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Introduction

When I first read a biology textbook, it was like reading a thriller. Every page brought a 
new shock. As a physicist, I was used to studying matter that obeys precise mathematical 
laws. But cells are matter that dances. Structures spontaneously assemble, perform elaborate 
biochemical functions and vanish effortlessly when their work is done. Molecules encode 
and process information virtually without errors, despite the fact that they are under strong 
thermal noise. How could this be? Are there special laws of nature that apply to biological 
systems that can help us understand why they are so different from nonliving matter?

We yearn for laws of nature and simplifying principles, but biology is astoundingly 
complex. Every biochemical interaction is exquisitely crafted, and cells contain networks of 
thousands of such interactions. These networks are the result of evolution, which works by 
making random changes and selecting the organisms that survive. Therefore, the structures 
found by evolution are, to some degree, dependent on historical chance and are laden with 
biochemical detail that requires special description in every case.

Despite this complexity, scientists have attempted to discern generalizable principles 
throughout the history of biology. The search for these principles is ongoing and far from 
complete. It is made possible by advances in experimental technology that provide detailed 
and comprehensive information about networks of biological interactions.

Such studies led to the discovery that one can, in fact, formulate general laws that apply to 
biological networks. Because it has evolved to perform functions, biological circuitry is far 
from random or haphazard. It has a defined style, the style of systems that must function. 
Although evolution works by random tinkering, it converges again and again onto a defined 
set of circuit elements that obey general design principles.

The goal of this book is to highlight some of the design principles of biological systems, 
and  to provide a mathematical framework in which these principles can be used to 
understand  biological networks. The main message is that biological systems contain 
an inherent simplicity. Although cells evolved to function and did not evolve to be 
comprehensible, simplifying principles make biological design understandable to us.

This book is written for readers who have had a basic course in mathematics. Specialist 
terms and gene names are avoided, although detailed descriptions of several well-studied 
biological systems are presented in order to demonstrate the principles. This book presents 
one path into systems biology based on mathematical principles, with less emphasis on 
experimental technology. Other directions can be found in the sources listed at the end of 
each chapter.
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The mathematical descriptions in the book can be solved on the blackboard or on a small 
piece of paper. We will see that it can be very useful to ask, “Why is the system designed in 
such a way?” and to try to answer with simplified models.

We conclude this introduction with an overview of the chapters. The first part of 
the book deals with transcription regulation networks. Elements of networks and 
their dynamics are described. We will see that these networks are made of repeating 
occurrences of simple patterns called network motifs. Each network motif performs a 
defined information processing function within the network. These building block circuits 
were rediscovered by evolution again and again in different systems. Network motifs 
in other biological networks, including signal transduction and neuronal networks, are 
also discussed. The main point is that biological systems show an inherent simplicity, by 
employing and combining a rather small set of basic building-block circuits, for specific 
computational tasks.

The second part of the book focuses on the principle of robustness: biological circuits 
are designed so that their essential function is insensitive to the naturally occurring 
fluctuations in the components of the circuit. Whereas many circuit designs can perform a 
given function on paper, we will see that very few can work robustly in the cell. These few 
robust circuit designs are nongeneric and particular, and are often aesthetically pleasing. 
We will use the robustness principle to understand the detailed design of well-studied 
systems, including bacterial chemotaxis and patterning in fruit fly development.

The final chapters describe how evolutionary optimization can be used to understand 
the optimal circuit design.

These features of biological systems – reuse of a small set of network motifs, robustness 
to component tolerances and constrained optimal design – are also found in a completely 
different context: systems designed by human engineers. Biological systems have additional 
features in common with engineered systems, such as modularity and hierarchical design. 
These similarities hint at a deeper theory that can unify our understanding of evolved and 
designed systems.

This is it for the introduction. Some of the solved exercises after each chapter provide 
more detail on topics not discussed in the main text. I wish you enjoyable reading.

INTRODUCTION TO THE SECOND EDITION
Thirteen years have passed since the first edition. In these 13 years, three daughters were 
born, Gefen, Tamar and Carmel. With their growth (Gefen is 11, Tamar is 9 and Carmel is 
5), space was created to write this second edition.

In these 13 years, systems biology has become a field with conferences, journals, 
departments and institutes. Thousands of physicists, computer scientists and engineers have 
joined biology, and many biologists have learned theoretical approaches. Systems biology is 
now a part of research in all fields of biology.

It is a thrilling experience to survey the advances made in these 13 years, especially the 
conceptual advances and new design principles that have emerged. These advances account 
for new chapters in this book, devoted to paradoxical components, fold-change detection, 
dynamical compensation in tissues, multi-objective optimality in evolution and modularity.
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In parallel, the principles that appeared in the first edition have been refined and applied 
to many more systems. Thus, every old chapter is extensively revised with new examples 
and mathematical techniques.

Additional improvements stem from the feedback of instructors and students who used 
the first edition of this book in courses in biology, physics, engineering and computer 
science. This feedback accounts for new chapters on biological oscillators and bistability 
and memory. It also helped me to introduce important methods such as nullclines and 
phase plane analysis.

As I wrote the second edition, I used it to teach a 2018 course, complete with guitar songs, 
which is video-documented online. The participants helped me explain things more clearly 
and take more deep sighs of relief.

The book did not grow much in size because I removed, trimmed and edited the chapters 
to keep things readable, to remove errors and to minimize topics which have proved to be 
less important than I originally thought. Throughout, I selected studies that help clarify the 
principles, especially studies that were pioneering.

I wrote at the kitchen table after the triple bedtime, and in flights and hotels while 
traveling. Keeping a steady pace of about an hour a day helped me finish in about a 
year, an overall joyous experience. I was encouraged by Michael Elowitz, by my life-
friend Galia Moran and by my publisher. After years of working together in research, 
I discovered Avi Mayo as a devoted and creative partner for making the figures, which 
are all new. I’m grateful for being surrounded by family, friends, students and colleagues 
whom I love.

FURTHER READING

(Bialek, 2012) “Biophysics: searching for principles.”
(Fall et al., 2004) “Computational cell biology.”
(Fell, 1997) “Understanding the control of metabolism.”
(Heinrich and Schuster, 1996) “The regulation of cellular systems.”
(Klipp et al., 2014) “Systems biology in practice: concepts, implementation and application.”
(Kriete and Eils, 2006) “Introducing computational systems biology.”
(Palsson, 2006) “Systems biology: properties of reconstructed networks.”
(Phillips et al., 2012) “Physical biology of the cell.”
(Savageau, 1976) “Biochemical systems analysis: a study of function and design in molecular biology.”
Videos of 2018 course and additional material: http://www.weizmann.ac.il/mcb/UriAlon/download/

systems-biology-course-2018
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3

C h a p t e r  1

Transcription Networks
Basic Concepts

1.1 INTRODUCTION
The cell is an integrated device made of several thousand types of proteins. Each protein is a 
nanometer-size molecular machine that carries out a specific task with exquisite precision. 
For example, the micron-long bacterium Escherichia coli is a cell that contains a few million 
proteins, of about 4500 different types (typical numbers, lengths and timescales can be 
found in Table 1.1).

Cells encounter different situations that require different proteins. For example, when 
cells sense sugar, they begin to produce proteins that transport the sugar into the cell and 
utilize it. When damaged, the cell produces repair proteins. The cell therefore continuously 
monitors its environment and calculates the amount at which each type of protein is needed. 
This information-processing function, which determines the rate of production of each 
protein, is largely carried out by transcription networks.

The first few chapters in this book will discuss transcription networks. This opening 
chapter defines the elements of transcription networks and their dynamics.

1.2 THE COGNITIVE PROBLEM OF THE CELL
Cells live in a complex environment and can sense many different signals, including 
physical parameters such as temperature and osmotic pressure, biological signaling 
molecules from other cells, beneficial nutrients and harmful chemicals. Information about 
the internal state of the cell, such as the level of key metabolites and internal damage 
(damage to DNA, membrane or proteins), is also important. Cells respond to these signals 
by producing appropriate proteins that act upon the internal or external environment.

To represent these environmental states, the cell uses special proteins called transcription 
factors as symbols. Transcription factors are designed to transit rapidly between active and 
inactive molecular states, at a rate that is modulated by a specific environmental signal. Each 
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active transcription factor can bind the DNA to regulate the rate at which specific target 
genes are read (Figure 1.1). The genes are read (transcribed) into mRNA, which is then 
translated into protein, which can act on the environment. The activities of the transcription 
factors in a cell therefore can be considered an internal representation of the environment. 
For example, E. coli has an internal representation with about 300 degrees of freedom 
(transcription factors). These regulate the rates of production of E. coli’s 4500 proteins.

The internal representation by a set of transcription factors is a compact description of the 
myriad factors in the environment. Many 
different situations are summarized by 
a particular transcription factor activity 
that signifies “I am starving.” Many 
other situations are summarized by a 
different transcription factor activity 
that signifies “My DNA is damaged.” 
These transcription factors regulate their 
target genes to mobilize the appropriate 
protein responses in each case.

TABLE 1.1 Typical Biological Parameter Values (Biology by the Numbers, 2016)

Property E. coli Yeast Human (Fibroblast)

Cell volume 1 µm3 1000 µm3 10,000 µm3

Proteins/cell ∼4 × 106 ∼4 × 109 ∼4 × 1010

Mean size of protein 4–5 nm
Size of genome 4.6 × 106 bp

4500 genes
1.2 × 107 bp
6600 genes

3.2 × 109 bp
21,000 genes

Regulator binding site length 10–20 bp 5–10 bp 5–10 bp
Promoter length ∼100 bp ∼1000 bp ∼104–105 bp
Gene length ∼1000 bp ∼1000 bp 104–106 bp (with 

introns)
Concentration of 1 protein/
cell

∼1 nM ∼1 pM ∼0.1 pM

Diffusion time of protein 
across cell

∼0.1 sec
(D = 10 µm2/sec)

∼0.3 sec ∼10 sec

Diffusion time of small 
molecule across cell

∼1 msec
(D = 100 µm2/sec)

∼3 msec ∼0.1 sec

Time to transcribe a gene <1 min (80 bp/sec) ∼1 min ∼30 min (including 
RNA processing)

Time to translate a protein <1 min (20 aa/sec) ∼1 min ∼30 min (including 
mRNA export)

Typical mRNA lifetime 3 min 30 min 10 h
Typical protein lifetime 1 h 0.3–3 h 10–100 h
Cell generation time 20 min-several  

hours
2h-several hours 20 h-nondividing

Ribosomes/cell 104 107 108

Mutation rate 10−9–10−10/bp/ 
replication

10−9–10−10/bp/ 
replication

∼10–9/bp/
replication

FIGURE 1.1 
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1.3 ELEMENTS OF TRANSCRIPTION NETWORKS
The interaction between transcription 
factors and genes is described by 
transcription networks. Let us begin 
by briefly describing the elements of the 
network: genes and transcription factors. 
Each gene is a stretch of DNA whose 
sequence encodes the information needed 
for production of a protein. The protein 
is produced in two steps, transcription and translation. First, the gene is copied into 
a disposable mRNA molecule by a protein machine called RNA polymerase (RNAp), 
a process called transcription. The 
mRNA is then translated into a protein 
(Figure 1.2).

The rate at which the gene is transcribed, 
the number of mRNA produced per unit 
time, is controlled by a regulatory region 
of DNA that precedes the gene, called 
the promoter (Figure 1.2). RNAp binds 
a defined site (a specific DNA sequence) 
in the promoter (Figure 1.2). The precise 
DNA sequence of this this site determines 
the chemical affinity of RNAp to the 
promoter, and specifies the transcription 
rate of the gene.

Whereas RNAp acts on all of the genes, 
changes in the expression of specific 
genes are due to transcription factors. 
Each transcription factor modulates 
the transcription rate of a set of target 
genes. Transcription factors affect the 
transcription rate by binding specific sites 
in the promoters of the regulated genes 
(Figures 1.3 and 1.4). When bound, they 
change the probability per unit time that 
RNAp binds the promoter and produces 
an mRNA molecule. The transcription 
factors thus affect the rate at which 
RNAp initiates transcription of the gene. 
Transcription factors can act as activators 
that increase the transcription rate of a gene 
(Figure 1.3), or as repressors that reduce 
the transcription rate (Figure 1.4).

FIGURE 1.2 

FIGURE 1.3 

FIGURE 1.4 
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Transcription factor proteins are themselves encoded by genes, which are regulated 
by other transcription factors, which in turn may be regulated by yet other transcription 
factors, and so on. This set of interactions forms a transcription network (Figure 1.5). The 
transcription network describes all of the regulatory transcription interactions in a cell. 
In the network, the nodes are genes and arrows represent transcriptional regulation of one 
gene by the protein product of another gene. An arrow X → Y means that the product of 
gene X is a transcription factor protein that can bind the promoter of gene Y to control the 
rate at which gene Y is transcribed.

genes that encode a transcription factor
other genes

FIGURE 1.5 
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The inputs to the network are signals that carry information from the environment. Each 
signal is a small molecule, protein modification or molecular partner that directly affects 
the activity of one of the transcription factors. Often, external stimuli activate biochemical 
signal-transduction pathways that culminate in a chemical modification of specific 
transcription factors. In other systems, the signal can be as simple as a sugar molecule or 
hormone that enters the cells and directly binds the transcription factor. The signals usually 
cause a physical change in the shape of the transcription factor protein, causing it to assume 
an active molecular state. Thus, signal Sx can cause X to rapidly shift to its active state X*, 
bind the promoter of gene Y and change the rate of transcription, leading to increased or 
decreased production of protein Y (Figures 1.3 and 1.4).

The network thus represents a dynamical system: after an input signal arrives, 
transcription factor activities change, leading to changes in the production rate of proteins. 
Some of these proteins are transcription factors that activate additional genes, and so on. 
The majority of the proteins are not transcription factors, but instead carry out the diverse 
functions of the cell, such as building structures and catalyzing reactions.

1.3.1 Separation of Timescales

Transcription networks are designed with a strong separation of timescales: the input signals 
usually change transcription factor activities on a sub-second timescale. Binding of the active 
transcription factor to its DNA sites often reaches equilibrium in seconds. Transcription and 
translation of the target gene takes minutes, and the accumulation of the protein product 
can take hours. Thus, the different steps between the input signal and the accumulation of 
the output protein have very different timescales. Table 1.2 gives typical timescales for E. coli. 

Thus, transcription factor activity levels can be considered to be at steady state within the 
equations that describe network dynamics on the slow timescale of changes in protein levels.

In addition to transcription networks, the cell contains several other networks of 
interactions, such as signal-transduction networks made of interacting proteins, which 
will be discussed in later chapters. These networks typically operate much faster than 
transcription networks, and thus they can be considered to be approximately at steady 
state on the slow timescales of transcription networks.

Transcription factors regulate genes by a rich variety of mechanisms. Here, biology shows 
its full complexity. Transcription factors display ingenious ways to bind DNA at strategically 
placed sites. When bound, they block or recruit each other and RNAp (and, in human cells, 
many other accessory proteins) to control the rate at which mRNA is produced. However, 

TABLE 1.2 Typical Timescales for the Reactions in the Transcription Network of E. coli

Binding of a small molecule signal to a transcription factor, causing a change 
in its activity

∼1 msec

Binding of an active transcription factor to its DNA site ∼1 sec
Transcription and translation of the gene ∼minutes
Timescale for 50% change in concentration of the translated protein (stable 
proteins)

∼1 hour (1 cell generation)
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on the level of transcription network dynamics, and on the slow timescales in which they 
operate, we will see that one can usually treat all of these mechanisms within a unifying 
and rather simple mathematical description.

An additional remarkable property of transcription networks is the modularity of their 
components (Chapter 15). You can take the DNA of a gene from one organism and express 
it in a different organism. For example, you can take a piece of DNA with the gene for green 
fluorescent protein (GFP) from the genome of a jellyfish and introduce this gene into bacteria. 
As a result, the bacteria produce GFP, causing the bacteria to turn green. Regulation can also 
be added by adding a promoter region. For example, control of the GFP gene in the bacterium 
can be achieved by pasting in front of the gene a DNA fragment from the promoter of a 
different bacterial gene, say, one that is controlled by a sugar-inducible transcription factor. 
This causes E. coli to express GFP and turn green only in the presence of the sugar. Promoters 
and genes are generally interchangeable. This fact underlies the use of GFP as an experimental 
tool, employed in the coming chapters to illustrate the dynamics of gene expression.

Modular components make transcription networks very evolvable, because they can 
readily incorporate new genes and new regulation. In fact, transcription networks can evolve 
quite rapidly (here “rapidly” is on the scale of many generations): the arrows in transcription 
networks evolve on a much faster timescale than the coding regions of the genes. For 
example, mice and humans have very similar genes, but the transcription regulation of 
these genes, which governs when and how much of each protein is made, is different. In 
other words, many of the differences between animal species lie in the differences in the 
arrows of the transcription networks, rather than differences in their genes.

1.3.2 The Signs on the Arrows: Activators and Repressors

As we just saw, each arrow in a transcription network corresponds to an interaction 
in which a transcription factor directly controls the transcription rate of a gene. These 
interactions can be of two types. Activation occurs when the transcription factor increases 
the rate of transcription when it binds the promoter (Figure 1.3). Repression occurs when 
the transcription factor reduces the rate of transcription when it binds the promoter 
(Figure 1.4). Thus, each arrow in the network has a sign: + for activation, − for repression. 
Plus arrows are denoted by a regular arrow X → Y, whereas minus arrows are denoted by a 
blunt-headed arrow X ⟞ Y. Transcription networks often show comparable numbers of plus 
and minus arrows, with more positive (activation) interactions than negative interactions 
(e.g., about 60% activation in E. coli and 80% in yeast).

Each transcription factor acts primarily in one mode for its target genes, as either an 
activator or a repressor. In contrast, the input modes of regulation are often mixed: a typical 
gene is activated by some transcription factors and repressed by others. Thus, the signs on 
outgoing arrows (arrows that point out from a given node) are highly correlated, but the 
signs on incoming arrows (arrows that point into a given node) are not.1

1 A similar feature is found in neuronal networks, where X → Y describes synaptic connections between neuron X and 
neuron Y. In many cases, the signs (activation or inhibition) are more highly correlated on the outgoing synapses than 
the signs of incoming synapses. This feature, known as Dale’s rule, stems from the fact that each neuron primarily uses 
one type of neurotransmitter, which can be either excitatory or inhibitory.
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1.3.3  The Numbers on the Arrows: Input Functions

The arrows not only have signs, but 
also carry numbers that correspond 
to the strength of the interaction. The 
strength of the effect of a transcription 
factor on a target gene is described 
by an input function. Consider the 
production rate of protein Y controlled 
by a transcription factor X. When X 
regulates Y, represented in the network 
by X → Y, the number of molecules of 
protein Y produced per unit time is a 
function of the concentration of X in its 
active form, X*:

 rate of production of Y = f(X*) (1.3.1)

Typically, the input function f(X*) is a monotonic function. It is an increasing function 
when X is an activator (Figure 1.6) and a decreasing function when X is a repressor. A 
useful function that realistically describes many gene input functions is called the Hill 
function. The Hill function can be derived from considering the equilibrium binding of 
the transcription factor to its site on the promoter (see Appendix A for further details). The 
Hill input function for an activator is a curve that rises from zero and approaches a maximal 
saturated level (Figure 1.6):

 
f X X

K X
n

n n( *) ,=
+

β
*

*
Hill function for an activator

 (1.3.2)

The Hill function has three parameters, K, β and n. The first parameter, K, is termed 
the activation coefficient, and has units of concentration. It defines the concentration 
of active X needed to significantly activate expression. From the equation it is easy to 
see that half-maximal expression is reached when X* = K (Figure 1.6). The value of K is 
determined by the chemical affinity between X and its binding site on the promoter, as 
well as additional factors. The second parameter in the input function is the maximal 
promoter activity, β. Maximal activity is reached at high activator concentrations, 
X* ≫ K, because at high concentrations, X* binds the promoter with high probability 
and stimulates RNAp to produce many mRNAs per unit time. Finally, the Hill coefficient 
n determines the steepness of the input function. The larger n is, the more step-like 
the input function (Figure 1.6). Typically, input functions are moderately steep, with 
n = 1–4.

FIGURE 1.6 
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As do many functions in biology, the 
Hill function approaches a limiting value 
at high levels of X*, rather than increasing  
indefinitely.  This saturation of the Hill  
function at high X* concentration is funda-
mentally due to the fact that the probability 
that the activator binds the promoter cannot 
exceed 1, no matter how high the concentra-
tion of X*. The Hill equation often describes 
empirical data with good precision.

For a repressor, X ⟞ Y, the Hill input 
function is a decreasing curve (Figure 1.7), 
whose shape depends on three similar 
parameters:

 
f X K

K X
n

n n( *) *=
+

β Hill function for a repressor
 

(1.3.3)

Since a repressor allows strong transcription of a gene only when it is not bound to the 
promoter, this function can be derived by considering the probability that the promoter 
is unbound by X* (see Appendix A). The maximal promoter activity β is obtained when 
the repressor does not bind the promoter at all (Figure 1.4), that is, when X* = 0. Half-
maximal repression is reached when the repressor activity is equal to K, the gene’s repression 
coefficient. The Hill coefficient n determines the steepness of the input function (Figure 1.7).

Thus, each arrow in the network can be thought to carry at least three numbers, β, K 
and  n. These numbers can readily be tuned during evolution. For example, K can be 
changed by mutations that alter the DNA sequence of the binding site of X in the promoter 
of gene Y. Even a change of a single DNA letter in the binding site can strengthen or weaken 
the chemical bonds between X and the DNA and change K. The parameter K can also be 
varied if the position of the binding site is changed, as well as by some changes in sequence 
outside of the binding site. Similarly, the maximal activity β can be tuned by mutations in 
the RNAp binding site or many other factors.

Laboratory evolution experiments show that when placed in a new environment, bacteria 
can accurately tune these numbers within several hundred generations to reach optimal 
expression levels (Chapter 13). Thus, these numbers are under selection pressure and can 
heritably change over many generations if environments change.

The input functions above go from a transcription rate of zero to a maximal transcription 
rate β. Many genes have a nonzero minimal expression level, called the gene’s basal expression 
level. A basal level can be described by adding to the input function a term β0.

1.3.4  Logic Input Functions: A Simple Framework for Understanding 
Network Dynamics

Hill input functions are useful for detailed models. For mathematical clarity, however, it is 
sometimes useful to use even simpler functions that capture the essential behavior of these 

FIGURE 1.7 
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input functions. The essence of input functions is a transition between low and high values, 
with a characteristic threshold K. In the coming chapters, we will sometimes approximate 
input functions using a logic approximation (Glass and Kauffman, 1973; Thieffry and 
Thomas, 1998). In this approximation, the gene is either OFF, f(X*) = 0, or maximally 
ON, f(X*) = β. The threshold for activation is K. Thus, logic input functions are step-like 
approximations for the smoother Hill functions. For activators, the logic input function can 
be described using a step-function θ that makes a step when X* exceeds the threshold K:

 f(X*) = βθ(X* > K)  logic approximation for activator (1.3.4)

where θ is equal to 0 or 1 according to the logic statement in the parentheses. The logic 
approximation is equivalent to a very steep Hill function with Hill coefficient n → ∞ 
(Figure 1.6).

Similarly, for repressors, a decreasing step function is appropriate (Figure 1.7):

 f(X*) = βθ(X* < K)  logic approximation for repressor (1.3.5)

We will see in the next chapters that by using a logic input function, dynamic equations 
become easy to solve.

1.3.5 Multi-Dimensional Input Functions Govern Genes with Several Inputs

We just saw how Hill functions and logic functions can describe input from a single 
transcription factor. Many genes, however, are regulated by multiple transcription factors. 
They are nodes in the network with two or more incoming arrows. Their promoter activity 
is thus a multi-dimensional input function of the different input transcription factors. 
Appendix B describes how input functions can be modeled by equilibrium binding of 
multiple transcription factors to the promoter.

Often, multi-dimensional input functions can be usefully approximated by logic 
functions, just as in the case of single-input functions. For example, consider genes regulated 
by two activators. Many genes require that both activator proteins bind to the promoter in 
order to show high expression. This is similar to an AND gate:

 f(X*, Y*) = βθ (X* > Kx) θ(Y* > Ky) ∼ X* AND Y* (1.3.6)

For other genes, binding of either activator is sufficient. This resembles an OR gate:

 f(X*, Y*) = βθ(X* > Kx OR Y* > Ky) ∼ X* OR Y* (1.3.7)

Not all genes have Boolean-like input functions. For example, some genes display a SUM 
input function, in which the inputs are additive (Kalir and Alon, 2004):

 f(X*, Y*) = βxX* + βyY* (1.3.8)
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Other functions are also possible. For example, a function with several plateaus and thresholds 
describes the lac system of E. coli (Figure 1.8). Genes in multi-cellular organisms can display 
input functions that calculate elaborate functions of a dozen or more inputs (Yuh, Bolouri and 
Davidson, 1998; Davidson et al., 2002; Beer and Tavazoie, 2004).

The functional form of input functions can be readily changed by means of mutations 
in the promoter of the regulated gene. For example, the lac input function of Figure 1.8 can 
be changed to resemble pure AND or OR gates with a few mutations in the lac promoter 
(Setty et al., 2003; Mayo et al., 2006; Figure 1.9). It appears that the precise form of the input 
function of each gene is under selection pressure during evolution.
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FIGURE 1.8 Adapted from (Setty et al., 2003).
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1.4  DYNAMICS AND RESPONSE TIME OF SIMPLE REGULATION
We now turn to the dynamics of transcription networks. We begin with the dynamics 
of a single arrow in the network. Consider a gene that is regulated by a transcription 
factor with no additional inputs (or with all other inputs and post-transcriptional 
modes of regulation held constant over time2). This transcription interaction is 
described in the network by X → Y which reads “transcription factor X regulates gene 
Y.” Once X becomes activated by a signal, Y concentration begins to change. Let us 
calculate the dynamics of the concentration of the gene product, the protein Y and its 
response time.

In the absence of its input signal, transcription factor X is inactive and Y is not produced 
(Figure 1.3). When the signal Sx appears, X rapidly transits to its active form X* and binds 
the promoter of gene Y. Gene Y begins to be transcribed, and the mRNA is translated, 
resulting in accumulation of protein Y. The cell produces protein Y at a rate β (units of 
concentration per unit time).

The production of Y is balanced by two processes, protein degradation (its specific 
destruction by specialized proteins in the cell) and dilution (the reduction in concentration 
due to the increase of cell volume during growth). The degradation rate is αdeg, and the 
dilution rate is αdil, giving a total removal rate (in units of 1/time) of

 α = αdil + αdeg (1.4.1)

The change in the concentration of Y is due to the difference between its production and 
removal, as described by a dynamic equation3:

 dY dt Y/ = −β α  (1.4.2)

The removal term in the equation αY is equal to the concentration Y times the probability 
per unit time that each protein Y is removed, α.

At steady state, Y reaches a constant concentration Yst. The steady-state concentration 
can be found by solving for dY/dt = 0. This shows that the steady-state concentration is the 
ratio of the production and removal rates:

 Yst = β α/  (1.4.3)

This makes sense: the higher the production rate β, the higher the protein concentration 
reached, Yst. The higher the removal rate α, the lower is Yst.

2 Proteins are potentially regulated at every step of their synthesis process, including the following post-transcriptional 
regulation interactions: (1) rate of degradation of the mRNA, (2) rate of translation, controlled primarily by sequences 
in the mRNA that bind the ribosomes and by mRNA-binding regulatory proteins and regulatory RNA molecules and 
(3) rate of active and specific protein degradation. In eukaryotes, regulation also occurs on the level of mRNA splicing 
and transport in the cell. Other modes of regulation are possible.

3 The time for transcription and translation of the protein (minutes) is neglected because it is small compared to the 
response time of the protein-level dynamics (tens of minutes) (Table 1.2).
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What happens if we now take away the 
input signal, so that production of Y stops 
(β = 0)? The solution of Equation 1.4.2 
with β = 0 is an exponential decay of Y 
concentration (Figure 1.10):

    Y(t) = Yst e−αt (1.4.4)

How fast does Y decay? An important 
measure for the speed at which Y levels 
change is the response time. The response 
time, T1/2, is defined as the time to reach 
halfway between the initial and final levels 
in a dynamic process. For the decay process of Equation 1.4.4, the response time is the time 
to reach halfway down from the initial level, Yst, to the final level, Y = 0. The response time 
is therefore given by solving for the time when Y(t) = Yst/2, which, using Equation 1.4.4, 
shows an inverse dependence on the removal rate:

 T1/2 = log(2)/α (1.4.5)

Note that the removal rate α directly determines the response time: fast removal allows 
rapid changes in concentration. The production rate β affects the steady-state level but not 
the response time.

Some proteins show rapid degradation rates (large α). At steady state, this leads to a 
seemingly futile cycle of protein production and destruction. To maintain a given steady 
state, Yst = β/α, such proteins require high production rate β to balance the high degradation 
rate α. The benefit of such a futile cycle is fast response times once a change is needed.

