematicians got hold of the subject,

and took it away from its biological and physical origins; they tend to

call Brownian motion a Wiener process, after the brilliant Norbert

Wiener who began to mathematize the subject.
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Figure 7.2. Ten trajectories and

the deterministic trajectory

generated by Eq. (7.4) for the

same parameters as Figure 7.1.
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In compromise, we will use W(t) to denote ‘‘standard Brownian

motion,’’ which is defined by the following four conditions:

(1) W(0)¼ 0;

(2) W(t) is continuous;

(3) W(t) is normally distributed with mean 0 and variance t;

(4) if {t1, t2, t3, t4} represent four different, ordered times with t1< t2< t3< t4

(Figure 7.3), then W(t2)�W(t1) and W(t4)�W(t3) are independent random

variables, no matter how close t3 is to t2. The last property is said to be the

property of independent increments (see Connections for more details) and

is a key assumption.

In Figure 7.4, I show five sample trajectories, which in the busi-

ness are described as ‘‘realizations of the stochastic process.’’ They all

start at 0 because of property (1). The trajectories are continuous,

forced by property (2). Notice, however, that although the trajectories

are continuous, they are very wiggly (we will come back to that

momentarily).

For much of what follows, we will work with the ‘‘increment of

Brownian motion’’ (we are going to convert regular differential equa-

tions of the sort that we encountered in previous chapters into stochastic

differential equations using this increment), which is defined as

dW ¼ Wðt þ dtÞ �WðtÞ (7:5)

Exercise 7.1 (M)

By applying properties (1)–(4) to the increment of Brownian motion, show that:

(1) E{dW}¼ 0;

(2) E{dW2}¼ dt;

(3) dW is normally distributed;

(4) if dW1¼W(t1þ dt)�W(t1) and dW2¼W(t2þ dt)�W(t2) where t2> t1þ dt

then dW1 and dW2 are independent random variables (for this last part, you

might want to peek at Eqs. (7.29) and (7.30)).

Now, although Brownian motion and its increment seem very

natural to us (perhaps because have spent so much time working with

normal random variables), a variety of surprising and non-intuitive

results emerge. To begin, let’s ask about the derivative dW/dt. Since

W(t) is a random variable, its derivative will be one too. Using the

definition of the derivative

t1 t2 t3 t4
Time

Figure 7.3. A set of four

times {t1, t2, t3, t4} with

non-overlapping intervals.

A key assumption of the

process of Brownian motion

is that W(t2)�W(t1) and

W(t4)�W(t3) are independent

random variables, no matter

how close t3 is to t2.
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dW

dt
¼ limdt!0

Wðt þ dtÞ �WðtÞ
dt

(7:6)

so that

E
dW

dt

� �
¼ limdt!0E

Wðt þ dtÞ �WðtÞ
dt

� �
¼ 0 (7:7)

and we conclude that the average value of dW/dt is 0. But look what

happens with the variance:

E
dW

dt

� �2
( )

¼ limdt!0E
ðWðt þ dtÞ �WðtÞÞ2

dt2

( )
¼ limdt!0

dt

dt2
(7:8)

but we had better stop right here, because we know what is going to

happen with the limit – it does not exist. In other words, although the

sample paths of Brownian motion are continuous, they are not differ-

entiable, at least in the sense that the variance of the derivative exists.

Later in this chapter, in the section on white noise (see p. 261), we will

make sense of the derivative of Brownian motion. For now, I want to

introduce one more strange property associated with Brownian motion

and then spend some time using it.

Suppose that we have a function f (t,W ) which is known and well

understood and can be differentiated to our hearts’ content and for

which we want to find f (tþ dt, wþ dW ) when dt (and thus E{dW2})
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Figure 7.4. Five realizations

of standard Brownian motion.
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is small and t and W (t ) ¼ w are specified. We Taylo r expand in the usual

manner, using a subsc ript to denote a derivativ e

f ðt þ d t ; w þ dW Þ ¼f ðt ; w Þ þ ft dt þ fw dW

þ 1

2

n
ftt d t 2 þ 2ftw dt dW þ fww d W 2

o
þ oðdt 2 Þ

þ oðdt dW Þ þ oðd W 2 Þ (7:9)

and now we ask ‘‘w hat are the terms that are order d t on the right hand

side of this expre ssion?’’ Once agai n, this can only make sense in terms

of an expectati on, sinc e f ( t þ dt, w þ dW) will be a rando m variable. So

let us take the expectati on and use the prope rties of the increm ent of

Brow nian motio n

Ef f ðt þ dt ; w þ dW Þg ¼ f ðt ; w Þ þ ft d t þ 1

2 
fww dt þ oðd t Þ (7:10)

so that the partic ular prope rty of Brownia n motion that E{d W 2} ¼ dt

translat es int o a Taylo r expans ion in which first derivat ives with resp ect

to dt and first and second derivat ives with resp ect to dW are the same

order of dt . This is an exam ple of Ito cal culus, due to the mathem atician

K. Ito; see Connectio ns for more details. We will now explore the

implica tions of this obser vation.

The gamble r’s ruin in a fair game

Many – perha ps all – books on stochasti c proce sses or proba bility

include a sectio n on gambling becau se, let’s face it, what is the point

of studying proba bility and stochasti c processe s if you can’ t become a

better gamb ler (see also Dubins and Savage ( 1976 ))? The gam bling

problem als o allow s us to introdu ce some ideas that will flow through

the rest of this chapt er and the next chapter.

Imagi ne that you are playing a fair game in a casino (we will discuss

real casinos, which always have the edge, in the next sect ion) and that

your current holdings are X( t) dollars. You are out of the gam e when

X( t) falls to 0 and you break the bank when your holdings X (t ) reach the

casino holdings C. If you think that this is a purely mathem atical

problem and are impatie nt for biology, make the followi ng analogy:

X( t) is the size at time t of the popul ation descended from a propa gule of

size x that reached an island at time t ¼ 0; X( t) ¼ 0 correspo nds to

extincti on of the popul ation and X( t) ¼ C correspo nds to succe ssful

coloniz ation of the island by the descendant s of the propa gule. With

this interp retation, we have one of the models for island biogeogra phy

of MacAr thur and Wilson (1967 ), which will be discusse d in the next

chapter .
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Since the game is fair, we may assume that the change in your

holdings are determined by a standard Brownian motion; that is, your

holdings at time t and time tþ dt are related by

X ðt þ dtÞ ¼ X ðtÞ þ dW (7:11)

There are many questions that we could ask about your game, but I

want to focus here on a single question: given your initial stake X(0)¼ x,

what is the chance that you break the casino before you go broke?

One way to answer this question would be through simulation of

trajectories satisfying Eq. (7.11). We would then follow the trajec-

tories until X(t) crosses 0 or crosses C and the probability of breaking

the casino would be the fraction of trajectories that cross C before

they cross 0. The trajectories that we simulate would look like those

in Figure 7.4 with a starting value of x rather than 0. This method,

while effective, would be hard pressed to give us general intuition and

might require considerable computer time in order for us to obtain

accurate answers. So, we will seek another method by thinking along

sample paths.

In Figure 7.5, I show the t� x plane and the initial value of your

holdings X(0)¼ x. At at time dt later, your holdings will change to

xþ dW, where dW is normally distributed with mean 0 and variance

dt. Suppose that, as in the figure, they have changed to xþw, where we

can calculate the probability of dW falling around w from the normal

distribution. What happens when you start at this new value of hold-

ings? Either you break the bank or you go broke; that is, things start over

exactly as before except with a new level of holdings. But what happens

between 0 and dt and after dt are independent of each other because of

the properties of Brownian motion. Thus, whatever happens after dt is

determined solely by your holdings at dt. And those holdings are

normally distributed.

To be more formal about this, let us set

uðxÞ ¼ PrfX ðtÞ hitsC before it hits 0jX ð0Þ ¼ xg (7:12)

(which could also be recognized as a colonization probability, using the

metaphor of island biogeography) and recognize that the argument of

the previous paragraph can be summarized as

uðxÞ ¼ EdWfuðxþ dWÞg (7:13)

where EdW means to average over dW. Now let us Taylor expand the

right hand side of Eq. (7.13) around x:

uðxÞ ¼ EdW uðxÞ þ dWux þ
1

2
ðdWÞ2uxx þ oððdWÞ2Þ

� �
(7:14a)

dt t

X

C

x + w

x

u(x) u(x + dW )

Figure 7.5. To compute the

probability u(x) that X(t)

crosses C before 0, given

X(0)¼ x we recognize that, in

the first dt of the game,

holdings will change from x

to xþw, where w has a

normal distribution with

mean 0 and variance dt.

We can thus relate u(x) at this

time to the average of

u(xþdW) at a slightly later

time (later by dt).
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and take the average over dW, remembering that it is normally distrib-

uted with mean 0 and variance dt:

uðxÞ ¼ uðxÞ þ 1

2
uxxdt þ oðdtÞ (7:14b)

The last two equations share the same number because I want to

emphasize their equivalence. To finish the derivation, we subtract u(x)

from both sides, divide by dt and let dt ! 0 to obtain the especially

simple differential equation

uxx ¼ 0 (7:15)

which we now solve by inspection. The second derivative is 0, so the

first derivative of u(x) is a constant ux¼ k1 and thus u(x) is a linear

function of x

uðxÞ ¼ k2 þ k1x (7:16)

We will find these constants of integration by thinking about the

boundary conditions that u(x) must satisfy.

From Eq. (7.12), we conclude that u(0) must be 0 and u(C) must

be 1 since if you start with x¼ 0 you have hit 0 before C and if you

start with C you have hit C before 0. Since u(0)¼ 0, from Eq. (7.16)

we conclude that k2¼ 0 and to make u(C)¼ 1 we must have k1¼ 1/C so

that u(x) is

uðxÞ ¼ x

C
(7:17)

What is the typical relationship between your initial holdings and

those of a casino? In general C� x, so that u(x)� 0 – you are almost

always guaranteed to go broke before hitting the casino limit.

But, of course, most of us gamble not to break the bank, but to have

some fun (and perhaps win a little bit). So we might ask how long it will

be before the game ends (i.e., your holdings are either 0 or C). To

answer this question, set

TðxÞ ¼ average amount of time in the game; given X ð0Þ ¼ x (7:18)

We derive an equation for T(x) using logic similar to that which took

us to Eq. (7.15). Starting at X(0)¼ x, after dt the holdings will be

xþ dW and you will have been in the game for dt time units. Thus we

conclude

TðxÞ ¼ dt þ EdWfTðxþ dWÞg (7:19)

and we would now proceed as before, Taylor expanding, averaging,

dividing by dt and letting dt approach 0. This question is better left as an

exercise.
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Exercise 7.2 (M)

Show that T(x) satisfies the equation�1¼ (1/2) Txx and that the general solution

of this equation is T(x)¼� x2þ k1xþ k2. Then explain why the boundary

conditions for the equation are T(0)¼ T(C)¼ 0 and use them to evaluate the

two constants. Plot and interpret the final result for T(x).

The gambler’s ruin in a biased game

Most casinos have a slight edge on the gamblers playing there. This

means that on average your holdings will decrease (the casino’s edge) at

rate m, as well as change due to the random fluctuations of the game. To

capture this idea, we replace Eq. (7.11) by

dX ¼ X ðt þ dtÞ � X ðtÞ ¼ �mdt þ dW (7:20)

Exercise 7.3 (E/M)

Show that dX is normally distributed with mean –mdt and variance dtþ o(dt) by

evaluating E{dX} and E{dX2} using Eq. (7.20) and the results of Exercise 7.1.

As before, we compute u(x), the probability that X(t) hits C

before 0, but now we recognize that the average must be over dX

rather than dW, since the holdings change from x to xþ dX due to

deterministic (mdt) and stochastic (dW) factors. The analog of

Eq. (7.13) is then

uðxÞ ¼ EdXfuðxþ dX Þg ¼ EdXfuðx� mdt þ dWÞg (7:21)

We now Taylor expand and combine higher powers of dt and dW into a

term that is o(dt)

uðxÞ ¼ EdX uðxÞ þ ð�mdt þ dWÞux þ
1

2
ð�mdt þ dWÞ2uxx þ oðdtÞ

� �
(7:22)

We expand the squared term, recognizing that O(dW2) will be order

dt, take the average over dX, divide by dt and let dt! 0 (you should

write out all of these steps if any one of them is not clear to you) to

obtain

1

2
uxx � mux ¼ 0 (7:23)

which we need to solve with the same boundary conditions as before

u(0)¼ 0, u(C)¼ 1. There are at least two ways of solving Eq. (7.23).

I will demonstrate one; the other uses the same method that we used in

Chapter 2 to deal with the von Bertalanffy equation for growth.
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Let us set w¼ ux, so that Eq. (7.23) can be rewritten as wx¼ 2mw,

for which we immediately recognize the solution w(x)¼ k1e2mx, where

k1 is a constant. Since w(x) is the derivative of u(x) we integrate again to

obtain

uðxÞ ¼ k2e
2mx þ k3 (7:24)

where k2 and k3 are constants and, to be certain that we are on the same

page, try the next exercise.

Exercise 7.4 (E)

What is the relationship between k1 and k2?

When we apply the boundary condition that u(0)¼ 0, we conclude

that k3¼�k2, and when we apply the boundary condition u(C)¼ 1, we

conclude that k2¼ 1/(e2mC� 1). We thus have the solution for the

probability of reaching the limit of the casino in a biased game:

uðxÞ ¼ e2mx � 1

e2mC � 1
(7:25)

and now things are very bleak: the chance that you win is, for almost all

situations, vanishingly small (Figure 7.6).

Once again, we can ask about how long you can stay in the game

and, possibly, about connections between the biased and fair gambles.

I leave both of these as exercises.
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Figure 7.6. When the game is

biased, the chance of reaching

the limit of the casino before

going broke is vanishingly

small. Here I show u(x) given by

Eq. (7.25) for m¼0.1 and

C¼100. Note that if you start

with even 90% of the casino

limit, the situation is not very

good. Most of us would start

with x�C and should thus just

enjoy the game (or develop a

system to reduce the value of

m, or even change its sign.)
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Exercise 7.5 (M/H)

Derive the equation for T(x), the mean time that you are in the game when

dX is given by Eq. (7.20). Solve this equation for the boundary conditions

T(0)¼ T(C)¼ 0.

Exercise 7.6 (E/M)

When m is very small, we expect that the solution of Eq. (7.25) should be close

to Eq. (7.17) because then the biased game is almost like a fair one. Show that

this is indeed the case by Taylor expansion of the exponentials in Eq. (7.25) for

m! 0 and show that you obtain our previous result. If you have more energy

after this, do the same for the solutions of T(x) from Exercises 7.5 and 7.2.

Before moving on, let us do one additional piece of analysis. In

general, we expect the casino limit C to be very large, so that 2mC� 1.

Dividing numerator and denominator of Eq. (7.25) by e2mC gives

uðxÞ ¼ e�2mðC�xÞ � e�2mC

1� e�2mC
� e�2mðC�xÞ (7:26)

with the last approximation coming by assuming that e�2mC� 1. Now

let us take the logarithm to the base 10 of this approximation to u(x), so

that log10(u(x))¼�2m(C� x)log10e. I have plotted this function in

Figure 7.7, for x¼ 10 and C¼ 50, 500, or 1000. Now, C¼ 1000, x¼ 10,

and m¼ 0.01 probably under-represents the relationship of the bank of a

casino to most of us, but note that, even in this case, the chance of

reaching the casino limit before going broke when m¼ 0.01 is about 1 in
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Figure 7.7. The base 10

logarithm of the

approximation of u(x), based

on Eq. (7.26) for x¼10 and

C¼50, 500, or 1000, as a

function of m.

The gambler’s ruin in a biased game 259

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511819872.009
Downloaded from https://www.cambridge.org/core. Universidad Nacional de Mexico (UNAM), on 25 Mar 2019 at 20:06:54, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511819872.009
https://www.cambridge.org/core


a billion. So go to Vegas, but go for a good time. (In spring 1981, my

first year at UC Davis, I went to a regional meeting of the American

Mathematical Society, held in Reno, Nevada, to speak in a session on

applied stochastic processes. Many famous colleagues were they, and

although our session was Friday, they had been there since Tuesday

doing, you guessed it, true work in applied probability. All, of course,

claimed positive gains in their holdings.)

The transition density and covariance
of Brownian motion

We now return to standard Brownian motion, to learn a little bit more

about it. To do this, consider the interval [0, t] and some intermediate

time s (Figure 7.8). Suppose we know that W(s)¼ y, for s< t. What can

be said about W(t)? The increment W(t)�W(s)¼W(t)� y will be norm-

ally distributed with mean 0 and variance t� s. Thus we conclude that

Prfa � WðtÞ � bg ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðt � sÞ

p ðb
a

exp �ðx� yÞ2

2ðt � sÞ

 !
dx (7:27)

Note too that we can make this prediction knowing only W(s), and not

having to know anything about the history between 0 and s. A stochastic

process for which the future depends only upon the current value and

not upon the past that led to the current value is called a Markov process,

so that we now know that Brownian motion is a Markov process.

The integrand in Eq. (7.27) is an example of a transition density

function, which tells us how the process moves from one time and value

to another. It depends upon four values: s, y, t, and x, and we shall write it as

qðx; t; y; sÞdx ¼ Prfx � WðtÞ � xþ dxjWðsÞ ¼ yg

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðt � sÞ

p exp �ðx� yÞ2

2ðt � sÞ

 !
dx

(7:28)

This equation should remind you of the diffusion equation encountered

in Chapter 2, and the discussion that we had there about the strange

properties of the right hand side as t decreases to s. In the next section all

of this will be clarified. But before that, a small exercise.

Figure 7.8. The time s divides

the interval 0 to t into two

pieces, one from 0 to just before

s (s�) and one from just after

s (sþ ) to t. The increments in

Brownian motion are then

independent random variables.

0 s

s– s+

t 

W(s–) – W(0) and W(t) – W(s+) are independent
random variables
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Exercise 7.7 (E/M)

Show that q(x, t, y, s) satisfies the differential equation qt¼ (1/2)qxx. What

equation does q(x, t, y, s) satisfy in the variables s and y (think about the

relationship between qt and qs and qxx and qyy before you start computing)?

Keeping with the ordering of time in Figure 7.8, let us compute the

covariance of W(t) and W(s):

EfWðtÞWðsÞg ¼ EfðW ðtÞ �WðsÞÞWðsÞg þ EðfW ðsÞ2gÞ
¼ EfðW ðtÞ �WðsÞÞðWðsÞ � 0Þg þ s

¼ s

(7:29)

where the last line of Eq. (7.29) follows because W(s)�W(0) and

W(t)�W(s) are independent random variables, with mean 0. Suppose

that we had interchanged the order of t and s. Our conclusion would then

be that E{W(t)W(s)}¼ t. In other words

EfWðtÞWðsÞg ¼ minðt; sÞ (7:30)

and we are now ready to think about the derivative of Brownian motion.

Gaussian ‘‘white’’ noise

The derivative of Brownian motion, which we shall denote by

�(t)¼ dW/dt, is often called Gaussian white noise. It should already be

clear where Gaussian comes from; the origin of white will be understood

at the end of this section, and the use of noise comes from engineers, who

see fluctuations as noise, not as the element of variation that may lead to

selection; Jaynes (2003) has a particularly nice discussion of this point.

We have already shown the E{�(t)}¼ 0 and that problems arise when we

try to compute E{�(t)2} in the usual way because of the variance of

Brownian motion (recall the discussion around Eq. (7.8)). So, we are

going to sneak up on this derivative by computing the covariance

Ef�ðtÞ�ðsÞg ¼ q q
qtqs

EfWðtÞWðsÞg (7:31)

Note that I have exchanged the order of differentiation and integration

in Eq. (7.31); we will do this once more in this chapter. In general, one

needs to be careful about doing such exchanges; both are okay here (if

you want to know more about this question, consult a good book on

advanced analysis). We know that E{W(t)W(s)}¼min(t, s). Let us think

about this covariance as a function of t, when s is held fixed, as if it were

just a parameter (Figure 7.9)

�ðt; sÞ ¼ minðt; sÞ ¼ t if t5 s

s if t � s
(7:32)
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Now the derivative of this function will be discontinuous; since the

derivative is 1 if t< s, and is 0 if t> s, there is a jump at t¼ s

(Figure 7.9). We are going to deal with this problem by using the

approach of generalized functions described in Chapter 2 (and in the

course of this, learn more about Gaussians).

We will replace the derivative (q/qt)�(t, s) by an approximation that is

smooth but in the limit has the discontinuity. Define a family of functions

�nðt; sÞ ¼
ffiffiffi
n
pffiffiffiffiffiffi

2p
p

ð1
ðt�sÞ

exp � nx2

2

� �
dx

which we recognize as the tail of the cumulative distribution function

for the Gaussian with mean 0 and variance 1/n. That is, the density is

�nðxÞ ¼
ffiffiffi
n
pffiffiffiffiffiffi

2p
p exp � nx2

2

� �

We then set

q
qt
�ðt; sÞ ¼ limn!1

ffiffiffi
n
pffiffiffiffiffiffi

2p
p

ð1
ðt�sÞ

exp � nx2

2

� �
dx ¼ limn!1

q
qt
�nðt; sÞ (7:33)

When t¼ s, the lower limit of the integral is 0, so that the integral is 1/2.

To understand what happens when t does not equal s, the following

exercise is useful.

ts

(d)

δn(x)

ts

(c)

1/2

ts

1

(b)

ts

s

(a)Figure 7.9. (a) The covariance

function �(t,s)¼ E{W(t)W(s)}¼
min(t,s), thought of as a

function of t with s as a

parameter. (b) The derivative

of the covariance function

is either 1 or 0 with a

discontinuity at t¼ s. (c) We

approximate the derivative

by a smooth function �n (t,s),

which in the limit has the

discontinuity. (d) The

approximate derivative is the

tail of the cumulative Gaussian

from t¼ s.
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Exercise 7.8 (E)

Make the transformation y ¼ x
ffiffiffi
n
p

so that the integral in Eq. (7.33) is the same as

1ffiffiffiffiffiffi
2p
p

ð1
ffiffi
n
p
ðt�sÞ

exp � y2

2

� �
dy (7:34)

The form of the integral in expression (7.34) lets us understand what

will happen when t 6¼ s. If t< s, the lower limit is negative, so that as

n!1 the integral will approach 1. If t> s, the lower limit is positive so

that as n increases the integral will approach 0. We have thus con-

structed an approximation to the derivative of the correlation function.

Equation (7.31) tells us what we need to do next. We have con-

structed an approximation to (q/qt)�(t, s), and so to find the covariance

of Gaussian white noise, we now need to differentiate Eq. (7.33) with

respect to s. Remembering how to take the derivative of an integral with

respect to one of its arguments, we have

q q
qtqs

�ðt; sÞ ¼ limn!1

ffiffiffi
n
pffiffiffiffiffiffi

2p
p exp � nðt � sÞ2

2

 !
¼ limn!1�nðt � sÞ (7:35)

Now, �n(t� s) is a Gaussian distribution centered not at 0 but at t¼ s

with variance 1/n. Its integral, over all values of t, is 1 but in the limit

that n!1 it is 0 everywhere except at t¼ s, where it is infinite. In other

words, the limit of �n(t� s) is the Dirac delta function that we first

encountered in Chapter 2 (some �n(x) are shown in Figure 7.10).

–5 –4 –3 –2 –1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

δ n
(x

)

Figure 7.10. The generalized

functions �n(x) for n¼1, 3, 5, 7,

and 9.
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This has been a tough slog, but worth it, because we have shown that

Ef�ðtÞ�ðsÞg ¼ �ðt � sÞ (7:36)

We are now in a position to understand the use of the word ‘‘white’’

in the description of this process. Historically, engineers have worked

interchangeably between time and frequency domains (Kailath 1980)

because in the frequency domain tools other the ones that we consider

are useful, especially for linear systems (which most biological systems

are not). The connection between the time and frequency (Stratonovich

1963) is the spectrum S(o) defined for the function f(t) by

SðoÞ ¼
ð
e�iotf ðtÞdt (7:37)

where the integral extends over the entire time domain of f(t). In our

case then, we set s¼ 0 for simplicity, since Eq. (7.36) depends only on

t� s; the spectrum of the covariance function given by Eq. (7.36) is then

SðoÞ ¼
ð
e�iot�ðtÞdt ¼ 1 (7:38)

where the last equality follows because the delta function picks out

t¼ 0, for which the exponential is 1. The spectrum of Eq. (7.36) is thus

flat (Figure 7.11): all frequencies are equally represented in it. Well, that

is the description of white light and this is the reason that we call the

derivative of Brownian motion white noise. In the natural world, the

covariance does not drop off instantaneously and we obtain spectra with

color (see Connections).

The Ornstein–Uhlenbeck process and stochastic
integrals

In our analyses thus far, the dynamics of the stochastic process

have been independent of the state, depending only upon Brownian

motion. We will now begin to move beyond that limitation, but do it

appropriately slowly. To begin, recall that if X(t) satisfies the dynamics

Spectrum, S(ω)

“Life” “White noise”

Frequency, ω

Figure 7.11. The spectrum of

the covariance function given

by Eq. (7.36) is completely

flat so that all frequencies are

equally represented. Hence

the spectrum is ‘‘white.’’ In the

natural world, however, the

higher frequencies are less

represented, leading to a

fall-off of the spectrum.
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dX/dt¼ f (X) and K is a stable steady state of this system, so that

f (K)¼ 0, and we consider the behavior of deviations from the steady

state Y(t)¼X(t)�K then, to first order, Y(t) satisfies the linear dynamics

dY / dt¼� | f 0(K)|Y, where f 0(K) is the derivative of f (X) evaluated at K.

We can then define a relaxation parameter �¼ | f 0(K)| so that the

dynamics of Y are given by

dY

dt
¼ ��Y (7:39)

We call � the relaxation parameter because it measures the rate at which

fluctuations from the steady state return (relax) towards 0. Sometimes

this parameter is called the dissipation parameter.

Exercise 7.9 (E)

What is the relaxation parameter if f (X) is the logistic rX(1� (X / K))? If you

have the time, find Levins (1966) and see what he has to say about your result.

We fully understand the dynamics of Eq. (7.39): it represents return

of deviations to the steady state: which ever way the deviation starts

(above or below K), it becomes smaller. However, now let us ask what

happens if in addition to this deterministic attraction back to the steady

state, there is stochastic fluctuation. That is, we imagine that in the next

little bit of time, the deviation from the steady state declines because of

the attraction back towards the steady state but at the same time is

perturbed by factors independent of this decline. Bjørnstadt and

Grenfell (2001) call this process ‘‘noisy clockwork;’’ Stenseth et al.

(1999) apply the ideas we now develop to cod, and Dennis and Otten

(2000) apply them to kit fox.

We formulate the dynamics in terms of the increment of Brownian

motion, rather than white noise, by recognizing that in the limit dt! 0,

Eq. (7.39) is the same as dY¼� �Y dtþ o(dt) and so our stochastic

version will become

dY ¼ ��Y dt þ �dW (7:40)

where � is allowed to scale the intensity of the fluctuations. The

stochastic process generated by Eq. (7.40) is called the Ornstein–

Uhlenbeck process (see Connections) and contains both deterministic

relaxation and stochastic fluctuations (Figure 7.12). Our goal is to now

characterize the mixture of relaxation and fluctuation.

To do so, we write Eq. (7.40) as a differential by using the integrat-

ing factor e�t so that

dðe�tY Þ ¼ �e�tdW (7:41)
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and we now integrate from 0 to t:

e�tY ðtÞ � Y ð0Þ ¼
ðt
0

�e�sdWðsÞ (7:42)

We have created a new kind of stochastic entity, an integral involving

the increment of Brownian motion. Before we can understand the

Ornstein–Uhlenbeck process, we need to understand that stochastic

integral, so let us set

GðtÞ ¼
ðt
0

�e�sdWðsÞ (7:43)

Some properties of G(t) come to us for free: it is normally distributed

and the mean E{G(t)}¼ 0. But what about the variance? In order to

compute the variance of G(t), let us divide the interval [0, t] into pieces

by picking a large number N and setting

tj ¼
t

N
j dW j ¼ Wðtjþ1Þ �WðtjÞ j ¼ 0; . . . N (7:44)

so that we can approximate G(t) by a summation

GðtÞ ¼ limN!1
XN

j¼0

�e�tj dW j (7:45)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
–5

–4

–3

–2

–1

0

1

2

3

4 ×10–3

t

Y
(t

 )

Figure 7.12. Five trajectories of

the Ornstein–Uhlenbeck

process, simulated for �¼0.1,

dt¼0.01, q¼0.1, and

Y(0), uniformly distributed

between �0.01 and 0.01.

We see both the relaxation

(or dissipation) towards the

steady state Y¼0 and

fluctuations around the

trajectory and the steady state.
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We now square G(t) and take its expectation, remembering that

E{dWidWj}¼ 0 if i 6¼ j and equals dt if i¼ j, so that all the cross terms

vanish when we take the expectation, and we see that

VarfGðtÞg ¼ limN!1
XN

j¼0

�2e2�tj dtj ¼
ðt
0

�2e2�sds ¼ �2 e2�t � 1

2�

� �
(7:46)

We can now rewrite Eq. (7.42) as

Y ðtÞ ¼ e��tY ð0Þ þ e��tGðtÞ (7:47)

and from this can determine the properties of Y(t).

Exercise 7.10 (E/M)

Using the results we have just derived, confirm that (i) Y(t) is normally dis-

tributed, (ii) E{Y(t)}¼ e��tY(0), and (iii) Var{Y(t)}¼ [�2(1� e� 2�t)] / 2�.

Note that when t is very large Var{Y(t)}� �2 / 2�, which is a very

interesting result because it tells us how fluctuations, measured by �,

and dissipation, measured by �, are connected to create the variance of

Y(t). In physical systems, this is called the ‘‘fluctuation–dissipation’’

theorem and another piece of physical insight (the Maxwell–Boltzmann

distribution) allows one to determine � for physical systems (see

Connections). Given the result of Exercise 7.10, we can also immedi-

ately write down the transition density for the Ornstein–Uhlenbeck

process q(x, t, y, s)dx defined to be the probability that

x� Y(t)� xþ dx given that Y(s)¼ y. It looks terribly frightening, but

is simply a mathematical statement of the results of Exercise 7.10 in

which Y(0) is replaced by Y(s)¼ y:

qðx; t; y; sÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p �2ð1�e�2�ðt�sÞÞ

2�

� �r exp �ðx� e��ðt�sÞyÞ2
2�2ð1�e�2�ðt�sÞÞ

2�

2
4

3
5 (7:48)

I intentionally did not cancel the 2s in the constant or the denominator of

the exponential, so that we can continue to carry along the variance

intact. If we wait a very long time, the dependence on the initial

condition disappears, but we still have a probability distribution for

the process. Let us denote by �qðxÞ the limit of the transition density

given by Eq. (7.48) when s is fixed and t!1. This is

�qðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p �2

2�

� �r exp � x2

2 �2

2�

� �
2
4

3
5 (7:49)
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Perha ps the most intere sting insight from Eq . 7.49 pertai ns to

‘‘escapes from doma ins of attra ction’’ (which we will revi sit in the

next chapt er). The phase line for the dete rministic system the underlies

the Ornstein–Uhlenbeck process has a single steady state at the origin

(Figure 7.13). Suppose that we start the process at some point A� y�B.

Equations (7.48) and (7.49) tell us that there is always positive prob-

ability that Y(t) will be outside of the interval [A, B]. In other words, the

Ornstein–Uhlenbeck process will, with probability equal to 1, escape

from [A, B]. As we will see in Chapter 8, how it does this becomes very

important to our understanding of evolution and conservation.

When Ornstein and Uhlenbeck did this work, they envisioned that

Y(t) was the velocity of a Brownian particle, experiencing friction

(hence the relaxation proportional to velocity) and random fluctuations

due to the smaller molecules surrounding it. We need to integrate

velocity in order to find position, so if X(t) denotes the position of this

particle

X ðtÞ ¼ X ð0Þ þ
ðt
0

Y ðsÞds (7:50)

and now we have another stochastic integral to deal with. But that is the

subject for a more advanced book (see Connections).

General diffusion processes and the backward
equation

We now move from the specific – Brownian motion, the Ornstein–

Uhlenbeck process – to the general diffusion process. To be honest, two

colleagues who read this book in draft suggested that I eliminate this

section and the next. Their argument was something like this: ‘‘I don’t

need to know how my computer or car work in order to use them, so why

should I have to know how the diffusion equations are derived?’’

Although I somewhat concur with the argument for both computers

and cars, I could not buy it for diffusion processes. However, if you

want to skip the details and get to the driving, the key equations are

Eqs. (7.53), (7.54), (7.58), and (7.79).

The route that we follow is due to the famous probabilist William

Feller, who immigrated to the USA from Germany around the time of

the Second World War and ended up in Princeton. Feller wrote two

beautiful books about probability theory and its applications (Feller

A

0

B

y

Figure 7.13. The set up for the

study of ‘‘escape from a

domain of attraction.’’ The

phase line for the Ornstein–

Uhlenbeck process has a

single, stable steady state at

the origin. We surround the

origin by an interval [A, B],

where A<0 and B>0, and

assume that Y(0) is in this

interval. Because the long time

limit of q(x,t,y,s),qðxÞ, is

positive outside of [A, B]

(Eq. (7.49)), escape from the

interval is guaranteed.
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1957, 1971) which are simply known as Feller Volume 1 and Feller

Volume 2; when I was a graduate student there was apocrypha that a

faculty member at the University of Michigan decided to spend a

summer doing all of the problems in Feller Volume 1 and that it took

him seven years. Steve Hubbell, whose recent volume (Hubbell 2001)

uses many probabilistic ideas, purchased Feller’s home when he

(Hubbell) moved to Princeton in the 1980s and told me that he found

a copy of Feller Volume 1 (first edition, I believe) in the basement.

A buyer’s bonus!

We imagine a stochastic process X(t) defined by its transition

density function

Prfyþ z � X ðsþ dtÞ � yþ zþ dyjX ðsÞ ¼ zg ¼ qðyþ z; sþ dt; z; sÞdy

(7:51)

so that q( yþ z, sþ dt, z, s)dy tells us the probability that the stochastic

process moves from the point z at time s to around the point yþ z at time

sþ dt. Now, clearly the process has be somewhere at time tþ dt so thatð
qð yþ z; sþ dt; z; sÞdy ¼ 1 (7:52)

where the integral extends over all possible values of y.

A diffusion process is defined by the first, second, and higher

moments of the transitions according to the followingð
qð yþ z; sþ dt; z; sÞydy ¼ bðz; sÞdt þ oðdtÞð

qð yþ z; sþ dt; z; sÞy2dy ¼ aðz; sÞdt þ oðdtÞð
qð yþ z; sþ dt; z; sÞyndy ¼ oðdtÞ for n� 3

(7:53)

In Eqs. (7.53), y is the size of the transition, and we integrate over all

possible values of this transition. The second line in Eqs. (7.53) tells us

about the variance, and the third line tells us that all higher moments are

o(dt). This description clearly does not fit all biological systems, since

in many cases there are discrete transitions (the classic example is

reproduction). But in many cases, with appropriate scaling (see

Connections) the diffusion approximation, as Eq. (7.53) is called, is

appropriate. In the last section of this chapter, we will investigate a

process in which the increments are caused by a Poisson process rather

than Brownian motion. The art of modeling a biological system consists

in understanding the system well enough that we can choose appropriate

forms for a(X, t) and b(X, t). In the next chapter, we will discuss this

artistry in more detail, but before we create new art, we need to under-

stand how the tools work.
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A stochastic process that satisfies this set of conditions on the

transitions is also said to satisfy the stochastic differential equation

dX ¼ bðX ; tÞdt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðX ; tÞ

p
dW (7:54)

with infinitesimal mean b(X, t)dtþ o(dt) and infinitesimal variance

a(X, t)dtþ o(dt). Symbolically, we write that given X(t)¼ x,

E{dX}¼ b(x,t)þ o(dt), Var{dX}¼ a(x,t)dtþ o(dt) and, of course, dX

is normally distributed. We will use both Eqs. (7.53) and Eq. (7.54) in

subsequent analysis, but to begin will concentrate on Eqs. (7.53).

Let us begin by asking: how does the process get from the value z at

time s to around the value x at time t? It has to pass through some point

zþ y at intermediate time sþ ds and then go from that point to the

vicinity of x at time t (Figure 7.14). In terms of the transition function

we have

qðx; t; z; sÞdx ¼
ð

qðx; t; yþ z; sþ dsÞqð yþ z; sþ ds; z; sÞdydx (7:55)

This equation is called the Chapman–Kolmogorov equation and some-

times simply ‘‘The Master Equation.’’ Keeping Eqs. (7.53) in mind, we

Taylor expand in powers of y and ds:

qðx; t; z; sÞ ¼
ð h

qðx; t; z; sÞ þ qsðx; t; z; sÞdsþ qzðx; t; z; sÞyþ
1

2
qzzðx; t; z; sÞy2

þOðy3Þ
i
qðyþ z; sþ ds; z; sÞdy (7:56)

and now we proceed to integrate, noting that integral goes over y but

that by Taylor expanding, we have made all of the transition functions to

depend only upon x, so that they are constants in terms of the integrals.

We do those integrals and apply Eqs. (7.53)

qðx; t; z; sÞ ¼ qðx; t; z; sÞ þ ds
n

qsðx; t; z; sÞ þ bðz; sÞqzðx; t; z; sÞ

þ 1

2
aðz; sÞqzzðx; t; z; sÞ

o
þ oðdsÞ (7:57)

We now subtract q(x, t, z, s) from both sides, divide by ds, and let ds

approach 0 to obtain the partial differential equation that the transition

density satisfies in terms of z and s:

qsðx; t; z; sÞ þ bðz; sÞqzðx; t; z; sÞ þ
1

2
aðz; sÞqzzðx; t; z; sÞ ¼ 0 (7:58)

Equation (7.58) is called the Kolmogorov Backward Equation. The use

of ‘‘backward’’ refers to the variables z and s, which are the starting

value and time of the process; in a similar manner the variables x and

t are called ‘‘forward’’ variables and there is a Kolmogorov Forward

t

X(t )

x

z

s ts + ds

z + y

Figure 7.14. The process X(t)

starts at the value z at time s.

To reach the vicinity of the

value x at time t, it must first

transition from z to a some

value y at time sþds and then

from y to the vicinity of x in the

remaining time (ds is not to

scale).
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Equation (also called the Fokker–Planck equation by physicists and

chemists), which we will derive in a while. In the backward equation,

x and t are carried as parameters as z and s vary.

Equation (7.58) involves one time derivative and two spatial deri-

vatives. Hence we need to specify one initial condition and two bound-

ary conditions, as we did in Chapter 2. For the initial condition, let us

think about what happens as s! t? As these two times get closer and

closer together, the only way the transition density makes sense is to

guarantee that the process is at the same point. In other words

q(x, t, z, t)¼ �(x� z). As in Chapter 2, boundary conditions are specific

to the problem, so we defer those until the next chapter.

Very often of course, we are not just interested in the transition

density, but we are interested in more complicated properties of the

stochastic process. For example, suppose we wanted to know the prob-

ability that X(t) exceeds some threshold value xc, given that X(s)¼ z. Let

us call this probability u(z, s, t|xc) and recognize that it can be found

from the transition function according to

uðz; s; tjxcÞ ¼
ð1
xc

qðx; t; z; sÞdx (7:59)

and now notice that with t treated as a parameter then u(z, s, t|xc) viewed

as a function of z and s will satisfy Eq. (7.58), as long as we can take

those derivatives inside the integral. (Which we can do. As I mentioned

earlier, one should not be completely cavalier about the processes of

integration and differentiation, but everything that I do in this book in

that regard is proper and justified.) What about the initial and boundary

conditions that u(z, s, t|xc) satisfies? We will save a discussion of them

for the next chapter, in the application of these ideas to extinction

processes.

We can also find the equation for u(z, s, t|xc) directly from the

stochastic differential equation (7.54), by using the same kind of logic

that we did for the gambler’s ruin. That is, the process starts at X(s)¼ z

and we are interested in the probably that X(t)> xc. In the first bit of

time ds, the process moves to a new value zþ dX, where dX is given by

Eq. (7.54) and we are then interested in the probability that X(t)> xc

from this new value. The new value is random so we must average over

all possible values that dX might take. In other words

uðz; s; tjxcÞ ¼ EdXfuðzþ dX ; sþ ds; tjxcÞg (7:60)

and the procedure from here should be obvious: Taylor expand in

powers of dX and dt and then take the average over dX.
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Exercise 7.11 (E/M)

Do the Taylor expansion and averaging and show that

usðz; s; tjxcÞ þ bðz; sÞuzðz; s; tjxcÞ þ
1

2
aðz; sÞuzzðz; s; tjxcÞ ¼ 0 (7:61)

It is possible to make one further generalization of Eq. (7.59), in

which we integrated the ‘‘indicator function’’ I(x)¼ 1 if x> xc and

I(x)¼ 0 otherwise over all values of x. Suppose, instead, we integrated

a more general function f(x) and defined u(z, s, t) by

uðz; s; tÞ ¼
ð

f ðxÞqðx; t; z; sÞdx (7:62)

for which we see that u(z, s, t) satisfies Eq. (7.61). If we recall that

q(x,s,z,s)¼ �(z� x), then it becomes clear that u(z, t, t)¼ f (z); more

formally we write that u(z,s,t)! f (z) as s! t and we will defer the

boundary conditions until the next chapter.

We will return to backward variables later in this chapter (with

discussion of Feyman–Kac and stochastic harvesting equations) but

now we move on to the forward equation.

The forward equation

We now derive the forward Kolmogorov equation, which describes the

behavior of q(x, t, z, s) as a function of x and t, treating z and s as

parameters. This derivation is long and there are a few subtleties that we

will need to explore. The easy way out, for me at least, would simply be

to tell you the equation and cite some other places where the derivation

could be found. However, I want you to understand how this tool arises.

Our starting point is the Chapman–Kolmogorov equation, which I

write in a slightly different form than Eq. (7.56) (Figure 7.15)

qðx; t þ dt; z; sÞ ¼
ð

qðy; t; z; sÞqðx; t þ dt; y; tÞdy (7:63)

That is: to be around the value x at time tþ dt, the process starts at z at

time s and moves from there to the value y at time t; from y at time t the

process then has to move to the vicinity of x in the next dt.

Now we know that we are going to want the derivative of the

transition density with respect to t, so let us subtract q(x, t, z, s) from

both sides of Eq. (7.63)

qðx; t þ dt; z; sÞ � qðx; t; z; sÞ ¼
ð

qðy; t; z; sÞqðx; t þ dt; y; tÞdy� qðx; t; z; sÞ

(7:64)

Now here comes something subtle and non-intuitive (in the ‘‘why did

you do that?’’ with answer ‘‘because I learned to’’ sense). Suppose that

t

X(t )

x

z

s t t + dt

y

Figure 7.15. The transition

process for the forward

equation. From the point

X(s)¼ z, the process moves to

value y at time t and then

from that value to the vicinity

of x at time tþdt. Note the

difference between this

formulation and that in

Figure 7.14: in the former

figure the small interval of time

occurs at the beginning (with

the backward variable). In this

figure, the small interval of

time occurs near the end (with

the forward variable); here dt is

not to scale.
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h(x) is a function for which we can find derivatives and which goes to 0

as |x|!1. We multiply both sides of Eq. (7.64) by h(x) and integrate

over x:ð
ðqðx; t þ dt; z; sÞ � qðx; t; z; sÞÞhðxÞdx ¼

ð ð
qðy; t; z; sÞqðx; t þ dt; y; tÞdy

	

�qðx; t; z; sÞ



hðxÞdx (7:65)

Now we divide both sides of Eq. (7.65) by dt and let dt approach 0.