We have seen that loss of input signal leads to an exponential decay of Y. Let us now 
consider the opposite case, in which an unstimulated cell with Y = 0 is provided with a 
signal, so that protein Y begins to accumulate. If an unstimulated gene becomes suddenly 
stimulated by a strong signal Sx, the dynamic equation, Equation 1.4.2, results in an 
approach to steady state (Figure 1.11)

 Y(t) = Yst (1 − e−αt) (1.4.6)

The concentration of Y rises from zero and gradually converges on the steady state 
Yst = β/α. Note that at early times, when αt�1, we can use a Taylor expansion4 to find a 
linear accumulation of Y with a slope equal to the production rate β (the tangent dashed 
line in Figure 1.11):

 Y = βt (1.4.7)

at early times, when αt�1. Later, as Y levels increase, the degradation term –αY begins to 
be important and Y accumulation slows down as it converges to its steady-state level.

4 Using e−αt ∼ 1 – αt, and Yst = β/α.

FIGURE 1.10 
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The response time, the time to reach 
Yst/2, can be found by solving for the time 
when Y(t) = Yst/2. Using Equation 1.4.6, 
we find the same response time as in the 
case of decay:

 T1/2 = log(2)/α (1.4.8)

The response time for both increase and 
decrease in protein levels is the same and is 
governed only by the removal rate α. The 
larger the removal rate α, the more rapid 
the response time.

1.4.1 The Response Time of Stable Proteins Is One Cell Generation

Many proteins are not actively degraded in growing cells (αdeg = 0). These are termed stable 
proteins. The production of stable proteins is balanced by dilution due to the increasing 
volume of the growing cell, α = αdil. For such stable proteins, the response time is equal 
to one cell generation time. To see this, imagine that a cell produces a protein, and then 
suddenly production stops (β = 0). The cell grows and, when it doubles its volume, splits 
into two cells. Thus, after one cell generation time τ, the protein concentration has decreased 
by 50%, and therefore:

 T1/2 = log(2)/αdil = τ  response time is one cell generation (1.4.9)

This is an interesting result. Bacterial cell generation times are on the order of 30 min to 
a few hours, and animal and plant cell generation times are typically a day or longer. One 
would expect that transcription networks that are made to react to signals such as nutrients 
and stresses should respond much more rapidly than the cell generation time, otherwise 
only the cell’s daughters can benefit. But for stable proteins, the response time, as we saw, is 
one cell generation time. Thus, response time can be a limiting factor that poses a constraint 
for designing efficient gene circuits.

In the next chapter, we will discuss simple transcriptional circuits that can help speed 
the response time.

FURTHER READING
Dynamics of Gene Networks
(Monod, Pappenheimer and Cohen-Bazire, 1952) “The kinetics of the biosynthesis of beta-

galactosidase in Escherichia coli as a function of growth.”
(Rosenfeld and Alon, 2003) “Response delays and the structure of transcription networks.”

Molecular Mechanisms of Transcriptional Regulation
(Ptashne, 1986) “A genetic switch.”
(Ptashne and Gann, 2002) “Genes and signals.”

FIGURE 1.11 
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Overview of Transcription Networks
(Alon, 2003) “Biological networks: the tinkerer as an engineer.”
(Levine and Davidson, 2005) “Gene regulatory networks for development.”
(Thieffry et al., 1998) “From specific gene regulation to genomic networks: a global analysis of 

transcriptional regulation in Escherichia coli.”

EXERCISES

 1.1 A change in production rate: A gene Y with simple regulation is produced at a constant 
rate β1. The production rate suddenly shifts to a different rate β2.

 a. Calculate and plot the gene product concentration Y(t).

 b. What is the response time (time to reach halfway between the steady states)?

Solution (for part a):

 a. Let us mark the time when the shift occurs as t = 0. Before the shift, Y reaches 
steady state at a level Y(t = 0) = Yst = β1/α. After the shift,

 dY/dt = β2 − αY (P1.1)

  The solution of this linear differential equation is generally Y = C1 + C2e−αt, where the 
constants C1 and C2 need to be determined so that Y(t = 0) = β1/α, and Y at long times 
reaches its new steady state, β2/α. This yields the following sum of an exponential and 
a constant (Figure 1.12):

 Y(t) = β2/α + (β1/α − β2/α)e−αt (P1.2)

  Take the derivative with respect to time, dY/dt, and verify that Equation P1.1 is 
fulfilled.

 1.2 mRNA dynamics: In the main text, we considered the activation of transcription of a 
gene (mRNA production) and used a dynamical equation to describe the changes in 
the concentration of the gene product, the protein Y. In this equation, dY/dt = β − αY, 
the parameter β describes the rate 
of protein production. In reality, 
mRNA needs to be translated to form 
the protein, and mRNA itself is also 
degraded by specific enzymes.

 a. Derive dynamical equations for 
the rate of change of mRNA and 
the rate of change of the protein 
product, assuming that mRNA is 
produced at rate βm and degraded 
at rate αm, and that each mRNA FIGURE 1.12 
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produces on average p protein molecules per unit time. The protein is removed at 
rate α.

 b. Note that mRNA is usually degraded at a much faster rate than the protein is 
removed, αm ≫ α. Can this be used to form a quasi-steady-state assumption 
that mRNA levels are at steady state with respect to slower processes? What is 
the effective protein production rate β in terms of βm, αm and p? What would 
be the response time if the mRNA lifetime were much longer than the protein 
lifetime?

Solution:

 a. The dynamic equation for the concentration of mRNA of gene Y, Ym, is:

  dYm/dt = βm − αmYm (P1.3)

   The dynamical equation for the protein product is due to production of p copies 
per mRNA per unit time and degradation/dilution at rate α:

 dY/dt = pYm − αY (P1.4)

 b. In the typical case that mRNA degradation is faster than the degradation/
dilution of the protein product, we can assume that Ym reaches steady state 
quickly in comparison to the protein levels. The reason is that the typical time 
for the mRNA to reach steady state is the response time log(2)/αm, which is  
much shorter than the protein response time log(2)/α because αm ≫ α.  
The steady-state mRNA level is found by setting dYm/dt = 0 in Equation P1.3, 
yielding

 Ym,st = bm/αm (P1.5)

   Using this for Ym in Equation P1.4 yields the following equation for the protein 
production rate:

 dY/dt = pβm/αm − αY (P1.6)

   In other words, the effective protein production rate, which is the first term on the 
right-hand side of the equation, is equal to the steady-state mRNA level times the 
number of proteins translated from each mRNA:

 β = pβm/αm (P1.7)

 1.3 Time-dependent production and decay: A gene Y with simple regulation has a time-
dependent production rate β(t) and a time-dependent degradation rate α(t). Solve for 
its concentration as a function of time.
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Solution:

  Verify by taking the time derivative that the following is correct:
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 1.4 Cascades: Consider a cascade of three 
activators, X → Y → Z. Protein X 
is initially present in the cell in its 
inactive form. The input signal of X, 
Sx, appears at time t = 0. As a result, X 
rapidly becomes active and binds the 
promoter of gene Y, so that protein Y 
starts to be produced at rate β. When 
Y levels exceed a threshold Ky, gene Z 
begins to be transcribed. All proteins 
have the same degradation/dilution 
rate α. What is the concentration of 
protein Z as a function of time? What 
is its response time with respect to 
the time of addition of Sx? What about a cascade of three repressors? Compare your 
solution to the experiments shown in Figure 1.13.

 1.5 Fan out: Transcription factor X regulates two genes, Y1 and Y2. Draw the resulting 
network, termed a fan out with two target genes. The activation thresholds for these 
genes are K1 and K2. The activator X begins to be produced at time t = 0 at rate β and 
is removed at rate α. The signal Sx is present throughout. What are the times at which 
the stable proteins Y1 and Y2 reach halfway to their maximal expression?

 1.6 Pulse of activation: Consider the cascade of Exercise 1.4. The input signal Sx appears 
at time t = 0 for a pulse of duration D, and then vanishes.

 a. What is the concentration Y(t)?

 b. What is the minimal pulse duration needed for the activation of gene Z? Use a logic 
input function.

 c. Plot the maximal level reached by the protein Z as a function of pulse duration D.
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C h a p t e r  2

Autoregulation
A Network Motif

2.1 INTRODUCTION
In the previous chapter, we considered the dynamics of a single interaction in a transcription 
network. Now, let’s take a look at a real, live transcription network made of many interaction 
arrows. As an example, we will use a network from E. coli that includes about 20% of the 
organism’s genes (Figure 2.1). This network looks very complex. Our goal will be to define 
understandable patterns of connections that serve as building blocks of the network. Ideally, 
we would like to understand the dynamics of the entire network based on the dynamics of 
the individual building blocks. In this chapter, we will:

 1. Define a way to detect building-block patterns in complex networks, called network 
motifs.

 2. Examine the simplest network motif in transcription networks, negative 
autoregulation.

 3. Show that this motif has useful functions: speeding up the response time of 
transcription interactions and stabilizing them against noise.

2.2 PATTERNS, RANDOMIZED NETWORKS AND NETWORK MOTIFS
The transcription network of E. coli contains numerous patterns of nodes and arrows. Our 
approach will be to look for meaningful patterns on the basis of statistical significance.

To define statistical significance, we compare the network to an ensemble of randomized 
networks. The randomized networks are networks with the same characteristics as the real 
network (e.g., the same number of nodes and arrows as the real network), but where the 
connections between nodes and arrows are made at random. Patterns that occur in the real 
network significantly more often than in randomized networks are called network motifs 
(Milo et al., 2002; Shen-Orr et al., 2002).
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The basic idea is that patterns that occur in the real network much more often than 
at random must have been preserved over evolutionary timescales against mutations 
that randomly change arrows. To appreciate this, note that arrows are easily lost in 
a transcription network. A mutation that changes a single DNA letter in a promoter 
can  abolish binding of a transcription factor and cause the loss of an arrow in the 
network.

Such mutations occur at a comparatively high rate, as can be appreciated by the following 
example. A single bacterium placed in a test tube with 10 mL of liquid nutrient grows and 
divides to reach a saturating population of about 1010 cells within less than a day. This 
population therefore underwent 1010 DNA replications. Since the mutation rate is about 
10−9 per letter per replication, the population will include, for each letter in the genome, 
10 different bacteria with a mutation in that letter. Thus, a change of any DNA letter can 
be rapidly reached in bacterial populations. A similar rate of mutations per generation per 
genome occurs in multi-cellular organisms (Table 1.1).

Transcription Factor
without autoregulation

Transcription Factor
with autoregulation

Other gene

FIGURE 2.1 
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Similarly, new arrows can be added to the network by mutations that generate a binding 
site for transcription factor X in the promoter region of gene Y. Such sites can be generated, 
for example, by mutations or by events that duplicate or reposition pieces of a genome, or 
that insert into the genome pieces of DNA from other cells (Shapiro, 1999).

Hence, arrows in network motifs must be constantly selected in order to survive 
randomizing forces. This suggests that if a network motif appears in a network much more 
often than in randomized networks, it must have been selected based on some advantage it 
gives to the organism. Otherwise it would have been washed out.

2.2.1 Detecting Network Motifs by Comparison to Randomized Networks

To detect network motifs, we need to compare the real network to an ensemble of randomized 
networks. We will consider the simplest ensemble of randomized networks, introduced by 
Erdös and Rényi (1960; Bollobás and Thomason, 1985). This makes calculations easy and 
gives the same qualitative answers as more elaborate random network models.

For a meaningful comparison, the randomized networks should share the basic features 
of the real network. The real transcription 
network has N nodes and A arrows. To 
compare it to the Erdös–Rényi (ER) model, 
one builds a random network with the 
same number of nodes and arrows. In the 
random network, defined by the ER model, 
arrows are assigned at random between 
pairs of nodes. Figure 2.2 compares a small 
network to a corresponding random ER 
network with the same number of nodes 
and arrows.

2.3 AUTOREGULATION IS A NETWORK MOTIF
We can now begin to compare features of the E. coli transcription network with the 
randomized networks. Let’s start with self-arrows, arrows that originate and end at the 
same node. The E. coli network that we use as an example has 40 self-arrows (black nodes 
in Figure 2.1). These self-arrows correspond to transcription factors that regulate the 
transcription of their own genes.

Regulation of a gene by its own gene product is known as autogenous control, or 
autoregulation. Thirty-four of the autoregulatory proteins in the network are repressors 
that repress their own transcription: negative autoregulation.

Is autoregulation significantly more frequent in the real network than at random? To 
decide, we need to calculate the average number of self-arrows in an ER random network. 
To form a self-arrow, an arrow needs to choose its node of origin as its destination, out of 
the N possible target nodes. This probability is thus:

 p Nself =1/  (2.3.1)

‘Real’ network Randomized network
(Erdos - Renyi)

N=10 nodes
A=14 arrows
Nself=4   self-arrows

N=10 nodes
A=14 arrows
Nself =1  self-arrow

FIGURE 2.2 
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Since A arrows are placed at random to form the random network, the average number 
of self-arrows is A times pself, similar to tossing a coin A times with probability for heads 
of pself:

 〈 〉N Ap A Nself rand self /= =  (2.3.2)

with a standard deviation that is approximately the square root of the mean (as in the coin 
tossing analogy):

 σrand /= A N  (2.3.3)

In the E. coli transcription network of Figure 2.1, the numbers of nodes and arrows are 
N = 424 and A = 519. Thus, according to Equations 2.3.2 and 2.3.3, a corresponding ER 
network with the same N and A would be expected to have only about one self-arrow, plus 
or minus one:

 〈 〉N A Nself rand rand/= ∼ ∼ ∼1 2 1 2 1 1. , . .σ  (2.3.4)

In contrast, the real network has 40 self-arrows, which exceeds the random networks 
by 35 standard deviations, which means they occur far more often than at random. Note 
that 35 standard deviations mark a very high statistical significance.

Thus, self-arrows, and in particular negatively autoregulated genes, are a network motif. 
A network motif is a recurring pattern in the network that occurs far more often than at 
random.

The next question is: Why is negative autoregulation a network motif? Does it have 
a useful function? To answer this, we will compare a negatively autoregulated gene to a 
simply (non-auto) regulated gene (Figure 2.3). Our criterion for comparison will be the 
response time of the system. As we saw in the previous chapter, the response time of a 
simply regulated gene is governed by its removal rate α:

 T1 2 2/ log( )/= α (2.3.5)

For stable proteins that are not appreciably degraded in the cell, the response time is 
equal to the cell generation time. We will now see how the negative autoregulation network 
motif can help speed up transcription responses.

2.4  NEGATIVE AUTOREGULATION SPEEDS THE 
RESPONSE TIME OF GENE CIRCUITS

Negative autoregulation occurs when a transcription factor X represses its own 
transcription (Figure 2.3). This self-repression occurs when X binds its own promoter to 
inhibit production of mRNA. As a result, the higher the concentration of X, the lower its 
production rate.
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As we saw in the previous chapter, the dynamics of X are described by its production 
rate f(X) and removal rate α:

 
dX
dt f X X= −( ) α

 
(2.4.1)

where f(X) is a decreasing function of X.1 As mentioned in Chapter 1, a good approximation 
for many promoters is a decreasing Hill function:

 
f X K

K X
n

n n( ) =
+

β
 

(2.4.2)

In this input function, when X is much smaller than the repression coefficient K, the 
promoter is free and the production rate reaches its maximal value, β. On the other hand, 
when repressor X is at high concentration, no transcription occurs, f(X) ∼ 0. The repression 
coefficient K has units of concentration, and equals the concentration at which X represses 
the promoter activity by 50%.

To solve the dynamics in the most intuitive way, let’s use the logic approximation, where 
production is zero if X > K, and production is maximal, namely, f(X) = β, when X is smaller 
than K. This was described in Chapter 1.3.4 using the step function θ:

 f X X K( ) ( )= <βθ  (2.4.3)

In Exercise 2.3, we will also solve the dynamics with a Hill function, to find that the logic 
approximation is reasonable.

To study the response time, consider the case where X is initially absent, and its production 
starts at t = 0. At early times, while X concentration is low, the promoter is unrepressed 
and production is full-steam at rate β, as described by the production-removal equation:

 
dX
dt X X K= − <β α while

 
(2.4.4)

1 To understand the dynamics of a negatively autoregulated system, recall the separation of timescales in transcription 
networks. The production rate of X is governed by the probability that X binds the promoter of its own gene. The binding 
and unbinding of X to the promoter reaches equilibrium on the timescale of seconds. The concentration of protein X, on 
the other hand, changes much more slowly, on the timescale of hours. Therefore, it makes sense to describe the production 
rate by an input function, f(X), equal to the mean promoter activity at a given level of X, averaged over many repressor 
binding events.

A AX X

K

Simple regulation Negative autoregulation

FIGURE 2.3 
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This results in an approach to a high 
steady-state value, as described in Section 1.4 
of the previous chapter. At early times, in 
fact, we can neglect removal (αX ≪ β) to 
find a linear accumulation of X with time:

X t t X K X( ) ∼ β β α while  and /< <<  
(2.4.5)

However, production stops when X 
levels reach the self-repression threshold, 
X = K, because production is zero when X 
exceeds  K (Figure 2.4). Small oscillations 
will occur around X = K if there are delays 
in the system. Delays cause X to overshoot 
beyond K slightly, but then production stops 
and X levels decline until they decrease 
below K, upon which production starts again, and so on. These oscillations are generally 
damped for realistic f(X) unless delays are very long. Thus, X effectively locks into a steady-
state level equal to the repression coefficient of its own promoter:

 X Kst =  (2.4.6)

The resulting dynamics shows a rapid rise and a sudden saturation, as shown in 
Figure 2.5.

The response time, T1/2, can be found by 
asking when X reaches halfway to steady 
state. For simplicity, let us calculate the 
response time using linear accumulation 
of X (Equation 2.4.5), in which X = βt. The 
response time, TNAR

1 2/ , where NAR stands for 
negative autoregulation, is the time when 
X reaches half of the steady-state level, 

βT X KNAR st
1 2 2 2/ = = , so that:

 T KNAR
1 2 2/ /= β  (2.4.7)

The stronger the maximal unrepressed 
promoter activity β, the shorter the response 
time. Negative autoregulation can therefore 
use a strong promoter to give an initial fast 
production, and then use autorepression to 
stop production at the desired steady state.

t ime

K

X(t)

FIGURE 2.4 

time

Xst

Xst/2

simple
T1/2

NAR
T1/2

NAR

simple regulation

FIGURE 2.5 
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Note that evolutionary selection can easily tune the parameters β and K independently. 
The repression threshold K can be modified, for example, by mutations in the binding site 
of X, whereas β can be tuned by mutations in the binding site of RNAp in the promoter. 
Thus, the steady state (Xst = K) and the response time can be separately determined.

Let us compare this design with a simply regulated gene (a gene without negative 
autoregulation, as described in Section 1.4), which is produced at rate βsimple and removed 
at rate αsimple. To make a fair comparison, we should compare the two designs with the 
same steady-state levels. This is because the steady-state level of the protein is important 
for its optimal function. To achieve the same steady state, we must compensate for the 
repressive effect of NAR by providing it with a stronger promoter activity β than in simple 
regulation. In addition, the two designs should have as many of the same biochemical 
parameters as possible. For example, the two designs should have the same protein removal 
rate, α = αsimple. Such a fair comparison between biological circuits was called by Michael 
Savageau a mathematically controlled comparison (Savageau, 1976).

For a mathematically controlled comparison, we set K so that both designs reach the same 
steady-state expression level. Using the fact that in simple regulation Xst = βsimple/αsimple 
(Equation 1.4.3) and in NAR Xst = K (Equation 2.4.6), equal steady state in the two circuits 
occurs when

 K = β αsimple simple/  (2.4.8)

What is the response time of the two designs? The response time of simple regulation is 
governed by the removal rate as described in Chapter 1, so that T1 2 2/ log( )/simple

simple= α . A much 
faster response can be achieved by the corresponding negative autoregulated circuit by 
making the promoter activity β large, because the response time, T K1 2 2/ /NAR = β , is inversely 
proportional to β. Using Equation 2.4.8, we find that the ratio of the response times in the 
two designs can be made very small by making NAR have much stronger promoter activity 
than simple regulation:

   

T
T

1 2

1 2

1
2 2

/

/ log( )
NAR

simple
simple=

β
β   

(2.4.9)

An example is shown in Figure 2.5, in 
which the response time of the negative 
autoregulation design is about sevenfold 
faster than simple regulation. The intuitive 
reason for speedup is that NAR uses a 
strong promoter for a fast-initial rise, 
and then stops itself at the desired steady 
state K. Simple regulation with the same 
strong promoter would reach a steady state 
that is far too high, causing undesirable 

FIGURE 2.6 Adapted from (Rosenfeld, Elowitz 
and Alon, 2002).
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over-expression of the gene product. Thus, you can be a fast driver if you have a strong motor 
and good breaks. The accelerated response of a negative autoregulatory circuit compared to 
simple regulation was experimentally demonstrated using high-resolution gene expression 
measurements (Figure 2.6, experiments are in full lines, and theory in dashed lines).

2.4.1  Rate Analysis Shows Speedup for Any Repressive Input Function f(X)

Speedup is also found when using Hill 
input functions instead of a step function. 
In fact, any shape of the input function 
f(X), as long as it is a decreasing function of 
X, causes speedup in NAR. To see this, we 
introduce a useful tool for understanding 
circuits called the rate plot. Consider first 
simple regulation, dX/dt = β − αX. In the 
rate plot, we plot the rates of production β 
and removal αX as a function of protein 
level X (Figure 2.7).

The first thing to notice is the value of 
X at which these two lines cross. At this 
point, production equals removal, and 
hence X levels don’t change (dX/dt = 0). 
This is called a fixed point of the equation, 
namely the steady-state value (Xst = β/α).

The rate plot can show us that this fixed 
point is globally stable: any value of X 
flows back to the fixed point. To see this, 
note that when X is higher than the fixed 
point, the removal curve is higher than 
the production curve. Hence, more X is 
removed than is produced, and X shrinks 
back to the fixed point. Similarly, when X 
is lower than the fixed point, production 
exceeds removal and X grows. X stops 
changing when it reaches the fixed point, 
its steady-state value Xst.

Now let’s consider the response time. 
The speed at which X approaches the fixed 
point is given by the distance between 
the two curves, because the speed is the 
temporal derivative dX/dt = production − 
removal (Figure 2.8).

Now let’s do the mathematically 
controlled comparison with NAR 

Production = β

X
Xst

rates

Distance = 
Speed of 

change in X

FIGURE 2.8 

FIGURE 2.7 
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(Figure  2.9). We want the removal rate 
α to be the same in the two circuits, so 
the removal curve αX is the same. We 
also want the steady state, Xst, to be the 
same, so the production curve f(X) must 
cross the removal curve at the same point 
as in simple regulation. We know that 
f(X) is a decreasing function (negative 
autoregulation). The only way it can cross 
the removal line at the desired point is 
if it starts above the simple regulation 
production curve, crosses it at Xst and then 
drops below it. Due to this geometry, no 
matter what the exact shape of f(X) is, we 
see that the distance between production 
and removal curves in NAR is bigger than 
in simple regulation. Thus, no matter what 
f(X) is, protein level X will move faster to the fixed point (Figure 2.9). NAR speeds responses.

2.5  NEGATIVE AUTOREGULATION PROMOTES ROBUSTNESS 
TO FLUCTUATIONS IN PRODUCTION RATE

In addition to speeding the response time, negative autoregulation confers a second 
important benefit. This benefit is the increased robustness of the steady-state 
expression level with respect to fluctuations in the production rate β. This property 
was experimentally demonstrated using measurements of protein levels in individual 
cells (Becskel and Serrano, 2000). The production rate of a given gene, β, fluctuates 
over time due to variations in the metabolic capacity of the cell and its regulatory 
systems (see Appendix D). These cell–cell differences in β are typically on the order of 
tens of percents, and last over the entire generation time of the cells. Thus, a snapshot 
of genetically identical cells grown under identical conditions will show cell–cell 
differences  in the expression of every protein. Noise is an unavoidable property of 
biological material.

Simple gene regulation is affected quite strongly by fluctuations in production rate β. The 
steady-state level is linearly dependent on the production rate:

 Xst = β α/  (2.5.1)

and therefore, a change in β leads to a proportional change in Xst. In contrast, negative 
autoregulation buffers fluctuations in the production rate. In the case of the sharp (step-
like) autorepression that we have discussed, the steady-state level does not depend on β at 
all, and depends only on the repression threshold of X for its own promoter:

 X Kst =  (2.5.2)

X

Production 
(negative 

autoregulation)

Production
(simple regulation)

rates

greater 
distance

= 
faster 

response

FIGURE 2.9 
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The repression threshold K is determined 
by hardwired factors such as the chemical 
bonds between X and its DNA site. Such 
parameters vary much less from cell to cell 
than production rates.

Moreover, NAR can make the steady-state 
robust to changes in removal rate α, such as 
those that occur when the growth rate of the 
cells changes. Removal rate affects the steady 
state in simple regulation quite strongly, as 
can be seen in the rate plot of Figure 2.10. 
In contrast, NAR with a steep regulation 
function has a steady state that depends 
only weakly on α, making protein levels 
less sensitive to changes in cell growth rate 
(Figure 2.11). This robustness to growth rate 
was experimentally demonstrated by Klumpp, 
Zhang and Hwa (2009). It is useful for making 
synthetic circuits in cells that can achieve a 
well-defined protein level (Shimoga et al., 2013).

Robustness of key properties of a biological 
system is a general design principle. We will 
study robustness in more depth in Part 2 of 
this book.

What about positive autoregulation? 
We will see in Chapter 5 that positive 
autoregulation acts in an opposite way: it slows 
down responses and can amplify noise in 
parameters. Such slowdown and stochasticity 
can be useful for processes that take many 
cell generations, as occurs when organisms 
develop from an egg to an embryo.

2.6 SUMMARY: EVOLUTION AS AN ENGINEER
Negative autoregulation is a network motif, a pattern that recurs throughout the network 
at numbers much higher than expected in random networks.

To understand why negative autoregulation is a network motif, we asked what functions 
it can perform. For this purpose, we analyzed its dynamic behavior. The dynamic analysis 
can be phrased as an engineering story. Think of evolution as an engineer working to design 
a gene circuit that reaches a desired steady-state concentration Xst. One possible design, 
design A, is simple regulation with a production rate set to reach Xst. Design B is negative 
autoregulation, with a stronger initial production rate, which, as X builds up, is suppressed 
to result in the desired steady state.

FIGURE 2.10 

FIGURE 2.11 
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The second (NAR) design has the advantage that the goal, Xst, is reached faster. 
Furthermore, the fluctuations around Xst due to variations in production and removal rate 
are reduced in the second, autoregulated design. In an imaginary competition between two 
species are identical except that one uses circuit A, and the second uses circuit B, the latter 
would have a selective advantage. Over evolutionary times, structures that have engineering 
advantages would tend to be selected and appear as network motifs.

FURTHER READING
(Becskel and Serrano, 2000) “Engineering stability in gene networks by autoregulation.”
(Klumpp, Zhang and Hwa, 2009) “Growth-rate dependent global effects on gene expression in 

bacteria.”
(Rosenfeld, Elowitz and Alon, 2002) “Negative autoregulation speeds the response time of 

transcription networks.”
(Savageau, 1974) “Comparison of classical and autogenous systems of regulation in inducible 

operons.”
(Savageau, 1976) “Biochemical systems analysis: a study of function and design in molecular biology.”
(Shimoga et al., 2013) “Synthetic mammalian transgene negative autoregulation.”

EXERCISES

 2.1 Random networks: (a) Write a computer program that produces a random Erdös–
Rényi (ER) network with N nodes and A arrows. (b) Generate 100 ER networks with 
A = 500 and N = 400. What is the mean and standard deviation of the number of 
self-arrows?

 2.2 Self-arrows in random networks with transcription factors: Consider the following 
random network model, which we will call modified-ER (MER). There are N nodes, 
of which only N1 are allowed to send out arrows. These N1 represent TFs which can 
regulate genes. Each arrow can choose any node out of the N as a target, including its 
node of origin. (a) Write a program to generate MER networks. (b) Generate 100 MER 
networks with A = 500, N = 400 and N1 = 100 (corresponding approximately to the 
E. coli network used in this chapter). What is the average and standard deviation of 
the number of self-arrows? (c) Write a formula for the average number of self-arrows 
in a MER network as a function of A, N and N1. Are there more or less self-arrows 
than in an ER network? Explain.