The left hand side (LHS) becomes

LHS ¼ limdt!0

1

dt

ð
ðqðx; t þ dt; z; sÞ � qðx; t; z; sÞÞhðxÞdx (7:66)

and taking the limit inside the integral, we recognize the derivative of q

with respect to t:

LHS ¼
ð

qtðx; t; z; sÞhðxÞdx (7:67)

and now ‘‘all’’ we have to do is deal with the right hand side (RHS). We

begin by Taylor expansion of h(x) around the intermediate point y, using

subscript notation so that hy(y) is the first derivative of h(x) evaluated at

the point x¼ y. The Taylor expansion of h(x) is

hðxÞ ¼ hðyÞ þ hyðyÞðx� yÞ þ 1

2
hyyðyÞðx� yÞ2 þOððx� yÞ3Þ (7:68)

The right hand side of Eq. (7.65) is now (with multiplication intended

from the top line to the bottom one):

RHS ¼ limdt!0

1

dt

ð ð
qðy; t; z; sÞqðx; t þ dt; y; tÞdy� qðx; t; z; sÞ

	 


hðyÞ þ hyðyÞðx� yÞ þ 1

2
hyyðyÞðx� yÞ2 þOððx� yÞ3Þ

� �
dx

(7:69)

Now, we do the following: we multiply through all of the terms and

re-order them. In addition, we will replace the Taylor expansion by h(x)

itself when we multiply by q(x, t, z, s). The result of this process is a long

expression, but an intelligible one:

RHS ¼ limdt ! 0
1

dt

ð
hðyÞqðy; t; z; sÞ

ð
qðx; t þ dt; y; tÞ

� �
dxdy

þlimdt ! 0
1

dt

ð
hyðyÞqðy; t; z; sÞ

ð
ðx� yÞqðx; t þ dt; y; tÞ

� �
dxdy

þlimdt!0

1

dt

ð
1

2
hyyðyÞqðy; t; z; sÞ

ð
ðx� yÞ2qðx; t þ dt; y; tÞ

� �
dxdy

þlimdt!0

1

dt

ð
qðy; t; z; sÞ

ð
Oððx� yÞ3Þqðx; t þ dt; y; tÞ

� �
dxdy

�limdt!0
1

dt

ð
qðx; t; z; sÞhðxÞdx (7:70)

The forward equation 273

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511819872.009
Downloaded from https://www.cambridge.org/core. Universidad Nacional de Mexico (UNAM), on 25 Mar 2019 at 20:06:54, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511819872.009
https://www.cambridge.org/core


Now let us consider the terms on the right hand side of Eq. (7.70).

First, we know that
Ð

qðx; t þ dt; y; tÞgdx ¼ 1 because from y at time t,

the process must move to somewhere at time tþ dt, so that when we

integrate over all values of x, the result is 1. Thus, the first term on the

right hand side of Eq. (7.70) and the fifth term are the same, except that

in the former the variable of integration is y and in the latter it is x. So

these terms cancel. The other three terms are defined in terms of the

transition moments for the diffusion process given by Eqs. (7.53) in a

slightly different formð
ðx� yÞqðx; t þ dt; y; tÞgdx ¼ bðy; tÞdt þ oðdtÞð

ðx� yÞ2qðx; t þ dt; y; tÞgdxdy ¼ aðy; tÞ þ oðdtÞð
Oððx� yÞ3Þqðx; t þ dt; y; tÞgdx ¼ oðdtÞ

(7:71)

Although they appear to be different, Eqs. (7.53) and (7.71) are really the

same, since they both deal with the average of the transition. In Eqs. (7.53),

we move from value z to value yþ z, so that the transition size is y. In

Eqs. (7.71), we move from y to x, so that the transition size is x� y.

Now, we can clearly write the LHS, Eq. (7.67), asð
qtðy; t; z; sÞhðyÞdy

through the simple change of variables of replacing x by y as

the integration variable. We have already agreed that the first and fifth

terms of Eq. (7.70) cancel, so that if we divide through by dt and apply

Eq. (7.71), in Eq. (7.70), we are left with

RHS ¼ limdt!0

�ð
hyðyÞqðy; t; z; sÞbðy; tÞdy

þ
ð

1

2
hyyðyÞqðy; t; z; sÞaðy; tÞdyþ oðdtÞ

dt

� (7:72)

and the term o(dt)/dt will disappear as dt goes to 0. We now equate the

LHS and the RHS:ð
qtðy; t; z; sÞhðyÞdy ¼

ð
hyðyÞqðy; t; z; sÞbðy; tÞ þ

1

2
hyyðyÞqðy; t; z; sÞaðy; tÞ

	 

dy

(7:73)

and this is a good, but not especially useful, equation, because we have

h(y) on the left hand side, but its derivatives on the right hand side.

We will deal with this difficulty by integrating by parts, recalling

the basic formula
Ð1
�1u dv ¼ uvj1�1 �

Ð1
�1v du. I have included the limits

of integration here because they will be important. However, for sim-

plicity, I am going to suppress the indices on h(y), q(y, t, z, s) and b(y, t)
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in what follows. Thus, integrating the term involving b(y, t) by parts and

using the notation (qb)y¼ (q / qy)(qb) we have

ð1
�1

hyqb ¼ hqbj1�1 �
ð1
�1

hðqbÞydy (7:74)

and, for the term involving a(y, t), we integrate by parts not once, but

twice:

ð1
�1

hyyqa ¼ hyqaj1�1 �
ð1
�1

hyðqaÞydy

¼ hyqaj1�1 � hðqaÞyj
1
�1 �

ð1
�1

hðqaÞyydy

2
4

3
5

(7:75)

If we now assume that h(y) and its derivative approach 0 as | y|!1,

Eqs. (7.74) and (7.75) simplify (and putting the indices back in):

ð1
�1

hyðyÞqðy; t; z; sÞbðy; tÞdy ¼ �
ð1
�1

hðyÞðqðy; t; z; sÞbðy; tÞÞydy

ð1
�1

hyyðyÞqðy; t; z; sÞaðy; tÞdy ¼
ð1
�1

hðyÞðqðy; t; z; sÞaðy; tÞÞyydy

(7:76)

We return to Eq. (7.71) and conclude

ð
qtðy; t; z; sÞhðyÞdy ¼

ð 	
�hðyÞðqðy; t; z; sÞbðy; tÞÞy

þ 1

2
hðyÞðqðy; t; z; sÞaðy; tÞÞyy



dy

(7:77)

so that the entire equation now only involves h(y). In fact, we could

bring everything to the same side of the equation and factor h(y) through

to obtainð
hðyÞ qtðy; t; z; sÞ þ ðqðy; t; z; sÞbðy; tÞÞy �

1

2
ðqðy; t; z; sÞaðy; tÞÞyy

	 

dy ¼ 0

(7:78)

but this equation is supposed to hold for almost any choice of h(y) –

remember that we made minimal assumptions about it. We thus con-

clude that q(y, t, z, s) satisfies (formally we say ‘‘in a weak sense’’) the

equation

qtðy; t; z; sÞ ¼
1

2
ðqðy; t; z; sÞaðy; tÞÞyy � ðqðy; t; z; sÞbðy; tÞÞy (7:79)

If we replace y by x, the form of the equation remains unchanged.
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As before, we have the initial condition that q(y, t, z, s)! �(y� z) as

s! t, and the boundary condition that q(y, t, z, s)! 0 as |y|!1. The

forward equation is often used in population genetics (see Connections).

In the mathematical literature, Eqs. (7.59) and (7.81) are said to be adjoints

of each other (Haberman (1998) is a good source for more mathematical

detail). We shall employ both backward and forward equations in the next

chapter. Before we get to that next chapter, however, I would like to show

a couple more backward equations, which have various interesting uses.

And before that, I offer an exercise which I hope may clarify some of the

differences between backward and forward equations.

Exercise 7.12 (M)

Remember that in Chapter 2 we reached the diffusion equation as the limit of a

random walk. Let us reconsider such a random walk. Thus, X(t) represents the

position of the process at time t on a lattice with separation " between sites.

We assume that steps take place in time interval Dt and let r(x) and l(x) represent

the probabilities of moving to the right or left in the next interval, given that

X(t)¼ x. To get to a backward equation, let

uðx; tÞ ¼ Prfthe process has left ½A; B	 by time tjXð0Þ ¼ xg (7:80)

(a) Show that u(x, t) satisfies the equation

uðx; tÞ ¼ ð1� rðxÞ � lðxÞÞuðx; t � DtÞ þ rðxÞuðxþ "; t � DtÞ
þ lðxÞuðx� "; t � DtÞ

(7:81)

and be certain that you can explain why the right hand side involves t�Dt.

(b) To get to the forward equation, let v(x, t)¼ Pr{X(t)¼ x}. Show that v(x, t)

satisfies the equation

vðx; t þ DtÞ ¼ð1� rðxÞ � lðxÞÞvðx; tÞ þ rðx� "Þvðx� "; tÞ
þ lðxþ "Þvðxþ "; tÞ

(7:82)

(c) Now Taylor expand Eqs. (7.81) and (7.82) to first order in Dt and to second

order in " and compare those results with the backward and forward equations

that we have derived. A word of warning: this exercise is heuristic and ignoring

all of the higher order terms in the Taylor expansion is not a generally safe thing

to do, rather one needs to carefully take limits as we did in Chapter 2.

The Feynman–Kac (stochastic survival) and
stochastic harvesting equations

Here are two more examples of backward equations. The first, although

fully general, applies to a foraging animal with stochastic mortality. The

second arises in natural resource management and bioeconomics (Clark

1985, 1990).
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Suppose we have some function y(x) (the interpretation of which

will follow almost immediately, in Exercise 7.13, but for now simply

think of it as positive) and we define a function u(x, t, T) by

uðx; t; TÞ ¼ E exp �
ðT
t

yðX ðsÞÞds

2
4

3
5
�����X ðtÞ ¼ x

8<
:

9=
; (7:83)

where we understand the expectation to be over the sample paths of

X(s), starting from X(t)¼ x, satisfying the stochastic differential equa-

tion dX ¼ bðX ; tÞdt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðX ; tÞ

p
dW . When t¼ T the integral will be 0,

we conclude that u(x, T, T)¼ 1 and that u(x, t, T)< 1 otherwise.

If we break the integral into a piece from t to tþ dt and then a piece

from tþ dt to T, we have

exp �
ðT
t

yðX ðsÞÞds

2
4

3
5 ¼ exp �

ðtþdt

t

yðX ðsÞÞds

2
4

3
5exp � ðT

tþdt

yðX ðsÞÞds

2
4

3
5 (7:84)

and if we now Taylor expand the first term on the right hand side of

Eq. (7.84) we have

exp �
ðT
t

yðX ðsÞÞds

2
4

3
5 ¼ ½1� yðX ðtÞÞdt þ oðdtÞ	exp �

ðT
tþdt

yðX ðsÞÞds

2
4

3
5
(7:85)

The expectation over paths beginning at X(t) can be broken into two

pieces: first the expectation of paths that go from X(t)¼ x to values of

X(tþ dt)¼ xþ dX and then the expectation of paths starting at xþ dX.

In other words, we have shown that

uðx; t; TÞ ¼ EdXf½1� yðxÞdt þ oðdtÞ	uðxþ dX ; t þ dt; TÞg (7:86)

which we now Taylor expand and average in the usual manner to obtain

a differential equation.

Exercise 7.13 (M)

Do the Taylor expansion and averaging of Eq. (7.86) to show that u(x, t, T)

satisfies the differential equation (with variables suppressed)

ut þ bðx; tÞux þ
1

2
aðx; tÞuxx � yðxÞu ¼ 0 (7:87)

Now add the interpretation that X(t) indicates the position of an individual

following the stochastic differential equation given above and that

Prfbeing killed in the next dtjX ðtÞ ¼ xg ¼ yðxÞdt þ oðdtÞ (7:88)

so that u(x, t, T) represents the probability of surviving from t to T, given that

X(t)¼ x. (If you don’t want to think of this as position, think of X(t) as energy
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reserves, with death by starvation in the next dt determined by y(x), or any other

analogy that works for you.) Use the method of thinking along sample paths to

get directly to Eq. (7.87) (hint: to survive from t to T, the individual must first

survive from t to tþ dt and then from tþ dt to T).

Equations (7.83) and (7.87) are called the Feynman–Kac formula. In

1948, when Richard Feynman presented his path integral formulation of

quantum mechanics (which involves the Schroedinger equation, also a

diffusion-like equation), Mark Kac recognized that path integrals could

thus be used to solve the usual diffusion equation (see Connections).

There is also associated forward equation for the probability density

of the process:

f ðy; s; x; tÞdy ¼Prfy � X ðsÞ � yþ dy and the individual is still

alive X ðtÞ ¼ xg
(7:89)

Following the same procedures as in the previous section leads us to

f s ¼
1

2
ðaðy; sÞf Þyy � ðbðy; sÞf Þy � yðxÞ f (7:90)

with the appropriate delta function as a condition as s approaches t.

Finally, let us consider one more equation, in this case assuming

that X(t) represents the population size of a harvested stock and that at

time s when stock size is X(s) the economic return is r(X(s), s). If the

discount rate is �, the long-term discounted rate of return given that

X(t)¼ x is

uðx; tÞ ¼ E

ð1
t

rðX ðsÞ; sÞe��sds

�����X ðtÞ ¼ x

8<
:

9=
; (7:91)

where, as before, the expectation refers to an average over the sample

paths that begin at X(t)¼ x. We now break the integral into two pieces

uðx; tÞ ¼ E

ðtþdt

t

rðX ðsÞ; sÞe��sdsþ
ð1

tþdt

rðX ðsÞ; sÞe��sds

�����X ðtÞ ¼ x

8<
:

9=
; (7:92)

and recognize that the first integral on the right hand side is

rðx; tÞe��tdt þ oðdtÞ

and that the second integral can be conditioned into an average over dX

of the average over the new starting point X(tþ dt)¼ xþ dX:

uðx; tÞ ¼ rðx; tÞe��tdt þ oðdtÞ

þ EdX E

ð1
tþdt

rðX ðsÞ; sÞe��sds

�����X ðt þ dtÞ ¼ xþ dX

8<
:

9=
;

2
4

3
5 (7:93)
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where the inner expectation on the right hand side of Eq. (7.93) is over

the sample paths starting at X(tþ dt)¼ xþ dX. Of course, the inner

expectation is also u(xþ dX, tþ dt) so that we conclude

uðx; tÞ ¼ rðx; tÞe��tdt þ oðdtÞ þ EdXfuðxþ dX ; t þ dtÞg (7:94)

Exercise 7.14 (E/M)

Finish the calculation to show that u(x, t) satisfies the differential equation

ut þ bðx; tÞux þ
1

2
aðx; tÞuxx þ rðx; tÞe��t ¼ 0 (7:95)

Next, assume that a, b and r are functions of x but not functions of time. Set

u(x,t)¼ v(x)e� �t. What equation does v(x) satisfy?

An alternative to Brownian motion: the Poisson
increment

This has been a long chapter, and it is nearly drawing to a close. Before

closing, however, I want to introduce an alternative to Brownian motion

as a model for stochastic effects. Recall that Brownian motion is a

continuous process, but many processes in life are discrete. In gambling,

one’s holdings usually change by a discrete amount with each hand. As

we discussed above, offspring come in discrete units and catastrophes

may kill a large number of individuals at one time (Mangel and Tier

1993, 1994). Very often energy reserves or position changes in a more

or less discrete manner.

To capture such effects, let us consider the increment of the general-

ized Poisson process, defined according to

dP ¼

v with probability
1

2
cdt þ oðdtÞ

0 with probability 1� cdt þ oðdtÞ

�v with probability
1

2
cdt þ oðdtÞ

(7:96)

where v is the intensity of the process, since it describes the size of the

jumps, and c is the rate of the process. It would be possible to standar-

dize the intensity to v¼ 1, if we wanted to do so, but for this illustration

it is better left as it is.

Exercise 7.15 (E)

Compute the mean and variance of dP.

We could imagine now a process that satisfies, for example

dX ¼ rXdt þ dP (7:97)

An alternative to Brownian motion: the Poisson increment 279

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511819872.009
Downloaded from https://www.cambridge.org/core. Universidad Nacional de Mexico (UNAM), on 25 Mar 2019 at 20:06:54, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511819872.009
https://www.cambridge.org/core


0 1 2 3 4 5 6 7 8 9 10
1.5

2

2.5

3

3.5

4

4.5

5

5.5
6

(a)

X(t )

t

t
0 1 2 3 4 5 6 7 8 9 10

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

(c)

X(t )

t
0 1 2 3 4 5 6 7 8 9 10

3

3.5

4

(b)

4.5

X(t )

0 1 2 3 4 5 6 7 8 9 10
2.5

3

3.5

4

4.5

5

(d)

5.5

t

X(t )

Figure 7.16. Simulated trajectories of Eq. (7.97) for the case in which the product vc¼1: (a) v¼1, c¼1; (b) v¼0.2,

c¼5; (c) v¼0.1, c¼10; and (d) v¼0.02, c¼50. Other parameters are dt¼0.01, r¼0.05.

What interpretation do we give to Eq. (7.97)? If X(t) were the size of a

population, then Eq. (7.97) corresponds to deterministic exponential

growth with stochastic jumps of 
v individual, determined by the

increment of a Poisson process.

What would we expect trajectories to look like? In Figure 7.16,

I show four sample paths, corresponding to different values of v and c,

but with their product held constant at 1. When v is large (and thus c is

small), transitions occur rarely but when one takes place, it involves a

big jump. As c increases (and thus v decreases), the transition is more

and more likely, but the size of the transition is smaller and smaller.

Indeed, Figure 7.16d almost looks like a deterministic trajectory per-

turbed by Brownian motion. To make a little bit more sense of this, and

to get us ready for the next chapter, let us assume that X(t) satisfies
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Eq. (7.97), that there is a population ceiling xmax and a critical level xc

corresponding to extinction and define

uðxÞ ¼ PrfX ðtÞ reaches xmax before xc jX ð0Þ ¼ xg (7:98)

We derive the equation that u(x) satisfies in the usual manner

uðxÞ ¼ EdXfuðxþ dX Þg

¼ uðxþ rxdt � vÞ 1
2

cdt þ uðxþ rxdtÞð1� cdtÞ

þ uðxþ rxdt þ vÞ 1
2

cdt þ oðdtÞ

(7:99)

Clearly, Eq. (7.99) calls for a Taylor expansion. Note that the first

and third terms on the right hand side are already O(dt), so that when we

do the Taylor expansion only the first term of the expansion will be

appropriate. We thus Taylor expand around x� v, x, and xþ v, respec-

tively, to obtain

uðxÞ ¼ uðx� vÞ 1
2

cdt þ ½uðxÞ þ uxrxdt	ð1� cdtÞ þ uðxþ vÞ 1
2

cdt þ oðdtÞ

(7:100)

and we now subtract u(x) from both sides, divide by dt and allow dt to

approach 0, to be left with a differential-difference equation

0 ¼ cuðx� vÞ
2

� cuðxÞ þ uxrxþ cuðxþ vÞ
2

(7:101)

which is a formidable equation. But now let us think about the limit-

ing process used in Figure 7.16, in which v becomes smaller and smaller.

Then we might consider Taylor expanding u(x� v) and u(xþ v)

around x according to uðx� vÞ ¼ uðxÞ � uxvþ 1
2

uxxv2 þ oðv2Þ and

uðxþ vÞ ¼ uðxÞ þ uxvþ 1
2

uxxv2 þ oðv2Þ. If we do this, notice that

cu(x) will cancel, as will the first derivatives from the Taylor expansion.

If we assume that cv2¼ a and that the terms that are o(v2) approach 0,

we are left with

0 ¼ a

2
uxx þ rxux (7:102)

which is exactly the equation we would have derived had we started

not with Eq. (7.97) but with the stochastic differential equation

dX ¼ rXdt þ ffiffiffi
a
p

dW . Thus, the limiting result when the rate of transi-

tions increases but their size decreases with cv2 constant does indeed

look very much like a diffusion. Indeed, this is called the diffusion

approximation and it too finds common use in population genetics and

conservation biology (see Connections).
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Connections

Thinking along sample paths and path integrals

Richard Feynman’s paper on the formulation of quantum mechanics by

thinking along sample paths (Feynman 1948) is still worth reading, even

if one does not know a lot about quantum mechanics. From this idea

(and Kac’s use in the solution of the standard diffusion equation) the

notion of path integrals developed, and there are lots of instances of the

application of path integrals today (two of my favorites are Schulman

(1981) and Friedlin and Wentzell (1984)). For more about Feynman and

Kac, see Gleick (1992) and Kac’s autobiography (Kac 1985).

Independent increments, Ito and Stratonovich

Our treatment of Brownian motion has been to look from time t to the

end of the interval tþ dt. This is called the Ito calculus, named after the

great Japanese mathematician Kiyosi Ito (whose daughter happens to be

a faculty member in Department of Linguistics at UCSC). Ito’s work

has recently been reviewed, in very mathematical form, by Stroock

(2003). This is a hard book to read, but the preface is something that

everyone can understand. If we think about not the end of the interval,

but imagine that the process is truly continuous, then there are changes

throughout the interval. This view is called Stratonovich calculus and

the effect is to change the form of the diffusion coefficient (see, for

example Stratonovich (1963), Wong and Zakai (1965), Wong (1971),

and van Kampen (1981a, b)). Engineers sometimes call Stratonovich

calculus the Wong–Zakai correction. Karlin and Taylor (1981) give a

readable introduction to the different stochastic calculi. Hakoyama

et al. (2000) consider a problem in risk of the extinction of populations

in which the environmental fluctuations obey Stratonovich calculus and

the demographic fluctuations obey Ito calculus; see also Hakoyama and

Iwasa (2000).

Fluctuation and dissipation

One of Einstein’s great contributions in his 1905 paper was to show how

fluctuation could be connected to the Maxwell–Boltzmann distribution;

this result has connections to nineteenth-century mechanistic material-

ism and the general phenomenon of diffusion (Wheatley and Agutter

1996). The crowning achievement in this area belongs to Uhlenbeck

and Ornstein (1930) who showed how to fully connect fluctuation and

dissipation (the resistance or friction term in the Ornstein–Uhlenbeck
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process). Uhlenbeck was a particularly interesting person, who had an

enormous effect on twentieth-century physics. When my UC Davis

colleague Joel Keizer began his development of non-equilibrium ther-

modynamics (summarized in Keizer (1987)), Uhlenbeck acted as

referee and it took Kac as interpreter of Joel’s ideas to convince

Uhlenbeck of their validity.

Red, white, and blue noise

There are examples of biological systems with noise that has a spectrum

which is far from white (Cohen 1995, White et al. 1996, Vasseur and

Yodzis 2004). For example, slowly varying environments (as in

the North Pacific ocean; see Hare and Francis (1995), Mantua et al.