 2.3 Autorepression with Hill input function: What is the response time for a repressor that 
represses its own promoter as described by a Hill function with Hill coefficient n?

 
dX
dt X K

Xn=
+

−
β

α
1 ( )/  

(P2.1)

  How much faster is the response than in non-autoregulated circuits? Use the 
approximation of strong autorepression, that is, ( )X K n/ >>1.
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Solution:

  In the limit of strong autorepression, we can neglect the 1 in the denominator of the 
input function, and we have:

 
dX
dt

K
X

X
n

n= −
β

α
 

(P2.2)

  To solve this equation, multiply both sides by Xn and switch to the new variable, 
u = Xn+1. Note that du/dt = (n + 1)Xn dX/dt. The equation now reads:

 
du
dt n K n un= + − +( ) ( )1 1β α

 
(P2.3)

  The solution of this linear equation is simple exponential convergence to steady state, 
the same as in Chapter 1:

 u u est
n t= − − +(1 ( 1) )α  (P2.4)

  Switching back to the original variable X, we have:

 X X est
n t n= − − + +( )( ) ( )1 1

1
1α  (P2.5)

  The response time is found by X(T1/2) = Xst/2. This yields:

 
T n

n

n1 2

1

1
1
1

2
2 1/ ( ) log=

+ −











+

+α  
(P2.6)

  The response time decreases with n. For n = 1, 2, 3, the response time of NAR is 
0.2, 0.06 and 0.02 of that of simple regulation. See Figure 2.5 for the dynamics of 
a strongly autoregulated gene with n = 1. The sharper the negative autoregulation 
(higher n), the more the system approaches the sharp logic function limit discussed 
in this chapter, and the faster it responds.

   When is this approximation valid? Note that the steady state is, according to 
Equation P2.2, Xst = K(β/αK)1/(n+1). Thus, when the unrepressed steady state is much 
larger than the repression coefficient, that is, when β/α ≫ K, we have Xst ≫ K.

 2.4 Parameter sensitivity: Analyze the robustness of the steady-state level of X with respect 
to cell–cell variations in the production rate β for the system of Problem 2.3. To do 
this, we calculate the parameter sensitivity coefficient (Savageau, 1976; Goldbeter 
and Koshland, 1981; Heinrich and Schuster, 1998) of the steady-state concentration 
Xst with respect to β. The parameter sensitivity coefficient of property A with respect 
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to parameter B, denoted S(A, B), is defined as the relative change in A for a given small 
relative change in B, that is, S:

 
S(A,B)= =

∆ ∆A
A

B
B

B
A
dA
dB  

(P2.7)

Solution:

  The steady-state level is found from Equation P2.2 using dX/dt = 0, yielding:

 
X K Kst

n
=











+β
α

1
1( )

 
(P2.8)

  The parameter sensitivity coefficient, which describes relative changes in steady state 
due to changes in production rate, is:

 
S X X

dX
d nst

st

st( , )β
β

β
= =

+
1

1 
(P2.9)

  Thus, sensitivity decreases with Hill coefficient n. The higher n, the weaker the 
dependence of the steady state on β. In other words, robustness to variations in 
production rates increases with the Hill coefficient.

   For Hill coefficient n = 4, for example, S(Xst,β) = 1/5, which means that a 10% 
change in β yields only a 2% change in Xst. In the limit of very high n, the steady state 
does not depend at all on production or degradation rates, Xst = K. This is the steady-
state solution found in the main text for the logic input function. Simple regulation 
is equivalent to n = 0, so that S(Xst,β) = 1. This means that a small change of x% in 
production leads to the same change of x% in steady state.

 2.5 Autoregulated cascade: Gene X encodes a repressor that represses gene Y, which also 
encodes a repressor. Both X and Y negatively regulate their own promoters.

 a. Draw the circuit diagram.

 b. At time t = 0, X begins to be produced at rate β, starting from an initial 
concentration of X = 0. What are the dynamics of X and Y? What are the response 
times of X and Y? Assume logic input functions, with repression thresholds KXX, 
KXY for the action of X on its own promoter and on the Y promoter, and KYY for 
the action of Y on its own promoter.

 c. At time t = 0, production of X stops after a long period of production, and X 
concentration decays from its initial steady-state level. What are the dynamics of 
X and Y? What are the response times of X and Y?
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 2.6 Linearized positive autoregulation: What is the effect of positive autoregulation on the 
response time?

  Use as a model the following linear equation:

 
dX
dt X X= + −β β α1

  with β1 < α. Explain each term and solve for the response time. When might such a 
design be biologically useful? What happens when β1 > α?

 2.7 Turning off autoregulation: What are the dynamics of a negatively autoregulated gene 
at steady state once its maximal promoter activity is suddenly reduced to β = 0? What 
is the response time, and how does it compare to simple regulation?

 2.8 Positive autoregulation with a step function: Consider a step-function model for 
positive autoregulation, in which production of X is at level β0 when X < K, and rises 
to β1 when X ≥ K. The removal rate is α.

 i. Design the circuit such that production rate crosses removal rate three times in 
the rate plot.

 ii. Solve the dynamics X(t) for any initial value of X.

 iii. What is the response time?

 2.9 Two-node positive feedback for decision-making : During development from an egg to an 
embryo, cells need to make irreversible decisions to express the genes appropriate to their 
designated tissue types and repress other genes. One common mechanism is positive 
transcriptional feedback between two genes. There are two types of positive feedback 
made of two transcription factors. The first type is of two positive interactions X → Y and 
Y → X. The second type has two negative interactions X ⟞ Y and Y ⟞ X. What are the 
stable steady states in each type of feedback? Which type of feedback would be useful in 
situations where genes regulated by both X and Y belong to the same tissue? Which would 
be useful when genes regulated by X belong to different tissues than the genes regulated 
by Y?

 2.10 NAR can increase input dynamic range: Input dynamic range is the range input signal 
SX that elicits a sizable change in output, Xst. For example, input dynamic range R can 
be defined as the ratio of input levels Sx needed for 90% and 10% response (i.e., for Xst 
to reach 90% and 10% of its maximal level).

 a. Consider simple regulation with production rate is regulated by an upstream TF 
such that β = β(Sx) = Sx/(K + Sx). What is the input dynamic range R?

 b. Add negative autoregulation to this circuit,
dX
dt

S
X
K

Xx
n=

+








−
β

α
( ) .

1
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 c. Explain the production term in this equation.

 d. Compute the input dynamic range R (assume (X/K)n ≫ 1). Explain why NAR 
is said to increase the input dynamic range (Nevozhay et  al., 2009; Madar 
et al., 2011).

 2.11 Linear analysis of stability: Linear stability analysis assumes small perturbations 
around a fixed point, so that nonlinear functions can be linearized using their local 
slope (derivative). The resulting linear equations can be solved to find out whether 
the perturbation shrinks to zero (indicating a flow back to the fixed point and hence 
a stable fixed point), or grows (indicating an unstable fixed point).

  Consider an autoregulated circuit dX/dt = f(X) − αX which has a fixed point Xst. 
Assume a small perturbation X(t) = Xst + δX(t). The function f(x) can be expanded 
using its local slope, f(X) = f(Xst) + (df(Xst)/dX)δX + higher order terms.

 a. Explain why the dynamics of the perturbation δx(t) can be approximated by 
dδX/dt = β1δX − αδX, with β1 = df(Xst)/dX.

 b. Explain why negative autoregulation always shows a stable fixed point.

 c. Explain why positive autoregulation can have either stable or unstable fixed 
points.

 2.12 Simple regulation as a filter for high-frequency noise, linear analysis: Consider a 
simple regulation circuit dX/dt = β − αX. Noise can be said to be composed of many 
components at different temporal frequencies. We will analyze these components one 
by one, in the limit of small noise in which linear equations can be used. Assume 
that production rate shows small amplitude fluctuations with frequency ω, so that 
β = β0 + a sin (ωt).

 a. Show that the protein X concentration oscillates around its steady state with 
frequency ω, by showing that that X = Xst + C sin (ωt + φ) solves the dynamic 
equation.

 b. Plot the amplitude of the variation of X around its steady state, C/a, as a function of ω.

 c. Explain why simple regulation can be said to filter out high-frequency noise, at 
frequencies higher than ω ∼ 1/α.

 2.13 Negative and positive autoregulation as linear filters: Repeat the linear filter calculation 
of Exercise 2.12 for linearized versions of positive autoregulation (PAR) and negative 
autoregulation (NAR). In these versions, the dynamic equation is dX/dt = β + β1 − αX 
where β1 is negative for NAR (because X reduces its own expression), and positive for 
PAR (with β1 < α).

  What is the effect of linearized autoregulation on the noise filtering properties of these 
circuits? Why can it be said that NAR helps filter out low-frequency noise, whereas 
PAR can help filter out high-frequency noise?
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C h a p t e r  3

The Feedforward Loop 
Network Motif

3.1 INTRODUCTION
In this chapter, we will continue to discover network motifs in transcription networks and 
discuss their function. The main point is that out of the many possible patterns that could 
appear in the network, only a few are found significantly – the network motifs. Network 
motifs have defined information-processing functions. The benefit of these functions may 
explain why the same network motifs are rediscovered by evolution again and again in 
diverse systems.

To find network motifs, we will calculate the number of appearances of patterns in 
real and random networks. We focus in this chapter on patterns with three nodes (such 
as triangles). Patterns with two nodes and patterns with more than three nodes will be 
discussed in the next chapters.

3.2 THE FEEDFORWARD LOOP IS A NETWORK MOTIF
In the previous chapter, we discussed the simplest network motif, self-regulation, a pattern 
with one node. Let us now consider larger patterns of nodes and arrows, called subgraphs. 
Two examples of three-node subgraphs are shown in Figure 3.1, the feedforward loop and 
the feedback loop. In total, there are 13 possible ways 
to connect three nodes with directed arrows, shown in 
Figure 3.2. There are 199 possible four-node subgraphs, 
9364 five-node subgraphs, and so on.

To find which of these subgraphs are significant, we 
need to compare the subgraphs in the real network to 
those in randomized networks. The numbers of subgraphs 
in randomized networks can be computed analytically or 
by computer simulations. For example, in Erdős–Rényi 
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yz
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r a ndom ne t work s , 
the mean number of 
feedforward loops is equal 
to the mean connectivity λ 
(mean number of arrows 
per node, λ = A/N) raised 
to the third power, λ3 
(see solved Exercise 3.2). 
The third power arises 
because  the feedforward 
loop has three arrows.

How do the numbers of 
three-node patterns in transcription networks compare with random networks? In the 
Escherichia coli transcription network that we use as an example, there are 42 feedforward 
loops and no feedback loops made of a cycle of three nodes. Nodes that participate in 
feedforward loops are shown in black in Figure 3.3. In contrast, in the corresponding 
randomized networks with the same mean connectivity λ = 500/400 ∼ 1.2, there are only 
about 2 feedforward loops on average (Exercise 3.2)

 〈 =〉NFFL rand λ3 1 7∼ .

and the mean number of feedback loops is smaller than 1,

 〈 =〉NFBL rand λ3 3 0 6/ .∼

The standard deviations of these numbers are generally the square roots of the means in 
such random networks.

We see that the feedforward loop is a strong network motif. It occurs much more 
often than at random. Its frequency exceeds its frequency in the ensemble of randomized 
networks by more than 30 standard deviations. In contrast, the three-node feedback loop 
is not a network motif (it is actually an anti-motif in many biological networks). The same 
conclusions apply also when comparing transcription networks to more stringent ensembles 
of randomized networks that closely preserve the properties of the real network.

In fact, in sensory transcription networks such as those of E. coli and yeast (Lee et al., 
2002; Milo et al., 2002), the feedforward loop is the only significant network motif of the 
13 possible three-node patterns. In this sense, these networks are much simpler than they 
could have been.

The massive overabundance of feedforward loops raises the question: Why are they 
selected despite randomizing forces? Do they perform a function that confers an advantage 
to the organism? To address this question, let’s now analyze the structure and function of 
the feedforward loop network motif.
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3.3 THE STRUCTURE OF THE FEEDFORWARD LOOP GENE CIRCUIT
The feedforward loop, which we will henceforth abbreviate FFL, is composed of transcription 
factor X that regulates a second transcription factor, Y, and both X and Y regulate gene Z 
(Figure 3.1). Thus, the FFL has two parallel regulation paths, a direct path from X to Z and 
an indirect path that goes through Y.

Each of the three arrows in the FFL can correspond to activation (plus sign) or repression 
(minus sign). There are, therefore, 23 = 8 possible types of FFLs (Figure 3.4).

nodes in FFL

FIGURE 3.3 
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The eight FFL types can be classified into two groups: coherent and incoherent. In 
coherent FFLs, the indirect path has the same overall sign as the direct path. The overall 
sign of a path is given by multiplying the signs of the arrows on the path, so that two minus 
signs give an overall plus sign. For example, in coherent type-1 FFLs, X activates Z, and also 
activates an activator of Z, so that both paths are positive.

In incoherent FFLs, the sign of the indirect path is opposite to that of the direct path. 
For example, in the incoherent type-1 FFL, the direct path is positive and the indirect path 
is negative. The two paths have antagonistic effects. Incoherent FFLs have an odd number 
of minus arrows (one or three), and coherent FFLs have an even number.

Since the E. coli network has about equal 
numbers of positive and negative arrows, 
one might expect all 8 types of FFLs to 
appear with about equal frequency. This 
is not the case. Two types are much more 
frequent than the others, and together 
make up more than 80% of the FFLs 
(Figure 3.5). These two are the coherent 
type-1 FFL (C1-FFL) and the incoherent 
type-1 FFL (I1-FFL) (Mangan and Alon, 
2003; Ma et al., 2004; Mangan et al., 2006).

In addition to the signs on the arrows, 
to understand the dynamics of the FFL we 
must also know how the inputs from the 
two regulators X and Y are integrated at 
the promoter of gene Z. That is, we need to 
know the input function of gene Z. We will 
consider two biologically reasonable logic 
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functions: AND logic, in which both X and Y are needed to turn 
on Z expression, and OR logic, in which either X or Y is sufficient.

We also need to consider the input signals to this circuit. The 
transcription factors X and Y in the FFL respond to the signals 
Sx and Sy. In some cases, these signals are molecules that directly 
bind the transcription factors, and in other systems the signals 
are modifications of the transcription factor caused by signal-
transduction pathways activated by external stimuli. The effect of 
the signals usually operates on a much faster timescale than the 
transcriptional interactions in the FFL.

We can now study the dynamics of the proteins that make up 
the FFL as a function of time following a change in an external 
signal. We will begin with the common coherent type-1 FFL 
(C1-FFL). In this FFL, all three interactions are positive. As for 
the input function of the Z promoter, we will first consider AND 
logic, in which both activators X and Y need to bind the promoter 
of Z in order to initiate the production of protein Z (Figure 3.6).

3.4  DYNAMICS OF THE COHERENT TYPE-1 FFL 
WITH AND LOGIC

Suppose that the cell expresses numerous copies of protein X, the top transcription factor 
in the FFL. The input to X is the signal Sx (Figure 3.7). Without the signal, X is in its 
inactive form. Now, at time t = 0, the signal Sx appears and triggers the activation of X. 
This is known as a step-like stimulation of X. As a result, the transcription factor X rapidly 
transits to its active form X*. The active protein X* binds the promoter of gene Y, initiating 
production of protein Y, the second transcription factor in the FFL. In parallel, other copies 
of X* bind the promoter of gene Z. However, since the input function at the Z promoter is 
AND logic, X* alone cannot activate Z production.

Production of Z requires binding of both X* and Y*. Z activation thus requires that the 
second input signal, Sy, is present, so that Y is in its active form, Y* (Figure 3.7). Moreover, 
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the concentration of Y* must build up to sufficient levels to cross the activation threshold 
for gene Z, denoted KYZ. This results in a delay in Z production.

We will now mathematically describe the FFL dynamics, in order to see how a simple 
model can be used to gain an intuitive understanding of the function of a gene circuit. We’ll 
use logic input functions. Production of Y occurs at rate βY when X* exceeds the activation 
threshold KXY, as described by the step function θ:

 production rate of Y X KY XY= >β θ( * ) (3.4.1)

When the signal Sx appears, X rapidly shifts to its active conformation X*. If the signal is 
strong enough, X* exceeds the activation threshold KXY and rapidly binds the Y promoter 
to activate transcription. Thus, Y production begins shortly after Sx. The accumulation of 
Y is described by our familiar dynamic equation with a term for production and another 
term for removal:

 
dY
dt X K YY XY Y= > −β θ α( * )

 
(3.4.2)

The promoter of Z is governed by an AND-gate input function. The AND gate can be 
described by a product of two step functions, because both regulators need to cross their 
activation threshold:

 production of Z X K Y KZ XZ YZ= > >β θ θ( * ) ( * ) (3.4.3)

Thus, the C1-FFL gene circuit has three activation thresholds (numbers on the arrows). 
The dynamics of Z are the balance of a production term with an AND input function and 
a removal term:

 
dZ
dt X K Y K ZZ XZ YZ Z= > > −β θ θ α( * ) ( * )

 
(3.4.4)

We now have the equations needed to study the C1-FFL.

3.5 THE C1-FFL IS A SIGN-SENSITIVE DELAY ELEMENT
To analyze the dynamics of the C1-FFL, we will consider the response to steps of Sx, in which 
the signal Sx is absent and then saturating Sx suddenly appears (ON steps). We will also 
consider OFF steps, in which Sx is suddenly removed. For simplicity, we assume throughout 
that the signal Sy is present, so that the transcription factor Y is in its active form:

 Y*  = Y (3.5.1)



The Feedforward Loop Network Motif    ◾    43

3.5.1 Delay Following an ON Step of Sx

Following an ON step of Sx, Y begins to be 
produced at rate βY. Hence, as we saw in 
Chapter 1, the concentration of Y begins to 
exponentially converge to its steady-state 
level Yst = βY/αY (Figure 3.8):

   Y Y est
tY* ( )= − −1 α     (3.5.2)

What about Z? Production of Z is 
governed by an AND input function, in 
which one input, X*, crosses its threshold 
as soon as Sx is added. But one input is 
not enough to activate an AND gate. 
The second input, Y*, takes some time to 
accumulate and to cross the activation 
threshold, KYZ. Therefore, Z begins to be 
expressed only after a delay (Figure 3.8). 
The delay, TON, is the time needed for Y* to 
reach its threshold. It can be seen graphically as the time when Y* concentration crosses the 
horizontal line at height KYZ. The delay, TON, can be found using Equation 3.5.2:

 Y T Y e Kst
T

YZ
Y*( ) ( )ON

ON= − =−1 α
 (3.5.3)

which can be solved for TON, yielding:

 
T K YY YZ st

ON =
−











1 1
1α

log /  
(3.5.4)

This equation describes how the duration of the delay depends on the biochemical 
parameters of the protein Y (Figure 3.9). These parameters are the removal rate of the 
protein, αY, and the ratio between its 
steady-state level Yst and its activation 
threshold KYZ. The delay can, therefore, 
be tuned over evolutionary timescales by 
mutations that change these biochemical 
parameters.

Note that the delay TON diverges when 
the activation threshold KYZ exceeds the 
steady-state level of Y, because protein Y 
can never reach its threshold to activate Z 
(Figure 3.9). Recall that Yst is prone to 

FIGURE 3.8 

FIGURE 3.9 
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cell–cell fluctuations due to variations in 
protein production rates. Hence, a robust 
design will have a threshold KYZ that 
is significantly lower than Yst, to avoid 
these fluctuations. In bacteria, typical 
parameters provide delays TON that range 
from a few minutes to a few hours.

3.5.2  No Delay Following 
an OFF Step of Sx

We just saw that Z shows a delay following 
ON steps of Sx. We now consider OFF steps 
of Sx, in which Sx is suddenly removed 
(Figure 3.10). Following an OFF step, 
X becomes inactive and unbinds from the 
promoters of genes Y and Z. Because Z is 
governed by an AND gate, it only takes one 
input to go off in order to stop Z expression. Therefore, after an OFF step of Sx, Z production 
stops at once. There is no delay in Z dynamics after an OFF step (Figure 3.10).

3.5.3  The C1-FFL Is a Sign-Sensitive Delay Element

The C1-FFL with AND logic shows a delay 
following ON steps of Sx, but not following 
OFF steps. This type of behavior is called 
sign-sensitive delay, where sign-sensitive 
means that the delay depends on the sign 
of the step, ON or OFF.

A sign-sensitive delay element can also be 
considered as a kind of asymmetric filter. For 
example, consider a pulse of Sx that appears 
only briefly (an ON pulse) (Figure 3.11). An 
ON pulse that is shorter than the delay time, 
TON, does not lead to Z expression in the 
C1-FFL. That is because Y does not have time to accumulate and cross its activation threshold 
during the pulse. Only persistent pulses (longer than TON) result in Z expression. Thus, this type 
of FFL is a persistence detector for ON pulses. On the other hand, it responds immediately to 
OFF pulses. In contrast to the FFL, simple regulation (with no FFL) does not filter out short 
input pulses, but rather shows production of Z that lasts as long as the input pulse is present.

3.5.4  Sign-Sensitive Delay Can Protect against Brief Input Fluctuations

Why might sign-sensitive delay be useful? For clues, we can turn to the uses of sign-sensitive 
delays in engineering. Engineers use sign-sensitive delay when the cost of an error is not 
symmetric. A familiar example occurs in elevators: consider the beam of light used to 
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sense obstructions in the elevator door. If you obstruct the light with your hand, the doors 
immediately open. If you remove your hand for only a brief pulse, nothing happens (i.e., a 
brief pulse of light is filtered out). Only if you remove your hand for a persistent length of 
time do the doors close (a persistent pulse of light leads to a response). Put your hand back 
in and the doors open immediately. The cost of an error (doors closing or opening at the 
wrong time) is asymmetric: the design aims to respond quickly to a person in the beam and 
make sure that the person has moved away for a persistent period of time before closing the 
doors. The sign-sensitive delay thus serves a protective function.

In transcription networks, evolutionary selection may have placed the C1-FFL in diverse 
systems in the cell that require such a protection function. Indeed, the environment of cells 
is often highly fluctuating, and sometimes stimuli can be present for brief pulses that should 
not elicit a response. The C1-FFL can offer a filtering function that is advantageous in these 
types of fluctuating environments. The conditions for the natural selection of the FFL based 
on its filtering function will be discussed in more detail in Chapter 13.

3.5.5 Sign-Sensitive Delay in the Arabinose System of E. coli

Experiments have demonstrated that sign-sensitive delays are carried out by the C1-FFL in 
cells of different organisms. For example, an FFL was experimentally studied in the well-
characterized gene system that allows E. coli to grow on the sugar arabinose. The arabinose 
system consists of proteins that transport arabinose into the cell and break it down for use 
as an energy and carbon source. Arabinose is only used by the cells when the sugar glucose 
is not present: glucose is a superior energy source and is used in preference to most other 
sugars. Thus, the arabinose system needs to make a decision based on two inputs, arabinose 
and glucose. The proteins in this system are only made when the sugars in the environment 
of the cell meet the condition: arabinose AND NOT glucose.

The absence of glucose is symbolized within the cell by the production of a small molecule 
called cAMP. To make its decision, the arabinose system has two transcription activators, 
one called CRP that senses cAMP, and the other called AraC that senses arabinose. These 
regulators are connected in a C1-FFL with an AND input function (Figure 3.12). Thus, the 
input signals are Sx = cAMP and Sy = arabinose.

Experiments on this system used steps of Sx and monitored the dynamics of the promoter 
of the arabinose utilization genes that act as node Z in the FFL, using green fluorescent 
protein (GFP) as a reporter. A delay was found after ON steps of Sx, but not after OFF steps 
(Figure 3.12). The delay following ON steps is TON ∼ 20 min under the conditions of the 
experiment. In contrast, a simple-regulation system (with no FFL) that responds to the same 
input (the lac promoter) showed no delay for either ON or OFF steps, beyond the ∼5min 
needed to transcribe and translate the GFP reporter.

The observed delay in the arabinose FFL is on the same order of magnitude as the duration 
of spurious pulses of the input signal Sx in the environment of E. coli. These spurious pulses 
occur when E. coli transits between different growth conditions. Thus, the FFL in this 
system seems to have “learned” the typical timescale of short fluctuations in the input signal 
and can filter them out. It responds only to persistent stimuli, such as persistent periods of 
glucose starvation that require utilization of the sugar arabinose.
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There is an asymmetry in this system: starting to make the arabinose utilization proteins 
when not needed uses up resources and carries a fitness cost (bacteria grow more slowly). 
In contrast, stopping protein production too soon is not as bad because the proteins are 
still around and can perform their function, if needed, for a generation or so, until they are 
diluted away by cell growth.

Note that the FFL in the arabinose system shows sign-sensitive delay despite the fact that 
this circuit is embedded in additional interactions, such as protein-level feedback loops 
(dashed lines in Figure 3.12, that represent the change in input signal due to transport 
of the sugar into the cell by the pumps, and its degradation by the enzymes of each 
system). Thus, although the theory we have discussed concerns a three-gene FFL circuit in 
isolation, the arabinose FFL shows the expected dynamics also when connected to the rest 
of the interaction networks of the cell. This modularity of function is generally found in 
experiments on network motifs (Atay et al. 2016; Bulcha et al. 2019). 

3.6 OR-GATE C1-FFL IS A SIGN-SENSITIVE DELAY FOR OFF STEPS
What happens if the C1-FFL has an OR gate at the Z promoter instead of an AND gate? With 
an OR gate, Z is activated immediately upon an ON step of Sx, because it only takes one input 
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to activate an OR gate. Thus, there is no delay following an ON step of Sx. In contrast, Z is 
deactivated at a delay following an OFF step, because both inputs need to go off for the OR 
gate to be inactivated, and it takes time for Y* to decay away after an OFF step of Sx. Thus, 
the C1-FFL with an OR gate is also a sign-sensitive delay element, but with signs opposite 
to those of the AND version (the delay is calculated in solved Exercise 3.7). As a result, the 
OR gate C1-FFL can maintain expression of Z even if the input signal is momentarily lost.

Such dynamics were demonstrated experimentally in the flagella system of E. coli 
(Figure 3.13; Kalir, Mangan and Alon, 2005). This FFL controls the production of proteins 
that self-assemble into a motor that rotates the flagella that allow E. coli to swim. We will 
discuss this system in more detail in Chapter 9. The delay in this FFL after removal of Sx is 
about one cell generation time, which is about 1h under the conditions of the experiment. 
This delay is on the same order of magnitude as the time it takes to assemble a flagella motor. 
The OR gate FFL provides continued expression for about an hour after the input signal goes 
off and can thus protect this gene system against transient loss of input signal.

3.7  THE INCOHERENT 
TYPE-1 FFL GENERATES 
PULSES OF OUTPUT

We can use the same approach to understand 
the function of the other prevalent type of 
FFL, the incoherent type-1 FFL (I1-FFL). 
In this circuit, X activates gene Z, and also 
activates Y which represses Z (Figure 3.14). 
Let’s consider the case in which Y represses 
Z strongly. After an ON step of input signal  
Sx, X binds the promoters of Y and Z. As a 
result, Z concentration rises. The repressor 
Y also accumulates, and when it crosses 
its repression threshold, KYZ, it shuts off 
Z production and Z levels begin to drop. 
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Thus, the I1-FFL generates a pulse of output 
in response to a step of input (Figure 3.14).

Such a pulse is seen, for example, in 
the system that signals mammalian cells 
to divide in response to the proliferation 
signal EGF (Amit et al., 2007). In response 
to a step stimulation of EGF, an I1-FFL 
generates a pulse of early response genes 
(Z1 in Figure 3.15). Interestingly, the 
I1-FFL is linked with a C1-FFL that causes 
other genes to turn on at a delay relative 
to the early genes (Z2 in Figure 3.15). The 
temporal pulse generated by the I1-FFL in 
response to a step input can be thought of 
as being similar to a temporal derivative of 
the input signal. In fact, the I1-FFL can respond to relative changes in input, a property that 
we will explore in Chapter 10.

3.7.1  The Incoherent FFL Can Speed Response Times

A pulse is found when Y strongly represses 
Z. If Y only partially represses Z, the pulse 
does not go down to baseline but instead 
converges to a steady state, Zst, determined 
by the relative strengths of the activation 
by X and the repression by Y. In this case, 
the I1-FFL can be compared to simple 
regulation that reaches the same Zst. The 
I1-FFL speeds responses relative to simple 
regulation (Figure 3.16). This is because 
it allows a rapid rise (when Y is still low), 
which is stopped by Y to reach the desired 
Zst. The principle is similar to the strong 
motor and strong breaks we saw for 
negative autoregulation. The speedup is 
greater the stronger the repression by Y, as 
calculated in solved Exercise 3.13.

An experimental study of I1-FFL 
speedup is shown in Figure 3.17. This 
experiment employed the system which 
enables E. coli to grow on the sugar 
galactose as a carbon and energy source. 
As in other sugar systems, the genes in the 
galactose system are not highly expressed 
in the presence of glucose, a superior 
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energy source. The galactose utilization genes are expressed at a low but significant level 
when both glucose is absent and galactose is absent, allowing the cell to grow rapidly on 
galactose should it appear in the environment. When galactose appears, the genes become 
fully expressed. The galactose genes are regulated by an I1-FFL, with the activator CRP and 
the repressor GalS.

Measurements show that the response of the output genes is accelerated upon glucose 
starvation (an ON step of Sx) compared to simply regulated genes (Figure 3.17). Removal of 
the repressor interaction in the I1-FFL, achieved by deleting the repressor binding site in 
the promoter of Z, abolishes this acceleration.