(1997)) will have a spectrum that is very red, so that low frequen-

cies are represented more strongly. Some diseases exhibit high

frequency fluctuations, so that their spectra are bluer. These can

be generated, in discrete time, from a model of the form

Y ðt þ 1Þ ¼ �Y ðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2
p

Zðt þ 1Þ, where Y(t) is the environmental

noise at time t, � is a parameter with range �1��� 1 and Z(t) is a

normally distributed random variable. When � is positive, low fre-

quency components dominate (the spectrum is red) and when � is

negative the high frequency components dominate. Furthermore,

because biological responses are generally nonlinear, they can filter

the environmental noise (for examples, see Petchey et al. (1997),

Petchey (2000) or Laakso et al. (2003)).

Stochastic differential equations and stochastic integrals

There is an enormous literature on stochastic differential equation and

stochastic integrals. The mathematical levels range from pretty applied,

as here, to highly abstract and theoretical. Two older but solid introduc-

tions to the material are Arnold (1973) and Gardiner (1983). Another

good starting point is Karlin and Taylor (1981), who have a 240 page

chapter on diffusion processes. A general discussion of numerical

methods for stochastic differential equations is found in Higham

(2001). Exact numerical methods for the Ornstein–Uhlenbeck process

and its integral are discussed by Gillespie (1996).

Applications in ecology

As we discussed in Chapter 2, diffusion processes arise in a natural way

in the study of organismal movement and dispersal (Turchin 1998) and

the various connections given there can now take on deeper meaning.
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For example, if we were to let (X, Y) denote the position of an animal,

we could now write stochastic differential equations to characterize the

increments in X and Y. Stochastic differential equations can also be used

to describe the dynamics of populations (see, for example, Nisbet and

Gurney (1982), Engen et al. (2002), Lande et al. (2003), and Saether

and Engen (2004)). Costantino and Desharnais (1991) use diffusion

models to characterize the population dynamics of flour beetles. If

N(t) denotes adult numbers at time t, they work with models of the

form dN¼N(t)[be� cN(t)��]dtþ �N(t)dw where the parameters have a

natural interpretation. In this case, the stationary distribution of popula-

tion size is a gamma density (also see Peters et al. (1989)), thus

connecting us to material in Chapter 3.

Applications in population genetics

Diffusion processes underlie an entire approach to population genetics,

with many entrance points to the literature. Some of my favorites are

Crow and Kimura (1970), Kimura and Ohta (1971), and Gillespie

(1991, 1998). For applications in population genetics, we usually

work with the forward equation to specify the evolution of a gene

frequency from an initial starting distribution of the frequency, or

with the backward equation to describe the time until fixation of an

allele.
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Chapter 8

Applications of stochastic population

dynamics to ecology, evolution,

and biodemography

We are now in a position to apply the ideas of stochastic population

theory to questions of ecology and conservation (extinction times)

and evolutionary theory (transitions from one peak to another on adap-

tive landscapes), and demography (a theory for the survival curve in

the Euler–Lotka equation, which we will derive as review). These are

idiosyncratic choices, based on my interests when I was teaching the

material and writing the book, but I hope that you will see applications

to your own interests. These applications will require the use of many,

and sometimes all, of the tools that we have discussed, and will require

great skill of craftsmanship. That said, the basic idea for the applications

is relatively simple once one gets beyond the jargon, so I will begin with

that. We will then slowly work through calculations of more and more

complexity.

The basic idea: ‘‘escape from a domain
of attraction’’

Central to the computation of extinction times and extinction probabil-

ities or the movement from one peak in a fitness landscape to another is

the notion of ‘‘escape from a domain of attraction.’’ This impressive

sounding phrase can be understood through a variety of simple meta-

phors (Figure 8.1). In the most interesting case, the basic idea is that

deterministic and stochastic factors are in conflict – with the determi-

nistic ones causing attraction towards steady state (the bottom of the

bowl or the stable steady states in Figure 8.1) and the stochastic factors

causing perturbations away from this steady state. The cases of the ball
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Figure 8.1. Some helpful ways to think about escape from a domain of attraction. (a) The marble in a cup, when slightly

perturbed, will return to the bottom of the cup (a domain of attraction). The converse of this is the ball on the hill, in

which any small perturbation is going to be magnified and the ball will move either to the right or the left. (b) In one

dimension, we could envision a deterministic dynamical system dX/dt¼b(X ) in which there is a single steady state that is

globally stable (as in the Ornstein–Uhlenbeck process), denoted by s. Fluctuations will cause departures from the steady

state, but in some sense the stochastic process has nowhere else to go. On the other hand, if the deterministic system has

multiple steady states, in which two stable steady states are separated by an unstable one (denoted by u), the situation is

much more interesting. Then a starting value near the upper stable steady state might be sufficiently perturbed to cross

the unstable steady state and be attracted towards the lower stable steady state. If X(t) were the size of a population,

we might think of this as an extinction. (c) For a two dimensional dynamical system of the form dX/dt¼ f(X, Y ),

dY/dt¼g(X, Y ) the situation can be more complicated. If a steady state is an unstable node, for example, then the

situation is like the ball at the top of the hill and perturbations from the steady state will be amplified (of course, now there

are many directions in which the phase points might move). Here the circle indicates a domain of interest and escape

occurs when we move outside of the circle. If the steady state is a saddle point, then the separatrix creates two domains of

attraction so that perturbations from the steady state become amplified in one direction but not the other. If the steady

state is a stable node, then the deterministic flow is towards the steady state but the fluctuations may force phase points

out of the region of interest. (d) If we conceive that natural selection takes place on a fitness surface (Schluter 2000), then

we are interested in transitions from one local peak of fitness to a higher one, through a valley of fitness.
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on the top of the hill or the steady state being unstable or a saddle point

are also of some interest, but I defer them until Connections.

We have actually encountered this situation in our discussion of the

Ornstein–Uhlenbeck process, and that discussion is worth repeating, in

simplified version here. Suppose that we had the stochastic differential

equation dX¼�Xdtþ dW and defined

uðx; tÞ ¼ PrfX ðsÞ stays within ½�A;A� for all s; 0 � s � tjX ð0Þ ¼ xg (8:1)

We know that u(x, t) satisfies the differential equation

ut ¼
1

2
uxx � x ux (8:2)

so now look at Exercise 8.1.

Exercise 8.1 (M)

Derive Eq. (8.2). What is the subtlety about time in this derivation?

Equation (8.2) requires an initial condition and two boundary con-

ditions. For the initial condition, we set u(x, 0)¼ 1 if�A< x<A and to

0 otherwise. For the boundary conditions, we set u(�A, t)¼ u(A, t)¼ 0

since whenever the process reaches A it is no longer in the interval of

interest. Now suppose we consider the limit of large time, for which

ut! 0. We then have the equation 0¼ (1/2)uxx� xux with the boundary

conditions u(�A)¼ u(A)¼ 0.

Exercise 8.2 (E)

Show that the general solution of the time independent version of Eq. (8.2) is

uðxÞ ¼ k1

Ð x

�A
expðs2Þdsþ k2, where k1 and k2 are constants. Then apply the

boundary conditions to show that these constants must be 0 so that u(x) is

identically 0. Conclude from this that with probability equal to 1 the process

will escape the interval [�A, A].

We will thus conclude that escape from the domain of attraction is

certain, but the question remains: how long does this take. And that

is what most of the rest of this chapter is about, in different guises.

The MacArthur–Wilson theory of extinction time

The 1967 book of Robert MacArthur and E. O. Wilson (MacArthur and

Wilson 1967) was an absolutely seminal contribution to theoretical

ecology and conservation biology. Indeed, in his recent extension of

it, Steve Hubbell (2001) describes the work of MacArthur and Wilson as

a ‘‘radical theory.’’ From our perspective, the theory of MacArthur and

Wilson has two major contributions. The first, with which we will not
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deal, is a qualitative theory for the number of species on an island

determined by the balance of colonization and extinction rates and the

roles of chance and history in determining the composition of species on

an island.

The second contribution concerns the fate of a single species arriv-

ing at an island, subject to stochastic processes of birth and death. Three

questions interest us: (1) given that a propagule (a certain initial number

of individuals) of a certain size arrives on the island, what is the

frequency distribution of subsequent population size; (2) what is the

chance that descendants of the propagule will successfully colonize

the island; and (3) given that it has successfully colonized the island,

how long will the species persist, given the stochastic processes of birth

and death, possible fluctuations in those birth and death rates, and the

potential occurrence of large scale catastrophes? These are heady ques-

tions, and building the answers to them requires patience.

The general situation

We begin by assuming that the dynamics of the population are char-

acterized by a birth rate l(n) and a death rate �(n) when the population is

size n (and for which there are at least some values of n for which

l(n)>�(n) because otherwise the population always declines on aver-

age and that is not interesting) in the sense that the following holds:

Prfpopulation size changes in the next

dtjNðtÞ ¼ ng ¼ 1� expð�ðlðnÞ þ �ðnÞÞdtÞ

PrfNðt þ dtÞ � NðtÞ ¼ 1jchange occursg ¼ lðnÞ
lðnÞ þ �ðnÞ

PrfNðt þ dtÞ � NðtÞ ¼ �1jchange occursg ¼ �ðnÞ
lðnÞ þ �ðnÞ

(8:3)

Note that Eq. (8.3) allows us to change the population size only by

one individual or not at all. Furthermore, since the focus of Eq. (8.3) is

an interval of time dt, it behooves us to think about the case in which dt

is small. However, also note that there is no term o(dt) in Eq. (8.3)

because that equation is precise. For simplicity, we will define dN¼
N(tþ dt)�N(t).

Exercise 8.3 (E)

Show that, when dt is small, Eq. (8.3) is equivalent to

PrfdN ¼ 1jNðtÞ ¼ ng ¼ lðnÞdt þ oðdtÞ
PrfdN ¼ �1jNðtÞ ¼ ng ¼ �ðnÞdt þ oðdtÞ
PrfdN ¼ 0jNðtÞ ¼ ng ¼ 1� ðlðnÞ þ �ðnÞÞdt þ oðdtÞ

(8:4)
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and note that we implicitly acknowledge in Eq. (8.4) that

PrfjdN j41jNðtÞ ¼ ng ¼ oðdtÞ

All of this should remind you of the Poisson process. We continue

by setting

pðn; tÞ ¼ PrfNðtÞ ¼ ng (8:5)

and know, from Chapter 3, to derive a differential equation for p(n, t) by

considering the changes in a small interval of time:

pðn; t þ dtÞ ¼ pðn� 1; tÞlðn� 1Þdt þ pðn; tÞð1� ðlðnÞ þ �ðnÞÞdtÞ
þ pðnþ 1; tÞ�ðnþ 1Þdt þ oðdtÞ (8:6)

which we then convert to a differential-difference equation by the usual

procedure

d

dt
pðn; tÞ ¼ �ðlðnÞ þ �ðnÞÞpðn; tÞ þ lðn� 1Þpðn� 1; tÞ

þ �ðnþ 1Þpðnþ 1; tÞ (8:7)

This equation requires an initial condition (actually, a whole series for

p(n, 0)) and is generally very difficult to solve (note that, at least thus

far, there is no upper limit to the value that n can take, although the

lower limit n¼ 0 applies).

One relatively easy thing to do with Eq. (8.7) is to seek the steady

state solution by setting the left hand side equal to 0. In that case, the

right hand side becomes a balance between probabilities p(n), p(n� 1),

and p(nþ 1) of population size n, n� 1, and nþ 1. Let us write out the

first few cases. When n¼ 0, there are only two terms on the right hand

side since p(n� 1)¼ 0, so we have 0¼� l(0)p(0)þ�(1)p(1) where we

have made the sensible assumption that �(0)¼ 0 and that l(0)> 0. How

might the latter occur? When we are thinking about colonization from

an external source, this condition tells us that even if there are no

individuals present now, there can be some later because the population

is open to immigration of new individuals. Populations can be open in

many ways. For example, if N(t) represents the number of adult flour

beetles in a microcosm of flour, then even if N(t)¼ 0 subsequent values

can be greater than 0 because adults emerge from pupae, so that the time

lag in the full life history makes the adult population ‘‘open’’ to immi-

gration from another life history stage. For example, Peters et al. (1989)

use the explicit form l(n)¼ a(nþ �)e�cn for which l(0)¼ a�.

In general, we conclude that p(1)¼ [l(0)/�(1)]p(0). When n¼ 1,

the balance becomes 0¼�(l(1)þ�(1))p(1)þ l(0)p(0)þ�(2)p(2),

from which we determine, after a small amount of algebra, that

p(2)¼ [l(1)l(0)/�(1)�(2)]p(0). You can surely see the pattern that

will follow from here.
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Exercise 8.4 (E)

Show that the general form for p(n) is

pðnÞ ¼ lðn� 1ÞlðnÞ . . . lð0Þ
�ð1Þ�ð2Þ . . .�ðnÞ pð0Þ

There is one unknown left, p(0). We find it by applying the conditionP
n pðnÞ ¼ 1, which can be done only after we specify the functional

forms for the birth and death rates, and we will do that only after we

formulate the general answers to questions (2) and (3).

On to the probability of colonization. Let us assume that there is a

population size ne at which functional extinction occurs; this could be

ne¼ 0 but it could also be larger than 0 if there are Allee effects, since if

there are Allee effects, once the population falls below the Allee threshold

the mean dynamics are towards extinction (Greene 2000). Let us also

assume that there is a population size K at which we consider the popula-

tion to have successfully colonized the region of interest. We then define

uðnÞ ¼ PrfNðtÞ reaches K before nejNð0Þ ¼ ng (8:8)

for which we clearly have the boundary conditions u(ne)¼ 0 and

u(K)¼ 1. We think along the sample paths (Figure 8.2) to conclude that

u(n)¼EdN{u(nþ dN)}. With dN given by Eq. (8.4), we Taylor expand

to obtain

uðnÞ ¼ uðnþ 1ÞlðnÞdt þ uðn� 1Þ�ðnÞdt þ uðnÞð1� ðlðnÞ þ �ðnÞÞdtÞ
þ oðdtÞ (8:9)

We now subtract u(n) from both sides, divide by dt, and let dt approach

0 to get rid of the pesky o(dt) terms, and we are left with

0 ¼ lðnÞuðnþ 1Þ � ðlðnÞ þ �ðnÞÞuðnÞ þ �ðnÞuðn� 1Þ (8:10)

To answer the third question, we define the mean persistence time

T(n) by

TðnÞ ¼ Eftime to reach nejNð0Þ ¼ ng (8:11)

for which we obviously have the condition T(ne)¼ 0.

dt

n  + 1

N(0) = n

n  – 1

λ (n)dt  + o(dt )

1 − (λ (n) + μ (n))dt  + o(dt )

μ (n)dt  + o(dt )

N

t

Figure 8.2. Thinking along

sample paths allows us to

derive equations for the

colonization probability and

the mean persistence time.

Starting at population size n, in

the next interval of time dt, the

population will either remain

the same, move to nþ1, or

move to n�1. The probability

of successful colonization from

size n is then the average of the

probability of successful

colonization from the three

new sizes. The persistence time

is the same kind of average,

with the credit of the

population having survived dt

time units.
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Exercise 8.5 (E)

Use the method of thinking along sample paths, with the hint from Figure 8.2, to

show that T(n) satisfies the equation

�1 ¼ lðnÞTðnþ 1Þ � ðlðnÞ þ �ðnÞÞTðnÞ þ �ðnÞTðn� 1Þ (8:12)

which is also Eq. 4-1 in MacArthur and Wilson (1967, p. 70).

We are unable to make any more progress without specifying the

birth and death rates, which we now do.

The specific case treated by MacArthur and Wilson

Computationally, 1967 was a very long time ago. The leading technol-

ogy in manuscript preparation was an electric typewriter with a self-

correcting ribbon that allowed one to backspace and correct an error.

Computer programs were typed on cards, run in batches, and output was

printed to hard copy. Students learned how to use slide rules for

computations (or – according to one reader of a draft of this chapter –

chose another profession).

In other words, numerical solution of equations such as (8.10) or

(8.12) was hard to do. Part of the genius of Robert MacArthur was that

he found a specific case of the birth and death rates that he was able to

solve (see Connections for more details). MacArthur and Wilson intro-

duce a parameter K, about which they write (on p. 69 of their book):

‘‘But since all populations are limited in their maximum size by the

carrying capacity of the environment (given as K individuals)’’ and on

p. 70 they describe K as ‘‘. . . a ceiling, K, beyond which the population

cannot normally grow.’’ The point of providing these quotations and

elaborations is this: in the MacArthur–Wilson model for extinction

times (both in their book and in what follows) K is a population ceiling

and not a carrying capacity in the sense that we usually understand it in

ecology at which birth and death rates balance. In the next section, we

will discuss a model in which there is both a carrying capacity in the

usual sense and a population ceiling.

For the case of density dependent birth rates, a population ceiling

means that

lðnÞ ¼ ln if n � K

0 otherwise

�
�ðnÞ ¼ �n

(8:13)

where l and � on the right hand sides are now constants. (I know that

this is a difficult notation to follow, but it is the one that is used in their

book, so I use it in case you choose to read the original, which I strongly
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recommend.) For the case of density dependent death rates, MacArthur

and Wilson assume that

lðnÞ ¼ ln

�ðnÞ ¼
�n for n � K

whatever needed to go from n4K to K otherwise

�
(8:14)

From these equations it is clear that in neither case is K a carrying

capacity (at which birth rates and death rates are equal); rather it is a

population ceiling in the sense that ‘‘the population grows exponentially

to level K, at which point it stops abruptly’’ (MacArthur and Wilson
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Figure 8.3. Examples of mean

persistence times computed by

MacArthur and Wilson. The key

observations here are that

(i) there is a ‘‘shoulder’’ in the

mean persistence time in the

sense that once a moderate

value of K is reached, the mean

persistence time increases very

rapidly, and (ii) the persistence

times are enormous. Reprinted

with permission.
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1967, p. 70). This point will become important in the next section, when

we use modern computational methods to address persistence time.

However, the point of Eqs. (8.13) and (8.14) is that they allow one

to find the mean time to extinction, which is exactly what MacArthur

and Wilson did (see Figure 8.3). The dynamics determined by

Eqs. (8.13) or (8.14) will be interesting only if l�� (preferably strictly

greater). Figures such as 8.3 led to the concept of a ‘‘minimum viable

population’’ size (Soule 1987), in the sense that once K was sufficiently

large (and the number K¼ 500 kind of became the apocryphal value)

the persistence time would be very large and the population would

be okay.

It is hard to overestimate the contribution that this theory made. In

addition to starting an industry concerned with extinction time calcula-

tions (see Connections), the method is highly operational. It tells people

to measure the density independent birth and death rates and estimate

(for example from historical population size) carrying capacity and then

provides an estimate of the persistence time. In other words, the devel-

opers of the theory also made clear how to operationalize it, and that

always makes a theory more popular.

We shall now explore how modern computational methods can be

used to extend and improve this theory.

The role of a ceiling on population size

One of the difficulties of the MacArthur–Wilson theory is that the

density dependence of demographic interactions and the population

ceiling are confounded in the same parameter K. We now separate

them. In particular, we will assume that there is a population ceiling

Nmax, in the sense that absolutely no more individuals can be present in

the habitat of interest. (My former UC Davis, and now UC Santa Cruz,

colleague David Deamer used to make this point when teaching intro-

ductory biology by having the students compute how many people

could fit into Yolo County, California. You might want to do this for

your own county by taking its area and dividing by a nominal value of

area per person, perhaps 1 square meter. The number will be enormous;

that’s closer to the population ceiling, the carrying capacity is much

lower.)

We now introduce a steady state population size Ns defined by the

condition

lðN sÞ ¼ �ðN sÞ (8:15)

With this condition, Ns does indeed have the interpretation of the

deterministic equilibrial population size, or our usual sense of carrying
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capacity in that birth and death rates balance at Ns. This steady state will

be stable if l(n)>�(n) if n<Ns and that l(n)<�(n) if n>Ns. This is

the simplest dynamics that we could imagine. There might be many

steady states, some stable and some unstable, but all below the popula-

tion ceiling.

Why bother to contain with a population ceiling? The answer can be

seen in Eq. (8.12). In its current form, this is a system of equations that is

‘‘open,’’ since each equation involves T(n� 1), T(n), and T(nþ 1). It is

closed from the bottom – as we have already discussed – since �(0)¼ 0,

but introducing the population ceiling is equivalent to l(Nmax)¼ 0, in

which case Eq. (8.12) becomes, for n¼Nmax

�1 ¼ �ðlðNmaxÞ þ �ðNmaxÞÞTðNmaxÞ þ �ðNmaxÞTðNmax � 1Þ (8:16)

and now the system is closed from both the top and the bottom.

Because the system is now closed, and because the population is

being measured in number of individuals, the mean extinction time can

be viewed as a vector

TðnÞ ¼

Tðne þ 1Þ
Tðne þ 2Þ
Tðne þ 3Þ
� � �

TðNmax � 1Þ
TðNmaxÞ

2
6666664

3
7777775

(8:17)

and we can write Eq. (8.12) as a product of this vector and a matrix

(Mangel and Tier 1993, 1994).

Before doing that, let us expand the framework in Eq. (8.12) to

include catastrophic changes in population size. That is, let us suppose

that catastrophic changes occur at rate c(n) in the sense that

Prfpopulation size changes in the next dtjNðtÞ ¼ ng ¼
1� expð�ðlðnÞ þ �ðnÞ þ cðnÞÞdtÞ

Prfchange is caused by a catastrophejchange occursg ¼ cðnÞ
cðnÞ þ lðnÞ þ �ðnÞ

(8:18)

and that, given that a catastrophe occurs, there is a distribution q(y|n) of

the number of individuals who die in the catastrophe

Prfy individuals diejcatastrophe occurs; n individuals presentg ¼ qð yjnÞ
(8:19)

We now proceed in two steps. First, you will generalize Eq. (8.12);

then we will use the population ceiling and matrix formulation to solve

the generalization.
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Exercise 8.6 (M)

Show that the generalization of Eq. (8.12) is

�1 ¼ lðnÞTðnþ 1Þ � ððlðnÞ þ �ðnÞ þ cðnÞÞTðnÞÞ þ �ðnÞTðn� 1Þ
þcðnÞ

Pn
v¼0

qð yjnÞTðn� yÞ (8:20)

in which we allow that no individual or all individuals might die in a cata-

strophe. (This is an unlikely event, chosen mainly for mathematical pleasure of

starting the sum from 0, rather than a larger value. In practice, q(y|n) will be zero

for small values of y. Although, it is conceivable, I suppose, that a hurricane

occurs and there are no deaths caused by it.)