In addition to studying this network motif within a natural context, one can study it by 
making a synthetic I1-FFL made of well-characterized regulators. Weiss and colleagues 
constructed an I1-FFL using the activator LuxR as X, the repressor C1 of phage lambda 
as Y and green fluorescent protein as the output gene Z (Basu et al., 2005). This synthetic 
circuit in E. coli showed pulse-like responses to steps of the input signal Sx (the inducer of 
LuxR). The synthetic construction of gene circuits is a powerful approach for isolating and 
studying their properties (Elowitz and Lim, 2010).

3.7.2 Interim Summary: Three Ways to Speed Your Response Time

We have seen three different ways to speed the response time of transcription networks. 
The basic problem is that the transcriptional response time is slow, on the order of a cell 
generation time for proteins that are not degraded. This is a drawback for networks that 
need to respond rapidly to external signals. The three ways to speed response times are:

 1. Increased degradation rate: As we saw in Chapter 1, the response time of simple gene 
regulation is inversely proportional to the removal rate, T1/2 = log(2)/α, where α is a 
sum of the rate of degradation of the protein and the rate of dilution by cell growth: 
α = αdeg + αdil. Therefore, increasing the degradation rate αdeg yields faster responses. 
However, there is a cost to this strategy: to maintain a given steady state, Xst = β/α, 
one needs to increase the production rate β to balance the effects of increased 
degradation α. This creates a futile cycle, where the protein is rapidly produced and 
rapidly degraded. This cycle can be selected by evolution in some systems, despite the 
costs of increased production, due to the benefit of faster response.

 2. Negative autoregulation: As we saw in Chapter 2, negative autoregulation can 
speed responses by a large factor. This speedup is due to the ability to use a strong 
promoter (large production rate β) to give rapid initial production, and then to turn 
production off by self-repression when the desired steady state is reached. The negative 
autoregulation strategy works only for proteins that can repress themselves, namely, 
only for transcription factor proteins.

 3. Incoherent FFL: The incoherent type-1 FFL can speed up ON-responses, as we saw in 
the previous section. This is due to initially rapid production that is later turned off 
by a delayed repressor, to achieve a desired steady state. This speedup applies to the 
low-induction state in the presence of Sy. It can be used to speed the response time of 
any target protein, not only transcription factors.
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Designs 2 and 3 can work together with 
1: a large degradation rate further speeds 
the response of negative autoregulation 
and incoherent FFLs.

3.7.3  The I1-FFL Can Provide Biphasic 
Steady-State Response Curves

So far, we considered the dynamical 
response of the I1-FFL to steps of input 
signal. An additional feature is seen when 
we consider the steady-state response, Zst, 
as a function of the input signal strength 
Sx. Simple regulation X → Z generates 
monotonic response functions, in which 
the output Zst rises with the input Sx. The 
I1-FFL can generate a non-monotonic 
response in which Zst first rises with 
Sx and then, at high levels, decreases, 
resulting in an inverse U-shape response 
curve. Because the response has a rising 
phase and a decreasing phase, it is called a 
biphasic response.

Biphasic responses arise in the I1-FFL when X activates Z at a lower threshold than it 
activates Y. Thus, when Sx is low, the repressor Y is not activated and only the X → Z arm 
is felt, resulting in a rising response curve. At high signal levels, the repressor is produced 
and Zst drops with signal.

A biphasic response was studied experimentally in the galactose system of E. coli by Shai 
Kaplan et al. (Kaplan et al., 2008; Figure 3.18). 
This biphasic response is due to the I1-FFL 
in the system, because deleting the repressor 
gene Y (galS) made the response curve 
monotonic (dashed line in  Figure 3.18).

A combination of biphasic response 
to input dose and a temporal pulse is 
seen in experiments by Sheng-Hong 
Chen and Keith Yamamoto (Chen et  al., 
2013) on certain genes regulated by the 
glucocorticoid receptor. This receptor 
responds to cortisol, a central hormone 
regulator of the mammalian stress 
response. Cortisol is well known to have 
different effects depending on whether it is 
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present for a short or a long time (acute versus chronic stress). Cortisol concentration also 
has a biphasic effect, with high and low levels both causing unwanted physiological effects, 
with an optimum at intermediate levels. The studied output genes show pulses in time after 
a step of input (dexamethasone, an analog of cortisol). They also show a biphasic dose-
response, with an amplitude that peaks at intermediate input dose (Figure 3.19). Based on 
this behavior, the researchers hypothesized that an I1-FFL is at play. Indeed, I1-FFLs were 
later experimentally identified in the cortisol system (Sass et al., 2013; Chinenov et al., 2014).

3.8  THE OTHER SIX FFL TYPES CAN ALSO ACT AS FILTERS 
AND PULSE GENERATORS

Using the approach we discussed in this chapter, you can figure out what the other six types of 
FFLs can do. Such analysis shows that all four types of coherent FFLs can act as sign sensitive 
delays (Table 3.1), with delays after ON or OFF steps of input. All four types of incoherent FFLs 
can generate pulses and biphasic responses (Table 3.2). The details vary, though. For example, 
a incoherent type-3 FFL can show a biphasic response which first drops with input signal and 
then rises, giving a U-shape rather than an inverse U-shape biphasic response.

Because all FFLs can have potentially useful functions, it is an open question why two 
types, C1-FFL and I1-FFL, appear much more often than the other six. Some clues are 
considered in Exercises 3.12 and 3.19.

3.9 CONVERGENT EVOLUTION OF FFLs

We end this chapter by thinking about the evolution of FFLs. How did FFLs evolve? The 
most common form of evolution for genes is conservative evolution, where two genes 
with similar function stem from a common ancestor gene. The genes, therefore, share a 
significant degree of DNA sequence similarity. Such genes are said to be homologous.

Did FFLs evolve in a similar way, where an ancestor FFL duplicated to gave rise to the 
present FFLs? It appears that the answer is no in most cases. For example, homologous 
genes Z and Z′ in two species are often both regulated by FFLs in response to the same 

TABLE 3.2 Response of Incoherent FFLs to Sx in the Presence of Sy

Incoherent FFL 
Type 1 2 3 4

ON step pulse/accelerate – – pulse/accelerate
OFF step – pulse/accelerate pulse/accelerate –
Biphasic inverse U-shape U-shape U-shape inverse U-shape

TABLE 3.1 Response of Coherent FFLs to Sx in the Presence of Sy

Coherent FFL 
Type 1 2 3 4

Gate AND OR AND OR AND OR AND OR
ON step delay – – delay – – delay delay
OFF step – delay delay – delay delay – –
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environmental stimuli. If the two FFLs shared a common ancestor FFL, the regulators X 
and Y in the two FFLs would also be homologous. However, the regulators are usually not 
homologous in such FFL pairs. The DNA sequence of the regulators is so dissimilar that 
they belong to completely different transcription factor families.

Thus, evolution converged independently on the same regulation circuit (Conant and 
Wagner, 2003; Babu et al., 2004). Presumably, the FFL is rediscovered by evolution because 
it performs an important function in the different organisms. More about gene circuit 
evolution will be discussed in Chapter 13.

3.10 SUMMARY
Of the 13 three-gene patterns, only the FFL is a network motif in the transcription networks 
of E. coli and yeast as well as in the sensory transcription networks of higher organisms. Of 
the eight possible sign combinations of the FFL, two are most commonly found, the C1-FFL 
in which all interactions are positive, and the I1-FFL in which an activator activates both a 
gene and its repressor. The C1-FFL acts as a persistence detector, filtering out brief pulses of 
input. The incoherent type-1 FFL (I1-FFL) can act as a pulse generator in time and in input 
dose, and a response accelerator. This acceleration can be used in conjunction with the other 
mechanisms of acceleration, such as increased degradation and negative autoregulation. 
Evolution converged again and again on the FFLs in different gene systems and in different 
organisms. Thus, this recurring network motif is an example of a pattern that may have 
been selected for its specific dynamical functions. As we will see in the next chapters, the 
FFL is also a network motif in several other types of biological networks.
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EXERCISES
Subgraphs in Random Networks

 3.1 Sparseness of biological networks: A sparse network is a network in which the density 
of arrows is low. To be specific, we will consider an Erdős–Rényi (ER) network as a 
basic model for random networks. In an ER network, A arrows are placed at random 
between N nodes.

 a. How many places are there to put an arrow, including self-arrows?

  Answer: N(N − 1)/2 pairs, each arrow can be in two directions, plus N self-arrows 
makes N2 places.

 b. Sparseness p is the number of actual arrows divided by the number of places 
arrows could have been. What is the sparseness of our example E. coli network 
with A = 500 and N = 400?

  Answer: p A N= =/ 2 0 002. . Low values of p are typical of biological networks.

 c. What is the difference between sparseness and mean connectivity λ = A/N?

 3.2 Subgraphs in random networks: A subgraph is a pattern of nodes and arrows, found 
inside a network.

 a. Compute the expected number of subgraphs G with n nodes and g arrows, 〈 〉NG , 
in an ER network of size N and mean connectivity λ = A/N.

Solution:

  There are approximately Nn ways of choosing n specific nodes (N for the first node, 
N − 1 for the second node, etc., leading to N(N − 1) … (N − n) ∼ Nn provided we 
are dealing with subgraphs that are small compared to the network size, n ≪ N). 
The probability for finding g arrows between these nodes is pg for sparse networks, 
where p is the sparseness defined in Excercise 3.1. Thus, NG = a−1Nnpg = a−1N(n−g)λg. 
The factor a is a symmetry factor equal to the number of permutations of the nodes 
that leave the graph unchanged. For a feedback loop of three nodes, a = 3, and for 
the FFL a = 1.
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 b. How many FFLs and three-node feedback loops are there on average in an ER 
network?

Solution:

  Both subgraphs have n = g and thus scale as N0, so for large networks their numbers 
do not depend on network size:

 
N NFFL FBL= =λ λ3 31

3, . 

 c. How many fan-in subgraphs of two nodes regulating a third?

Solution:

  n = 3, g = 2 and a = 2 because the two regulating nodes can be interchanged, so 
that  N NV =1 2 2/ λ . The number scales with the size of the network N.

 d. How many cliques? Cliques are fully connected triads, three nodes with all possible 
arrows between them.

Solution:

  n = 3, g = 6, a = 6 (all six permutations of the three nodes are equivalent), so 
N Nclique = −1 6 3 6/ λ . These subgraphs are very rare in large, sparse random 

networks.

 3.3 Algorithm for detecting network motifs:

 a. Write a computer program to count FFLs and three-node feedback loops (FBLs) 
in a given network. The input is a list of pairs of numbers, indicating the origin 
and target of each arrow. Use as an input the E. coli example network in this book 
website: https://www.weizmann.ac.il/mcb/UriAlon/e-coli-transcription-network.

 b. Write a computer program to generate random ER networks with a given number 
of nodes and arrows.

 c. Use (a) and (b) to write a computer program that computes the mean and standard 
deviation of the FFL and FBL in ER networks, and outputs whether they are 
network motifs (choose a suitable statistical criterion for their over-abundance), 
or anti-motifs (under-abundance).

 3.4 Hubs in networks: Hubs are nodes connected with many more arrows than average 
nodes. They are often central regulators in transcription networks.

 a. Write a computer program to calculate the number of incoming and outgoing 
arrows to each node in the E. coli example network (see Exercise 3.3). Plot the 
distributions of incoming and outgoing arrows. Which distribution has a longer 
tail (more probability for values higher than average)?

https://www.weizmann.ac.il/


The Feedforward Loop Network Motif    ◾    55

 b. Which nodes are hubs in terms of outgoing arrows?

 c. Are there strong hubs in terms of incoming arrows? If not, explain why this 
might be.

 d. Do ER networks have hubs? Compute (analytically or by computer simulation) the 
distribution of number of arrows per node in ER networks, and compare to the real 
network.

 3.5 Degree-preserving random networks: Each node in a network has an in-degree, the 
number of incoming arrows, and an out-degree, the number of outgoing arrows. 
Degree-preserving random networks (DPRNs) have the same number of nodes and 
arrows as the real network, and also preserve the in-degree and out-degree of each 
node in the network. Sounds hard to achieve?

 a. The switching algorithm (Maslov and Sneppen, 2002; Milo et al., 2002) to generate 
DPRN is as follows: Start with the real network. Choose a pair of arrows at random, 
and switch their target nodes. Thus, arrows x1 → x2 and x3 → x4 are switched to 
x1 → x4 and x3 → x2. Repeat until many changes/arrows have been done. Explain 
why this algorithm preserves the degrees of the nodes.

 b. Write a computer program that implements the switching algorithm. Run it on the 
example E. coli network (Exercise 3.3) to generate 1000 DPRNs.

 c. Compute the average numbers of FFLs and FBLs in the DPRNs. How does this 
compare to the average number of these subgraphs in ER networks?

 d. Is the FFL a network motif compared to DPRN? What about the FBL?

 e. Explain, using the concept of hubs, why DRPNs can be more realistic network 
models than ER networks.

Coherent FFL

 3.6 The second input: What is the effect of steps of Sy on the expression dynamics of Z 
in the C1-FFL with AND logic? Are there delays in Z expression for ON or OFF 
steps of Sy? What is the response time of Z for such steps? Assume that Sx is present 
throughout.

 3.7 OR-gate logic: Analyze the C1-FFL with OR logic at the Z promoter. What is the length 
of the delay following ON and OFF steps of Sx? What could be the biological use of 
such a design?

Solution:

  After an ON step of Sx, X becomes active X*. On a rapid timescale it binds the Z 
promoter. Since Z is regulated by OR logic, X* alone can activate transcription without 
need for Y*. Therefore, there are no delays following an ON step of Sx beyond the times 
for transcription and translation.
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  After an OFF step of Sx, X* rapidly becomes inactive, X. However, protein Y is still 
present in the cell, and if Sy is present, Y is active, Y*. Since the Z input function is 
an OR gate, Y* continues to activate transcription of Z even in the absence of X*. 
Therefore, Z production persists until Y degrades/dilutes below its activation threshold 
for Z. The dynamics of Y* are given by dY dt Y* */ = −α  (there is no production term 
because X is inactive following the removal of Sx), so that Y Y em

t* *= −α , where Ym* is the 
level of Y* at time t = 0. The OFF delay is given by the time it takes Y* to reach its 
activation threshold for Z, KYZ. Solving for this time, Y T Y e Km

t
YZ* *( )OFF = =−α , yields 

T Y
K

m

YZ
OFF =











1
α

log
*

.

   The OR gate C1-FFL could be useful in systems that need to be protected from 
sudden loss of activity of their master regulator X. The OR gate FFL can provide 
continued production during brief fluctuations in which X activity is lost. This 
protection works for OFF pulses shorter than TOFF. Note that TOFF can be tuned by 
evolutionary selection by adjusting the biochemical parameters of protein Y, such as 
its expression level and its activation threshold.

 3.8 A motif within a motif: The regulator Y in C1-FFLs in transcription networks is 
often negatively autoregulated. How does this affect the dynamics of the circuit, 
assuming that it has an AND input function at the Z promoter? How does it 
affect the delay times? The Y regulator in an OR gate C1-FFL is often positively 
autoregulated. How does this affect the dynamics of the circuit? How does it affect 
the delay times?

 3.9 The diamond: The four-node diamond pattern occurs when X regulates Y and Z, and 
both Y and Z regulate gene W.

 a. How does the mean number of diamonds scale with network size in random ER 
networks (see Exercise 3.2)?

 b. What are the distinct types of sign combinations of the diamond (where each 
arrow is either activation + or repression −)? How many of these are coherent? 
(Answer: 10 types, of which 6 are coherent.)

 c. Consider a diamond with four activation arrows. Assign activation thresholds to 
all arrows. Analyze the dynamics of W following a step of Sx, for both AND and 
OR logic at the W promoter. Are there sign-sensitive delays?

 3.10 Type-3: Solve the dynamics of the coherent type-3 FFL (Figure 3.4) with AND logic at 
the Z promoter in response to steps of Sx. Here, AND logic means that Z is produced 
if both X* and Y* do not bind the promoter. Are there delays? Compare to the other 
coherent FFL types.

 3.11 All coherent types: Write a computer program that computes the dynamics of all four 
coherent FFL types. Use logic input functions, and set all parameters α, β to 1. Use 
K parameters equal to 0.1.
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 a. Use AND logic at the Z promoter, and plot the response to ON and OFF steps in  
Sx in which Sx changes between 0 and 1. Assume Sy = 1 throughout.

 b. Repeat using OR logic.

 c. Compare the results to Table 3.1.

 3.12 Steady-state response: Analyze the steady-state output Z of all four coherent FFL types 
with AND and OR gates as a function of inputs. Each of the two inputs Sx and Sy can 
have one of two values, either zero or saturating (giving maximal activity). This gives 
four possible input combinations for each circuit.

 a. Are there circuits which do not respond to one of the inputs? Explain.

 b. Can the answer to (a) partially explain why some FFL types are more common 
than others?

Incoherent FFLs

 3.13 Speedup for I1-FFL: Consider an I1-FFL in which production of Z is β1 if Y* < K. 
Production goes down to β2  when Y* ≥ K. What is the speedup compared to simple 
regulation with production rate β2? Assume equal removal rate for the two circuits.

Solution:

  After an ON step of input, the I1-FFL starts out with Z ≈ β1t and reaches halfway to its 

steady state Zst = β2/α at time T I
1 2

2

12/
1FFL =

β
β α

. Simple regulation has T1 2 2/ log( )simple /= α. 
Thus, speedup is

 
T T I

1 2 1 2
1 1

2
2 2/ // log( ) .simple FFL =

β
β

  The larger the repression of Z by Y, the bigger the speedup.

 3.14 Shaping the pulse: Consider a situation where X in an I1-FFL gradually increases as 
X(t) = βt. The input signals Sx and Sy are present throughout.

 a. How does the pulse shape generated by the I1-FFL depend on the thresholds KXZ, 
KXY and KYZ, and on β, the production rate of protein X?

 b. Analyze a set of genes Z1, Z2, … Zn, all regulated by the same X and Y in I1-FFLs. 
Design thresholds such that the genes are turned ON in the rising phase of the 
pulse in a certain temporal order and turned OFF in the declining phase of the 
pulse with the same order.

 c. Design thresholds such that the turn-OFF order is opposite to the turn-ON order. 
Plot the resulting dynamics.

 3.15 Biphasic responses: This problem analyzes the biphasic feature of incoherent type-1 
FFLs for sub-saturating stimuli Sx. Consider an I1FFL, such that the activation 
threshold of Z by X, KZX, is smaller than the activation threshold of Y by X, KYX. That 
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is, Z is activated when X* > KZX but it is repressed by Y when X* > KYX. Schematically 
plot the steady-state concentration of Z as a function of X*. Note that intermediate 
values of X* lead to the highest Z expression.

 3.16 The diamond again: The diamond pattern occurs when X regulates Y and Z, and 
both Y and Z regulate gene W. Analyze the 10 types of diamond structures (where 
each arrow is either activation + or repression −) with respect to their steady-state 
responses to the inputs Sx,  Sy and Sz. Use an AND input function at the W promoter. 
Do any diamond types lack responsiveness to any input? To all three inputs?

 3.17 Repressilator: Three repressors are hooked up in a cycle X  Y  Z and Z  X. 
What are the resulting dynamics? Use initial conditions in which X is high 
and Y = Z = 0. Solve graphically using logic input functions. This circuit was 
constructed in bacteria using three well-studied repressors, one of which was also 
made to repress the gene for green fluorescent protein (Elowitz and Leibler, 2000). 
What would the resulting bacteria look like under a microscope that dynamically 
records green fluorescence?

 3.18 Interconnected FFLs: Consider a coherent type-1 FFL with nodes X, Y and Z, which is 
linked to another coherent type-1 FFL in which Y activates Y1, which activates Z.

 a. Sketch the dynamics of Z expression in response to steps of the signals Sx,Sy,Sy1, in 
which one of the signals goes ON or OFF in the presence of the other signals. Can 
the dynamics of the interconnected circuit be understood based on the qualitative 
behavior of each FFL in isolation?

 b. Repeat for the case where Y represses Z, so that the X, Y, Z FFL is an incoherent 
type-1 FFL. Assume that Y1 binding to the Z promoter can alleviate the repressing 
effect of Y.

 3.19 Rare IFFL types: Compare the I1-FFL to the much less common I2-FFL, I3-FFL and 
I4-FFL.

 a. Show that the I1-FFL and I4-FFL can generate a pulse and can accelerate responses 
to ON steps.

 b. Show that the I2-FFL and I3-FFL can generate a pulse and speed responses to OFF 
steps.

 c. Show that at steady state, for saturating Sx, the output Zst responds to the Y signal  
Sy in the I1-FFL, but not in the I4-FFL.

 d. Explain why the loss of response to Sy might affect the selection of the I4-FFL.

 3.20 Incoherent FFL with microRNA: Bleris (Bleris et al., 2011) constructed an IFFL in 
which Y is a microRNA that binds the RNA of Z and inhibits it. They varied the 
number of DNA molecules that encode this construct in the cell, and found that the 
output Z was insensitive to the number of DNA copies. Explain this result.
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C h a p t e r  4

Temporal Programs and 
the Global Structure of 
Transcription Networks

4.1 INTRODUCTION
We have seen that transcription networks contain recurring network motifs that perform 
specific functions. We examined two of these motifs in detail, negative autoregulation and 
the feedforward loop (FFL). In this chapter, we complete our survey of motifs in sensory 
transcriptional networks. We will see that these networks are made of just four families of 
network motifs. These four motif families account for virtually all of the interactions in the 
networks. We will discuss how the network motifs fit together to build the global structure 
of transcription networks.

4.2 THE SINGLE-INPUT MODULE (SIM) NETWORK MOTIF
The network motifs we studied so far all had a defined number 
of nodes (one node in the autoregulation motif, three nodes 
in FFLs). We will now look for larger motifs. Each of these 
larger motifs corresponds to a family of patterns that share 
a common architectural theme. The first such motif family 
found in transcription networks is called the single-input 
module (Figure 4.1), or SIM for short (Shen-Orr et al., 2002).

In the SIM network motif, a master transcription factor 
X controls a group of target genes, Z1, Z2, … Zn. Each of 
the target genes in the SIM has only one input; No other 
transcription factor regulates any of the genes. In addition, 
the regulation signs (activation/repression) are the same 
for all genes in the SIM. The last feature of the SIM is that 
the master transcription factor X is usually autoregulatory.

Single-Input Module (SIM)

X

Z1 Z2 Zn

argR

ar
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The most important 
role of SIMs is to control a 
group of genes according 
to the signal sensed by the 
master transcription factor. 
The genes in a SIM always 
have a common biological 
function. For example, 
SIMs regulate genes that 
participate in a specific 
metabolic pathway (Figure 
4.2). These genes encode 
proteins that work sequentially to assemble a desired molecule atom by atom, in a kind of 
molecular assembly line.

Metabolic pathways often show additional feedback control that operates on a rapid 
timescale. The final product of the pathway is often the input signal for the top transcription 
factor X (Figure 4.2). The final product also often inhibits the first enzyme in the pathway 
by directly binding it, a regulatory motif called feedback inhibition.

Other SIMs control groups of genes that respond to a specific stress (DNA damage, 
heat shock, etc.). Finally, SIMs can control groups of genes that together make up a protein 
machine with many subunits (such as a ribosome).

4.3 THE SIM CAN GENERATE TEMPORAL GENE EXPRESSION PROGRAMS
In addition to controlling a gene module in a coordinated fashion, the SIM has a subtler 
dynamical function. The SIM can generate temporal programs of expression, in which 
genes are activated in a defined order.

The temporal order is based on different thresholds of X for each of the target genes Zi 
(Figure 4.3). When X activity changes gradually with time, it crosses these thresholds, Ki, 
at different times. X first activates the gene with the lowest threshold. Then it activates the 
gene with the next lowest threshold, and so on (Figure 4.3). The faster the changes in the 
activity of X, the more rapidly it crosses the different thresholds, and the smaller the delay 
between the genes.

When X activity goes down, the genes are 
affected in reverse order. Hence, the last gene 
activated is the first one to be deactivated 
(Figure 4.3). This type of program is called 
a last-in-first-out (LIFO) order.

Experimentally, temporal order is found 
in a variety of systems in E. coli with SIM 
architecture. This includes metabolic 
pathways (Zaslaver et al., 2004) such as the 
arginine system (Figure 4.4). The genes are 
sequentially expressed with delays on the 
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order of 0.1 generation between genes (about 5–10 min). In these pathways, the temporal 
order of the genes corresponds to the order of the reactions in the pathway: the first gene in 
the pathway is made first, then the second, and so on. This mechanism avoids expression of 
proteins before they are needed, a principle called just-in-time production.

The temporal order generated by a SIM can be varied by mutations that change the 
thresholds of the genes. For example, mutations in the binding site of X in the promoter 
of a gene can change the threshold, and accordingly change the order of expression (Kalir 
and Alon, 2004).

Temporal order is found also in damage repair systems controlled by SIMs. In damage 
repair systems, turn-ON is usually fast because the damage signal appears sharply, activating 
the regulator rapidly in order to mobilize repair processes. As damage is repaired, the input 
signal of the regulator declines and the genes get turned off gradually, reaching 50% of 
their maximal promoter activity at different times. In the SOS DNA repair system, for 
example, the genes responsible for the mildest form of repair are turned off first, and those 
responsible for more severe damage repair are turned off later (Ronen et al., 2002).

Temporal order also characterizes a large number of other global cellular responses. 
Examples include genes timed throughout the cell cycle in bacteria (Laub et al., 2000; 
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McAdams and Shapiro, 2003) and yeast (Eisen et al., 1998), genes regulated by different 
phases of the circadian clock that keeps track of the time of day (Young, 2000; Duffield 
et al., 2002) and genes in developmental processes (Dubrulle and Pourquié, 2002; Kmita 
and Duboule, 2003).

In these global well-timed responses, genes are usually regulated by a master regulator 
and by additional co-regulators responsible for smaller subsystems. Temporal order may 
be generated by the action of a master coordinating regulator even if the network pattern 
is not strictly a SIM, as long as all regulators except one have a constant activity during the 
interval of interest.

SIMs evolved by convergent evolution, just as we saw for the FFL motif. SIMs regulate 
homologous genes in different organisms, but the master regulators in these SIMs are very 
different (Ihmels et al., 2005; Tanay, Regev and Shamir, 2005). This means that rather than 
duplication of an ancestral SIM together with the regulator, evolution converged on the 
same regulation pattern in the different organisms.

In short, the SIM can generate just-when-needed temporal programs with LIFO 
order: the activation order of the genes is reversed with respect to the deactivation order 
(Figure 5.3). However, in many cases, it seems more desirable to have an activation order 
that is the same as the deactivation order: the first promoter turned on is also the first 
turned off (first-in-first-out or FIFO order). FIFO order is desirable for assembly processes 
that require parts in a defined order, some early and some late. In this case, when the 
process is deactivated, it is better for the early genes to be turned OFF before the late genes, 
in order to prevent waste from needlessly producing early genes proteins after late ones 
are OFF. Next, we will describe circuitry that can achieve FIFO order, the multi-output 
feedforward loop.

4.4 THE MULTI-OUTPUT FEEDFORWARD LOOP
To complete our survey of network motifs in sensory transcription networks, we turn 
to subgraphs with four nodes. It turns out that we can stop at four, because larger 
subgraphs found in transcription networks can all be built from motifs with up to four 
nodes.

There are 199 possible four-node patterns (Figure 4.5). Of these, only two are significant 
motifs in the known sensory transcription networks. Again, the networks show simplicity 
because they contain only a tiny fraction of the possible types of subgraphs. The two 
significant network motifs are a two-output FFL, which we will discuss now, and an 
overlapping regulation pattern termed the bi-fan (Figure 4.6) considered later in the 
chapter.

In the two-output FFL, X regulates Y, and both regulate the output genes Z1 and Z2. 
When looking at larger subgraphs, this generalizes to a multi-output FFL pattern, in which 
a cascade of two regulators jointly controls a set of output genes (Figure 4.7).

One could think of other ways of generalizing the FFL, for example by having multiple 
inputs X, or multiple middle nodes Y (Figure 4.7). However, neither of these is a network 
motif (Kashtan et al., 2004).
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The 4-node connected subgraphs

FIGURE 4.5 
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4.5  THE MULTI-OUTPUT FFL CAN GENERATE 
FIFO TEMPORAL PROGRAMS

What might be the function of multi-output FFL? To address this question, we will consider 
a well-characterized case of the multi-output FFL and see that it can generate a FIFO 
temporal program, in contrast to the LIFO order generated by SIMs.

A multi-output FFL regulates the gene system for the production of flagella, E. coli’s 
outboard motors (Figure 4.8). When E. coli is in a comfortable environment with abundant 
nutrients, it divides happily and does not try 
to move. When conditions become worse, 
E. coli makes a decision to grow several motors 
attached to helical flagella (propellers), which 
allow it to swim. It also generates a navigation 
system that tells it where to go in search of 
a better life. We will explore this navigation 
system called chemotaxis in Chapter 9. For 
now, let’s consider the genes that make the 
parts of the flagella motor.

The flagella motor is a 50-nm device built of 
about 30 types of protein (Figure 4.8; Macnab, 
2003). The motor is electrical, converting the 
energy of proton influx to drive rotation at 
about 100 Hz. The motor rotates the flagellum, 
which is about 10 times longer than the cell it 
is attached to (E. coli is about 1 micron long). 
Flagella rotation pushes the cell forward at 
speeds that can exceed 30 microns/sec.

The motor is put together in stages (Figure 
4.8). This is an amazing example of biological 
self-assembly, like throwing Lego blocks in 
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the air and watching them assemble into a house. The motor and flagellum have a hollow 
central tube through which the proteins move to assemble each stage. Thus, each stage of 
the motor acts as a transport device for the proteins in the next stage.

The proteins that build up the f lagella motor are encoded by genes arranged 
in six operons (an operon is a group of genes transcribed on the same piece of mRNA). 
The f lagella motor operons are regulated by two transcription activators, X and Y called 
FlhDC and FliA. The master regulator X activates Y, and both jointly activate each of 
the six operons, Z1, Z2, … Z6. This regulatory pattern is a multi-output FFL (Figure 4.9).

In this multi-output FFL, each operon can be activated by X in the absence of Y, and by 
Y in the absence of X. Thus, the input functions are similar to OR gates (they are actually 
SUM-gates, the weighted sum of the two active transcription factors).

Experiments by Michael Laub and Lucy 
Shapiro (Laub et  al., 2000) and by Shiraz 
Kalir et al. (Kalir et al., 2001; Kalir and Alon, 
2004), found that the flagella operons show a 
defined temporal order of expression. When 
the bacteria sense the proper conditions, they 
activate the production of protein X. The 
concentration of X gradually increases, and 
as a result, the Z genes get turned ON one by 
one, with about 0.1 cell generations between 
them. The order in which the operons are 
turned on matches the order of motor 
assembly: first a ring in the inner membrane, FIGURE 4.9 
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then a rod, a second ring, and 
so on. This is the principle of 
just-in-time production that 
we discussed in the single-
input module (SIM) network 
motif.

The SIM architecture, 
however, has a limitation, 
as mentioned before: the 
turn-OFF order is reversed 
with respect to the turn-
OFF order (last-in-first-
out, or LIFO order; Figure 4.3). In contrast, the flagella turn-OFF order is the same as 
the turn-ON order: the first promoter turned on is also the first turned off when flagella 
are no longer needed. In other words, the genes show a first-in-first-out order.

FIFO order is generated by the multi-output FFL thanks to a hierarchy of activation 
thresholds (Figure 4.10). In the flagella system, X and Y effectively function in OR gate logic, 
and, therefore, X alone is sufficient to turn the genes on. Therefore, the turn-ON order is 
determined by the times when X crosses the activation thresholds K1, K2, … Kn (Figure 
4.10). If this were all, genes would be turned off in the reverse order once X levels decline, 
resulting in LIFO order, just like in the SIM. But here Y comes to the rescue. When X decays 
away, Y is still around for a while. The turn-OFF order in a properly designed OR-gate 
FFL is, therefore, governed by Y, which has its own thresholds, ′ ′ … ′K K K1 2, , n. FIFO order 
is achieved if the order of the thresholds of Y is reversed compared to that of X. That is, if 
the X thresholds are K1 < K2, so that promoter 1 is turned on before 2, the Y thresholds 
are oppositely ordered ′ > ′K K1 2, so that promoter 1 is turned off before 2 (Figure 4.10). This 
opposing hierarchy of thresholds was experimentally found in the flagella system (Kalir 
and Alon, 2004). The temporal order in this system was rewired by mutations that affected 
these activation thresholds.

4.5.1 The Multi-Output FFL Also Acts as a Persistence Detector for Each Output

In addition to generating a FIFO temporal order, the multi-output FFL conveys all of the 
functions of the feedforward loop that we discussed in Chapter 3. In particular, each of the 
output nodes benefits from the sign-sensitive filter property of the FFL. For example, in the 
flagella system, the FFL delays the deactivation of the Z genes following the loss of X activity 
(as described in Section 3.6). It thus filters away brief OFF pulses of X, allowing deactivation 
only when X activity is gone for a persistent length of time. Such OFF pulses can occur, for 
example, when the bacterium briefly swims into better conditions.

4.6  SIGNAL INTEGRATION BY BI-FANS AND 
DENSE-OVERLAPPING REGULONS

In addition to the multi-output FFL, there is a second four-node network motif, the bi-fan. 
The bi-fan gives rise to a family of motif generalizations, shaped as a layer of inputs with 

FIGURE 4.10 
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multiple overlapping connections to a 
layer of outputs (Figure 4.11). This family 
of patterns is our last network motif in 
sensory transcription networks, called 
dense-overlapping regulons (a regulon 
is the set of genes regulated by a given 
transcription factor), or DORs for short 
(Figure 4.12; Shen-Orr et al., 2002).

The DOR is a row of input transcription 
factors that regulate a row of output 
genes in a densely overlapping way. The 
DORs are usually not fully wired; that is, 
not every input regulates every output. 
However, the wiring is much denser than 
in the patterns found in randomized 
networks.

The DOR can be thought of as a 
combinatorial decision-making device. It 
functions as an array of gates (input functions) that integrate multiple inputs to compute the 
regulation of each output gene. To understand the function of the DOR requires knowledge 
of the multi-dimensional input functions that integrate the inputs at the promoter of each 
gene. This knowledge is one of the open challenges in systems biology: Although arrows 
in transcription networks are well-characterized, the input functions of most genes are 
currently unknown.

Transcription networks, such as those of E. coli and yeast, show several large DORs, 
each controlling tens to hundreds of genes. The genes in each DOR have a shared global 
function, such as stress response, nutrient metabolism or biosynthesis of key classes of 
cellular components. Often, a global regulator governs many of the genes, supplemented by 
numerous regulators that regulate subsets of the genes. For example, in E. coli, the global 
regulator CRP senses starvation and, together with multiple transcription factors that each 
sense a different sugar, determines which sugar utilization genes are activated in response 
to the sugars in the environment. The DORs form the backbone of the network’s global 
structure, as we will see next.
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4.7  NETWORK MOTIFS AND THE GLOBAL STRUCTURE 
OF SENSORY TRANSCRIPTION NETWORKS

We have described the four main network motif families: autoregulation, feedforward 
loops, SIMs and DORs. How are these motifs positioned with respect to each other in the 
network? And how much of the network do they cover?

To answer these questions, it would help to look at an image of the network. It is 
difficult to draw a complex network in an understandable way (Figure 2.1). However, 
network motifs can help to produce a slightly less complicated image, based on the 
following coarse-graining procedure (Itzkovitz et  al., 2005). To draw the network, 
replace each occurrence of a SIM that regulates n genes by a square marked with the 
number n. Replace each multi-output FFL by a triangle marked with the number of 
output genes. Replace each DOR with a rectangular box that groups its inputs, outputs 
and connections. The result is still an intricate picture, but one that can help us to 
understand the global network structure (see Figure 4.13, which shows part of the E. 
coli transcription network).

The coarse-grained network obtained by this procedure, Figure 4.13, shows that 
sensory transcription networks such as those of E. coli and yeast are made of a single 
layer of DORs. The DORs do not form cascades – there is no DOR at the output of another 
DOR. Thus, most of the computation done by the network is done at a layer of promoters 
within the DORs.

The DORs contain most of the other motifs. The FFLs and SIMs are integrated within 
the DORs. Negative autoregulation is often integrated within FFLs and also decorates the 
master regulators of SIMs. Overall, the rather simple way in which the network motifs are 
integrated makes it possible to understand the dynamics of each motif separately, even 
when it is embedded within larger patterns.

Virtually all of the genes are covered by these four network motifs in the sensory 
transcription networks studied so far, including those of bacteria, yeast, worms, fruit 
flies, mice and humans (Harbison et al., 2004; Penn et al., 2004; Boyer et al., 2005; Odom 
et al., 2006). Thus, these network motifs represent the major types of patterns that occur 
in sensory transcription networks. In the next chapter, we will discuss additional network 
motifs that occur in developmental transcription networks that guide the transformation 
from a single-celled egg to a multi-cellular organism.

4.8  INTERLOCKED FEEDFORWARD LOOPS IN THE 
B. SUBTILIS SPORULATION NETWORK

What about more complex circuits made of combinations of network motifs? Can we still 
understand their function? To address this question, we will discuss a network made of 
interlocking FFLs in the bacterium Bacillus subtilis.

When starved, B. subtilis stops dividing and turns into a durable spore. The spore 
contains many proteins that are not found in the growing bacterium. It is a resting 
cell, almost completely dehydrated, that can survive for a long time in a dormant state. 
When placed in the right conditions, the spore converts itself again into a growing 
bacterium.
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When B. subtilis makes 
a spore, it must turn on 
hundreds of genes in a 
series of temporal waves, 
to carry out the stages of 
sporulation. The network 
that regulates sporulation 
(Eichenberger et al., 2004) 
is made of transcription 
factors arranged in linked 
coherent and incoherent 
type-1 FFLs (Figure 4.14).

To initiate sporulation, a 
starvation signal activates X1. This transcription factor acts in an incoherent type-1 FFL 
(I1-FFL) with the repressor Y1 to control a set of output genes Z1. The I1-FFL generates a 
pulse of Z1 expression.

A second FFL is formed by Y1 and X1, which are both needed to activate X2, resulting in a 
coherent type-1 FFL (C1-FFL) with AND logic. This C1-FFL ensures that X2 is not activated 
unless the starvation signal is persistent. Next, X2 acts in another I1-FFL, where it activates 
genes Z2 as well as their repressor Y2. This results in a pulse of Z2 genes, timed at a delay 
relative to the first pulse. Finally, Y2 and X2 together join in an AND-gate C1-FFL to activate 
genes Z3. The result is a three-wave pattern: first a pulse of Z1 expression, followed by a pulse 
of Z2 expression, followed by expression of the late genes Z3.

The FFLs in this network are combined in a way that utilizes their delay and pulse-
generating features to generate a three-wave temporal program of gene expression. The 
FFLs are actually multi-output FFLs because the outputs Z1, Z2 and Z3 each represent large 
groups of genes. This design can generate finer temporal programs within each group 
of genes.

We see that the FFLs in this network are linked such that each FFL maintains its 
autonomy. The dynamics of the network can be easily understood based on the dynamics 
of each FFL. It is important to note that there are, in principle, many other ways of linking 
FFLs. Most combinations of linked FFLs do not lend themselves to easy interpretation (can 
you draw a few of these possible configurations?). This seems to be a general feature of gene 
regulation networks: motifs are linked in ways that allow easy interpretation based on the 
dynamics of each motif in isolation.

Such understandability of circuit patterns in terms of simpler sub-circuits could not 
have evolved just to make life easier for biologists. Understandability is a central feature 
of engineering. Engineers build complex systems out of simpler subsystems that are well 
understood. These subsystems are connected so that each subsystem retains its behavior and 
works reliably. It is an interesting question whether understandability might be a common 
feature of networks that evolve to function.

In summary, sensory transcription networks across organisms are built of four motif 
families: autoregulation, FFLs, SIMs and DORs. Almost all of the genes participate in these 

Z Z1 Z2 Z3

time

X1

ANDAND

Z1 X2

AND

Y2

AND

Z2 Z3

Y1

FIGURE 4.14 



Temporal Programs and the Global Structure of Transcription Networks    ◾    73

motifs. Each network motif carries out a defined dynamical function, such as speeding 
responses, generating temporal programs, persistence detection or combinatorial decision-
making. Most other patterns, such as three-node feedback loops, are conspicuously absent. 
Three-node feedback loops are often unstable (a common property of negative loops) or 
bistable (a common property of positive loops), both undesirable properties for sensory 
networks that need to generate reversible and reliable responses. Indeed, the motifs that are 
found in sensory transcription networks are extremely stable (Prill, Iglesias and Levchenko, 
2005; Angulo, Liu and Slotine, 2015). Sensory transcription networks belong to the family 
of directed acyclic graphs (DAGs). However, they have even fewer subgraph types than 
generic DAGs. Hence, the subgraph content of these networks is much simpler than it could 
have been. They are built of a small set of elementary circuit patterns, the network motifs.

FURTHER READING

(Shen-Orr et al., 2002) “Network motifs in the transcriptional regulation network of Escherichia 
coli.”

Combinations of Network Motifs
(Angulo, Liu and Slotine, 2015) “Network motifs emerge from interconnections that favor stability.”
(Itzkovitz et al., 2005) “Coarse-graining and self-dissimilarity of complex networks.”

Generalizations of Network Motifs
(Berg and Lassig, 2004) “Local graph alignment and motif search in biological networks.”
(Kashtan et al., 2004) “Topological generalizations of network motifs.”

Multi-Output FFLs and Temporal Order
(Kalir and Alon, 2004) “Using a quantitative blueprint to reprogram the dynamics of the flagella 

gene network.”

Single-Input Module and Temporal Order
(Laub et al., 2000) “Global analysis of the genetic network controlling a bacterial cell cycle.”
(McAdams and Shapiro, 2003) “A bacterial cell-cycle regulatory network operating in space and 

time.”
(Zaslaver et al., 2004) “Just-in-time transcription program in metabolic pathways.”

EXERCISES

 4.1 Equal timing: Consider a SIM controlled by regulator X that activates downstream 
genes Zi, i = 1 … n, with thresholds Ki. At time t = 0, X begins to be produced at 
a constant rate β, and removed at rate α. Design thresholds such that the genes are 
turned on one after the other at equal intervals (use logic input functions).

 4.2 Robust timing:

 a. For the system of Exercise 4.1, are there biological reasons that favor placing the 
thresholds Ki much smaller than the maximal level of X = β/α? Consider the 
effects of cell–cell variations in the production rate of X.
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 b. Would a design in which X is a repressor whose production stops at time t = 0 
provide more robust temporal programs with respect to cell–cell variations? Explain.

 4.3 The multi-output OR C1-FFL: In a multi-output C1-FFL with OR gate logic at the Z 
promoters, transcription factor X begins to be produced at a constant rate β at time 
t = 0. At time t = T, where T is long enough for all genes to be activated and for Y 
to rise close to its steady-state level, the production rate β suddenly drops to zero. 
Calculate the dynamics of the downstream genes Zi. What are the delays between 
genes? (Use logic input functions.)

 4.4 Generalized diamond: What are the topological generalizations of the diamond 
pattern (X → Y1, X → Y2, Y1 → Z, Y2 → Z) based on duplication of a single node 
and all of its edges? How are these different from DORs? What are the topological 
generalizations of the bi-fan (X1 → Y1, X2 → Y1, X1 → Y2, X2 → Y2)? Many of these five-
node generalizations of the diamond and bi-fan are network motifs in the neuronal 
network of C. elegans (Milo et al., 2002).

 4.5 SIM with autoregulation: What is the effect of autoregulation on the master 
transcription factor X in a SIM? Plot schematically and compare the dynamics of the 
output genes in a given SIM with positive autoregulation of X, negative autoregulation 
of X and no autoregulation of X. Discuss when each design might be useful.

 4.6 Bi-fan dynamics: Consider a bi-fan in which activators X1 and X2 regulate genes Z1 
and Z2. The input signal of X1, Sx1 appears at time t = 0 and vanishes at time t = D. 
The input signal of X2, Sx2, appears at time t = D/2 and vanishes at t = 2D. Plot the 
dynamics of the promoter activity of Z1 and Z2, given that their input functions are 
AND and OR logic, respectively.

 4.7 The multi-output AND C1-FFL: What is the temporal order of turn ON and turn 
OFF in a multi-output C1-FFL where all genes are regulated by AND gates? Which 
thresholds determine the ON and OFF orders? Can one obtain FIFO orders?

 4.8 Multi-input FFL: What dynamics might an FFL with two inputs X1 and X2 that both 
regulate Z and its regulator Y, have? Consider (i) the case where all arrows are positive, 
(ii) the case where all arrows are positive except for Y that inhibits Z and (iii) as in (ii) 
but with X1 negatively regulating Y.

 4.9 SIM software: Write a program to identify SIMs in a network. Use it to count  
SIMs in the E. coli network from https://www.weizmann.ac.il/mcb/UriAlon/e-coli-
transcription-network. What is the largest SIM in the network?

 4.10 Feedback inhibition: What might be the function of feedback inhibition shown in 
Figure 4.2 by the dashed arrow, in which the pathway product molecule inhibits the 
first enzyme in the pathway?

 4.11 Delays in metabolic pathways: Consider a bacterial metabolic pathway, like the arginine 
pathway, in which the substrate for each enzyme is the product of the previous enzyme. 
Typical enzymes catalyze about 10 reactions per second (Bar-Even et al., 2011). Typical 

https://www.weizmann.ac.il/
https://www.weizmann.ac.il/
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concentrations needed of each substrate are on the order of 1000s of molecules per 
bacterial volume. What is the order of magnitude of the delays between genes that 
would provide proper just-in-time production when the system is activated?
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C h a p t e r  5

Positive Feedback, 
Bistability and Memory

5.1  NETWORK MOTIFS IN DEVELOPMENTAL 
TRANSCRIPTION NETWORKS

So far, we’ve concentrated on transcription networks that are built to sense and respond to 
external stimuli such as nutrients and stresses. Such sensory transcription networks are 
found in almost all cells.

Multi-cellular organisms also have another type of transcription network, called 
developmental transcription networks. These networks govern the nearly irreversible 
changes that occur when a cell transforms itself into another type of cell.

An important example is the development of a multi-celled organism such as a human 
being. We begin as a single-celled egg, which divides into many cells that form the diverse 
tissues of the body. As the cells divide, they differentiate into distinct cell types, in order to 
form different tissues. To become part of a new tissue, each cell needs to express a specific 
set of proteins. This specific set of proteins determines whether the cell becomes, say, a 
nerve cell or a muscle cell. These differentiation processes are governed by developmental 
transcription networks (Levine and Davidson, 2005).

The developmental transcription networks of well-studied organisms such as fruit flies, 
worms, sea urchins and humans are composed of several strong network motifs. They 
display most of the motifs that we found in sensory networks. For example, the feedforward 
loop (FFL) is a strong network motif (Milo et al., 2002; Penn et al., 2004; Boyer et al., 
2005; Odom et al., 2006). The most common FFL types in developmental networks are the 
coherent type-1 and incoherent type-1 FFLs, just as in sensory networks. Developmental 
networks also display prominent autoregulation motifs and single-input modules (SIMs).

In addition to these motifs, developmental networks display a few additional network 
motifs that are not commonly found in sensory transcription networks. We will now 
describe these network motifs and their functions.
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5.1.1  Positive Autoregulation Slows Responses and Can Lead to Bistability

Developmental networks have many more positive 
autoregulation (PAR) loops than sensory networks 
do (Figure 5.1). In PAR, a protein activates its own 
transcription.

Positive autoregulation has an opposite effect to that 
of negative autoregulation: it slows the response time 
relative to simple regulation (Figure 5.2). The dynamics 
are initially slow, but as the levels of X 
build up, it increases its own production 
and reaches halfway to steady state at a 
delay relative to simple regulation.

To understand this slowing-down 
effect, we can repeat the rate analysis that 
we did for negative autoregulation. In 
Figure 5.3, we draw the production and 
removal curves for a gene with PAR. The 
Equation is dX/dt = f(x) − αX. Removal 
rate is a straight line, αX. Production 
rate is an increasing input function f(X) 
appropriate for the auto-activation of X.

The two curves intersect at a fixed 
point, the steady state of the system. The 
fixed point is stable, because shifting X 
to either side causes a return to the fixed 
point. The speed for approaching the 
fixed point (speed equals the distance 
between production and removal 
curves) is smaller in PAR than in simple 
regulation, which has a flat production 
curve f(X) = β (Figure 5.3). Thus, PAR 
shows slowdown for any increasing input 
function f(X).

The slow dynamics provided by positive 
autoregulation are useful in multi-stage 
processes that take a relatively long time, 
such as developmental processes. These 
processes can benefit from prolonged 
delays between the production of proteins 
responsible for different stages. Slow response times also help filter out rapidly varying 
noise in input signals, because slow responses integrate over this noise so that it cancels 
itself out (Hornung and Barkai, 2008).
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In addition, positive autoregulation can 
do something spectacular: it can make 
sharp decisions between two states, and 
then remember the decision for a long 
time.

PAR can provide such memory when 
the autoregulation function f(X) is 
cooperative (sigmoidally shaped), as in 
the rate analysis of Figure 5.4. If properly 
positioned, a sigmoidal f(X) can intersect 
the removal curve three times, generating 
three fixed points, as opposed to the single 
crossing point when f(X) is not sigmoidal 
(Figure 5.3).

There is a high stable fixed point Xhigh, a 
low stable fixed point Xlow and an unstable 
fixed point Xu in the middle. Throughout 
the book, we will mark stable fixed points 
with black circles and unstable ones with 
white circles. You can see that the middle 
point is unstable because moving X 
slightly to either side of Xu causes X to flow 
away from Xu. For example, at values of 
X a bit higher than Xu, production (black 
curve) exceeds removal (red curve) and X, 
therefore, grows and moves further away 
from Xu.

The system has two stable fixed points, 
a feature called bistability. Which of the 
two is reached depends on the initial 
conditions: starting low (X < Xu) leads to 
the low fixed point, Xlow, and starting high 
(X > Xu) leads to the high steady state, 
Xhigh. We say that there are two basins of 
attraction, separated by the unstable fixed 
point. Any initial conditions inside the lower basin flows to Xlow and any initial condition 
in the upper basin flows to Xhigh (Figure 5.5). The circuit has memory of where it started.

Thus, once the gene is sufficiently activated, it is locked into a state of high expression 
and keeps itself ON. To see how this produces long-term memory, suppose there is a 
transcription factor Y that also activates the X promoter (Figure 5.6). X starts at Xlow, and 
then the signal SY for Y appears, causing more X to be produced. X crosses the threshold 
Xu, and reaches a high level. When the signal for Y goes away, X remains high, at its high 
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steady state, Xhigh (Figure 5.7). This is long-term memory 
because X stays high despite the fact that the input signal 
SY has vanished.

This type of bistable circuit is used in developmental 
transcription networks to make irreversible decisions 
that lock a cell into a particular fate (e.g., to determine 
the type of tissue). For example, when 
embryonic cells first become muscle cells, 
the transcription factor myoD activates 
a positive feedback loop and stays locked 
ON, activating the muscle-specific genes 
that make the muscle fibers and proteins 
needed for force generation. Positive 
autoregulation makes sure that the cell 
doesn’t forget its muscular identity.

5.1.2  Two-Node Positive Feedback Loops for Decision-Making

Developmental networks also display a network motif 
in which two transcription factors regulate each other. 
This mutual regulation forms a two-node feedback loop. 
In developmental networks, the regulation signs of the 
two interactions usually lead to positive feedback loops 
(Figure 5.8).

There are two types of positive feedback loops: double-
positive in which the two transcription factors activate each other, and double-negative in 
which the two transcription factors repress each other.

The double-positive feedback loop can have two stable steady states (Thomas and 
D’Ari, 1990). In one stable state, genes X and Y are both ON, and the two transcription 
factors enhance each other’s production. In the other stable state, X and Y are both 
OFF. A signal that causes protein X or Y to be produced can lock the system into the 
ON state. This type of bistable switch is called a lock-on mechanism (Davidson et al., 
2002) because X and Y are both ON or both OFF. The double-positive feedback loop is 
most useful when genes regulated by X and genes regulated by Y encode proteins that 
belong to the same tissue.

We saw that positive autoregulation, a motif with one node, can also lock into a state 
of high expression. Why, then, do two-node feedback loops appear if one-node loops are 
sufficient? One reason is that the double-positive feedback loop only locks on after an 
appreciable delay, and hence can filter out transient input signals.

The double-negative loop can also have two stable steady states. In one stable state, X 
is ON and Y is OFF, because protein X represses Y. The other stable state is the reverse: X 
is OFF and Y is ON. Thus, unlike the double-positive feedback loop that can express both 
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X and Y (or neither), the double-negative loop expresses either X or Y. For this reason, this 
circuit is also called a toggle switch. A toggle switch is useful when genes regulated by X 
belong to different cell fates than the genes regulated by Y.

To understand how two-node circuits like the toggle switch produce two stable states 
(bistability), there is a useful graphical method, called nullcline analysis. This method is 
like a 2D version of the rate plot method that we used to analyze autoregulation. Nullclines 
are curves at which one of the proteins in the circuit has zero rate of change (one nullcline 
is dX/dt = 0, and the other is dY/dt = 0). The points to watch are the crossing points of the 
two nullclines, because, at these crossing points, neither protein changes and we have a 
fixed point. Here is an example.

Solved Example 5.1: Show That a Toggle Switch with Sigmoidal Repression 
Functions Can Have Bistability

Let’s for simplicity assume a symmetric situation where X and Y have the same 
removal rate α and the same inhibition functions:

 
dX
dt f Y X= −( ) α

 
dY
dt f X Y= −( ) α

The inhibition function f is a decreasing sigmoidal function representing repression 
(e.g., a Hill function with n > 1).
 To draw the nullcline for X, we ask when dX/dt = 0. This nullcline is the solution 
to f(X) − αY = 0, namely Y f X= ( )/α. Thus the nullcline is a curve shaped like the 
repression function. So is the other 
nullcline, X f Y= ( )/α. Drawing these 
two sigmoidal curves on the X-Y plane 
results in three intersection points 
(Figure 5.9).
 We can add to this plot little arrows 
showing in which directions X and 
Y flow. The resulting picture is called 
the phase portrait of the circuit. It 
shows that there are two stable fixed 
points: Xhigh, Y low and its opposite 
X low, Yhigh. The middle fixed point is 
unstable. The dashed line, called the 
separatrix, separates the two basins 
of attraction, the regions from which 
initial conditions f low to the two 
steady states.
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With nullcline analysis it is easy to see 
that if both repression functions are not 
sigmoidal (Hill coefficient n = 1), there can 
only be a single fixed point (Figure 5.10). 
The non-sigmoidal shapes of the nullclines 
prevent them from intersecting more than 
once. The system is mono-stable: X and 
Y repress each other but both reach an 
intermediate concentration and stay there.

Often, the transcription factors in the 
two-node feedback loop also each have 
positive autoregulation (Figure 5.11). 
Positive autoregulation loops act to enhance 
the production of the transcription factor 
once it is present in sufficient levels. This 
further stabilizes the ON steady states 
of the transcription factors. In fact, such 
PAR can even turn a two-node feedback 
without cooperative regulation into a 
bistable switch (Exercise 5.3).

A classic example of a toggle switch 
appears in phage lambda, a virus that 
infects E. coli (Figure 5.12; Ptashne and Gann, 2002). The phage is a protein container that 
houses a short DNA genome, which the phage can inject into the bacterium. The phage then 
chooses one of two possible modes of existence. In the lytic mode, the phage makes about 100 
new phages which burst the cell open and diffuse away to find new E. coli prey (Figure 5.12). 
In the lysogenic mode, the phage integrates its DNA into the bacterial DNA and sits quiet.
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In both modes, the phage reproduces: in the lytic mode by infecting other cells, and in the 
lysogenic mode by using the bacterial divisions to reproduce. Thus, lysogeny is preferred when 
the cell is healthy and can divide, and the lytic mode is preferred when the cells are damaged.

To make the decision between the modes, the phage uses two transcription factors, X and 
Y (called C1 and cro) that form a toggle switch with positive autoregulation. Y is expressed 
in the lytic mode and activates lytic genes including itself. X is the only protein expressed 
in the lysogenic mode. To switch from lysogeny to lysis, X eavesdrops on the cell’s damage 
signals: when DNA is damaged in the cell, a sensor for DNA damage called RecA cleaves 
protein X. As a result, X vanishes, Y is no longer repressed and the phage switches to lytic 
mode and kills the cell.

5.1.3 Regulating Feedback and Regulated Feedback

Two-node feedback loops can appear within larger motifs in developmental networks. 
These networks display two main three-node motifs that contain feedback loops (Milo 
et al., 2004). The first is a triangle pattern in which the mutually regulating nodes X and Y 
both regulate gene Z (Figure 5.13), called regulating feedback.

The regulating-feedback network motif has 10 possible sign combinations (Figure 5.14). 
In the simplest case, X and Y, which activate each other in a double-positive loop, have the 
same regulation sign on the target gene Z (both positive or both negative). In contrast, a 
double-negative feedback loop will often have opposing regulation signs for Z (Figure 5.13). 
The two sign combinations shown in 
Figure 5.13 are coherent, in the sense that 
any two paths between two nodes have the 
same overall sign.

In addition to the regulating-feedback 
motif, developmental networks show 
a network motif in which a two-node 
feedback loop is regulated by an upstream 
transcription factor (Figure 5.15). This motif 
is called regulated feedback. Again, several 
coherent sign combinations are commonly 
found. For example, the input transcription 
factor can be an activating regulator that 
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locks the system ON in the case of a double-positive loop (Davidson et al., 2002). In the case 
of a double-negative loop, the regulator can have different signs for the two feedback nodes 
and act to switch the system from one steady state to the other (Gardner, Cantor and Collins, 
2000).