Now we define s(n) by s(n)¼ l(n)þ�(n)þ c(n)(1� q(0|n)) and a

matrix M whose first four rows and five columns are

�sðne þ 1Þ lðne þ 1Þ 0 0 0

�ðne þ 2Þ þ cðne þ 2Þqð1jne þ 2Þ �sðne þ 2Þ lðne þ 2Þ 0 0

cðne þ 3Þqð2jne þ 3Þ �ðne þ 3Þ þ cðne þ 3Þqð1jne þ 3Þ �sðne þ 3Þ lðne þ 3Þ 0

cðne þ 4Þqð3jne þ 4Þ cðne þ 4Þqð2jne þ 4Þ mðne þ 4Þ þ cðne þ 4Þqð1jne þ 4Þ �sðne þ 4Þ lðne þ 4Þ

ð8:21Þ
and we define the vector �1 by

�1 ¼

�1

�1

�1

� � �
�1

�1

2
6666664

3
7777775

(8:22)

Once we have done this, Eq. (8.20) takes the compact form

MTðnÞ ¼ �1 (8:23)

and if we define the inverse matrix M�1 then Eq. (8.23) has the formal

solution

TðnÞ ¼ �M�11 (8:24)

Now we take advantage of living in the twentyfirst century. Virtually all

good software programs have automatic inversion of matrices, so that

computation of Eq. (8.24) becomes a matter of filling in the matrix and

then letting the computer go at it.

In Figure 8.4, I show the results of this calculation for the flour

beetle model (Peters et al. 1989) in which l(n)¼ b0(nþ �)exp(�b1n)

and �(n)¼ d1n for the case in which there are no catastrophes and three

different cases of catastrophic declines (Mangel and Tier 1993, 1994).

For the parameters b0¼ 0.13, b1¼ 0.0165, �¼ 1, d1¼ 0.088 the steady

state is at about n¼ 26, so a population ceiling of 50 would be much

larger than the steady state. As seen in the figures, whether the
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population ceiling is 50 or 300 has little effect on the predictions in the

absence of catastrophes, but more of an effect in the presence of

catastrophes.

This theory is nice, easily extended to other cases (see Connections),

reminds us of connections to matrix models, and is easily employed

(and easier every day). However, it is also limited because of the

assumption about the nature of the stochastic fluctuations that affect

population size. In the next two sections, we will turn to a much

more general formulation, and investigate both its advantages and its

limitations.
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Figure 8.4. Application of Eq. (8.24) to the flour beetle model in which l(n)¼ b0(nþ �)exp(�b1n) and �(n)¼ d1n with

b0¼0.13, b1¼0.0165, �¼1, d1¼0.088. (a) No catastrophes. Note the rapid rise in persistence time; (b) rate of

catastrophes c¼0.01 and q(y|n) following a binomial distribution with probability of death p¼0.5; (c) c¼0.025,

p¼0.5; and (d) c¼0.05, p¼0.5.
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A diffusion approximation in the density
independent case

We now turn to a formulation in which there is no density dependence

and the fluctuations in population size are determined by Brownian

motion (Lande 1987, Dennis et al. 1991, Foley 1994, Ludwig 1999,

Saether et al. 2002, Lande et al. 2003). As with the method of

MacArthur and Wilson, this method is easy to use, but also requires

some care in thinking about its application.

When population size is low, density dependent factors are often

assumed (rightfully or wrongfully) to be immaterial for the growth of

the population. We let X(t) denote the population size at time t and start

by assuming discrete dynamics of the form

X ðt þ dtÞ ¼ lX ðtÞe�ðtÞ (8:25)

where we understand dt to be arbitrary just now (usually people begin

with dt¼ 1), l to be the maximum per capita growth rate, and �(t) to be

a Gaussian distributed random variable with mean 0 and variance vdt.

If we set N(t)¼ log(X(t)) then Eq. (8.25) becomes

Nðt þ dtÞ ¼ NðtÞ þ logðlÞ þ �ðtÞ (8:26)

and if we now define r by log(l)¼ rdt and set �ðtÞ ¼ ffiffiffi
v
p

dW , then

Eq. (8.26) becomes a familiar friend

dN ¼ rdt þ
ffiffiffi
v
p

dW (8:27)

for which we will assume the range of N(t) is 0 (corresponding to 1

individual) to a population ceiling K. (An even simpler case would be to

assume that r¼ 0, so that the logarithm of population size simply follows

Brownian motion; see Engen and Saether (2000) for an example). The

notation is a little bit tricky – in the previous section N represented

population size, but here it represents the logarithm of population size;

I am confident, however, that you can deal with this switch.

The great advantage of Eq. (8.27) is that the data requirements for

its application are minimal: we need to know the mean and variance in

the increments in population size. These can often be obtained by

surveys, which need not even be regularly spaced in time (although

when they are not, one needs to be careful when estimating r and v).

Associated with Eq. (8.27) is a mean persistence time T(n) for a

population starting at N(0)¼ n and defined according to

TðnÞ ¼ Eftime to reach N ¼ 0jNð0Þ ¼ ng (8:28)

with which we associate the boundary condition T(0)¼ 0 (remember

that, because we are in log-population space, n¼ 0 corresponds to one
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individual). We know that a second boundary condition will be needed

and we obtain it as follows. If the population ceiling is very large, then

following logic we used previously, we expect that T(K)� T(Kþ "),
where " is a small number. If we Taylor expand to first order in ", the

condition is the same as the reflecting condition (dT/dn)|n¼K¼ 0.

Before discussing the solution of Eq. (8.28), let us reconsider

Eq. (8.27) from two perspectives. The first is an alternative derivation.

Recall that X(t) is population size, so that if we assumed that there

are no density dependent factors, we have in the deterministic case

dX¼ rXdt or (1/X)(dX/dt)¼ rdt, from which Eq. (8.27) follows if we

set N¼ log(X) and assume that r has a deterministic and a stochastic

component.

The second perspective is that we actually know how to solve

Eq. (8.27) by inspection, with the initial condition that N(0)¼ n

NðtÞ ¼ nþ rt þ
ffiffiffi
v
p

WðtÞ (8:29)

We can read off directly from Eq. (8.29) the mean and confidence

intervals for N(t).

In the course of his work on the endangered Alabama Beach

Mouse (Peromyscus polionotus ammobates), my student Chris

Wilcox developed data appropriate for Eqs. (8.27)–(8.29) and kindly

allowed me to use them (Figure 8.5). This mouse is found only along

the coast of Alabama, USA, in sand dunes and threats to its persis-

tence include development of the coast and periodic catastrophic

storms. In Figures 8.5b and c, I show the projections of the mean

and 95% confidence intervals for population size at two different

sites in the study area. In one case the mean population size shows

an increasing trend with time, in the other a decreasing trend (Chris

worked at two other sites, which also showed similar properties).

Notice, however, that the confidence intervals quickly become very

wide – which means that although we have a prediction, it is not

very precise. It is data such as these that caused Ludwig (1999) to ask

if it is meaningful to estimate probability of extinction (also see

Fieberg and Ellner (2000)).

Let us now return to Eqs. (8.27) and (8.28). We know that T(n) will

be the solution of the differential equation

v

2

d2T

dn2
þ r

dT

dn
¼ �1 (8:30)

with the boundary conditions that we discussed before (T(0)¼ 0 and

(dT/dn)|n¼K¼ 0).
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Exercise 8.7 (E/M)

Suppose that r¼ 0. Show that the solution of Eq. (8.30) is

TðnÞ ¼ 2n

v
K � n

2

� �
(8:31)

so that if the population starts at the ceiling (n¼K) the mean persistence time is

T(K)¼K2/v. Interpret its shape and compare it with the MacArthur–Wilson

result (Figure 8.3).

When r> 0, we rewrite Eq. (8.30) using subscripts to denote deri-

vatives as

Tnn þ
2r

v
Tn ¼ �

2

v
(8:32)
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Figure 8.5. (a) The Alabama Beach Mouse, and projections (in 2002) of population size based on Eq. (8.29) at two

different sites: (b) the site BPSU, and (c) the site GINS. Photo courtesy of US Fish and Wildlife Service. I show the mean

and the upper and lower 95% confidence intervals.
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and we now recognize that the left hand side is the same as

exp � 2r

v
n

� �
d

dn
Tnexp

2r

v
n

� �� 	

so that Eq. (8.32) can be rewritten as

d

dn
Tnexp

2r

v
n

� �� 	
¼ � 2

v
exp

2r

v
n

� �
(8:33)

which we integrate once to obtain

Tnexp
2r

v
n

� �
¼ � 1

r
exp

2r

v
n

� �
þ c1 (8:34)

where c1 is a constant of integration. We now apply the boundary

condition that the first derivative of T(n) is 0 when N¼K to conclude

that c1¼ (1/r)exp((2r/v)n) and we can thus write that

Tn ¼ �
1

r
þ 1

r
exp

2r

v
K

� �
exp � 2r

v
n

� �
(8:35)

and we now integrate this equation once again to obtain

TðnÞ ¼ � n

r
� v

2r2
exp

2r

v
K

� �
exp � 2r

v
n

� �
þ c2 (8:36)

where c2 is a second constant of integration and to which we apply the

condition T(0)¼ 0 to conclude that c2¼ (v/2r2)exp((2r/v)K) so that

TðnÞ ¼ � n

r
þ v

2r2
exp

2r

v
K

� �
� exp

2r

v
K

� �
exp � 2r

v
n

� �� 	

¼ � n

r

� �
þ v

2r2
exp

2r

v
K

� �
1� exp � 2r

v
n

� �� 	
(8:37)

Note that this solution involves n, r, K, and v in a nonlinear and

relatively complicated fashion.

Exercise 8.8 (E/M)

Foley (1994) uses a different method of obtaining the solution (see his

Appendix) and also writes it in a different manner by introducing the parameter

s¼ r/v:

TðnÞ ¼ 1

2rs
½expð2sKÞð1� expð�2snÞÞ � 2sn� (8:38)

Show that Eqs. (8.37) and (8.38) are the same. Now assume that sK� 1 and

show by Taylor expansion of the exponential to third order in K that

TðKÞ � K2

v
1þ 2

3

r

v
K

� �
(8:39)
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which tells us how the deterministic and stochastic components of the dynamics

affect the persistence time. Note, for example, that the mean persistence time

now grows as the cube of the population ceiling.

As with the theory of MacArthur and Wilson, this theory is appeal-

ing because of its operational simplicity. It tells us to measure the

mean and variance of the per capita changes (and, in more advanced

form, the autocorrelation of the fluctuations to correct the estimate of

variance (Foley 1994, Lande et al. 2003) and to estimate the ceiling

of the population). From these will come the mean persistence time via

Eqs. (8.37) or (8.38). It is reasonable to ask, however, how these

predictions might depend upon life history characteristics (see Connec-

tions), on more general density dependence, or when we ever might see

a population ceiling.

The general density dependent case

We now turn to the general density dependent case, so that, instead of

Eq. (8.27), the population satisfies the stochastic differential equation

dN ¼ bðNÞdt þ
ffiffiffiffiffiffiffiffiffiffi
aðNÞ

p
dW (8:40)

where b(n) and a(n) are known functions. We will assume that there is a

single stable steady state ns for which b(ns)¼ 0, a population size ne at

which we consider the population to be extinct and, although there

surely is a true population ceiling, as will be seen we do not need to

specify (or use) it.

These ideas are captured schematically in Figure 8.6. We know that

T(n) will now satisfy the equation

aðnÞ
2

Tnn þ bðnÞTn ¼ �1 (8:41)

with one boundary condition T(ne)¼ 0. For the second boundary con-

dition, as before we require that limn!1 Tn ¼ 0, which by analogy with

the previous section, indicates that the population ceiling is infinite.

Were it not, we would apply the reflecting condition at K.

We solve this equation using the same method as in the previous

section, but now in full generality. To begin, we set W(n)¼ Tn, so that

Eq. (8.41) can be rewritten as

nsne

Stochastic and 
deterministic
factors "work 

together"

Stochastic and 
deterministic 
factors act "in 
opposition"

Figure 8.6. A schematic

description of the general case

for stochastic extinction. The

population dynamics are

dN ¼ bðNÞdt þ
ffiffiffiffiffiffiffiffiffiffi
aðNÞ

p
dW

with a single deterministic

stable steady state ns and a

population size ne at which we

consider the population to be

extinct. For starting values of

population size smaller than

ns, the factors of stochastic

fluctuation toward extinction

and deterministic increase

towards the steady state are

acting in opposition, while for

values greater than ns they are

acting in concert in the sense

that the deterministic factors

reduce population size.

The general density dependent case 301

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511819872.010
Downloaded from https://www.cambridge.org/core. Universidad Nacional de Mexico (UNAM), on 25 Mar 2019 at 20:06:54, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511819872.010
https://www.cambridge.org/core


W n þ
2bðnÞ
aðnÞ W ¼ � 2

aðnÞ (8:42)

and we now define

�ðnÞ ¼
ðn
ne

2bðsÞ
aðsÞ ds (8:43)

which allows us to write Eq. (8.42) as

d

dn
½We�ðnÞ� ¼ � 2

aðnÞ e
�ðnÞ (8:44)

and, integrating from n to1, we conclude that

WðnÞ ¼ Tn ¼ 2e��ðnÞ
ð1
n

e�ðsÞ

aðsÞ ds (8:45)

and we pause momentarily. Note that Eq. (8.45) automatically satisfies

the boundary condition limn!1Tn ¼ 0. Also note that the function F(n)

defined by Eq. (8.43) involves the ratio of the infinitesimal mean and

variance. The bigger the variance – thus the stronger the fluctuations –

the smaller the ratio (and thus the integral), all else being equal.

We integrate Eq. (8.45) once more, this time from ne to n (recalling

that T(ne)¼ 0) and end up with the formula for the mean persistence

time in the general case

TðnÞ ¼ 2

ðn
ne

e��ðsÞ
ð1
s

e�ðyÞ

aðyÞ dyds (8:46)

Equation (8.46) is our desired result. It gives the mean persistence time

for a population starting at size n when the dynamics follow the general

stochastic differential equation (8.40) . This general formulation tells us

actually very little about specific situations, but the literature contains

many examples of its application once the functional forms for b(n) and

a(n) are chosen according to the biological situation at hand (see

Connections for some examples).

Transitions between peaks on the
adaptive landscape

Schluter (2000) writes ‘‘Natural selection is a surface’’ (p. 85). When

that surface has multiple peaks, we are faced with the problem of

understanding how transitions between one adaptive peak to a higher

one can occur across a valley of fitness. To my knowledge, there have
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been just two attempts (Ludwig 1981, Lande 1985) to answer this

question. (Gavrilets (2003) has a nice, general review of the topic.)

Here, I will walk you through Ludwig’s analysis; the problem is highly

stylized and the analysis is difficult, but at the end we will have a

deepened and sharpened intuition about the general issue. Our starting

point is the Ornstein–Uhlenbeck process

dX ¼ �Xdt þ
ffiffiffi
"
p

dW (8:47)

for which we know that the stationary density is Gaussian, with mean 0

and variance "/2, so that the confidence intervals for the stationary

density areOð ffiffiffi"p Þ ; for example the 95% confidence interval is approxi-

mately ½� ffiffiffi
"
p
;
ffiffiffi
"
p �. Thus the mechanism that we consider consists of

deterministic return to the origin with fluctuations superimposed upon

that deterministic return.

We shall also consider a larger interval, [� L, L] (Figure 8.7) and

metaphorically consider that within this larger interval we have one

‘‘fitness peak’’ and that outside of it we have another ‘‘fitness peak,’’ so

that escape from the interval [� L, L] corresponds to transition between

peaks.

Our first calculation is an easy one. If we replace Eq. (8.47) by the

deterministic equation dx/dt¼�x, we know that the only behavior is

attraction towards the origin.

Exercise 8.9 (E)

Show that the deterministic return time Td(L) to reach
ffiffiffi
"
p

, given by the solution

of dx/dt¼�x, with x(0)¼ L, is TdðLÞ ¼ logðLÞ � logð ffiffiffi"p Þ. Thus, conclude that

the deterministic time to return from initial point L to the vicinity of the origin

scales as logðL=
ffiffiffi
"
p
Þ.

Our second calculation is not much more complicated. Suppose

that we allow T(x) to denote the mean time to escape from the interval

[� L, L], given that X(0)¼ x. We know that T(x) satisfies the equation

"

2
Txx � xTx ¼ �1 (8:48)

with the boundary conditions T(� L)¼ T(L)¼ 0. The solution of

Eq. (8.48) with these boundary conditions is not too difficult, but it is

Confidence interval for stationary density

O (     )ε

–L 0 L

Figure 8.7. Our understanding

of transitions from one fitness

peak to another on the

adaptive landscape will rely on

the metaphor of an Ornstein–

Uhlenbeck process

dX ¼ �Xdt þ
ffiffiffi
"
p

dW, for

which the stationary density is

Gaussian with mean 0 and

variance "/2. We consider an

interval [�L, L] that is much

larger than the confidence

interval for the stationary

density, which is Oð
ffiffiffi
"
p
Þ, as

domain of one adaptive peak

and values of X outside of this

interval another adaptive peak,

so that when X escapes from

the interval, a transition has

occurred. As described in the

text, we are interested in

three kinds of times: the

deterministic time to return

from initial value L to 2
ffiffiffi
"
p

,

the mean time to escape

from [� L, L], and the mean

time to escape from an initial

value X(0)>0 without

returning to 0.
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very cumbersome and hard to learn from. Let us think a bit more about

the situation. First note that Eq. (8.48) is symmetrical about x¼ 0,

because if we set y¼�x, we obtain the same differential equation and

same boundary conditions. Second, think about what happens to the

stochastic process when it returns, ever so momentarily to X¼ 0: at that

point there is no deterministic component to the dynamics and the mean

of the fluctuations is 0 as well. In other words, we could think of the

process at X¼ 0 being reflected rather than continuing through to nega-

tive values. Thus, we can equivalently consider Eq. (8.48) with the

boundary condition T(L)¼ 0 and Tx|x¼0¼ 0, i.e. reflection at the origin.

Exercise 8.10 (M/H)

Show that the solution of Eq. (8.48) satisfying the boundary conditions T(L)¼ 0

and Tx|x¼0¼ 0 is

TðxÞ ¼ 2

"

ðL
x

exp
y2

"

� �ðy
0

exp � s2

"

� �
dsdy (8:49)

The solution given by Eq. (8.49) presents some new challenges for

analysis, because of the positive exponential in the outer integrals. Let

us begin by thinking of the integral over s and making the transfor-

mation of variables u ¼ s=
ffiffiffi
"
p

so that the integral over s becomesÐ y=
ffiffi
"
p

0
expð�u2Þ

ffiffiffi
"
p

du. Now if we think that the noise is small ("� 1)

then when y gets away from 0 the upper limit is getting large. We

recognize then that we are computing the normalization constant for a

Gaussian distribution once again.

Exercise 8.11 (E)

Show that
Ð1

0
expð�u2Þdu ¼

ffiffiffi
p
p

. Here is a hint: remember thatÐ1
�1 exp �u2=2�2ð Þdu ¼

ffiffiffiffiffiffi
2p
p

�.

If we then approximate the integral over s in Eq. (8.49) by
ffiffiffiffiffi
p"
p

we

can conclude that

TðxÞ � 2

ffiffiffi
p
"

r ðL
x

exp
y2

"

� �
dy (8:50)

Now the integral in Eq. (8.50) is something new for us, because of the

positive exponent. Just looking at this integral suggest that the main

contribution to it will come from the vicinity of L, because the integrand

is largest there. We can make this more precise. First, let us make the

change of variables v ¼ y=
ffiffiffi
"
p

so that the integral we have to consider is
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I ¼
Ð L=

ffiffi
"
p

x=
ffiffi
"
p expðv2Þdv. We integrate this by parts, much as we did in the

expansion of the tail of the Gaussian distribution:

ðb
a

expðv2Þdv ¼
ðb
a

d

dv
ðexpðv2ÞÞ 1

2v
dv ¼ expðv2Þ 1

2v






b

a

þ
ðb
a

expðv2Þ 1

2v2
dv

(8:51)

Using the right hand side of Eq. (8.51), we conclude that

TðxÞ �
ffiffiffi
p
p exp L2

"

� �
Lffiffi
"
p

�
exp x2

"

� �
xffiffi
"
p

2
4

3
5 (8:52)

In other words, the time to escape from [�L, L] when starting at x> 0

grows like TðxÞ 	 expðL2="Þ. Thus, on average it takes a very long time

to escape from a domain of attraction.

This conclusion – of a very long average time to escape – accounts

for the reality that most trajectories starting at x> 0 will be drawn back

towards the origin and spend a long time there before ultimately escap-

ing. However, now let us focus on a special subset of trajectories: those

which start at x> 0 and escape (through L) without ever having returned

to the origin. We can thus define

uðx; tÞ ¼Prfexit ð0; L� by time t without ever having returned to

0jX ð0Þ ¼ x > 0g
(8:53)

Now, since u(x, t) is the probability of exiting from (0, L] without having

crossed 0 by time t, ut(x, t) is the probability density for the time of exit.

That is

utðx; tÞdt ¼Prfexit from ð0; L� in the interval t; t þ dt

without having crossed 0jX ð0Þ ¼ xg
(8:54)

and consequently the mean time for trajectories that start at x and exit

without having crossed 0 is

hðxÞ ¼
ð1
0

tutðx; tÞdt (8:55)

Now we define

wðxÞ ¼ lim
t!1

uðx; tÞ (8:56)

so that w(x) is the probability of ever escaping from (0, L] without first

revisiting L. We recognize that

uðx; tÞ
wðxÞ ¼

Prfexiting by time t and never hitting 0jX ð0Þ ¼ x > 0g
Prfexiting without hitting 0jX ð0Þ ¼ x > 0g (8:57)
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is the conditional probability of exiting by time t without hitting 0.

Thus

T cðxÞ ¼
hðxÞ
wðxÞ (8:58)

is the mean time to exit (0, L] given that X(0)¼ x without returning to 0.

Our goal is to find this time.

The probability of escape by time t without returning to the origin

satisfies the differential equation

ut ¼
"

2
uxx � xux (8:59)

with the initial condition u(x, 0)¼ 0 and the boundary conditions

u(0, t)¼ 0 and u(L, t)¼ 1. We know that w(x) satisfies the time-

independent version of Eq. (8.59) with the same boundary conditions

(w(0)¼ 0, w(L)¼ 1).