As in the case of PAR, the regulated feedback motif can be considered as a memory 
element: the regulator Z can switch the feedback loop from one state to another, such that 
the state persists even after Z is deactivated (Figure 5.15). Hence, the circuit can remember 
whether Z was active in the past. This memory can help cells maintain their fate even after 
the original developmental signals that determined the fate have vanished (Demongeot, 
Kaufman and Thomas, 2000; Smolen, Baxter and Byrne, 2000; Xiong and Ferrell, 2003).

5.1.4  Long Transcription Cascades and Developmental Timing

An additional important family of network motifs in developmental networks (that is rare 
in sensory networks) is long transcriptional cascades. Transcriptional cascades are chains 
of interactions in which transcription factor X regulates Y, which in turn regulates Z, and 
so on (Figure 5.16).

As we saw in Chapter 1, the response time of each stage in the cascade is governed by 
the removal rate of the protein at that stage, T1/2 = log(2)/α. Long cascades are too slow for 
sensory transcription networks that need to respond quickly to environmental stresses and 
nutrients.

Developmental networks, in contrast, work on precisely the scale of one or a few cell 
generations. This is because cell fates are assigned with each cell division (or several 
divisions) as the cells divide to form the tissues of the embryo. Hence, the timescale of 
transcription cascades is well suited to guide developmental processes.

Development often employs cascades of repressors (Figure 5.16), whose timing prop-
erties are more robust with respect to fluctuations in protein production rates than cas-
cades of activators (Rappaport et al., 2005). For example, neurons in the fly brain develop 
in a series of well-timed steps coordinated by a cascade of repressors (Averbukh et al., 2018).
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5.2 NETWORK MOTIFS IN PROTEIN–PROTEIN INTERACTION NETWORKS
So far, we have focused on transcription networks that operate on timescales as slow as 
the cell’s generation time. To elicit rapid responses, the cell also contains much faster 
information-processing networks, called protein–protein interaction networks or PPI 
for short.

PPI networks are fast because they work by interactions between existing proteins. No 
new proteins need to be made. In PPI, proteins activate and inhibit each other by various 
means: proteins can bind each other, chemically modify each other or even degrade each 
other. Their typical timescale is seconds to minutes, compared to hours for transcription 
networks.

PPI circuits have their own network motifs, with delightfully intricate design. We will 
discuss their emerging design principles in Part 2 of this book.

5.2.1 Hybrid Network Motifs Include a Two-Node Negative Feedback Loop

For now, it is useful to note that PPI networks and transcription networks operate in an 
integrated fashion. Many PPI circuits have transcription factors as their output, and proteins 
in a PPI network are regulated by transcription networks. The integrated network can be 
described as a network with two colors of edges: one color represents transcription interactions, 
and a second color represents the much faster protein–protein interactions (Yeger-Lotem 
et al., 2004). In this section, we will mention some of the network motifs that occur in such 
two-color networks. Such hybrid network motifs can also be found in networks that integrate 
more than two levels of interactions (Ptacek et al., 2005; Zhang and Horvath, 2005).

A very common hybrid motif is a feedback loop made of two proteins that interact with 
each other using two colors of arrows (Figure 5.17). In this motif, protein X is a transcription 
factor that activates the transcription of gene Y. The protein product Y interacts with X on the 
protein level (not transcriptionally), often in a negative fashion. This negative regulation can 
take several forms. In some cases, Y enhances the rate of degradation of protein X. In other 
cases, Y binds X and inhibits its activity as a transcription factor by preventing its access to the 
DNA. In metabolic pathways, the final product usually negatively regulates the transcription of 
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the pathway enzymes, as well as the activity 
of the first enzyme in the pathway (feedback 
inhibition, Figure 4.2). This hybrid motif 
occurs in most gene systems from bacteria 
to humans (Lahav et al., 2004).

In the hybrid negative feedback loop, 
one interaction, transcription, is slow 
and the other is fast. Note that purely 
transcriptional two-node negative feedback loops are rare (developmental transcription 
networks usually display positive transcriptional feedback loops, as discussed above). In 
other words, it is rare for Y to repress X on the transcription level. What could be the reason 
that hybrid negative feedbacks are much more common than purely transcriptional ones?

To understand hybrid feedback, we can turn to engineering control theory. Engineers 
routinely use feedback in which a slow component is regulated by a fast one. The principal 
use of this type of feedback is to stabilize a system around a desired set point. For example, 
a heater that takes 15 min to heat a room is controlled in a negative feedback loop by a much 
faster thermostat (Figure 5.18). The thermostat compares the desired temperature to the 
actual temperature and adjusts the power accordingly. If the temperature is too high, the 
power of the heater is reduced so that the room cools down. After some time, the temperature 
stabilizes around the desired temperature (Figure 5.19, overdamped or damped curves).

One reason for using two timescales (fast thermostat on a slow heater) in this feedback 
loop is enhanced stability. The rapid response time of the thermostat ensures that the 
control of the heater is based on the current temperature. Had the thermostat been made 
of a vat of mercury that takes 15 min to respond to temperature changes, the heater would 
receive feedback based on the relatively distant past, and the temperature could oscillate 
(Figure 5.19, undamped oscillations).

By analogy, a negative feedback loop made of two slow transcription interactions is more 
prone to instability than a feedback loop where a fast interaction controls a slow one. In 
biology, stability around a set point is called homeostasis, and is a central feature of living 
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systems. For an excellent introduction to 
the mathematical treatment of stability, see 
Strogatz (2015). We will discuss oscillatory 
biological circuits in more depth in the 
next chapter.

5.2.2  Hybrid FFL Motifs Can 
Provide Transient Memory

Hybrid networks also show FFL motifs in 
which, for example, X transcriptionally 
activates Y and Z, which interact at the 
protein level (Figure 5.20). Such a hybrid 
FFL appears in the mating pathway of 
yeast, and was studied experimentally by 
Andreas Doncic and Jan Skotheim (2013). 
Here, the input signal Sx is a pheromone 
made by another yeast cell, and the output 
is expression of gene Z that causes the cells 
to stop dividing and prepare to mate. The 
signal Sx causes transcription factor X to 
activate the production of Y and Z. Sx also 
causes Y to chemically modify Z into an active state. Y is a kinase that phosphorylates Z by 
adding a phosphoryl group PO4

−. Thus, it converts Z into its active form Zp. Phosphorylation 
is a common protein–protein interaction that will appear often in the circuits of the coming 
chapters.

The hybrid FFL provides a persistence-detector function (as in Chapter 3), because the 
mating signal Sx must be present for enough time in order for protein Y to build up and 
activate Z. Doncic and Skotheim further showed that the hybrid FFL provides a transient 
memory. It allows yeast to respond more rapidly to a mating signal Sx if that signal was seen 
in the recent past – because then Y protein is already present, ready to phosphorylate Z, 
without need to make new Y proteins. Here, “recent past” is determined by the half-life of 
Y, a few hours. In this way, node Y carries a transient memory of recent signals.

5.2.3 Feedforward Loops Show a Milder Version of the Functions of Feedback Loops

Let’s pause to note a similarity between the functions of feedforward and feedback loops. 
Both coherent FFLs and positive feedback loops can provide delays and memory. FFLs 
provide transient memory and positive feedback can provide long-term memory.

Likewise, both incoherent FFLs (IFFLs) and negative feedback loops can speed responses 
and show pulses. IFFLs show a single pulse and can never on their own show the oscillations 
that negative feedback loops are capable of, because FFLs are always stable.

Thus, coherent FFLs are similar to positive feedback, and incoherent FFLs to negative 
feedback, but FFLs show a more stable, reversible or mild version of the dynamics of 
feedback loops.
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5.3 NETWORK MOTIFS IN NEURONAL NETWORKS
To end this chapter, let’s expand our view beyond regulatory networks in the cell. Many 
fields of science deal with complex networks of interactions. Sociology studies social 
networks, in which X → Y means, for example, that X chooses Y as a friend (Holland and 
Leinhardt, 1977; Wasserman and Faust, 1994). Neurobiology studies neuronal networks in 
which neuron X has synapses to neuron Y. Ecology studies food webs, in which species X 
eats species Y. Network motifs can be sought in networks from these fields by comparing 
them to randomized networks (Milo et al., 2002; Milo et al., 2004). This is an example of 
a concept developed in systems biology that has impacted many other fields of research. 
One finds that:

 1. Most real-world networks are built of a small set of network motifs.

 2. Networks from a given field share the same network motifs.

 3. Different fields show different network motifs.

Examples can be seen in Figure 5.21. Food webs show cascades, whereas electronic circuits 
show feedback loops of transistors. In social networks, X might choose Y as a friend, but a 
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tragedy of life is that Y does not always choose X back. Perhaps that is one reason that people 
like to group together into fully connected cliques, a pattern rarely seen in other fields.

It makes sense that networks from different fields display different network motifs, 
because each field has its own functions and its own constraints.

However, there are intriguing cases in which unrelated networks share similar network 
motifs (and similar anti-motifs, patterns that are rarer than at random). This occurs, for 
example, when studying the neuronal network of C. elegans, a tiny worm composed of 
about 1000 cells, of which 300 are neurons. The 300 neurons are connected by about 5000 
synaptic connections.

This network was fully mapped by White, Brenner and colleagues (White et  al., 
1986) using electron microscopy. The wiring does not vary much from individual to 
individual. Strikingly, the neuronal network of C. elegans shares many of the motifs 
found in transcription networks (Milo et al., 2002). For example, the most significant 
three-node motif in the neuronal network is the FFL. FFLs are also a recurring motif in 
mammalian neuronal wiring, for example IFFLs in which neuron X sends an axon to 
a distant brain region where it activates both neuron Z and its neighboring inhibitory 
neuron Y.

The similarity of network motifs in neuronal and transcription networks is surprising 
because the networks operate on very different spatial and temporal scales. Neuronal 
networks are made of micron-sized cells interacting on the sub-second timescale. 
Transcription networks are made of nanometer-sized molecules interacting over hours. 
Yet many of the motifs are similar.

Why is the FFL a motif in both neuronal and transcription networks? One point of 
view is that this is a coincidence. For example, White et al. (1986) raised the possibility 
that triangular patterns such as the FFL might arise due to the spatial arrangement of the 
neurons. Neurons that are neighbors tend to connect more often than distant neurons. 
Such neighborhood effects can produce triangle-shaped patterns, because if Y and Z are 
both neighbors of X, they are likely to neighbor each other. However, while this effect would 
produce FFLs, it would also produce three-node feedback loops, in which X, Y and Z are 
connected in a cycle (Itzkovitz and Alon, 2005). Such feedback loops, however, are rare 
in this neuronal network: they are in fact anti-motifs. Thus, the origin of FFLs and other 
motifs in the neuronal network is not solely due to neighborhood effects.

An alternative view is that the similarity in network motifs reflects the fact that both 
networks evolved toward a similar goal: they perform information-processing on noisy 
signals using noisy components. Neurons process information between sensory neurons 
and motor neurons. Transcription networks process information between transcription 
factors that receive signals and genes that act on the inner or outer environment of the 
cell. This similarity in function raises the hypothesis that evolution converged on similar 
network motifs in both networks to perform important signal-processing tasks.

5.3.1 Multi-Input FFLs in Neuronal Networks

Although FFLs are motifs in both transcription and neuronal networks, the way FFLs are 
joined together to make larger circuits is different.



90   ◾   An Introduction to Systems Biology

Instead of the multi-output FFLs 
found in transcription networks, 
neurons in C. elegans often combine to 
make multi-input FFLs. An example is 
shown in Figure 5.22: sensory neurons 
for nose touch and noxious odors both 
signal to motor neurons that make the 
worm move backwards. Such a circuit 
can function as a coincidence detector, 
generating an output from brief input 
stimuli that occur in close proximity, 
even if each stimulus alone is not enough 
to generate an output (Exercise 5.7).

An interesting multi-input FFL occurs 
in the neurons for human pain sensation 
(Figure 5.23). This circuit explains 
why there are two types of pain. Here 
is a description adapted from Robert 
Sapolsky’s book, Behave (Sapolsky, 2017).

Neuron X1 sits just below the skin and 
fires in response to painful stimuli. It 
excites neuron Z which projects up the 
spinal cord, sending a pain message to the 
brain. But neuron X1 also excites neuron 
Y which inhibits Z. This is an I1-FFL, a 
pulse generator. As a result, neuron Z fires 
for a while and is then silenced. You feel 
a sharp pain, as if you’ve been poked by 
a needle.

The second input neuron is X2, located 
under the skin in the same region as X1. 
X2 also excites neuron Z, and the message 
is sent up to the brain. But X2 inhibits Y, 
forming a type-4 coherent FFL. As do all 
coherent FFLs, this circuit starts to fire only after a delay and then keeps going. You 
feel a throbbing, continuous pain, like a burn or abrasion. The delay is strengthened 
by the fact that action potentials travel down the axon of X2 much slower than X1. So 
the pain from X1 is transient and fast, whereas the pain from X2 is long-lasting and has 
a slower onset.

The two circuits can interact, and we often intentionally force them to. Suppose you have 
a continuous, throbbing pain – say, an insect bite. How can you stop the throbbing? Briefly 
stimulate X1, which shuts the system down for a while. And that is precisely what we often 
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do in such circumstances, we scratch hard right around the bite to dull the pain, and the 
slow chronic pain pathway is shut down for up to a few minutes.

Sapolsky writes: “One of the biggest reasons why I love this circuit is that it was first 
proposed in 1965 by the great neurobiologists Ronald Melzack and Patrick Wall. It was 
merely proposed as a theoretical model – ‘No one has ever seen this sort of wiring, but we 
propose that it’s got to look something like this, given how pain works’. And subsequent 
work showed that’s precisely how this part of the nervous system is wired.”

5.4 REFLECTION
The network representation masks the detailed mechanisms at each node and arrow. But 
because of this compact level of description, network representations help to highlight the 
similarity in the circuit patterns in different parts of the network and between different 
networks. The dynamics of the networks at this level of resolution lend themselves to 
analysis with simple models. We care only that X activates or inhibits Y, not precisely how 
it does so on the biochemical level. This abstraction helps us to define network motifs 
as functional building blocks of each type of network. These building blocks are often 
joined together in ways that allow understanding of the network dynamics in terms of the 
dynamics of each individual motif. Hence, both on the level of local patterns and on the 
level of combinations of patterns into larger circuits, biological networks appear to display 
a degree of simplicity.
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EXERCISES

 5.1 Alternating stability:

 a. Design an autoregulatory circuit dX/dt = f(X) − αX with 5 fixed points. Use a rate 
plot.

 b. What is the stability of each point? Hint: See if production exceeds removal in the 
regions between the fixed points, and find out the flow direction of X.

 c. Explain why no two adjacent fixed points can have the same stability (both 
unstable or both stable). Thus, adjacent fixed points must have alternating stability.

 5.2 Nullclines for double-positive feedback: The double positive feedback loop is defined by 
two increasing input functions, f and g, that describe the mutual repression:

 
dX
dt f Y X= −( ) α1

 
dY
dt g X Y= −( ) α2

 a. Explain the terms in these equations.

 b. Use nullclines to show that a double positive feedback loop can be mono-stable 
(single stable fixed point) or bistable.

 c. Show that bistability requires cooperative (sigmoidal) input functions.

 5.3 Positive autoregulation in a double-positive feedback loop: Consider a two-node 
positive feedback loop in which each node is also positively autoregulated (PAR). In 
this circuit, the interactions are not cooperative. Hence, without the PAR, there would 
be no bistability, and instead only a single steady-state level.

 a. Write equations for this system. Assume that autoregulation and cross-activation 
are multiplicative (resembling an AND gate).

 b. Draw the nullclines. Show that the circuit can show bistability.

 5.4 Tristability: Toggle switches can show tristability, in which there are three stable states: 
the usual Xhigh/Ylow and its opposite Xlow/Yhigh, and a third state in which both X and Y 
are expressed at intermediate levels (Huang et al., 2007). Tristability can occur when 
the autoregulation of X and Y is strong and cooperative enough. The nullclines have 
the fancy shape shown in Figure 5.24. There are five crossing points, two unstable and 
three stable.

 Consider a toggle switch in which the inhibition function of X by Y is f(Y) = 1/(1 + Y/K1) 
and the autoregulation function is sigmoidal g(X) = β0 + β1(X/K2)2/(1 + (X/K2)2). The 
inhibition and autoregulation functions combine multiplicatively (resembling an 
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AND gate). The interaction functions 
for Y are the same as for X (symmetric 
circuit).

 a. Write the equations for this 
circuit.

 b. Write the equations for the 
nullclines.

 c. Sketch the nullclines. How 
many intersection points can 
they have for different choices of 
parameters?

 d. Find a parameter set with 
tristability. Plot the nullclines in 
this case.

 e. Is symmetry essential for 
tristability? If not, sketch non-
symmetric nullclines with tristability.

 f. Suggest a biological scenario in which tristability might be useful.

 5.5 Phase portraits: Find an online program that plots phase portraits for sets of two 
ordinary differential equations. Plot the phase portraits for the systems of Exercises 
5.2 and 5.3.

 5.6 Memory in the regulated feedback network motif: Transcription factor X activates 
transcription factors Y1 and Y2 which mutually activate each other. The input function 
at the Y1 and Y2 promoters is an OR gate (e.g., Y2 is activated when either X or Y1 bind 
the promoter). At time t = 0, X begins to be produced from an initial concentration 
of X = 0. Initially, Y1 = Y2 = 0. All production rates are β = 1 and removal rates are 
α = 1. All of the activation thresholds are K = 0.5. At time t = 3, production of X stops.

 a. Plot the dynamics. What happens after X decays away?

 b. Consider the same problem, but now Y1 and Y2 repress each other and X activates 
Y1 and represses Y2. At time t = 0, X begins to be produced, and the initial levels 
are X = 0, Y1 = 0 and Y2 = 1. At time t = 3, X production stops. Plot the dynamics 
of the system. What happens after X decays away?

 5.7 Multi-input FFL as a coincidence detector: A multi-input FFL is made of two coherent 
type-1 FFLs with inputs X1 and X2, SUM logic at Y and (X1 OR X2) AND Y logic at the 
output Z. Assume all parameters are equal to one. Write equations using logic input 
functions. The analog of the degradation/dilution rates α for neuronal circuits are the 
relaxation time of the membrane potential.

X

Y

FIGURE 5.24 



94   ◾   An Introduction to Systems Biology

 a. Show that a simultaneous brief stimulation of X1 and X2 can lead to an output, 
even if each input stimulated alone would not.

 b. Show that (a) can work even if the brief input pulses are timed with a small delay.

 c. Why can this circuit be called a coincidence detector for the two inputs?

 5.8 Transient memory in the FFL: A coherent type-1 FFL with AND logic responds to the 
signal Sx. The signal is present for a long time, and then vanishes for a time D. The 
signal then goes ON again.

 a. What is the response time of the output Z as a function of D?

 b. Why can we say that this circuit provides short-term memory for Sx?

 5.9 Series of pulses: Design a circuit made of linked FFLs that can provide a series of a 
given number n of pulses of expression of gene Z.

 5.10 Memory of multiple past inputs: Design a circuit that provides a locked-ON output Z 
only if, in the past, signal S1 was present for longer than time D, and then signal S2 was 
present for longer than time D.

 5.11 No oscillations in FFLs: Explain why FFLs can never show sustained oscillations.
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C h a p t e r  6

How to Build a 
Biological Oscillator

Oscillations are thrilling – hearts beat, cells divide every cell cycle, circadian clocks keep 
time and neurons click in trains of regularly spaced spikes. Biological oscillations attracted 
theoretical work from pioneers such as Arthur Winfree, Albert Goldbeter and John Tyson, 
and are still an active area of research. Let’s discuss the design principles of biological 
circuits that oscillate.

6.1 OSCILLATIONS REQUIRE NEGATIVE FEEDBACK AND DELAY
At the heart of an oscillator is a negative 
feedback loop. Molecule X acts to reduce its 
own amounts, so that high levels go to low 
and then back to high, and so on. Negative 
feedback on its own, however, is not enough. 
The simplest negative feedback motif, negative 
autoregulation, does not oscillate but instead 
monotonically returns to steady state as we saw 
in Chapter 1 (Figure 6.1).

6.1.1  In Order to Oscillate, You Need to Add a Sizable Delay 
to the Negative Feedback Loop

Negative feedback plus delay reminds me of the shower we had when I was a child. The 
water started cold. I would turn on the hot water – acting as a feedback controller. But the 
hot water took time to arrive, so I would turn the handle too much, and the water would 
be scalding – Ouch! So I would turn it back strongly to the cold, but because of the delay, 
I would go too far and the water would be freezing – Arrgh! And so on in a cycle of Ouch! 
Arrgh! Ouch! Fortunately, in our more modern shower, there is less delay and I can easily 
tune the desired temperature.

x
xst

X

time

FIGURE 6.1 
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A delay in biological circuits can be achieved by adding 
components in the negative feedback loop to make longer 
paths in the circuit. Autoregulation is just a one-step path, 
a single self-closing arrow. Add another species, Y, and you 
get a negative feedback loop made of two arrows (Figure 
6.2). Here, you start to see a hint of oscillations: you can 
get damped oscillations with pulses that settle down to 
steady state (Figure 6.3). Damped oscillations require (1) 
strong (preferably cooperative) feedback and (2) that the 
timescales on the two arrows are similar. If the timescales 
are very different, with one arrow much faster than the 
other, the fast path is not much of a delay element, and the 
circuit is overdamped: it acts effectively like autoregulation 
with no damped oscillations (Figure 6.4).

An easy way to grasp the roles of feedback strength 
and timescales is to use linear stability analysis, as in the 
solved example “below. Linear stability analysis is nicely 
introduced in Strogatz (2015). If you don’t care for details 
right now, skip the example.

Solved Example 6.1: Show That a Two-
Component Negative Feedback Loop Shows 
Damped Oscillations If Timescales Are Similar 
Enough and Feedback Is Strong Enough

Consider a two-node negative feedback circuit in which X 
activates Y according to the increasing function g(X) and 
Y  represses X according to the decreasing function f(Y) 
(Figure 6.5)

dX
dt f Y X= −( ) α1

dY
dt g X Y= −( ) α2

The α’s are the removal rates that set the timescales of the two arrows. The dynamics 
of small perturbations x(t) and y(t) around the fixed point Xst, Yst are governed by the 
linear equations

dx
dt y x dy

dt x y= − − = −β α β α1 1 2 2

where the feedback parameters β1 and β2 are the derivatives of f and g at the fixed 
point: −β1 = df/dY, and β2 = dg/dX. Note that −β1 is negative because f is a decreasing 

X Y

FIGURE 6.2 
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function (repression), whereas β2 is positive because g is increasing (activation). Thus, 
this dynamical system can be described in matrix notation by

d
dt

x
y

J
x
y

J










=










=
− −

−











,

α β
β α

1 1

2 2

where J is the Jacobian matrix. For a general system, dx/dt = f(x,y), dy/dt = g(x,y), the 
Jacobian is given by the derivatives evaluated at the fixed point,

J
df dx df dy
dg dx dg dy

=












/ /
/ /

The solution of such linear equations is a sum of exponentials of time: c e c et t
1 2

1 2λ λ+ . 
The exponents are the two eigenvalues λ1 and λ2 of the matrix J. Damped oscillations 
(Figure 6.3) occur when the eigenvalues have an imaginary part: λ1,2 = a ± ib. To see 
this, recall from Euler’s formula that ea+ib = ea(cos(b) + i sin(b)), so that the solutions 
are an oscillating wave with frequency determined by the imaginary part ω = 2π/b, 
and an amplitude that decays exponentially to zero if the real part is negative, a < 0. 
The result is known as a spiral fixed point, because the system spirals down into a 
steady-state solution (Figure 6.6).

To find the eigenvalues we solve the characteristic equation of the matrix J, 
(−α1 − λ)(−α2 − λ) + β1β2 = 0 to find 2 41 2 1 2 1 2

2
1 2λ α α α α β β, ( ) ( )= − + ± − − . 

The eigenvalues in this circuit always have a negative real part, thanks to the negative 
removal terms, and so the steady state is stable and all initial conditions flow back to it. 
A useful rule for stability of two-variable systems is that the sum of the diagonal terms 
τ (the trace of the Jacobian matrix) is negative and the determinant Δ is positive. This 
is the case here, τ = −(α1 + α2) < 0 and Δ = α1α2 + β1β2 > 0. In fact, the signs of 
τ and Δ stem from the sign structure of the Jacobian, − −

+ −












, which always leads to 

stability.
Damped oscillations occur when the eigenvalues have imaginary parts, which 

happens when the term inside the square root is 
negative, namely

 ( )α α β β1 2
2

1 24− <

The term on the right-hand side is called the 
feedback strength, β1β2. When the timescales of the 
two arms are equal (α1 = α2), damped oscillations 
always occur, for any feedback strength.

The larger the mismatch in timescales |α1 − α2|, the 
larger the feedback strength β1β2 needed for damped 
oscillations. If feedback is not strong enough compared 

x

y
Spiral fixed point

FIGURE 6.6 
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to the timescale separation, the system is overdamped and decays monotonically to 
the fixed point with no overshoot (Figure 6.4). Thus, strong separation of timescales 
counteracts the tendency to oscillate.

The feedback strength β1β2 is determined by the slopes of the regulation 
functions  g and f at the steady-state point, dg/dX and df/dY. The steeper 
these  regulation  functions  – for example the higher their Hill coefficient, the 
greater the feedback strength.  Cooperativity therefore enhances the tendency to 
oscillate.

Cooperativity helped the oscillations in my childhood shower, because the faucet had a 
very steep curve – very hot or very cold for most of the range, making it harder to home in 
on the right temperature.

Thus, a two-step negative feedback loop can only show damped oscillations. This 
observation prompted Galit Lahav, when she was a postdoc in my group, to try to visualize 
these damped oscillations in living cells. She used a feedback loop that involves an important 
protein known as the “guardian of the genome,” p53.

p53 is called the guardian of the genome because it governs cell decisions when DNA is 
damaged. The cell must decide to repair the DNA, or, if it is too damaged, to avoid becoming 
cancerous by committing programmed cell death or becoming a zombie-like senescent cell 
that stops dividing. p53 is a transcription factor that regulates genes for repair and for cell 
death/senescence. That is why p53 is mutated in most cancers, bypassing cell death and 
allowing cancer cells to proliferate despite damage. p53 forms a negative feedback loop with 
another protein called mdm2: p53 transcriptionally activates mdm2, and mdm2 leads to 
the degradation of p53 (Figure 6.7).

Galit Lahav fused the genes for p53 and mdm2 to cyan and yellow fluorescent proteins. 
That way, she could see in the microscope how cyan and yellow fluorescence varied in 
individual human cells over time, reporting the changes in the two proteins. Seeing the 
proteins in individual cells was an advance over the way experiments on p53 had been 
done before, by averaging over millions of cells, and thus potentially masking dynamic 
processes.

Galit gave the cells some gamma irradiation to induce DNA damage, and filmed the 
cells. She even brought a rollaway bed and a sleeping bag to the lab because she had to focus 
the microscope every 20 minutes over 24 h of filming. (This is 
heroic. A year later we got a microscope with automated focus.)

To her surprise, Galit did not see damped oscillations, but 
instead full-fledged oscillations that did not damp out. p53 
goes in and out of the nucleus with pulses that have noisy 
amplitudes and a relatively precise 6 h period (dynamics of 
four typical cells are shown in Figure 6.8). The second protein 
in the feedback loop, mdm2, also oscillates, with the opposite 
phase.

p53 mdm2

transcription

degradation

FIGURE 6.7 
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6.2  NOISE CAN INDUCE OSCILLATIONS IN SYSTEMS THAT 
HAVE ONLY DAMPED OSCILLATIONS ON PAPER

It took us a while to figure 
out what was going on. 
It turns out that circuits 
that show only damped 
oscillations on paper, such as 
a two-component negative 
feedback loop, can still 
oscillate indefinitely in the 
cell. This occurs when noise 
is strong enough. Noise 
kicks the system away from 
the spiral fixed point and 
prevents the oscillations 
from damping out (Figure 
6.9). As a result, the circuit 
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shows pulses with noisy amplitude but rather precise frequency. The frequency is that of 
the original (noiseless) damped oscillation, given by the imaginary part of the eigenvalues. 
Another way to think about this is that the damped oscillator amplifies the part of the noise 
close to its resonance frequency.

A diagnostic for such noise-induced oscillations is that the amplitudes of the pulses 
are more variable than their frequency (Figure 6.8), and that the amplitude increases with 
noise strength. Theoretical work on noise-driven oscillations around a spiral fixed point 
(Li and Lang, 2008) shows that the distribution of the peak amplitudes of the pulses goes 
as P A Ae A A( ) ∼ − 2

0
2/  where A0 is the ratio of the noise amplitude and the real part of the 

spiral-fixed-point eigenvalues. This formula describes the p53 pulses well (Geva-Zatorsky 
et al., 2010).