Exercise 8.12 (E)

Show that

wðxÞ ¼

ð xffiffi
"
p

0

expðs2Þdsð Lffiffi
"
p

0

expðs2Þds

(8:60)

We now derive an equation for h(x) using what I like to call the

Kimura Maneuver, since it was popularized by M. Kimura in his work

in population genetics (Kimura and Ohta 1971).

We begin by differentiating Eq. (8.59) with respect to time, multi-

plying by t and integrating:

ð1
0

tutt dt ¼ "

2

ð1
0

tutxx dt � x

ð1
0

tutx dt (8:61)

We then exchange the order of integration and differentiation on the

right hand side of Eq. (8.61), and that, for example
Ð1

0
tutxx dt ¼

ðq2=qx2Þ
Ð1

0
tut dt ¼ hxx and which allows us to rewrite Eq. (8.61) as

"

2
hxx � xhx ¼

ð1
0

tutt dt (8:62)

and we now integrate the right hand side of Eq. (8.62) by parts, keeping

in mind that both u(x, 0)¼ 0 and that the time derivative of u(x, t) goes to

0 as t!1, so that
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ð1
0

tutt dt ¼ tutj10 �
ð1
0

utdt ¼ �½ lim
t!1

uðx; tÞ � uðx; 0Þ� ¼ �wðxÞ (8:63)

and combining this with Eq. (8.62) we conclude that

"

2
hxx � xhx ¼ �wðxÞ (8:64)

We are now going to understand certain properties of w(x), the

solution of Eq. (8.60) without actually solving it. To do so, we shall

find it handy to employ Dawson’s integral (Abramowitz and Stegun

(1974); it is also kind of fun to do a web search with key words

‘‘Dawson’s Integral’’):

Dð yÞ ¼ expð�y2Þ
ðy
0

expðs2Þds (8:65)

so that we can rewrite w(x) as

wðxÞ ¼ exp
x2

"
� L2

"

� �D xffiffi
"
p
� �

D Lffiffi
"
p
� � (8:66)

Now recall that the main contribution to the integral component of

Dawson’s integral will come from the end point (and to leading order

is (1/2y)exp(y2) ) so that D(y)	 1/2y when y is large. Using this

relationship allows us to rewrite Eq. (8.66) as

wðxÞ 	 2
Lffiffiffi
"
p exp

x2

"
� L2

"

� �
D

xffiffiffi
"
p
� �

and Eq. (8.64) becomes

"

2
hxx � xhx 	 �2

Lffiffiffi
"
p exp

x2

"
� L2

"

� �
D

xffiffiffi
"
p
� �

(8:67)

Using an integrating factor, we can rewrite Eq. (8.67) as

d

dx
hxexp �

x2

"

� �� 	
	 �4

"

Lffiffiffi
"
p exp � L2

"

� �
D

xffiffiffi
"
p
� �

(8:68)

We integrate this equation to obtain

hx exp �
x2

"

� �
	 �4

"
L exp � L2

"

� � ðxffiffi"p
0

Dð yÞdy� c

2
64

3
75 (8:69)

where c is a constant of integration. Consequently,
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hx 	 �
4

"
L exp

x2

"
� L2

"

� � ðxffiffi"p
0

Dð yÞdy� c

2
64

3
75 (8:70)

We are almost there.

To continue the analysis, we set F x=
ffiffiffi
"
pð Þ ¼

Ð x=
ffiffi
"
p

0
Dð yÞdy, so that

hx 	
4

"
L exp

x2

"
� L2

"

� �
c� F

xffiffiffi
"
p
� �� �

(8:71)

which we integrate to obtain

hðxÞ 	 4

"
L exp � L2

"

� � ðx
0

exp
s2

"

� �
c� F

sffiffiffi
"
p
� �� �

ds

2
4

3
5 (8:72)

Clearly h(0)¼ 0. To satisfy the other boundary condition, we must

have that
Ð L

0
exp s2="ð Þ c� F s=

ffiffiffi
"
pð Þf gds ¼ 0 from which we conclude

that

c ¼

ðL
0

exp
s2

"

� �
F

sffiffiffi
"
p
� �

ds

ðL
0

exp
s2

"

� �
ds

(8:73)

We now recall that D(y)	 1/2y for large y, so that
Ð x=

ffiffi
"
p

0
Dð yÞdy 	

1=2 log x=
ffiffiffi
"
pð Þ and consequently, since the main contributions to the

integrals in Eq. (8.73) come from the upper limit, we conclude

c 	 1

2
log

Lffiffiffi
"
p
� �

(8:74)

We keep this in mind as we proceed to the next, and final, step.

Now, since F(s)> 0, from Eq. (8.72) we conclude that

hðxÞ5 4

"
L exp � L2

"

� �
c

ðx
0

exp
s2

"

� �
ds (8:75)

so that

TcðxÞ ¼
hðxÞ
wðxÞ

5

4
" Lcexp � L2

"

� � ðx
0

exp
s2

"

� �
ds

2 Lffiffi
"
p exp x2

" � L2

"

� �
D xffiffi

"
p
� � ¼

2ffiffi
"
p c

ðx
0

exp
s2

"

� �
ds

exp x2

"

� 
D xffiffi

"
p
� � (8:76)

but, from Eq. (8.65), expðy2ÞDðyÞ ¼
Ð y

0
expðs2Þds. We thus conclude

that
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T cðxÞ5
2ffiffiffi
"
p c ¼ 1ffiffiffi

"
p log

Lffiffiffi
"
p
� �

(8:77)

Let us summarize the analysis. The deterministic return time from

L to a vicinity of the origin scales as log L=
ffiffiffi
"
p

ð Þ, the mean time for

all stochastic trajectories to escape from [� L, L] scales as exp(L2/") and

the mean time to escape without ever returning to 0 scales as log L=
ffiffiffi
"
pð Þ.

These are vastly different times – indeed many orders of magnitude

when L is moderate and " is small. The mean time to escape, condi-

tioned on not returning to the origin, is much, much smaller than the

average escape time. Thus, the mean time to escape, conditioned on not

returning to the origin appears as a punctuated trajectory. Gavrilets

(2003) refers to those trajectories that escape as ‘‘lucky’’ ones and

notes that they do it quickly.

That was a lot of hard work. And to some extent, the payoff is in

a deeper understanding of the problem, rather than in the details of

the mathematical analysis. Indeed, in retrospect, our discussion of the

gambler’s ruin can shed light on this problem. Recall that, in the

gambler’s ruin, we decided that in general one is very rarely going to

be able to break the bank, but that if it is going to happen, it will happen

quickly (with a run of extreme good luck). And the same holds in this

case: it is rare for a trajectory starting at X(0)¼ x to escape without

returning to the origin, but when a trajectory does escape, the escape

happens quickly.

I feel obligated to end this section with a discussion of punctuated

equilibrium. In 1971, Stephen J. Gould and Niles Eldredge (then young-

sters aiming to become the Waylon and Willy – the outlaws – of

evolutionary biology (see http://en.wikipedia.org/wiki/Outlaw_country

if you do not understand the context of this metaphor) coined the phrase

‘‘punctuated equilibrium’’ and offered punctuated equilibria as an alter-

native to the gradualism of Darwinian theory as it was then understood

(Gould and Eldredge 1977; Gould 2002, p. 745 ff.) Writing about it

thirty years later, Gould said ‘‘First of all, the theory of punctuated

equilibrium treats a particular level of structural analysis tied to a

particular temporal frame . . . Punctuated equilibrium is not a theory

about all forms of rapidity, at any scale or level, in biology. Punctuated

equilibrium addresses the origin and deployment of species in geolog-

ical time’’ (Gould 2002, pp. 765–766). The two key concepts in this

theory are stasis and punctuation, which I have illustrated schematically

in Figure 8.8; Lande (1985) describes the situation in this manner

‘‘species maintain a constant phenotype during most of their existence

and that new species originate suddenly in small localized populations’’

(p. 7641). The question can be put like this: since the geological record
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does look like the schematic in Figure 8.8, what challenge is posed to the

Darwinian notion of gradualism? Indeed, some authors (Margulis and

Sagan 2002) have argued that the entire mathematical and technical

machinery associated with the gradualist Darwinian paradigm falls apart

because of punctuated equilibrium. In her recent and wonderful book,

West-Eberhard (2003) emphasizes (pp. 474–475) that ‘‘punctuated

equilibrium is a hypothesis regarding rates of phenotypic evolution

and does not challenge gradualism. The patterns and causes of change

in evolutionary rates are at issue, not the relative importance of selection

versus development.’’ Gould (2002) makes this clear on p. 756: ‘‘Rather,

punctuated equilibrium refutes the third and most general meaning of

Darwinian gradualism, designated in Chapter 2 (see pp. 152–155) as

‘slowness and smoothness (but not constancy) of rate’.’’ Put more

simply, we could ask: can a single mechanism account for the pattern

shown in Figure 8.8 or does one require multiple mechanisms and

processes? There is a flip answer to the question, as there always is a

flip answer to any question. In this case, it is that stasis corresponds to a

relatively constant environment and microfluctuations around an adap-

tive peak of fitness and punctuation corresponds to an environmental

change in which the current adaptive peak becomes non-adaptive,

another peak arises and there is strong selection from the formerly

adaptive peak to the new one. But this answer is somewhat dissatisfying

since it is flip and it makes key assumptions about the link between the

environment and the fitness peaks that are not present in the underlying

Darwinian framework. At first it would seem that we have answered the

question in this section and to some extent, we have in that we now

1 × 104

8000

6000
T

im
e

4000

2000

0
0.5 1 1.5 2 2.5

Trait
3 3.5 4 4.5

Species 1

Species 2

Species 3

Figure 8.8. The key concepts in

Eldredge and Gould’s

challenge to Darwinian

gradualism are stasis and

punctuation. These are

illustrated here for a

hypothetical trajectory of three

species characterized by a

generic trait. For the first 2000

time units (call one time unit a

thousand years if you like) or

so, the trait fluctuates around

the value 1 (stasis) but then

around time 2000 there is a

rapid transition (punctuation)

to trait value equal to 3, which

persists for about another 5000

time units (more stasis) after

which another punctuation

event occurs. During the

periods of stasis, there are

fluctuations around trait

values. The question, and

challenge, is whether this

picture is consistent with the

notion of gradual modification.

Our answer is yes.
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understand how the pattern of stasis and punctuation might be consis-

tent with gradualism. However, Gavrilets (2003) emphasizes that this

kind of analysis is not the full story, which can be found in his paper.

Anderson’s theory of vitality and the
biodemography of survival

We now turn to the application of diffusion processes to understanding

survival. To begin, we will review life tables, the Euler–Lotka equa-

tion of population demography and methods for solving it. We will

then see how a diffusion model of vitality can be used to characterize

survival.

In a life table (Kot 2001, Preston et al. 2001), we specify the

schedule of survival to age a {l(a), a¼ 0, 1, 2, . . ., amax} and the

expected reproduction at age a {m(a), a¼ 0, 1, 2, . . ., amax}, where

amax is the maximum age, for individuals in a population. To character-

ize the growth of the population, we compute the number of births B(t)

at time t. These have two sources: individuals who were born at a time

t� a and who are now of age a, and individuals who were present at

time 0 and are still contributing to the population. If we denote the births

due to the latter individuals by Q(t), we can write that

BðtÞ ¼
Xamax

a¼0

Bðt � aÞlðaÞmðaÞ þ QðtÞ (8:78)

Equation (8.78) is called Lotka’s renewal equation for population

growth. If t
 amax we assume that Q(t)¼ 0 since none of the indivi-

duals present at time 0 will have survived to produce offspring at time t.

Let us do that, for convenience drop the upper limit in the summation,

and assume that B(t)¼Cert, where the constant C (which actually

becomes immaterial) and the population growth rate r are to be deter-

mined. Setting Q(t)¼ 0 and substituting into Eq. (8.78) we have

Cert ¼
X
a¼0

Cerðt�aÞ lðaÞmðaÞ (8:79)

from which we conclude that

1 ¼
X
a¼0

e�ralðaÞmðaÞ (8:80)

Equation (8.80) is called the Euler–Lotka equation. In the literature, it is

usually treated as an equation for r, depending upon {l(a), m(a), a¼ 0,

1, 2, . . ., amax}. Dobzhansky and Fisher recognized that if there are no

density-dependent effects, then r is also a measure of fitness for a

genotype with schedule of births and survival given by {m(a), l(a),

a¼ 0, 1, 2, . . ., amax}. Note also that since e�ral(a)m(a) sums to 1, we
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can think of it as the probability density function for the fraction of the

population at age a (Demetrius 2001).

According to Eq. (8.80), the solution r is a function r(l(a), m(a)). We

may ask: how does r change with a change in the schedule of fecundity

or survival (Charlesworth 1994)? For example, let us implicitly differ-

entiate Eq. (8.80) with respect to m(y):

0 ¼ e�rylð yÞ þ
X
a¼0

�e�raalðaÞmðaÞ qr

qmð yÞ (8:81)

from which we conclude that

qr

qmð yÞ ¼
e�rylð yÞP

a¼0

e�raalðaÞmðaÞ (8:82)

The denominator of Eq. (8.82) has units of time and in light of

our interpretation of e�ral(a)m(a) as a probability density, we conclude

that the denominator is a mean age; indeed it is generally viewed as

the mean generation time. Note that the right hand side of Eq. (8.82)

declines with age as long as r> 0; this observation is one of the

foundations of W. D. Hamilton’s theory of senescence (Hamilton

1966, 1995).

We can ask the same question about the dependence of r on the

schedule of survival. This is slightly more complicated.

Exercise 8.13 (M/H)

Set lðaÞ ¼
Qa�1

y¼0 sð yÞ so that s(y) has the interpretation of the probability of

surviving from age y to age yþ 1. Show that

qr

qsð yÞ ¼

X
a¼yþ1

e�ralðaÞmðaÞ

sð yÞ
X
a¼0

e�raalðaÞmðaÞ
(8:83)

Now, to actually employ Eqs. (8.82) or (8.83), we need to know r. In

my experience, Newton’s method, which I now explain, has always

worked to find a solution for the Euler–Lotka equation. Think of

Eq. (8.80) as an equation for r, which we write as H(r)¼ 0, where

HðrÞ ¼
X
a¼0

e�ralðaÞmðaÞ � 1 (8:84)

Now suppose that rT is the solution of this equation (the subscript T

standing for True), so that H(rT)¼ 0. If we Taylor expand H(rT) around

r to first order in rT� r, we have H(rT) 	 H(r)þHr(rT� r), where the

derivative is evaluated at r. Now the left hand side of this equation is 0

and if we solve the right hand side for rT we obtain rT� r� (H(r)/Hr),
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which suggests an iterative procedure by which we might find the true

value of r. Choose an initial value r0 and then iteratively define rn by

rn ¼ rn�1 �
Hðrn�1Þ
Hrðrn�1Þ

(8:85)

Under very general conditions, rn will converge to the true value.

A good starting value is often r0¼ 0 or, to be a bit more elaborate,

one might write that the expected lifetime reproduction of an individual

R0 ¼
P

a¼0 lðaÞmðaÞ as exp(rTg), where Tg is the average generation

time in a population that is not growing, given by the denominator of

Eq. (8.82) when r¼ 0. In that case, a starting value could be r0 ¼
log(R0)/Tg.

If the preceding material is new to you, or you feel kind of rusty and

would like more familiarity, I suggest that you try the following

exercise.

Exercise 8.14 (E)

Waser et al. (1995) published the following information on the life history of

mongoose in the Serengeti. Some of it is shown in the table below.

Age (a) l(a) m(a)

0 1 0

1 0.41 0

2 0.328 0.21

3 0.252 0.39

4 0.182 0.95

5 0.142 1.32

6 0.085 1.48

7 0.057 2.45

8 0.031 3.78

9 0.021 2.56

10 0.014 4.07

11 0.005 3.76

12 0.005 3

13 0.002 2

14 0.002 0

(a) Compute R0 and use Newton’s method to find r. (b) What do you predict

will happen to R0 and r if the survivorship for age 5 and beyond decreases by just

5%? Now compute the new values. (c) Compute R0 and r if individuals delay

reproduction from year 2 to year 4 because of a food shortage. That is, assume

that individuals are now 4 years old when they get the reproduction previously
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associated with a 2 year old, 5 years old when they get reproduction previously

associated with a 3 year old, etc. Interpret your results.

Underlying all of these calculations is the schedule of survival and

fecundity and it is the schedule of survival that I now want to investi-

gate, using a theory of organismal vitality determined by Brownian

motion due to Jim Anderson at the University of Washington (Anderson

1992, 2000). Survival to any age is the result of internal processes and

external processes, so that we write l(a)¼ Pe(a)Pv(a), where Pe(a) is the

probability of survival to age a associated with external causes (random

or accidental mortality, we might say), and which we assume to be e�ma,

and Pv(a) is the survival to age a associated with internal processes and

organismal vitality.

Let us define V(t) to be that vitality, with the notion that V(t)> 0

means that the organism is alive and that V(t)¼ 0 corresponds to death.

Anderson assumes that V(t) satisfies the following stochastic differen-

tial equation

dV ¼ ��dt þ �dW (8:86)

so we see that V(t) declines deterministically at a constant rate and

is incremented in a stochastic fashion by Brownian motion. This is

clearly the simplest assumption that one can make, but, as the work of

Anderson shows, one can go a long way with it.

It may be helpful to think of vitality as the result of a variety of hidden

physiological and biochemical processes which, when taken together,

determine an overall state of the organism. It may also be that there is no

such thing as ‘‘external’’ mortality – that all mortality is vitality driven.

For example, the ability to escape a falling tree (a random event in the

forest) may depend upon internal state as much as anything else.

The probability density for V(t), defined so that p(v, t|v0, 0)dv¼
Pr{v�V(t)� vþ dv|V(0)¼ v0}, satisfies the forward equation

pt ¼ �pv þ
�2

2
pvv (8:87)

and from the definition, we know that p(v, t|v0, 0) ¼ �(v � v0); as

before, one boundary condition will be p(v, t|v0, 0)! 0 as v!1. For

the second boundary condition, since an organism starting with no

vitality is dead p(v, t|0, 0)¼ 0. The solution of Eq. (8.87) satisfying

the specified initial and boundary conditions is not exceptionally diffi-

cult to find, but this is one of the few cases in this book in which I say

‘‘we look it up.’’ Some of the best sources for looking up solutions of

the standard diffusion equation are Carslaw and Jaeger (1959), Goel and

Richter-Dyn (1974), and Crank (1975) (this particular solution is com-

puted by the ‘‘method of images’’ in which we satisfy the boundary

condition at 0 by subtracting an appropriate mirror image quantity).

The solution is
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pðv; tjv0; 0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

2p�2t
p exp �ðv� v0 þ �tÞ2

2�2t

 !"

�exp �ðvþ v0 þ �tÞ2

2�2t
þ 2�v0

�2

 !#
(8:88)

Exercise 8.15 (E|M)

When one encounters a purported solution in the literature, even if one does not

derive the solution, one should check it as much as possible. Do this with

Eq. (8.88) by verifying that it satisfies the differential equation, the initial

condition and the boundary conditions.

Since the organism survives to age t if it has positive vitality at that

age, we conclude that

PvðtÞ ¼
ð1
0

pðv; tjv0; 0Þdv (8:89)

Evidently, Pv(t) will be related to Gaussian cumulative distribution

functions, but Anderson chooses to use the error function erf(z) and

complementary error function erfc(z) (Abramowitz and Stegun 1974)

and since this will give you a new tool, I will do that too (I am also

personally very fond of the error function (Mangel and Ludwig 1977)).

These functions are defined by

erfðzÞ ¼ 2ffiffiffi
p
p
ðz
0

e�t2

dt erfcðzÞ ¼ 2ffiffiffi
p
p

ð1
z

e�t2

dt (8:90)

Exercise 8.16 (E)

Show that erf(z)þ erfc(z)¼ 1 and that erfðzÞ ¼ 2�ðz
ffiffiffi
2
p
Þ � 1, where F(z)

is the Gaussian cumulative distribution function, i.e.

�ðzÞ ¼ 1ffiffiffiffiffiffi
2p
p
� � ðz

�1

exp � u2

2

� �� �
du

Anderson next introduces the scaled parameters r¼ �/v0 and

s¼ �/v0 so that both the deterministic loss of vitality and the intensity

of the stochastic increments are measured relative to the initial vitality.

In terms of these scaled parameters, Eq. (8.90) becomes

pðt; vjv0; 0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffi

2ps2t
p exp �ðv� 1þ rtÞ2

2s2t

 !
� exp �ðvþ 1þ rtÞ2

2s2t
þ 2r

s2

 !" #

(8:91)
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and the viability related probability of survival is

PvðtÞ ¼
1

2
erfc

rt � 1

s
ffiffiffiffi
2t
p

� �
� exp

2r

s2

� �
erfc

rt þ 1

s
ffiffiffiffi
2t
p

� �� 	
(8:92)

We are now able to construct the probability of surviving to age t

lðtÞ ¼ e�mtPvðtÞ (8:93)

Anderson (2000) explores a number of properties of the model,

including the predicted rate of mortality at age, the expected lifespan,

maximum likelihood estimates of parameters, and connections between

the parameters and physiological variables such as body size or environ-

mental variables such as the dose of a putative toxin (Figure 8.9).

I encourage you to read his paper, which is well-written and informative.
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Figure 8.9. Comparison of

Anderson’s theory of vitality

(lines) and some experimental

results (symbols). (a) Survival of

the water flea Daphnia pulex at

densities of 1, 8, and 32

individuals/ml. (b) Survival of

subyearling chinook salmon

Oncorhynchus tshawytscha at

four saturation levels of total

dissolved gas. Reprinted with

permission.
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Connections

Escape from the domain of attraction

Escape from a domain of attraction, or more generally the transition

between two deterministic steady states driven by fluctuations, has

wide applicability in biology, chemistry, economics, engineering, and

physics (Klein 1952, Brinkman 1956, Kubo et al. 1973, Arnold 1974,

van Kampen 1977, Schuss 1980, Ricciardi and Sato 1990). Many of the

ideas go back to Hans Kramers, a master of modern physics (ter Haar

1998) who modeled chemical reactions as Brownian motion in a field of

force (Kramers 1940). Other introductions to the problem from the

perspective of physics or chemistry can be found in van Kampen

(1981b), Gardiner (1983), Gillespie (1992) and Keizer (1987). In bio-

logy, the classic paper of Ludwig (1975) brings to bear many of the tools

that we have discussed. The more mathematical side of the question is

interesting and challenging because the problems involve large devia-

tions (Bucklew 1990). There are ways to use the method of thinking

along sample paths to understand the general problem (Freidlin and

Wentzell 1984), but the mathematical difficulty rises rapidly.

Extensions of the MacArthur–Wilson theory

The Theory of Island Biogeography spawned an industry (a good place

to start is Goel and Richter-Dyn (1974)). Indeed, the late 1960s were

heady times for theoretical biology. In the remarkable period of the late

1960s, optimal foraging theory (MacArthur and Pianka 1966, Emlen

1966), island biogeography (MacArthur and Wilson 1967), and meta-

population ecology (Levins 1969) developed. The theories of optimal

foraging and island biogeography developed rapidly and led to experi-

ments, and the development of new fields such as behavioral ecology.

On the other hand, metapopulation theory languished for quite a while

before a phase of development, and the subsequent development in the

1980s was mainly theoretical (see, for example, Hanski (1989)). The

rapid success of island biogeography and optimal foraging theory

relative to metapopulation ecology teaches us two things. First, the

developers of optimal foraging theory and island biogeography pro-

vided a prescription: (i) measure a certain set of empirically clear

parameters, and (ii) given these parameters, compute a quantity of

interest. Levins did not do this as explicitly. For example, in classical

rate-maximizing optimal foraging theory as we discussed at the start of

the book, one measures handling times of, energy gain from, and

encounter rates with, food items, and then is able to predict the diet
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breadth of a foraging organism. In classical island biogeography, one

measures per capita birth and death rates and carrying capacity of an

island and is able to predict the mean persistence time. On the other

hand, it is not exactly clear what to measure in metapopulation theory or

how to apply it. Indeed, authors still revisit the original Levins model

trying to operationalize it (Hanski 1999). Second, Levins published his

seminal paper in an entomology journal and on biological control. In the

heady times of the late 1960s, such ‘‘applied’’ biology was scorned by

many colleagues. A very interesting discussion of the role of theory in

conservation biology is found in Caughley (1994), which caused an

equally interesting rejoinder (Hedrick et al. 1996).

Catastrophes and conservation

Catastrophic changes in population size can occur for many reasons,

and in the past decade or so there has been increasing recognition of the

role of catastrophes in regulating populations. Connections to the lit-

erature can be found in Mangel and Tier (1993, 1994), Young (1994),

Root (1998), and Wilcox and Elderd (2003).

Ceilings and the distribution of extinction times

Mangel and Tier (1993) show that the second moment of the persistence

time satisfies S(n)¼�2M�1T(n) from which the variance and coeffi-

cient of variation of the persistence time can be calculated. By using that

calculation, they conclude that persistence times are approximately

exponentially distributed. Ricciardi and Sato (1990) provide a more

general discussion of first-passage times.

The diffusion approximation

In population biology, the most general formulation of the diffusion

approximation (Halley and Iwasa 1998, Diserud and Engen 2000,

Hakoyama and Iwasa 2000, Lande et al. 2003) takes the form

dX ¼ bðX Þdt þ ffiffiffiffiffi
ae
p

XdW e þ
ffiffiffiffiffiffiffiffiffi
adX
p

dWd, where ae and ad are the envir-

onmental and demographic components of stochasticity and dWe and

dWd are independent increments in the Brownian motion process, the

former interpreted according to Stratonovich calculus (to account for

autocorrelation in environmental fluctuation) and the latter according to

Ito calculus (to account for demographic stochasticity). Engen et al.

(2001) show results similar to those in Figure 8.5, for the decline of the

barn swallow, using a model that has both environmental and demo-

graphic fluctuations. The main message, however, is the same (see their

318 Applications of stochastic population dynamics to ecology

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511819872.010
Downloaded from https://www.cambridge.org/core. Universidad Nacional de Mexico (UNAM), on 25 Mar 2019 at 20:06:54, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511819872.010
https://www.cambridge.org/core


Figure 4). It is worthwhile to wonder when the diffusion approximation

gives valid conclusions for life histories that do not meet the assumptions

of the model (Wilcox and Possingham 2002).

Connecting models and data

In general, we will need to estimate extinction risk and mean time to

extinction from time series that may often be short and sparse. This

presents new challenges, both conceptually and technically (Ludwig

1999, Hakoyama and Iwasa 2000, Fieberg and Ellner 2000, Iwasa et al.

2000).

Punctuated equilibrium

As with some of the other topics in this book, there are probably 1000

papers or more on punctuated equilibrium, what it means, and what it

does not mean (Gould and Eldredge 1993). A recent issue of Genetica

(112–113 (2001)) was entirely dedicated to the rate, pattern and process

of microevolution (see Hendry and Kinnison (2001) for the introduction

of the issue). Pigliucci and Murren (2003) have recently wondered if the

rate of macroevolution (the escape from a domain of attraction) can be

so fast as to pass us by. West-Eberhard (2003) is a grand source of ideas

for models (but not of models) in this area. The calculation by Lande

(1985) using a very similar approach to the one that we did, with a

quantitative genetic framework, warranted a news piece in Science

(Lewin 1986). Jim Kirchner (Kirchner and Weil 1998, 2000; Kirchner

2001, 2002) has written a series of interesting and excellent papers on

the nature of rates in the fossil record.

Biodemography

Demography – generally understood today as a social science – is the

statistical study of human populations, especially with respect to size

and density, distribution and vital statistics. The goal is to describe

patterns, understand pattern and process, and predict the consequences

of change on those patterns. The foundations of demography are the life

table, the Gompertz mortality model (Gompertz 1825), and the stable

age distribution that arises as the solution of the Euler–Lotka renewal

equation. Biodemography seeks to merge demography with evolution-

ary thinking (Gavrilov and Gavrilova 1991, Wachter and Finch 1997,

Carey 2001, Carey and Judge 2001, Carey 2003). The result, for exam-

ple, will be to use the comparative method to explore similarities and

differences of patterns across species and to understand the patterns and
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mechanisms of vital statistics as the result of evolution by natural (and

sometimes artificial) selection. The Gavrilovs (Gavrilov and Gavrilova

1991) note that Raymond Pearl actually understood the importance of

doing this – and wanted to do it – but lacked the tools. For example,

Pearl and Miner (1935) wrote ‘‘For it appears clear that there is no one

universal ‘law’ of mortality . . . different species may differ in the age

distribution of their dying just as characteristically as they differ in their

morphology’’ and that ‘‘But what is wanted is a measure of the indivi-

dual’s total activities of all sorts, over its whole life; and also a numer-

ical expression that will serve as a measure of net integrated

effectiveness of all the environmental forces that have acted upon the

individual throughout its life’’; the methods of life history analysis that

we have discussed in other chapters allow exactly this kind of calcula-

tion. The papers of Pearl are still wonderful reads, and most are easily

accessible through JSTOR; I encourage you to take a look at them (Pearl

1928, Alpatov and Pearl 1929; Pearl and Parker 1921, 1922a, b, c, d,

1924a, b; Pearl et al. 1923, 1927, 1941). As I write the final draft

(April 2005) one of the most interesting issues in biodemography,

with enormous importance for aging modern societies, is that of mor-

tality plateaus. The Gompertz model can be summarized as

dN

dt
¼ �mðtÞN

dm

dt
¼ km

(8:94)

That is, the population declines exponentially and the coefficient of

mortality characterizing the decline grows exponentially. However, in

the past twenty years many studies of the oldest members of populations

(see, for example, Vaupel et al. (1998)) have shown that mortality rates

may not grow exponentially in the oldest individuals, but may plateau or

even decline. Why this is so is not understood and is an area of active

and intense research (Mueller and Rose 1996, Pletcher and Curtsinger

1998, Kirkwood 1999, Wachter 1999, Demetrius 2001, Mangel 2001a,

Weitz and Fraser 2001, de Grey 2003a, b).

Financial engineering: a different way of thinking

Louis Bachelier developed much of the theory of Brownian motion in

the same manner as Einstein did, but five years before Einstein in his

(Bachelier’s) doctoral thesis ‘‘Theory of Speculation’’. This thesis is

translated from the French and published by Cootner (1964). Thus,

many of the tools that we have discussed in the previous and this chapter

apply to economic problems; this area of research is now called
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financial engineering (Wilmott 1998) and some readers may decide that

this is indeed an attractive career for them. I was very tempted to include

a detailed section on these methods, but both one of the referees of the

proposal and my wife thought that financial engineering did not belong

as an application of this tool kit, so I leave it to Connections. The basic

ideas behind the pricing of stock options, due to Merton (1971) and to

Black and Scholes (1972), employ stochastic differential equations but

in a somewhat different manner than we have used. There are three key

components. The first is a stock whose price S(t) follows a log-normal

model for dynamics

1

S

dS

dt
¼ �dt þ �dW (8:95)

where we interpret � as a measure of the mean rate of return of the stock

and � as a measure of the volatility of the price of the stock. The second

component is a riskless investment such as a bank account or bond

paying interest rate r, in the sense that if B(t) is the price of the bond then

dB=dt ¼ rB. Looking backwards from a time T at which we know the

value of the bond, B(T), we conclude that the appropriate price at time t

is B(t)¼B(T)e�r(T� t). The third component is the option, which is a

right to buy or sell a stock at a fixed price (called the exercise or strike

price k) up to a fixed time T (called the expiration or maturity date).

With an American option one can exercise at any time prior to T, with a

European option only at time T. A put option is exercised by selling the

stock; a call option is exercised by buying the stock. An option does not

have to be exercised, but a future has to be exercised (so that a future

might better be called a Must). With these definitions, we can compute

the values of call and put options. For example, a call option will be

exercised only if the price of the stock on day T exceeds the exercise

price; for a put option, the reverse is true. Ultimately, the goal is to find

the value of the option on days prior to T, so we define

Wðs; t; TÞ ¼ EfEuropean option on day T jSðtÞ ¼ sg (8:96)

for which we have the end condition for a call option W(s, T, T )¼
max{s� k, 0}. Unlike evolutionary problems, in which one maximizes

a fitness function, option pricing is based on the concepts of hedging

and no arbitrage. Hedging consists of buying an amount D of actual

stock (in addition to the right to buy stock at a later date) in such a

manner that whether the price of the stock rises (making the option more

valuable) or falls (making it less valuable), the net value of the portfolio,

PðtÞ ¼ W ðs; t; TÞ ��s consisting of the option minus the amount

spent on stock, stays the same. The condition of no arbitrage (arbitrage

is the general process of profiting from price discrepancies) means that
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the portfolio grows at the same rate as the riskless investments, so that

dP ¼ rP dt. These conditions are sufficient to allow one to derive the

diffusion equation for the price of the option. See Wilmott (1998) for an

excellent introduction to such matters. Another terrific book on these

topics, and which will seem familiar to you technically if not scientific-

ally, is Dixit and Pindyck (1994).
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Koella, J. C. and Boëte, C. (2003). A model for the coevolution of immunity and

immune evasion in vector-borne diseases with implications for the

epidemiology of malaria. The American Naturalist, 161, 698–707.

Koella, J. C. and Restif, O. (2001). Coevolution of parasite virulence and host life

history. Ecology Letters, 4, 207–214.

Koeller, P. (2003). The lighter side of reference points. Fisheries Research, 62, 1–6.

Kolata, G. B. (1977). Catastrophe theory: the emperor has no clothes. Science, 196,

287þ 350–351.

Koopman, B. O. (1980). Search and Screening. General Principles with Historical

Applications. Elmsford, NY: Pergamon Press.

Korman, J. and Higgins, P. S. (1997). Utility of escapement time series data for

monitoring the response of salmon populations to habitat alteration. Canadian

Journal of Fisheries and Aquatic Sciences, 54, 2058–2067.

Kot, M. (2001). Elements of Mathematical Ecology. Cambridge: Cambridge

University Press.

Kot, M., Lewis, M. A. and van den Driessche, P. (1996). Dispersal data and the

spread of invading organisms. Ecology, 77, 2027–2042.

Kramers, H. A. (1940). Brownian motion in a field of force and the diffusion model

of chemical reactions. Physica, 7, 284–312.

Kubo, R., Matsuo, K. and Kitahara, K. (1973). Fluctuation and relaxation of

macrovariables. Journal of Statistical Physics, 9, 51–96.

Kuikka, S., Hilden, M., Gislason, H. F., et al. (1999). Modeling environmentally driven

uncertainties in Baltic cod (Gadus morhua) management by Bayesian inference

diagrams. Canadian Journal of Fisheries and Aquatic Sciences, 56, 629–641.

Laakso, J., Kaitala, V. and Ranta, E. (2003). Non-linear biological responses to

disturbance: consequences on population dynamics. Ecological Modelling,

162, 247–258.

Lande, R. (1985). Expected time for random genetic drift of a population between

stable phenotypic states. Proceedings of the National Academy of Sciences, 82,

7641–7645.

Lande, R. (1987). Extinction thresholds in demographic models of territorial species.

American Naturalist, 130, 624–635.

Lande, R., Engen, S. and Saether, B.-E. (2003). Stochastic Population Dynamics in

Ecology and Conservation. Oxford: Oxford University Press.

Lander, A. D. (2004). A calculus of purpose. PLoS Biology, 2, 0712–0714.

Laurenson, M. K., Norman, R. A., Gilbert, L., Reid, H. W. and Hudson, P. J. (2003).

Identifying disease reservoirs in complex systems: mountain hares as reservoirs

of ticks and louping-ill virus, pathogens of red grouse. Journal of Animal

Ecology, 72, 177–185.

Law, R. (2000). Fishing, selection, and phenotypic evolution. ICES Journal of

Marine Science, 57, 659–668.

Law, R. and Dicekmann, U. (1998). Symbiosis through exploitation and the merger

of lineages in evolution. Proceedings of the Royal Society of London, B265,

1245–1253.

References 345

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511819872.011
Downloaded from https://www.cambridge.org/core. Universidad Nacional de Mexico (UNAM), on 25 Mar 2019 at 20:06:55, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511819872.011
https://www.cambridge.org/core


Law, R., Murrell, D. J. and Dieckmann, U. (2003). Population growth in space and

time: spatial logistic equations. Ecology, 84, 252–262.

Leggett, W. C. and Deblois, E. (1994). Recruitment in marine fishes: is it regulated

by starvation and predation in the egg and larval stages? Netherlands Journal of

Sea Research, 32, 119–134.

Lenski, R. E. and May, R. M. (1994). The evolution of virulence in parasites and

pathogens: reconciliation between two competing hypotheses. Journal of

Theoretical Biology, 169, 253–265.

Leonard, T. and Hsu, J. S. J. (1999). Bayesian Methods. Cambridge: Cambridge

University Press.

Levin, S. A. and Segel, L. A. (1985). Pattern generation in space and aspect. SIAM

Review, 27, 45–67.

Levins, R. (1966). The strategy of model building in population biology. American

Scientist, 54, 421–431.

Levins, R. (1969). Some demographic and genetic consequences of environmental

heterogeneity for biological control. Bulletin of the Entomological Society of

America, 15, 237–240.

Levins, R. (1970). Extinction. In M. Gerstenhaber (editor) Some Mathematical

Questions in Biology. Providence, RI: American Mathematical Society,

pp. 75–107.

Lewin, R. (1986). Punctuated equilibrium is now old hat. Science, 231, 672–673.

Lewis, W. J., and Takasu, K. (1990). Use of learned odours by a parasitic wasp in

accordance with host and food needs. Nature, 348, 635–636.

Lewontin, R. and Cohen, D. (1969). On population growth in a randomly varying

environment. Proceedings of the National Academy of Sciences, 62,

1056–1060.

Liermann, M. and Hilborn, R. (1997). Depensation in fish stocks: a hierarchic

Bayesian meta-analysis. Canadian Journal of Fisheries and Aquatic Sciences,

54, 1976–1984.

Lighthill, M. J. (1958). Introduction to Fourier Analysis and Generalised Functions.

Cambridge: Cambridge University Press.

Lima, S. L. (2002). Putting predators back into behavioral predator-prey interactions.

Trends in Ecology and Evolution, 17, 70–75.

Lin, C. C. and Segel, L. A. (1988 (1974)). Mathematics Applied to Deterministic

Problems in the Natural Sciences. Philadelphia: SIAM (Society for Industrial

and Applied Mathematics).

Lin, Z.-S. (2003). Simulating unintended effects restoration. Ecological Modelling,

164, 169–175.

Lindholm, J. B., Auster, P. J., Ruth, M. and Kaufman, L. (2001). Modeling the effects

of fishing and implications for the design of marine protected areas: juvenile fish

responses to variations in seafloor habitat. Conservation Biology, 15, 424–437.

Lindley, S. T. (2003). Estimation of population growth and extinction parameters

from noisy data. Ecological Applications, 13, 806–813.

Link, D. R., Natale, G., Shao, R., et al. (1997). Spontaneous formation of macro-

scopic chiral domains in a fluid smectic phase of achiral molecules. Science,

278, 1924–1927.

346 References

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511819872.011
Downloaded from https://www.cambridge.org/core. Universidad Nacional de Mexico (UNAM), on 25 Mar 2019 at 20:06:55, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511819872.011
https://www.cambridge.org/core


Link, J. S., Brodziak, J. K. T., Edwards, S. F., et al. (2002). Marine ecosystem

assessment in a fisheries management context. Canadian Journal of Fisheries

and Aquatic Sciences, 59, 1429–1440.

Lipp, E. K., Huq, A. and Colwell, R. K. (2002). Effects of global climate on

infectious disease: the cholera model. Clinical Microbiology Reviews, 15,

757–770.

Lochmiller, R. L. and Deerenberg, C. (2000). Trade-offs in evolutionary

immunology: just what is the cost of immunity? Oikos, 88, 87–98.

Lockwood, D. R., Hastings, A. M. and Botsford, L. W. (2002). The effects of

dispersal patterns on marine reserves: does the tail wag the dog? Theoretical

Population Biology, 61, 297–310.

LoGiudice, K., Ostfeld, R. S., Schmidt, K. A. and Keesing, F. (2003). The ecology of

infectious disease: effects of host diversity and community composition on

Lyme disease risk. Proceedings of the National Academy of Science, 100,

567–571.

Lorenzen, K. (2000). Population dynamics and management. In M. C. M. Beveridge

and B. J. McAndrew (editors) Tilapias: Biology and Exploitation. Dordrecht:

Kluwer Academic Publishers, pp. 163–226.

Ludwig, D. (1975). Persistence of dynamical systems under random perturbations.

SIAM Review, 17, 605–640.

Ludwig, D. (1981). Escape from domains of attraction for systems perturbed by

noise. In R. H. Enns, B. L. Jones, R. M. Miura and S. S. Rangnekar (editors)

Nonlinear Phenomena in Physics and Biology. New York: Plenum Press.

Ludwig, D. (1995). Uncertainty and fisheries management. Lecture Notes in

Biomathematics, 100, 516–528.

Ludwig, D. (1999). Is it meaningful to estimate a probability of extinction? Ecology,

80, 298–310.

Ludwig, D., Mangel, M. and Haddad, B. (2001). Ecology, conservation and public

policy. Annual Review of Ecology and Systematics, 32, 481–517.

MacArthur, R. H. and Pianka, E. R. (1966). On the optimal use of a patchy

environment. American Naturalist, 100, 603–609.

MacArthur, R. H. and Wilson, E. O. (1967). The Theory of Island Biogeography.

Princeton, NJ: Princeton University Press.

MacCall, A. D. (1990). Dynamic Geography of Marine Fish Populations. Seattle,

WA: University of Washington Press.

MacCall, A. D. (1998). Use of decision tables to develop a precautionary approach to

problems in behavior, life history and recruitment variability. In V. R. Restrepo

(editor) Proceedings of the Fifth NMFS Stock Assessment Workshop: Providing

Scientific Advice to Implement the Precautionary Approach under the

Magnuson–Stevens Fishery Conservation and Management Act. Key Largo,

FL: US Department of Commerce.

MacCall, A. D. (2002). Use of known-biomass production models to determine

productivity of West Coast groundfish stocks. North American Journal of

Fisheries Management, 22, 272–279.

MacDonald, N. (1989). Biological Delay Systems: Linear Stability Theory.

Cambridge: Cambridge University Press.

References 347

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511819872.011
Downloaded from https://www.cambridge.org/core. Universidad Nacional de Mexico (UNAM), on 25 Mar 2019 at 20:06:55, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511819872.011
https://www.cambridge.org/core


Mackauer, M. and Voelkl, W. (1993). Regulation of aphid populations by aphidiid

wasps: does parasitoid foraging behaviour or hyperparasitism limit impact?

Oecologia, 94, 339–350.

Malloch, P. D. (1994). Life-History and Habits of the Salmon, Sea-Trout, Trout and

Other Freshwater Fish. Derrydale Press.

Mangel, M. (1982). Applied mathematicians and naval operators. SIAM Review,

24, 289–300.

Mangel, M. (1985). Decision and Control in Uncertain Resource Systems. New

York: Academic Press.

Mangel, M. (1992). Descriptions of superparasitism by optimal foraging theory,

evolutionary stable strategies, and quantitative genetics. Evolutionary Ecology,

6, 152–169.

Mangel, M. (1998). No-take areas for sustainability of harvested species and a

conservation invariant for marine reserves. Ecology Letters, 1, 87–90.

Mangel, M. (2000a). Irreducible uncertainties, sustainable fisheries and marine

reserves. Evolutionary Ecology Research, 2, 547–557.

Mangel, M. (2000b). On the fraction of habitat allocated to marine reserves. Ecology

Letters, 3, 15–22.

Mangel, M. (2000c). Trade-offs between fish habitat and fishing mortality and the

role of reserves. Bulletin of Marine Science, 66, 663–674.

Mangel, M. (2001a). Complex adaptive systems, aging and longevity. Journal of

Theoretical Biology, 213, 559–571.

Mangel, M. (2001b). Required reading for (ecological) battles. (Review of N

Eldredge. The Triumph of Evolution . . . and the Failure of Creationism).

Trends in Ecology and Evolution, 16, 110.

Mangel, M. and Beder, J. H. (1985). Search and stock depletion: theory and

applications. Canadian Journal of Fisheries and Aquatic Sciences, 42,

150–163.

Mangel, M. and Clark, C. W. (1988). Dynamic Modeling in Behavioral Ecology.

Princeton, NJ: Princeton University Press.

Mangel, M. and Ludwig, D. (1977). Probability of extinction in a stochastic

competition. SIAM Journal on Applied Mathematics, 33, 256–266.