In recent years, many other transcription factors have been found to oscillate in and out of 
the nucleus. For example, the inflammation regulator NF-kB shows oscillation pulses with 
noisy amplitude and accurate frequency like p53 (Nelson, 2004). Some transcription factors 
have multiple isoforms in the same cells (regulators with very similar DNA sequence), with 
some isoforms showing oscillations and others a graded response to a given signal (e.g., 
NFAT1 and NFAT4 in immune signaling, Yissachar et al., 2013).

One reason that transcription factors (TFs) may oscillate is to keep exciting their 
downstream genes that would otherwise show exact adaptation to TF level, as described in 
Chapter 10. Pulses “wake up” circuits that otherwise adapt.

Other TFs, such as Crz1 in yeast, show trains of pulses of nuclear entry, each lasting 
about 2 minutes, whose frequency increases with the input signal, while their amplitude 
does not depend on signal (Cai, Dalal and Elowitz, 2008). A potential utility of TF pulse 
trains is to coordinate the expression of different genes, because gene expression depends 
on the fraction of time the TF is in the nucleus rather than its amplitude, as discussed in 
Exercise 6.4.

6.3 DELAY OSCILLATORS
Full-fledged, undamped oscillations even without noise can appear if we go to feedback 
loops with three or more steps. In order to oscillate, such loops need to have strong feedback 
and similar timescales for the different steps.

A three-component negative feedback loop featured in one of the first theoretical models 
of biological oscillators, by Goodwin. Several decades later, in 2000, a three-component 
loop helped start the field of synthetic biology, when Michael Elowitz and Stanislas Leibler 
built a cycle of three repressors, called the repressilator (Figure 6.10). They combined the 
genes and regulatory regions of the three repressors in E. coli such that each represses the 
next repressor in the cycle. One of the repressors also regulated a green fluorescent protein 
gene (GFP) as a readout. To make sure the circuit parameters supported oscillations, Elowitz 
and Leibler made the timescales of the components as similar as possible. The repressilator 
oscillated in E. coli, with the GFP readout blinking green, black, green with a period of 
about 160 minutes. The repressilator was recently updated in a more minimal and precise 
version (Potvin-Trottier et al., 2016).
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What happens when you add more than three components in the negative feedback 
loop? The more components in the cycle, the larger the range of parameters for oscillations, 
and the weaker the degree of cooperativity required for oscillations. The frequency of the 
oscillations in such delay oscillators is approximately equal to the sum of the half-lives 
of the components, the overall delay time around the loop. The circadian clock in cells is 
thought to be a delay oscillator, with a free-running period of about one day.

6.4  MANY BIOLOGICAL OSCILLATORS HAVE A COUPLED 
POSITIVE AND NEGATIVE FEEDBACK LOOP MOTIF

In sum thus far, negative feedback plus delays and/or noise can provide oscillations. 
Nonlinearity (cooperativity) and similar timescales for the opposing arms help the feedback 
loop to oscillate. But when we look at the circuits for the best-studied oscillators in biology, 
such as heart cells, neurons and cell cycles, we see an additional feature – a positive feedback 
loop is added to the negative feedback loop (Figure 6.11). What is the role of positive feedback?

The positive feedback loop adds a delay as we saw in Chapter 5. 
Delays help oscillations, increasing the parameter range that provides 
oscillations. For example, positive feedback can make a two-node 
negative feedback loop show sustained oscillations even with one 
arm much faster than the other. Separation of timescales between the 
interactions in the negative feedback loop is, in fact, a recurring feature 
of the oscillator motif of Figure 6.11.

To see how positive feedback can make 
a two-component loop oscillate, we can use 
linear analysis of the fixed point. Without 
positive feedback, the two eigenvalues have 
a negative real part and we have a stable 
fixed point or stable spiral. Positive feedback 
can make the real part go positive, turning 
the stable spiral into an unstable spiral 
(Figure 6.12). The trajectory spirals out. 
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The trajectory cannot diverge to infinity, 
however. This is because, once concentrations 
rise sufficiently, all feedback terms saturate 
and we are left only with the removal terms 
−α1X, −α2Y that push concentrations back 
down. Biochemical circuits have the saving 
grace that concentrations cannot diverge 
and cannot go negative.

Thus, trajectories are kept away from 
the unstable spiral fixed-point and also 
away from infinity. They must reside somewhere in the middle. A fundamental theorem 
of two-component dynamical systems, the Poincaré–Bendixson theorem (Strogatz, 2015) 
shows that such confined trajectories settle into a sustained oscillation called a limit cycle 
(Figure 6.13).

In the next solved example, we provide details of how positive feedback destabilizes the 
fixed point. Again, feel free to skip this.

Solved Example 6.2: Positive Feedback Can Destabilize the Fixed Point of a  
Two-Component Negative Loop

The equations are like the two-node feedback loop analyzed above, except that X has 
positive autoregulation. As a result, its production rate is a function of both X and Y, 
f(X,Y), which rises with X (autoregulation) but drops with Y (negative feedback). The 
equations are

dX
dt f X Y X= −( , ) α1

dY
dt g X Y= −( ) α2

The Jacobian matrix at the fixed point in this case is 
− + −

−













α β
β α
1 1

2 2

P
 where P = df/dX 

is positive due to the positive autoregulation. The negative feedback arms are 

−β1 = df/dY < 0, β2 = dg/dX > 0. The stability of the fixed point is determined by 
the real parts of the eigenvalues. The sum of the real parts is equal to the trace of the 
matrix, τ = P − α1 − α2. When τ becomes positive, the fixed point becomes unstable 
because one of the eigenvalues has a positive real part. This occurs when positive 
autoregulation strength exceeds removal, P > Pc = α1 + α2. The sign structure of the 

Jacobian goes from the stable 
− −
+ −












 to 

+ −
+ −












. If the positive feedback P is increased 

gradually, a stable spiral fixed point turns unstable when P = Pc in what is known as 
a Hopf bifurcation.
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Positive feedback can also make a more dramatic contribution, as we saw in Chapter 5: 
bistability. Bistability is powerful in an oscillator, because it can make the oscillations more 
decisive and less noisy. The circuit makes sharp transitions between the two states, going 
tic-toc between high and low concentrations. The amplitude is well-defined by the difference 
between the high and low states, and hence frequency can be changed if needed without 
affecting the amplitude. The role of bistability was worked out nicely in one of biology’s most 
fundamental oscillators, the circuit that drives the cell cycle (Ferrell et al., 2011).

Cell-cycle oscillator circuits are 
usually complicated. They have dozens of 
components that act as checkpoints to make 
sure important steps such as replicating the 
DNA are completed before cells divide. In 
some cells, however, the cell-cycle circuit 
is stripped down to a minimum, offering a 
good model system for basic understanding. 
An example is the circuit in charge of the 
first divisions of the frog egg, which occur 
every 20 min (Figure 6.14). The circuit has 
a negative feedback loop between X (called 
CDK1) and Y (called APC) and positive 
autoregulation on X. X can be in two states: 
phosphorylated Xp, the active form, and unphosphorylated, X0, which is inactive. Xp acts as 
a kinase that can phosphorylate and thus activate proteins for cell division. Thus Xp is the 
output of the circuit. Xp also activates Y which degrades X, closing the negative feedback 
loop. A protein called cyclin is needed for Xp to be active, and is also degraded by Y.

The positive feedback on X is due to the fact that Xp activates enzymes that increase its 
own phosphorylation. A detail we will return to later is that Xp activates itself in two ways: 
activating the kinase (called Cdc25) that phosphorylates X0 to make Xp, and inhibiting the 
opposing enzyme (called Wee1) that dephosphorylates Xp back to X0.

In the frog-egg cell-cycle circuit, the 
positive feedback loop causes bistability, 
as experimentally shown by Pomeraning, 
Sontag and Ferell (2003). They used frog-
egg extracts and added a nondegradable 
version of cyclin in order to activate X: the 
more cyclin added, the more X is activated. 
When you start with zero cyclin and now 
slowly increase its amounts, Xp starts low 
and gradually rises (Figure 6.15). When 
cyclin reaches a certain threshold level, chigh, 
the autoregulation kicks in and Xp jumps 
to a very high level, because it induces its 
own phosphorylation and inhibits its own 
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dephosphorylation. Remarkably, when you start with high cyclin and now reduce its levels, 
the behavior is different than when you increase cyclin. Xp begins high, and only when 
cyclin is lowered below a low threshold clow, does autoregulation become weak enough that 
Xp drops to its original level (Figure 6.15). The existence of two thresholds and a loop-like 
graph in which the circuit behaves differently when input rises and when input falls is called 
hysteresis. Hysteresis is a common feature of bistable circuits.

Hysteresis is the basis for how this oscillator works (Figure 6.16): at first Y is low, and since 
cyclin is transcribed at a constant rate, cyclin levels gradually accumulate, and with them 
Xp. When cyclin reaches chigh, Xp shoots up. The clock goes tic. As a result Y rises, degrading 
cyclin. But thanks to the hysteresis, Xp goes down on the high arm of the hysteresis loop, 
until cyclin drops below the low threshold clow. Then Xp crashes down and Y drops, resetting 
the cycle. The clock goes toc. Cyclin is no longer degraded by Y and starts accumulating 
again, beginning another cycle.

The gap between the two transition points, chigh and clow, makes the transition from high 
Xp to low Xp robust to noise in the dynamics: A simple threshold mechanism would have 
just one threshold for the up and down transitions, making Xp jitter up and down if cyclin 
dawdles around the threshold.

The levels of Xp show a slow increase and then an explosive spike (Figure 6.16). These 
crisp oscillations are characteristic of relaxation oscillators. The name alludes to the sudden 
relaxation of the tension built up as cyclin 
increases. The oscillation has an asymmetric 
pulse shape with slow buildup at first, then 
accelerated rise as the positive feedback kicks 
in, and a rapid decline. These asymmetric 
spikey pulses lie in contrast to the more 
symmetric pulses that are typical of delay 
oscillators or noise-induced oscillators.

To change the frequency of this 
relaxation oscillator, all you need to do is 
change the rate at which cyclin accumulates 
(its transcription rate; Figure 6.17). 
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The amplitude of the spikes remains almost unchanged. Easily tunable frequency is an 
advantage for a cell-cycle clock, because cell-cycle times range between 20 min in rapid 
embryonic development to days/weeks in adult tissues. Tunable frequency also occurs in 
heart cells, as our heart rate changes over a threefold range to meet our need for oxygen. 
Tunable frequency is harder to achieve in a simple delay oscillator without positive feedback, 
because changes to frequency are coupled with changes in amplitude (Tsai et al., 2008).

6.5 ROBUST BISTABILITY USING TWO POSITIVE FEEDBACK LOOPS
To complete our analysis of the cell-cycle oscillator, let’s look in more detail at the positive 
feedback loop in the circuit. As mentioned above, Xp increases its own level in two ways, by 
activating its own production and inhibiting its own removal back to X0. This makes two 
positive feedback loops.

Why two loops and not just one? I love the elegant answer proposed by James Ferrell 
(2008). The two-loop circuit can make bistability robust to wide variations in parameters.

To see this, we will use the rate plot method. Let’s begin with a circuit that has no 
feedback (Figure 6.18), just 
production of Xp from X0 
by phosphorylation by the 
kinase (Cdc25), and the 
removal of Xp back to X0 
by dephosphorylation by 
the phosphatase (Wee1). 
We will use simplified 
mass-action kinetics. The 
rate of removal is a rising 
line, Xp times the rate of 
the phosphatase. The rate 
of production is the rate of 
the kinase times X0. This is a decreasing line, that falls to zero when all of X is in the 
Xp form (Xp = Xtotal), because there is no more X0 to be phosphorylated. The important 
part is where the two lines cross. The crossing points are the steady-state points at 
which production equals removal. There is only one crossing point, making a single 
stable steady state, with no bistability.

Now let’s add one positive loop, in which Xp activates its own production. This loop can 
show bistability, but this bistability is fragile. It is lost upon slight changes in the removal 
rate parameter. To see this, notice that feedback makes the production rate curve have a 
hump shape (Figure 6.19) – it rises with Xp due to the positive feedback (Xp activates its own 
production), and falls to zero when all of X is phosphorylated (Xp = Xtot). If you arrange 
things just right, you can get bistability with three crossing points (a low and a high steady 
state, and an intermediate unstable fixed point). However, shifting the removal rate line 
slightly, due to a change in the number of phosphatases for example, is enough for the three-
fixed-point structure to be lost. Bistability is not robust.

FIGURE 6.18 



108   ◾   An Introduction to Systems Biology

In contrast, the two-positive loop design means that Xp both increases its own production 
and decreases its own removal. This creates a symmetry in the production and removal 
curves. Now both are hump shaped (Figure 6.20). As a result, their intersection points 
are much less sensitive to changes in parameters. The three fixed-point structure survives 
changes in parameters that are 10-fold larger than the one-loop design, providing robust 
bistability and hence robust relaxation oscillations. Indeed, the two-positive feedback loop 
mechanism is conserved in cell-cycle circuits throughout evolution from yeast to humans, 
highlighting its importance.

In sum, oscillations require negative feedback and are aided by delays and cooperativity. 
Noise can turn damped oscillations into sustained pulsations with noisy amplitude and 
relatively precise frequency. Many biological oscillators, such as the cell-cycle clock, use a 
motif in which a negative feedback loop is coupled to a positive feedback loop, resulting in 
spike-like pulses with tunable frequency and robust amplitude.

We have now finished Part 1 of this book. Congratulations! Part 1 was devoted to the 
principle that complex biological networks are built of a small set of network motifs, each 
with specific dynamical functions. A summary of the motifs we have discussed is shown 
in Figure 6.21.
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FURTHER READING
Biological Oscillators
(Barkai and Leibler, 2000) “Circadian clocks limited by noise.”
(Forger, 2017) “Biological clocks, rhythms, and oscillations: the theory of biological timekeeping.”
(Strogatz, 2015) “Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, 

and engineering.”
(Tyson, Chen and Novak, 2003) “Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and 

signaling pathways in the cell.”
(Winfree, 2001) “The geometry of biological time.”

Oscillating Transcription Factors
(Cai, Dalal and Elowitz, 2008) “Frequency-modulated nuclear localization bursts coordinate gene 

regulation.”
(Geva-Zatorsky et al., 2010) “Fourier analysis and systems identification of the p53 feedback loop 

Fourier analysis of p53.”
(Lahav et al., 2004) “Dynamics of the p53-Mdm2 feedback loop in individual cells.”
(Nelson et al., 2004) “Oscillations in NF-kB signaling control the dynamics of gene expression.”
(Purvis and Lahav, 2013) “Encoding and decoding cellular information through signaling 

dynamics.”
(Yissachar et al., 2013) “Dynamic response diversity of NFAT isoforms in individual living cells.”

Repressilator
(Elowitz and Leibler, 2000) “A synthetic oscillatory network of transcriptional regulators.”
(Potvin-Trottier et al., 2016) “Synchronous long-term oscillations in a synthetic gene circuit.”

The Cell-Cycle Oscillator
(Ferrell, 2008) “Feedback regulation of opposing enzymes generates robust, all-or-none bistable 

responses.”
(Ferrell, Tsai and Yang, 2011) “Modeling the cell cycle: why do certain circuits oscillate?”
(Novák and Tyson, 2008) “Design principles of biochemical oscillators.”

EXERCISES

 6.1 One-node circuits can’t oscillate: Consider a circuit with one variable x, described by 
the equation dx/dt = f(x), where f is a continuous function. Show that x(t) cannot 
oscillate.

Solution:

  We can draw dx/dt versus x, to make 
a rate plot. When f(x) is positive, 
x  flows to higher levels, and when 
f(x) is negative, x flows to lower levels 
(Figure 6.22). Thus, each value of x 
has a prescribed direction of motion, 
either increasing or decreasing but 
not both. In other words, in the 

x

f(x)

FIGURE 6.22 
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one-dimensional phase portrait (the x-axis in the figure), each point has an arrow 
that points to the left or to the right. For oscillations, however, there must be a value 
x which increases some of the time and decreases at other times. This is not possible 
in this one-variable circuit.

 6.2 Linear stability analysis: Analyze the eigenvalues of the following two-component 
circuits. Find the fixed point. Which circuits have a stable fixed point? Which have a 
spiral fixed point?

 i. dx
dt y x dy

dt x y=
+

− = −
1

1 ;  (P6.1)

 ii. dx
dt xy dy

dt x y= − = −1 ;  (P6.2)

 iii. dx
dt y x dy

dt
x
x

y= − =
+

−
1

1
4

4;  (P6.3)

 6.3 Equations for the oscillator motif:

 
dx
dt a x

x
xy

n

n= +
+

−
1 1α

 
dy
dt x y= −α2

  Numerically solve, and find parameters that show oscillations. Find parameters that 
do not show oscillations. Plot the phase plot of the system in the two cases.

 6.4 Pulse trains, bang-bang control and robust expression ratios: In this exercise, we will 
explore a suggestion by Cai, Dalal and Elowitz (2008) for the utility of a series of 
transcription factor pulses, whose frequency increases with input signal level. We can 
call this a frequency-modulation or FM strategy. Let’s compare it to an alternative, in 
which the level of the transcription factor rises with signal, with no pulsing. We call 
this an amplitude modulation or AM strategy.

 a. Consider two genes controlled by X. Their production rate is g1 = β1X/(K1 + X) 
and g2 = β2X/(K2 + X).

 In an AM strategy, X is proportional to input signal s. Show that the ratio of gene 
production rates g1/g2 changes with signal s. What is the smallest and largest ratio 
obtained?

 b. Consider the same two genes controlled by X with an FM strategy. Here X is either 
at level 0 or level Xhigh. The fraction of time that X is high is proportional to the 
signal s. Show that production pf each gene is proportional to signal, but the ratio 
g1/g2 is constant as a function of signal.

 c. When might FM control be advantageous given that it keeps fixed ratios between 
the expression of genes?
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 6.5 More on AM and FM strategies: Consider the definitions in the previous exercise of 
FM and AM strategies.

 a. What disadvantage might an FM strategy have at very low signal. (Hint: Consider 
the stochastic variation of the number of pulses in a given time period.)

 b. Certain genes in the NFAT system are controlled by two transcription factors, one 
with an FM strategy and one with an AM strategy, in response to the same input 
signal. How would you design the promoters in order to gain the advantages of 
AM at low signal and of FM at high signal (Issaschar et al., 2013)?

 6.6 Oscillating transcription factors and downstream protein half-life: Consider a gene Y 
regulated by X that oscillates with a frequency ω. The removal rate of the protein Y is α.

 a. Plot Y(t) for different values of α/ω.

 b. At what value of α is the peak expression of Y highest?

 c. In the p53 system, response to double-stranded DNA breaks is p53 oscillations, 
whereas the response to DNA damage caused by UV radiation is p53 concentration 
that rises gradually with time without oscillation. Consider genes activated by p53. 
How would genes with different α respond to the two types of damage?

 6.7 Repressilator stability analysis: Consider a feedback loop made of three repressors.

 a. Write equations for the circuit assuming identical input functions and removal 
rates.

 b. Write the linearized equations near the fixed point.

 c. Write the Jacobian matrix.

 d. Derive conditions for stability and instability of the fixed point. When does this 
circuit oscillate?

 e. Simulate the equations numerically for different parameters, assuming Hill input 
functions. Check the results of (d).
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C h a p t e r  7

Kinetic Proofreading and 
Conformational Proofreading

7.1 INTRODUCTION
Welcome to Part 2 of this book, devoted to the principle of robustness. This principle states 
that biological systems have special designs that make their essential function work 
precisely despite naturally occurring noise. Thus, to define robustness, we will ask for 
any given system which of it’s functions are robust with respect to which source of noise 
or errors. We will explore robustness at the level of proteins, circuits and entire tissues. 
Robustness plays an important role in systems biology because it explains how biological 
systems can function in their noisy environment. Robust systems are also fun to study 
because they have elegant designs.

In this chapter, we will examine robustness to a fundamental source of errors in cells. 
These errors result from the presence, for each molecule X, of many chemically similar 
molecules that can confound the specific recognition of X by its interaction partners. 
So far, we took it for granted that a transcription factor or receptor can bind its input 
signal molecule without mistakes. Now we ask how can this be? How can a biochemical 
recognition system, such as a receptor or transcription factor, pick out a specific molecule 
in a sea of other molecules that bind it with only slightly weaker affinity?

We will see that diverse molecular recognition systems in the cell employ the same 
principle to achieve high precision. This principle is called kinetic proofreading. It was 
proposed independently by John Hopfield (1974) and Jacques Ninio (1975).

To describe kinetic proofreading, we’ll begin with the reading of the genetic code during 
translation. We will then consider kinetic proofreading in the immune system (McKeithan, 
1995; Goldstein, Faeder and Hlavacek, 2004). We will also discuss a different proofreading 
strategy used by proteins that, unlike kinetic proofreading, does not require spending 
energy. Finally, we will see how minimizing errors can lead to rules for gene regulation.

Kinetic proofreading is a somewhat subtle idea, and so we will use three different 
approaches to describe it. In the context of translation, we will use kinetic equations 
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to derive the error rate. In the context of immune recognition, we will use a delay time 
argument. But first we will tell a story about a recognition problem in a museum.

A museum curator wants to design a room that can help to identify Picasso lovers from 
among the museum visitors. In this museum, half of the visitors are Picasso lovers and 
half do not care for Picasso. The curator opens a door in a busy corridor. The door leads 
to a room with a Picasso painting, allowing visitors to enter the room at random. Picasso 
lovers that happen to enter the room hover near the picture for, on average, 10 min, whereas 
others stay in the room for only 1 min. Because of the high affinity of Picasso lovers for the 
painting, the room becomes enriched with 10 times more Picasso lovers than nonlovers.

The curator wishes to do even better. At a certain moment, the curator locks the door 
to the room and reveals a second one-way revolving door. The nonlovers in the room leave 
through the one-way door, and after several minutes, the only ones remaining are Picasso 
lovers, still hovering around the painting. Enrichment for Picasso lovers is much higher 
than 10-fold.

If the revolving door was two-way, allowing visitors to enter the room at random, only 
a 10-fold enrichment for Picasso lovers would again occur. Kinetic proofreading mimics 
the Picasso room by using nearly irreversible, nonequilibrium reactions as one-way doors.

7.2   KINETIC PROOFREADING OF THE GENETIC CODE CAN 
REDUCE ERROR RATES

Consider the fundamental biological process of translation. In translation, a ribosome 
produces a protein by linking amino acids one by one into a chain (Figure 7.1). The type 
of amino acid added at each step to the elongating chain is determined by the information 
encoded in an mRNA. Each of the 20 amino acids is encoded by a codon, a series of three 
letters on the mRNA. The mapping between the 64 codons and the 20 amino acids is 
called the genetic code (Figure 7.2). For example, the codon AGG encodes the amino acid 
arginine (Arg).

To make the protein, the codon must be read and the corresponding amino acid must 
be brought into the ribosome. Each amino acid is brought into the ribosome connected 
to a specific tRNA molecule. That tRNA has a three-letter recognition site that pairs with 
the codon sequence for that amino acid on the mRNA (Figure 7.1). There is a tRNA for 
each of the codons that specify amino acids in the genetic code. Translation, therefore, 
communicates information from mRNA codons to the amino acids in the protein chain. 
The codons must recognize and bind 
the correct tRNA.

This molecular recognition process 
works under thermal noise, and thus 
has an error rate. The wrong tRNA 
can attach to the codon, resulting 
in a translation error where a wrong 
amino acid is incorporated into the 
elongating protein. These translation 
errors occur at a frequency of 
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Kw

Correct tRNA + amino acid

Wrong tRNA + amino acid

Ribosome

mRNA
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protein
chain

(linked amino acids)
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about  10−4. This means that a typical 
protein of 100 amino acids has a 1% chance 
to have one wrong amino acid. A  much 
higher error rate would be disastrous, 
because it would result in the malfunction 
and misfolding of an unacceptable fraction 
of the cell’s proteins.

7.2.1  Equilibrium Binding Cannot 
Explain the Precision of Translation

The simplest model for this recognition 
process is equilibrium binding of tRNAs 
to the codons. We will now see that simple 
equilibrium binding cannot explain the 
observed error rate. This is because equilibrium binding generates error rates that are equal 
to the ratio of affinities of the correct and incorrect tRNAs. This would result in error rates 
that are about 100 times higher than the observed error rate.

To analyze equilibrium binding, consider codon C on the mRNA in the ribosome that 
encodes the amino acid to be added next to the protein chain. We begin with the rate of 
binding of the correct tRNA, denoted c, to codon C. Codon C binds c with an on-rate kc. 
The tRNA unbinds from the codon with off-rate ′kc. When the tRNA is bound, there is a 
probability v per unit time that the amino acid attached to the tRNA will be covalently 
linked to the growing, translated protein chain. In this case, the freed tRNA unbinds from 
the codon and the ribosome shifts to the next codon in the mRNA. The equilibrium process 
is hence,

 c C cCk
k

vc

c
+  →′
� ⇀��↽ ���[ ] correct amino acid (7.2.1)

At equilibrium, the concentration of the complex [cC] is given by the balance of the two 
arrows marked kc and ′kc (the rate v is much smaller than kc and ′kc and can be neglected). 
Hence, at steady state, collisions of c and C that form the complex [cC] at rate kc balance 
the dissociation of the complex [cC], so that cCk cC kc c= ′[ ] . This results in a concentration 
of the complex [cC] given by the product of the concentrations of the reactants divided by 
the dissociation constant Kc:

 [ ] /cC cC Kc=  (7.2.2)

where Kc is equal to the ratio of the off-rate and on-rate for the tRNA binding:

 K k kc c c= ′/  (7.2.3)

The smaller the dissociation constant, the higher the affinity of the reactants. We can 
now write the incorporation rate of the correct amino acid, equal to the concentration 

FIGURE 7.2 



120   ◾   An Introduction to Systems Biology

of the bound complex times the rate at which the amino acid is linked to the elongating 
protein chain:

 Rcorrect /= =v cC vcC Kc[ ]  (7.2.4)

In addition to the correct tRNA, the cells contain different tRNAs that carry the other 
amino acids. These tRNAs compete for binding to codon C. Let us consider, for simplicity, 
only one of these other tRNAs, the most dangerous one – the tRNA that carries a different 
amino acid that has the highest affinity to codon C. It is this incorrect tRNA that has 
the highest probability to yield false recognition by binding the codon C, leading to 
incorporation of the wrong amino acid. The concentration of this incorrect tRNA is about 
equal to the concentration of the correct tRNA (many of the tRNAs have approximately the 
same concentrations). The wrong tRNA, denoted w, can bind the codon C in the following 
equilibrium process:

 w C k
k

vw

w
+  →′
� ⇀��↽ ��� [ ]wC wrong amino acid  (7.2.5)

Note that the linkage rate v is the same for the correct and wrong codons because linkage 
occurs at a distant site on the ribosome, away from the site of codon recognition. The 
considerations discussed above show that the rate at which the wrong amino acid is linked 
into the protein is

 R vwC Kwwrong /=  (7.2.6)

Since w is the wrong tRNA, it has a larger dissociation constant for binding C than the 
correct tRNA, c, that is, K Kw c> , and hence a smaller linking rate R Rwrong correct< .

The resulting error rate, Fo, is the ratio of the rates of incorrect and correct amino 
acid incorporation. The error rate is approximately equal to the ratio of the dissociation 
constants, since all other concentrations (tRNA concentrations) are about the same for c 
and w:

 F R R vwCK vcCK K Ko c w c w= = ≈wrong correct/ / /  (7.2.7)

To repeat the main conclusion, the error rate in equilibrium recognition is determined 
by the ratio of dissociation constants for the correct and incorrect tRNAs. As occurs for 
many biological binding events, the on-rates for both w and c are limited by diffusion and 
are about the same, kw = kc (Appendix A). It is the off-rate, ′kw which distinguishes the correct 
codon from the incorrect one: the wrong tRNA unbinds more rapidly than the correct tRNA, 

′ >> ′k kw c , because of the weaker chemical bonds that hold it in the bound complex. Using 
Equation 7.2.3, we find an error rate proportional to the off-rate ratio:

 F R R K K k ko c d c w= = ≈ ′ ′wrong correct/ / /  (7.2.8)
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The off-rates are akin to the dissociation rates of museum visitors from the Picasso 
painting in the Picasso room story.

How does equilibrium recognition compare with the actual error rates? The affinity of 
codons to correct and incorrect tRNAs was experimentally measured to find an affinity 
ratio of about Kc/Kw ∼ 1/100. Hence, there is a large discrepancy between the predicted 
equilibrium recognition error, Fo ∼ Kc/Kw ∼ 1/100, and the actual translation error rate, 
F = 1/10,000. It therefore seems that equilibrium recognition cannot explain the high 
fidelity found in this system.1

7.2.2 Kinetic Proofreading Can Dramatically Reduce the Error Rate

We just saw that equilibrium binding can only provide discrimination that is as good as 
the ratio of the chemical affinity of the correct and incorrect targets. What mechanism 
can explain the high fidelity of the translation machinery, which is a 100-fold higher than 
predicted from equilibrium recognition?