Mangel, M. and Roitberg, B. D. (1992). Behavioral stabilization of host–parasitoid

population dynamics. Theoretical Population Biology, 42, 308–320.

Mangel, M. and Tier, C. (1993). Dynamics of metapopulations with demographic

stochasticity and environmental catastrophes. Theoretical Population Biology,

44, 1–31.

Mangel, M. and Tier, C. (1994). Four facts every conservation biologist should

know about persistence. Ecology, 75, 607–614.

Mangel, M., Hofman, R. J., Norse, E. A. and Twiss, J. R. (1993). Sustainability and

ecological research. Ecological Applications, 3, 573–575.

Mangel, M., Mullan, A., Mulch, A., Staub, S. and Yasukochi, E. (1998). A generally

accessible derivation of the golden rule of bioeconomics. Bulletin of the

Ecological Society of America, 79, 145–148.

Mangel, M., Fiksen, O. and Giske, J. (2001). Theoretical and statistical models

in natural resource management and research. In T. M. Shenk and

348 References

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511819872.011
Downloaded from https://www.cambridge.org/core. Universidad Nacional de Mexico (UNAM), on 25 Mar 2019 at 20:06:55, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511819872.011
https://www.cambridge.org/core


A. B. Franklin (editors) Modeling in Natural Resource Management.

Development, Interpretation, and Application. Washington, DC: Island Press,

pp. 57–72.

Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M. and Francis, R. C. (1997).

A Pacific interdecadal climate oscillation with impacts on salmon production.

Bulletin of the American Meteorological Society, 78, 1069–1079.

Margulis, L. and Sagan, D. (2002). Acquiring Genomes. A Theory of the Origins of

Species. New York: Basic Books.

Marris, G., Hubbar, S. and Hughes, J. (1986). Use of patchy resources by Nemeritis

canescens (Hymenoptera: Ichneumonidae). I. Optimal solutions. Journal of

Animal Ecology, 55, 631–640.

Marshall, C. T., Kjesbu, O. S., Yaragina, N. A., Solemdal, P. and Ulltang, O. (1998).

Is spawner biomass a sensitive measure of the reproductive and recruitment

potential of Northeast Arctic cod? Canadian Journal of Fisheries and Aquatic

Sciences, 55, 1766–1783.

Martz, H. F. and Waller, R. A. (1982). Bayesian Reliability Analysis. New York:

John Wiley and Sons.

Masel, J. and Bergman, A. (2003). The evolution of the evolvability properties of

the yeast prion [PSIþ ]. Evolution, 57, 1498–1512.

Matsuda, H. and Nishimori, K. (2003). A size-structured model for a stock-recovery

program for an exploited endemic fisheries resource. Fisheries Research, 60,

223–236.

Maunder, M. (2003). Is it time to discard the Schaefer model from the stock

assessment scientist’s toolbox? Fisheries Research, 61, 145–149.

Maunder, M. N. (2002). The relationship between fishing methods, fisheries

management and the estimation of maximum sustainable yield. Fish and

Fisheries, 3, 251–260.

May, R. M. (1974). Stability and Complexity in Model Ecosystems, 2nd edn.

Princeton, NJ: Princeton University Press.

May, R. M. and Anderson, R. M. (1978). Regulation and stability of host-parasite

population interactions. II. Destabilizing processes. Journal of Animal Ecology,

47, 249–267.

May, R. M., Conway, G. R., Hassel, M. P. and Southwood, T. R. E. (1974). Time

delays, density dependence and single species oscillations. Journal of Animal

Ecology, 43, 747–770.

Maynard Smith, J. (1968). Some Mathematical Ideas in Biology. Cambridge:

Cambridge University Press.

Maynard Smith, J. (1982). Evolution and the Theory of Games. Cambridge:

Cambridge University Press.

McAllister, M. K. (1996). Applications of Bayesian decision theory to fisheries

policy formation: review. In R. Arnason and T. B. Davidsson (editors) Essays on

Statistical Modelling Methodology for Fisheries Management. Rekjavek,

Iceland: The Fisheries Research Institute University Press.

McAllister, M. K. and Ianelli, J. N. (1997). Bayesian stock assessment using

catch-age data and the sampling-importance resampling algorithm. Canadian

Journal of Fisheries and Aquatic Sciences, 54, 284–300.

References 349

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511819872.011
Downloaded from https://www.cambridge.org/core. Universidad Nacional de Mexico (UNAM), on 25 Mar 2019 at 20:06:55, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511819872.011
https://www.cambridge.org/core


McAllister, M. K. and Kirkwood, G. P. (1998a). Bayesian stock assessment: a review

and example application using the logistic model. ICES Journal of Marine

Science, 55, 1031–1060.

McAllister, M. K. and Kirkwood, G. P. (1998b). Using Bayesian decision analysis to

help achieve a precautionary approach for managing developing fisheries.

Canadian Journal of Fisheries and Aquatic Sciences, 55, 2642–2661.

McAllister, M. K. and Kirkwood, G. P. (1999). Applying multivariate conjugate

priors in fishery-management system evaluation: how much quicker is it and

does it bias the ranking of management options. ICES Journal of Marine

Science, 56, 884.

McAllister, M. K. and Peterman, R. M. (1992a). Decision analysis of a large-scale

fishing experiment designed to test for a genetic effect of size-selective fishing

on British Columbia pink salmon (Oncorhynchus gorbuscha). Canadian

Journal of Fisheries and Aquatic Sciences, 49, 1305–1314.

McAllister, M. K. and Peterman, R. M. (1992b). Experimental design in the

management of fisheries: A review. North American Journal of Fisheries

Management, 12, 1–18.

McAllister, M. K., Pikitch, E. K., Punt, A. E. and Hilborn, R. (1994). A Bayesian

approach to stock assessment and harvest decision using the sampling/

importance resampling algorithm. Canadian Journal of Fisheries and Aquatic

Sciences, 51, 2673–2687.

McAllister, M. K., Starr, P. J., Restrepo, V. R. and Kirkwood, G. P. (1999).

Formulating quantitative methods to evaluate fishery-management systems:

what fishery processes should be modelled and what trade-offs should be made?

ICES Journal of Marine Science, 56, 900–916.

McAllister, M. K., Pikitch, E. K. and Babcock, E. A. (2001). Using demographic

methods to construct Bayesian priors for the intrinsic rate of increase in the

Schaefer model and implications for stock rebuilding. Canadian Journal of

Fisheries and Aquatic Sciences, 58, 1871–1890.

McCallum, H., Barlow, N. and Hone, J. (2001). How should pathogen transmission

be modelled? Trends in Ecology and Evolution, 16, 295–300.

McClanahan, T. R. and Kaunda-Arara, B. (1996). Fishery recovery in a coral-reef marine

park and its effect on the adjacent fishery. Conservation Biology, 10, 1187–1199.

McDonald, A. D., Sandal, L. K. and Steinshamn, S. I. (2002). Implications of a

nested stochastic/deterministic bio-economic model for a pelagic fishery.

Ecological Modelling, 149, 193–201.

McDowall, R. M. (1988). Diadromy in Fishes. Migrations Between Freshwater and

Marine Environments. Portland, OR: Timber Press.

McGarvey, R. (2003). Demand-side fishery management: integrating two forms

of input control. Marine Policy, 27, 207–218.

McGregor, R. (1997). Host-feeding and oviposition by parasitoids on hosts of

different fitness value: influences of egg load and encounter rate. Journal of

Insect Behavior, 10, 451–462.

McGregor, R. R. and Roitberg, B. D. (2000). Size-selective oviposition by

parasitoids and the evolution of life-history timing in hosts: fixed preference

vs frequency-dependent host selection. Oikos, 89, 305–312.

350 References

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511819872.011
Downloaded from https://www.cambridge.org/core. Universidad Nacional de Mexico (UNAM), on 25 Mar 2019 at 20:06:55, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511819872.011
https://www.cambridge.org/core


Mchich, R., Auger, P. M., de la Parra, R. B. and Raissi, N. (2002). Dynamics of a

fishery on two fishing zones with fish stock dependent migrations: aggregation

and control. Ecological Modelling, 158, 51–62.

McLeod, P., Martin, A. P. and Richards, K. J. (2002). Minimum length scale for

growth-limited oceanic plankton distributions. Ecological Modelling, 158,

111–120.

McNamara, J. M., Houston, A. I. and Collins, E. J. (2001). Optimality models in

behavioral biology. SIAM Review, 43, 413–466.

McNeill, J. R. (2000). Something New Under the Sun: an Environmental History of

the Twentieth-Century World. New York: Norton.

McPhee, J. (2002). The Founding Fish. New York: Farrar, Straus and Giroux.

McPhee, M. V. and Quinn, T. P. (1998). Factors affecting the duration of nest

defense and reproductive lifespan of female sockeye salmon, Oncorhynchus

nerka. Environmental Biology of Fishes, 51, 469–475.

Medvinsky, A. B., Petrovskii, S. V., Tikhonova, I. A., Malchow, H. and Li, B.-L.

(2002). Spatiotemporal complexity of plankton and fish dynamics. SIAM

Review, 44, 311–370.

Meier, C., Senn, W., Hauser, R. and Zimmerman, M. (1994). Strange limits of

stability in host-parasitoid systems. Journal of Mathematical Biology, 32,

563–572.

Meltzer, M. (2003). Risks and benefits of preexposure and postexposure smallpox

vaccination. Emerging Infectious Diseases, 9, 1363–1370.

Meltzer, M. I., Damon, I., LeDuc, J. W. and Millar, D. J. (2001). Modeling potential

responses to smallpox as a bioterrorist weapon. Emerging Infectious Diseases,

7, 959–968.

Merton, R. C. (1971). Optimum consumption and portfolio rules in a

continuous-time model. Journal of Economic Theory, 3, 373–413.

Mesnil, B. (2003). The catch-survey analysis (CSA) method of fish stock

assessment: an evaluation using simulated data. Fisheries Research, 63, 193–212.

Meyer, R. and Millar, R. B. (1999a). Bayesian stock assessment using a state-space

implementation of the delay difference model. Canadian Journal of Fisheries

and Aquatic Sciences, 56, 37–52.

Meyer, R. and Millar, R. B. (1999b). BUGS in Bayesian stock assessments.

Canadian Journal of Fisheries and Aquatic Sciences, 56, 1078–1086.

Millar, R. B. (2002). Reference priors for Bayesian fisheries models. Canadian

Journal of Fisheries and Aquatic Sciences, 59, 1492–1502.

Millar, R. B. and Meyer, R. (2000). Bayesian state-space modeling of age-structured

data: fitting a model is just the beginning. Canadian Journal of Fisheries and

Aquatic Sciences, 57, 43–50.

Mills, D. (1989). Ecology and Management of Atlantic Salmon. London: Chapman

and Hall.

Mitchell, W. A. and Valone, T. J. (1990). The Optimization Research Program:

studying adaptations by their function. The Quarterly Review of Biology, 65, 43–52.

Moerland, T. S. (1995). Temperature: enzyme and organelle. In P. Hochackha and

T. P. Mommsen (editors) Biochemistry and Molecular Biology of Fishes.

Amsterdam: Elsevier Science B.V.

References 351

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511819872.011
Downloaded from https://www.cambridge.org/core. Universidad Nacional de Mexico (UNAM), on 25 Mar 2019 at 20:06:55, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511819872.011
https://www.cambridge.org/core


Moret, Y. and Schmid-Hempel, P. (2000). Survival for immunity: the price of

immune system activation for bumblebee workers. Science, 290, 1166–1167.

Morgan, E. R., Milner-Gulland, E. J., Torgerson, P. R. and Medley, G. F. (2004).

Ruminating on complexity: macroparasites of wildlife and livestock. Trends in

Ecology and Evolution, 19, 181–188.

Morris, W. F., Mangel, M. and Adler, F. R. (1995). Mechanisms of pollen deposition

by insect pollinators. Evolutionary Ecology, 9, 304–317.

Morse, P. M. and Kimball, G. E. (1951). Methods of Operations Research.

Technology Press of Massachusetts Institute of Technology; and Cambridge

and New York: Wiley.

Mosmann, T. R. and Sad, S. (1996). The expanding universe of T-cell subsets:

Th1, Th2 and more. Immunology Today, 17, 138–146.

Mosquera, J. and Adler, F. R. (1998). Evolution of virulence: a unified framework

for coinfection and superinfection. Journal of Theoretical Biology, 195,

293–313.
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optical activity, and spontaneous asymmetric synthesis 56–58,

76–77

optimal age at maturity 27–28

optimal foraging theory 317–318
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optimal immune response 201–205, 208

T-cell phenotypes in multiple infections 201–203

trade-off with reproduction 203–205

optimal virulence level 176–178, 182, 183

Ornstein–Uhlenbeck process 264–268, 282–283

oscillations 54–55

relaxation oscillations 46, 47–48, 74–76

OSP (Optimal Sustainable Population size) 217–218

parasite burden

costs to an organism 203–205

optimal response to 203–205

parasites see helimith worm parasites

parasitic wasps, sex ratio bias 10–12, 18

parasitoids

behavior and population dynamics combined 155–159,

160, 166–167

classification of life histories 133, 135

delay differential models for host–parasitoid dynamics 164

egg limitation on reproductive effort 159–164

evolution of host choice 150–155, 165

Nicholson–Bailey model 135–137

Nicholson–Bailey model instability 135–140

Nicholson–Bailey model stabilization 137, 141–145, 164

overlapping generations in continuous time 145–150

pheromone marking of hosts 165

reproductive success factors 159–164

spatial aspects of host interaction 164

time limitation on reproductive effort 159–164

typical species 133, 134

wide range of topics for investigation 165

parent–offspring conflict, egg size in Atlantic salmon

8–10, 18

patch leaving 123–124, 125, 165

path integrals 282

per capita growth rate 36–38, 74

as a measure of fitness 31–36

spatial variation 31–32

temporal variation 32–36

persistence time

density independent diffusion approximation 292,

297–301, 299

general density dependent case 301, 301–302

see also extinction times

pest outbreak, relaxation oscillations 46, 47–48, 74–76

phase plane 49–50, 51, 56–58, 76

pheromone marking by parasitoids 165

plane geometry, marginal value theorem 5–8, 18

plankton bloom, relaxation oscillations 46, 47–48, 74–76

Plasmodium spp., cause of malaria 189–190, 207

Poisson distribution 95–100

comparison with negative binomial distribution 106, 109,

110, 111

Poisson increment 279–281

Poisson limit of the binomial 100

Poisson process, gamma density conjugate prior 112

population biology of disease

basic reproductive rate of a disease (R0) 171

cholera 208

complexity of models 169

contagiousness (infectiousness) 176–178, 182, 183

cultural and behavioral effects 207

demographic processes added to models 179–181

ecological aspects of disease models 207

evolution of virulence 178, 182–188, 206

force of infection 169–170

frequency dependent model for transmission 172, 173

general literature 205–206

helminth worms 193–201, 208

hepatitis C virus spread 169–170

Kermack–McKendrick epidemic theorem 174–175, 177

macroparasites 168–169

malaria 188–193, 194, 207

mass action model for transmission 169–170, 172, 173

microparasites 168–169

negative binomial model of transmission 172–173

optimal immune response 201–205, 208

optimal virulence level for a disease organism 176–178,

182, 183

power model for transmission 172

prion disease kinetics 208

relationship between virulence and contagion 176–178,

182, 183

relevance of 168–169

role of genomics and bioinformatics 168–169

SI model 169–171

SIR model of epidemics 173–178, 179–181, 206, 207

SIRS model of endemic diseases 178–181, 206, 207

spatial aspects of disease transmission 209

standard vector model for malaria 190–193, 194

stochastic epidemics 209

transmission between infected and susceptible individuals

171–173

transmission models 171–173

vector-based diseases 188–193, 194, 207

virulence (infectedness) 176–178, 182, 183

population demography, Euler–Lotka equation 311–314,

319–320

population dynamics and behavior combined 155–159, 160,

166–167
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population dynamics models

advanced models 145–150

delay differential models 164

overlapping generations in continuous time 145–150

see also Nicholson–Bailey model

population genetics see genetic models

population growth

deterministic chaos 40–43, 74

in fluctuating environments 31–36, 73–74

rate of 36–38, 74

population oscillations, relaxation oscillations 46, 47–48,

74–76

population size

catastrophic changes in 294–296, 318

ceiling 293–296, 318

MacArthur–Wilson theory of extinction time 287–293,

317– 318

power model for disease transmission 172

predation and random search 20–23, 24

predator–prey interactions 48–49, 57–58

prion disease kinetics 208

priors see conjugate priors; non-informative priors

probability density function 84 –85

probability distributions

binomial distribution 88–95

chi-square distribution 115–116

log-normal distribution 121–122

multinomial distribution 95

negative binomial distribution (first form) 102–103

negative binomial distribution (second form) 103–104, 106,

107– 112

normal (Gaussian) distribution 112–116, 115

Poisson distribution 95 –100, 106, 109, 110, 111

t-distribution 80–81, 119–121, 130

probability model, connection between data sample and data

source 101, 102

probability theory 81– 88

Bayes’s Theorem 82, 83–84

coefficient of variation 87 –88

conditional probability 81 –84, 85–86

continuous random variables 84 –85, 86–88

discrete random variables 84–85 , 86 –88

distribution function 84–85

events 81 –84, 82, 85

expectation 86–88

experiments 81–82

exponential distribution function 85–86

law of total probability 82, 83–84

mean 86 –88

moments 86–88

probability density function 84–85

random variables 84 –85

sample space 81–82

standard deviation 87–88

variance 86–88

process uncertainty and observation error 228–231, 238, 243

punctuated equilibrium 309– 311, 319

random search and predation 20–23, 24

random search with depletion 100– 101

random variables 84–85

reaction-diffusion equations 79

red noise 283

reflecting boundary conditions 62–64

relative size at maturity 29, 30, 73

relaxation oscillations 46, 47–48, 74–76

renewal processes 18

resistance, evolution of 182, 206

Rhagoletis basiola (rose hip fly) 134

Rhagoletis completa (walnut husk fly) 134

Ricker map 39–40

Ricker recruitment function 74

Ricker stock–recruitment relationship 212, 213, 239–241

saddle point 49–50, 51, 54, 56–58, 71–73

salmon fisheries management 227–228, 242–243

salmon life histories 227, 242–243

see also Atlantic salmon

sample space 81–82

Schaefer model and its extensions 215–218, 220–221

Seber’s delta method 35–36

separation of variables 62–64, 78

sex ratio bias 10–12, 18

SI model of disease spread in a population 169–171

SIR model of epidemics 173–178, 179–181, 206, 207

SIRS model of endemic diseases 178–181, 206, 207

spatial aspects of disease transmission 209

spatial aspects of host–parasitoid interaction 164

spatial variation in per capita growth rate 31–32

spiral point (steady state) 54–55, 71–73

spontaneous asymmetric synthesis, and optical activity 56–58,

76–77

stable node 49–50, 51, 54, 56–58, 71–73

standard deviation 87–88

statistical analysis

Bayesian approach 125–127, 128–129

frequentist approach 125–127

steady states

classification 48–58, 71–73, 74–76

determination of stability 137–140
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stochastic calculi 282, 318–319

stochastic differential equations 283

stochastic dynamic programming 151–155, 158, 161–164,

165–166

stochastic epidemics 209

stochastic harvesting equation 278–279

stochastic integrals 264–268

stochastic models 228–231, 233–236

stochastic population dynamics

alternative to Brownian motion 279–281

backward equations 268–272, 276–279, 284

Brownian motion 251–254, 260–264, 282

Chapman–Kolmogorov equation (Master Equation) 270, 272

derivative of Brownian motion 261–264

Feynman–Kac formula 276–278, 282

forward equations 272–276, 278, 284

from deterministic to stochastic dynamics 248–251

gambler’s ruin in a biased game 257–260

gambler’s ruin in a fair game 253, 254–257

Gaussian white noise 261–264

general diffusion processes 268–272

independent increments 282

Kolmogorov backward equation 268–272

Kolmogorov forward equation 272–276

Markov process 260–261

nature of stochastic processes 248

Ornstein–Uhlenbeck process 264–268, 282–283

path integrals 282

Poisson increment 279–281

stochastic differential equations 283

stochastic harvesting equation 278–279

stochastic integrals 264–268, 283

thinking along sample paths (trajectories) 248–251, 282

transition density and covariance of Brownian motion

260–261

stochastic population theory (ecological applications) 283–284

Anderson’s theory of vitality 314–316

biodemography of survival 311–314, 319–320

catastrophic changes to population size 294–296

connecting models and data 319

density independent diffusion approximation 292,

297–301

diffusion approximation 318–319

escape from a domain of attraction 285–287, 317

Euler–Lotka equation of population demography 311–314,

319–320

general density dependent case 301–302

life tables 311–312, 319–320

MacArthur–Wilson theory of extinction time 287–293

population genetics applications 284

punctuated equilibrium 309–311

role of a ceiling on population size 293–296

transitions between adaptive peaks 302–311

stock–recruitment relationships 212–215, 239–241

Stratonovich calculus 282, 318–319

Student’s t-random variable 119–120

superparasitism 165

survival

Anderson’s theory of vitality 314–316

biodemography of 311–314, 319–320

Euler–Lotka equation of population demography 311–314,

319–320

life tables 311–312, 319–320

t-distribution 80–81, 119–121, 130

Taylor, L. R. 127–128

temporal variation in per capita growth rate 32–36

theoretical biology

building intuition about biological systems 15–17

gaining mathematical skills 15–17

importance of writing skills 14–15, 19

interaction of mathematics and science 1–2

toolbox metaphor 12–15

total least squares 118–119, 130

traveling waves 69–73

two prey diet choice problem 3–5, 18

unbeatable (uninvadable) sex ratio 10–12, 18–19

unstable node 49–50, 51, 54, 56–58

variance 86–88

vector-based diseases, malaria 188–193, 194, 207

Verdi, Giuseppe 15–17

virulence

AIDS virus 182, 208

and contagion 176–178, 182, 183

coevolution with host response 184–188

drug resistance 182

evolution of 178, 182–188

leader–follower (Stackelberg) game 184–185

optimal level 178, 182, 183

timescale of evolution 182

unbeatable (ESS) level of virulence 182–184

viruses

spread of hepatitis C 169–170

viral dynamics and AIDS 182, 208

von Bertalanffy, Ludwig 23–29, 30

Wiener process 251

writing and the creative process 14–15, 19
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