The solution lies in a reaction that occurs in the translation process, which was well-known 
at the time that Hopfield analyzed the system, but whose function was not understood and 
was considered a wasteful side reaction. In this reaction, the tRNA, after binding the codon, 
undergoes a chemical modification. That is, c binds to C and is then converted to c*. This 
reaction is virtually irreversible, because it is coupled to the hydrolysis of a GTP molecule.2 
The modified tRNA, c*, can either fall off of the codon or donate its amino acid to the 
elongating protein chain:

 

c C cC c Ck
k

m vc

c
+  →  →′
� ⇀��↽ ���[ ] [ * ] correct amino acid linked

↓↓ ′

+
l

c
c

*  C  

(7.2.9)

The fact that the modified tRNA can fall off seems wasteful because the correct tRNA 
can be lost. Moreover, to make c* costs energy: each amino acid incorporated into a protein 
requires hydrolysis of GTP which is about one ATP’s worth of energy. This cost adds up to 
a large part of the cell’s energy balance. However, it is precisely this design that generates 
high fidelity. The secret is that c* offers a second discrimination step: the wrong tRNA, once 
modified, can fall off the codon, but it cannot mount back on. This irreversible reaction acts 
as the one-way door in the Picasso story.

To compute the error rate in this process, we need to find the concentration of the 
modified bound complex, [c*C]. This concentration is given by the balance of the two 

1 Why not increase the ratio of the off-rates to improve discrimination? Such an increase may be infeasible due to the 
chemical structure of codon–anticodon recognition, in which different codons can differ by only a single hydrogen bond. 
In addition, decreasing the off-rate of the tRNAs would cause them to stick to the codon for a longer time. This would 
interfere with the need to rapidly bind and discard many different tRNAs in order to find the correct one, and slow down 
the translation process (Exercise 7.3). Thus, biological recognition may face a trade-off between speed and specificity.

2 Near-irreversibility is attained by coupling a reaction to a second reaction that expends free energy. For example, coupling 
a reaction to ATP hydrolysis can shift it away from equilibrium by factors as large as 108, achieved because the cell 
continuously expends energy to produce ATP.
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processes described by the arrows marked with the rates m and ′lc  (since the rate v is much 
smaller than the other rates), leading to m cC l c Cc[ ] [ ]*= ′ , yielding a steady-state solution:

 [ ] [ ]*c C m cC lc= ′/  (7.2.10)

The rate of correct incorporation is the linking rate v times the modified complex 
concentration (Equation 7.2.9):

 R v c C vmcC l Kc ccorrect /= = ′[ ]*  (7.2.11)

The same applies for the wrong codon w. The conversion of w to w* occurs at the same 
rate, m, as the conversion of c to c*, because the modification process does not discriminate 
between tRNAs. The rate that the wrong tRNA w* falls off the codon is, however, much 
faster than the rate at which c* falls off. This is because of the weaker chemical affinity 
of the wrong tRNA to the codon. The off-rate ratio of the correct and incorrect modified 
tRNAs is the same as the ratio for the unmodified tRNAs, since they are all recognized by 
the same codon C:
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Thus, w* undergoes a second discrimination step, with a significant chance that the 
wrong tRNA is removed. The rate of wrong amino acid linkage is the same as in Equation 
7.2.11, with all parameters for c replaced with the corresponding parameters for w:

 R v w C vmwC l Kw wwrong /= = ′[ ]*
 (7.2.13)

resulting in an error rate
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(7.2.14)

Thus, the irreversible reaction step affords a proofreading event that adds a multiplicative 
factor of Kc/Kw to the error rate. It effectively works like two separate recognition processes, 
the second working on the output of the first. This results in an error rate that is the square 
of the equilibrium recognition error rate:

 F Fo= 2 (7.2.15)

It is important to note that had all reactions been reversible and at equilibrium, no 
improvement would be gained over the simple scheme (Equation 7.2.1). This is due to 
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detailed balance and is discussed in Exercise 7.2. The equilibrium model with detailed 
balance is similar to the Picasso room in which the one-way door is changed to a two-way 
door that allows visitors in and out at random.

Thus, the proofreading step implemented by a modification of the tRNA can reduce the 
error rate from the equilibrium recognition rate of about Fo = 1/100 to a much lower error 
rate, F F= =0

2 1 10 000/ , , similar to the observed error rate.
An even higher level of fidelity can be attained by linking together n irreversible (or 

nearly irreversible) proofreading processes:
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(7.2.16)

Each irreversible step adds a proofreading factor Fo, resulting in an overall error rate of

 F Fon= +1 (7.2.17)

7.3 RECOGNITION OF SELF AND NON-SELF BY THE IMMUNE SYSTEM
We have just seen how kinetic proofreading uses a nonequilibrium step to reduce errors 
in translation. We will now use a slightly different (but equivalent) way to explain kinetic 
proofreading, based on time delays. For this purpose, we will study kinetic proofreading 
in the immune system.

The immune system monitors the body for dangerous pathogens. It is made of a vast 
collection of cells that communicate and interact in many ways. When it detects pathogens, 
the immune system computes and mobilizes the appropriate responses.

One of the major tools of the immune system is antibodies. Each antibody is a protein 
designed to bind with high affinity to a specific foreign protein made by pathogens, called 
the antigen.

One of the important roles of the immune system is to 
scan the cells of the body for antigens, such as fragments 
of proteins made by a virus that has infected the cell. The 
scanning task is carried out by T-cells. Each of the T-cells 
has receptors that are specific against a foreign protein 
antigen. To provide information for the T-cells, each cell in 
the body presents fragments of proteins on the cell surface. 
The proteins are presented in dedicated protein complexes 
on the cell surface called MHCs (Figure 7.3).

The goal of the T-cell is to eliminate infected cells. 
Each T-cell can recognize a specific antigen in the MHC 
because its receptor can bind that foreign peptide. If 
the T-cell receptor recognizes its antigen, the foreign 
protein fragment in the MHC on a cell, it triggers a 
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signal-transduction cascade inside the T-cell. The signaling causes the T-cell to mount an 
immune response to kill the cell that presented the foreign peptide. This eliminates the 
infected cell and protects the body from the virus.

In the recognition process, it is essential that the T-cell does not kill cells that present 
proteins that are normally produced by the healthy body. If such misrecognition occurs, the 
immune system attacks the cells of the body, potentially leading to an autoimmune disease.

The precision of the recognition of non-self-proteins by T-cells is remarkable. T-cells can 
recognize minute amounts of a foreign protein antigen in a background of self-proteins, 
even though the self-proteins have only a slightly lower affinity to the T-cell receptor than 
the foreign target. The error rate of recognition is less than 10−6, although the affinity of the 
antigen is often only 10-fold higher than the affinities of the self-proteins.

7.3.1 Equilibrium Binding Cannot Explain the Low Error Rate of Immune Recognition

The receptors on a given T-cell are built to recognize a specific foreign protein, which we 
will call the correct ligand, c. The correct ligand binds the receptors with high affinity. 
In addition to c, the receptors are exposed to a variety of self-proteins, which bind the 
receptor with a weaker affinity. In particular, some of these self-proteins are quite similar 
to the correct ligand and pose the highest danger for misrecognition, in which the receptors 
mistake a self-protein for the correct ligand. For clarity, let us treat these wrong ligands as a 
single entity w, with a lower affinity to the receptor. We will begin by the simplest model for 
recognition, in which c and w bind the receptor in an equilibrium process. As in the previous 
section, this yields error rates that are proportional to the ratio of affinities of the incorrect 
and correct targets. Since the affinities of the correct and incorrect ligands are not very 
different, equilibrium recognition results in an unacceptably high rate of misrecognition.

The dynamics of binding of the correct ligand c to the receptor R includes two processes. 
The first process is collisions of c and R at a rate kon to form a complex, [cR], in which the 
ligand is bound to the receptor. The inverse process is dissociation of the complex, in which 
the ligand unbinds from the receptor at a rate koff, with Kc = koff/kon.

When the ligand binds the receptor, it triggers a signal-transduction pathway inside the 
T-cell, which leads to activation of the T-cell. Once ligand binds the receptor, the signaling 
pathway is activated with probability v per unit time. Therefore, the rate of T-cell activation 
in the presence of a concentration c of correct ligand is

 A cR v cRv Kccorrect /= =[ ]  (7.3.1)

A similar set of equations describes the binding of the incorrect ligand w to the receptor.

 A wR v wRv Kwwrong /= =[ ]  (7.3.2)

Hence, the error rate of the T-cells, defined by the ratio of incorrect to correct 
activations, is

 F A A K K w co c w= =wrong correct/ / /( )( ) (7.3.3)
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The error rate in this equilibrium recognition process is thus given by the ratio of 
affinities of the incorrect and correct ligands times the ratio of their concentrations. In 
the immune system, the incorrect ligands often have only a 10-fold lower affinity than the 
correct ligand, Kc/Kw ∼ 0.1. Furthermore, the concentration of incorrect ligand (proteins 
made by the healthy body) often greatly exceeds the concentration of the correct ligand 
(pathogen protein). Hence, the equilibrium error rate is Fo > 0.1. This is far higher than the 
observed error rate in T-cell recognition, F = 10–6 or lower.

How can we bridge the huge gap between the high rate of equilibrium recognition errors 
and the observed low error rate in the real system? The next section describes a kinetic 
proofreading mechanism in the receptors that amplifies small differences in affinity into 
large differences in the recognition rates.

7.3.2 Kinetic Proofreading Increases Fidelity of T-Cell Recognition

The actual recognition process in T-cell receptors includes several additional steps, which may 
at first sight appear to be superfluous details. After ligand binding, the receptor undergoes 
a series of covalent modifications, such as phosphorylation on numerous sites (Figure 7.4). 
These modifications are energy-consuming and are held away from thermal equilibrium. 
When modified, the receptor binds several protein partners inside the cell. Activation of 
the signaling pathway inside the T-cell begins only after all of these modifications and 
binding events are complete. Kinetic proofreading relies on these extra steps to create a 
delay τ that allows the system to reduce its error rate. The basic idea is that only ligands that 
remain bound to the receptors for a long enough time have a chance to activate the T-cell 
(McKeithan, 1995). Experimentally, the cutoff dwell time for activation is about 3–5 sec.

To understand this, let us examine a binding event of the correct ligand. Once bound, 
the ligand has a probability per unit time koff to dissociate from the receptor. Hence, the 
probability that it remains bound for a time longer than t after binding is

 P t e k t( ) = − off  (7.3.4)

Signaling in the cell only occurs at a delay τ after the ligand binds the receptor, due to 
the series of modifications of the receptors needed to activate the signaling pathway. Hence, 
the probability per ligand 
binding event that the T-cell 
is activated is equal to the 
probability that the ligand 
is bound for a time longer 
than τ:

  A e k
correct

off= − τ  (7.3.5)

Similarly, the incorrect 
ligand has an off-rate ′koff. 
The off-rate of the incorrect 
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ligand is larger than that of the correct ligand, because it binds the receptor more weakly. 
The probability that the incorrect ligand activates the receptor is

 A e k
correct

off= − ′ τ  (7.3.6)

Hence, the error rate in the delay mechanism is the ratio of these activation rates:

 F A A e= = ′
wrong correct/ ( )− −k koff off τ

 (7.3.7)

This allows a very small error rate even for moderate differences between the off-rates, 
provided that the delay is long enough. For example, if the off-rate of the correct ligand is 
koff = 0.5 sec–1 and the incorrect ligand is ′ = −koff 5 1sec , and the delay is τ = 3 sec, one finds

 F ∼ e–(5 – 0.5)·3 = e–13.5 ∼ 10–6 (7.3.8)

Thus, long delays can enhance fidelity. However, this comes at a cost. The longer the delay, 
the larger the number of binding events of the correct ligand that unbind before signaling 
can begin. Thus, increasing the delay can cause a loss of sensitivity. The loss of sensitivity 
is tolerated because of the greatly improved discrimination between the correct ligand and 
incorrect but chemically similar ligands.

Kinetic proofreading is a general mechanism that provides specificity due to a delay step, 
which gives the incorrect ligands a chance to dissociate before recognition is complete. In 
order for kinetic proofreading to work effectively, the receptors must lose their modifications 
when the ligand unbinds, before a new ligand molecule can bind. Otherwise, the wrong 
ligand can bind to receptors that have some of the modifications from a previous binding 
event, resulting in a higher probability for misrecognition.

Experiments to test kinetic proofreading used a series of ligands with different koff values 
(reviewed in [Goldstein, Faeder and Hlavacek, 2004]). The experiments were designed so that 
the fraction of the receptors bound by each ligand was the same. This was achieved by using 
higher concentrations of ligands with weaker binding (larger koff), or by normalizing the 
results per binding event. Simple equilibrium recognition predicts a constant probability for 
triggering signaling per ligand binding event, regardless of the koff of the ligand. In contrast, 
the experiments show that the probability of activation of the signaling pathway depends 
inversely on koff. This means that the longer the ligand is bound to the receptor, the higher 
the probability that it triggers signaling. This is consistent with the kinetic proofreading 
picture.

Advances by Gregoire Altan-Bonnet, Ronald Germain and Paul François show 
that specificity can be greatly improved by adding a negative feedback loop to kinetic 
proofreading. In this negative loop, the modified receptor states inhibit further 
modification and thus slow down the progress of the kinetic proofreading. Such a negative 
feedback loop indeed operates in T-cell signaling because the phosphorylated receptors 
activate a phosphatase that removes the phosphorylation modifications (François and 
Altan-Bonnet, 2016).
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Kinetic proofreading uses modification of the T-cell receptor after ligand binding 
to create a delay. This process is not unique to T-cell receptors. In fact, these types of 
modifications occur in practically every receptor in mammalian cells, including receptors 
that sense hormones, growth factors and other ligands. This raises the possibility that 
delays and kinetic proofreading are widely employed by receptors to provide robustness 
against misrecognition of the background of diverse molecules in the organism.

7.4  KINETIC PROOFREADING OCCURS IN DIVERSE PROCESSES 
IN THE CELL

The hallmark of kinetic proofreading is a nonequilibrium reaction in the recognition process 
that forms an intermediate state, providing a delay after ligand binding. The system must 
operate away from equilibrium, so that ligands cannot circumvent the delay by rebinding 
directly in the modified state. New ligand binding must primarily occur in the unmodified 
state.

These ingredients are found in diverse recognition processes in the cell. An example is 
DNA binding by repair proteins (Sancar and Reardon, 2004) and recombination proteins 
(Tlusty, Bar-Ziv and Libchaber, 2004). In bacterial DNA repair, for example, recognition 
protein A binds the damaged strands, because it has a higher affinity to damaged DNA 
than to normal DNA. After binding, protein A undergoes a modification (phosphorylation). 
When phosphorylated, it recruits additional proteins B and C that nick the DNA on both 
sides of A and remove the damaged strand, allowing specialized enzymes to fill in the gap 
and polymerize a fresh segment in place of the damaged strand. The modification step of 
protein A may help prevent misrecognition of normal DNA as damaged.

An additional example occurs in the coupling of amino acids to their specific tRNAs 
(Hopfield, 1974; Hopfield et al., 1976). A special enzyme recognizes the tRNA and its specific 
amino acid and covalently joins them. Covalent joining of the wrong amino acid to the 
tRNA would lead to the incorporation of the wrong amino acid in the translated protein. 
Interestingly, the error rate in the tRNA formation process is about 10–4, similar to the 
translation error rate we examined in Section 7.2.1 due to misrecognition between tRNAs 
and their codons.3 This low error rate is achieved by an intermediate high-energy state, in 
which the enzyme that connects the amino acid to the tRNA first binds both reactants, 
then chemically modifies the tRNA and only then forms the covalent bond between the 
two. Again, we see the hallmarks of kinetic proofreading.

Intermediate states are found also in the process of protein degradation in eukaryotic 
cells (Rape, Reddy and Kirschner, 2006). Here, a protein is marked for degradation by 
means of a specific enzyme that covalently attaches a chain made of a small protein subunit 
called ubiquitin (Hershko and Ciechanover, 1998). A de-ubiquitinating enzyme can remove 
the ubiquitin, saving the tagged protein from destruction. The addition of ubiquitin 
subunits one by one implements a delay, so that there is a chance for the wrong protein 

3 It is interesting to consider whether the two error rates are tuned to be similar. It may not make sense to have one error 
rate much larger than the other, because the larger error would dominate the final errors in proteins. Natural selection 
often leads to such convergence of costs or error rates (Rosenheim et al., 2010).
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to be de-ubiquitinated and not destroyed. This can allow differential degradation rates for 
proteins that have similar affinities to their ubiquitinating enzyme.

7.5  CONFORMATIONAL PROOFREADING PROVIDES SPECIFICITY 
WITHOUT CONSUMING ENERGY

Kinetic proofreading depends on energy-burning steps, such as ATP hydrolysis, and it was 
thought that such nonequilibrium steps were essential for proofreading. It was therefore 
surprising when a different mechanism for specificity was discovered that works at 
equilibrium without burning ATP.

The story begins with the way that 
proteins bind their ligands. In the early 
days of biochemistry, it was thought that 
ligands fit the proteins like a rigid match 
between lock and key. In the mid-twentieth 
century, the lock-and-key paradigm was 
replaced with the finding that proteins are 
more flexible, and that they deform when 
they bind the ligand – a phenomenon called 
induced fit (Figure 7.5).

Induced fit was puzzling because it costs elastic energy to deform the proteins, and thus 
induced fit reduces the binding of the ligand. But most proteins show induced fit – including 
antibodies that recognize viruses and ribosomes that bind tRNAs – despite the fact that 
such processes would be more efficient if the protein and target fitted together like rigid 
locks and keys.

Yonatan Savir and Tsvi Tlusty (Savir and Tlusty, 2007; Savir and Tlusty, 2010) provided 
a fresh view of induced fit. They showed that induced fit is a good idea if the goal is not to 
bind tightly but to avoid binding to the wrong partner. This 
mechanism is called conformational proofreading. In 
conformational proofreading one adds an energy handicap 
h to the free energy of binding. The elastic bending energy 
of induced fit is such a handicap. The handicap gets added 
to the “lock and key” free energy of binding of the correct 
and wrong targets, ΔGc and ΔGw, which become ΔGc + h 
and ΔGw + h. Since the binding rate goes as 1/(1 + eΔG), 
the handicap affects the wrong target much more strongly 
than the correct target. It provides a spacing between their 
binding curves (Figure 7.6). There is an optimal bending 
energy h in which the binding of the correct target is 
reduced slightly, but the binding of the wrong target is 
much reduced.

Conformational proofreading predicts the optimal 
degree of bending that maximizes specificity. This 
prediction agrees with the extent of the sizable bend 
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that ribosomes make when binding tRNA (Savir and Tlusty, 2013). Conformational 
proofreading also explains how the DNA repair protein RecA can find a needle in a 
haystack. RecA binds a piece of DNA, D, and searches the entire genome for a perfect 
match for D. To do so, RecA stretches D by 50%, an extreme distortion of the DNA 
strand. This creates the optimal handicap to allow RecA to avoid binding numerous 
look-alike DNA sequences that differ from D by one letter, and to find the perfect match 
even in huge genomes (Savir and Tlusty, 2010). In ribosomes and RecA, conformational 
and kinetic proofreading work together to enhance specificity.

7.6  DEMAND RULES FOR GENE REGULATION CAN MINIMIZE ERRORS
An additional principle for reducing errors is found when considering gene 
regulation by transcription factors. As we saw in Chapter 1, there are two modes of gene 
control: activation and repression. Both modes of control are equivalent in principle: a 
gene can be turned ON either by the binding of an activator or by the unbinding of a 
repressor. One might therefore ask whether the choice of activator or repressor for each 
gene is arbitrary and depends on historical accident, or if instead there are rules for 
this choice.

In the 1970s, Michael Savageau provided evidence for a rule, called the demand rule. The 
demand of a gene is the probability that the gene is expressed at the high end of its range 
in the environment in which the organism evolved. Thus, high demand genes are usually 
ON, and low demand genes are usually OFF.

Savageau found that in E. coli, high demand genes tend to be regulated by activators, and 
low demand genes by repressors (Savageau, 1974). For example, the sugar lactose is rare in 
the lower intestinal environment of E. coli because human enzymes absorb lactose early 
in the digestive process. The lactose system is hence in low demand, and is accordingly 
regulated by a repressor, LacI. Similarly, arabinose is a common sugar in the lower intestine, 
hence the arabinose system is 
high demand. It is regulated by 
the activator AraC.

To understand the demand 
rule, one can define an underlying 
principle: the binding site in 
the promoter is bound to its 
regulator most of the time 
(Shinar et  al., 2006). A low 
demand gene is normally OFF, 
and the repressor is thus normally 
bound; a high demand gene is 
normally ON, and the activator is 
thus normally bound, Figure 7.7. 
In both cases, the regulator binds 
its site most of the time. Binding 
of the regulator to its site protects FIGURE 7.7 
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it from nonspecific binding by the other regulators in the cell, a phenomenon known as 
crosstalk (Sasson et al., 2012). Therefore, the demand rule minimizes crosstalk errors. For 
example, if a high demand gene went against the rule and was regulated by a repressor, its 
site would be unbound most of the time and more exposed to errors.

The demand rule can be 
generalized to the case of 
genes regulated by multiple 
transcription  factors. For 
example, a gene with two 
inputs can be regulated by 
two activators (AA), by an 
activator and a repressor (AR) 
or by two repressors (RR). The 
demand rule predicts that the 
choice goes according to the 
expression state that is most 
frequent in the organism’s 
environment. Imagine that the 
gene can have low, medium or high expression, Figure 7.8. If high expression is the most 
common state, the AA design offers the best protection against errors because the two 
regulators are bound most of the time. If the lowest expression state is most commonly 
needed, the RR design is best. The AR design is selected when medium expression is most 
commonly needed. In all of these cases, the selected design ensures that the site is bound 
most of the time.

In summary, the need for robustness to mis-binding errors leads to specific designs in 
biological recognition systems. One design principle is kinetic proofreading, that allows 
precise recognition of a target despite the background noise of other molecules similar to 
the target. Kinetic proofreading can explain seemingly wasteful side reactions in biological 
processes that require high specificity. These side reactions contribute to the fidelity of 
recognition at the expense of energy and delays. Likewise, conformational proofreading can 
confer specificity at the cost of reduced sensitivity due to specifically crafted deformations and 
mismatches between the ligand and its binding site. Finally, the need to minimize crosstalk 
can give rise to demand rules that can explain the choice of mode of control, activation versus 
repression. These principles can help us to make sense of seemingly arbitrary, wasteful or 
superfluous features of diverse systems, and explain their specificity in a unified manner.
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EXERCISES

 7.1 At any rate: Determine the error rate in the proofreading process of Equation 7.2.9.
  What conditions (inequalities) on the rates allow for effective kinetic proofreading?

Solution:

  The rate of change of [cC] is governed by the collisions of c and C with on-rate k, their 
dissociation with off-rate kc′ and the formation of [cC*] at rate m:

 d cC dt kcC m k cCc[ ] [ ]/ = − + ′( )  (P7.1)

  so that at steady state, defined by d[cC]/dt = 0, we have

 [cC] = kcC/(m + k′c) (P7.2)

  Similarly, [cC*] is produced at rate m, dissociates at rate ′lc  and produces a product at 
rate v:

 
d cC
dt m cC v l cCc

[ *] [ ] [ *]= − + ′( )  
(P7.3)

  so that at steady state, using Equation P7.2,

 [ ] [ ]*c C m v l cC mkcC v l m kc c c= + ′( ) = + ′( ) + ′( )/ /  (P7.4)

  Similar considerations for the wrong ligand w can be made, noting that the on-rate k, 
the complex formation rate m and the product formation rate v are the same as for c, 
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but that the off-rates ′kw and ′lw are larger than the corresponding rates for c due to the 
weaker affinity of w to C. Thus,

 [ ]*w C mkwC v l m kw w= + ′( ) + ′( )/  (P7.5)

  The error rate F is the ratio of incorrect and correct production rates:

 
F v w C v c C w

c v l m k v l m kc c w w= = + ′( ) + ′( ) + ′( ) + ′( )[ ]/ [ ]* * /
 

(P7.6)

  When v l lc w� ′ ′,  and when m k kc w� ′ ′, , we have the minimal error rate in this process:

 
F w

c l k l kc c w w= ′ ′ ′ ′/
 

(P7.7)

  Thus, minimal errors require that the complexes [wC] dissociate much faster than 
the rate of formation of [w*C], and that [w*C] dissociate much faster than the rate of 
product formation. This gives many opportunities for the wrong ligand to fall off of 
the complex, before an irreversible step takes place.

  In processes where the dissociation from the state [cC] and [c*C] are based on the same 
molecular site (e.g., the tRNA–codon interaction), we have ′ = ′l kc c , and the same for w, 
so that F F= 0

2 (assuming equal concentrations of the targets w = c) where F0 is the 
equilibrium error rate.

 7.2 Detailed balance: Determine the error rate in a kinetic proofreading scheme in which all 
transitions have a reverse reaction. The transition from [cC] to [c*C] occurs at a forward 
rate mc and backward rate ′mc, transitions from [c*C] to c + C occur at forward rate lc and 
backward rate ′lc . There are corresponding rate constants for w. Assume that the product 
formation rate v is negligible compared to the other rates. Consider the case where all 
reactions occur at equilibrium. Use the detailed balance conditions, where the flux of 
each reaction is exactly equal to the flux of the reverse reaction, resulting in zero net flux 
along any cycle (also known in biochemistry as the thermodynamic box conditions).

 a. Show that detailed balance requires that kcmcl′c = k′cm′clc, and the same for w.

 b. Calculate the resulting error rate F. Explain your results.

 7.3 Optimal tRNA concentrations: In order to translate a codon, different tRNAs randomly 
bind the ribosome and unbind if they do not match the codon. This means that, on 
average, many different tRNAs need to be sampled for each codon until the correct match 
is found. Still, the ribosome manages to translate several dozen codons per second. We 
will try to consider the optimal relations between the concentrations of the different 
tRNAs, which allow the fastest translation process, in a toy model of the ribosome.

  Let the concentration of tRNA number j (j goes from 1 to the number of different 
types of tRNAs in the cell) be cj. The relative concentration of tRNA number j is 
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therefore rj = cj/Σcj. Suppose that each tRNA spends an average time t0 bound to the 
ribosome before it unbinds or is used for translation.

 (a) What is the average time needed to find the correct tRNA for codon j? Assume 
that there is no delay between unbinding of a tRNA and the binding of a new 
tRNA, and neglect the unbinding of the correct tRNA.

 (b) Suppose that the average probability to find codon j in the coding region of genes 
in the genome is pj. What is the optimal relative concentration of each tRNA that 
allows the fastest translation? Use a Lagrange multiplier to make sure that Σrj = 1.

Solution:

 a. When codon j is to be read, the ribosome must bind tRNAj. The probability that a 
random tRNA is tRNAj is rj. Thus, on average one must try 1/rj tRNAs before the 
correct one binds the ribosome. Hence, the average time to find the correct tRNA 
for codon j is

 Tj = t0/rj

 b. The time to translate the average codon is the sum of the times Tj weighted by 
the codon probabilities in the genome:

 T = ΣTj pj = Σ pjt0/rj

   To minimize the translation time, we need to minimize T. Taking the derivative 
of T with respect to each rj, we look for the relative concentrations that yield a 
minimum. To find the minimum we use a Lagrange multiplier L to make sure 
that Σrj = 1:

 dT dr d dr p t r L r t p r Lj j j j j j j/ / / /= +( )= − + =Σ Σ0 0
2 0

  Solving for rj, and using a value of L such that Σrj = 1, yields an optimal rj that 
is proportional to the square root of the codon probability pj:

 r p pj
opt

j j j= √ √( )/ Σ

 Thus, the rarer the codon, the lower the relative concentration of its tRNA.

 7.4 Optimal genetic code for minimizing errors: In this exercise we consider an 
additional mechanism for reducing translation errors, based on the structure of 
the genetic code.

 (a) First consider a code based on an alphabet of two letters (0 and 1), and where 
codons have two letters each. Thus, there are four possible codons ([00], [01], 
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[10] and [11]). This genetic code encodes two amino acids, A and B (and no stop 
codons). Each amino acid is assigned two of the four codons.

 a. What are the different possible genetic codes?

 b. Assume that misreading errors occur, such that a codon can be misread as a 
codon that differs by one letter (e.g., [00] can be misread as [01] or [10], but 
not as [11]). Which of the possible codes make the fewest translation errors?

 c. Assume that the first letter in the codon is misread at a higher probability 
than the second letter (e.g., [00] is misread as [10] more often than as [01]). 
Which of the codes has the lowest translation errors?

 d. Study the real genetic code in Figure 7.2. Compare the grouping of codons 
that correspond to the same amino acid. How can this ordering help reduce 
translation errors?

 e. Based on the structure of the genetic code, can you guess which positions in the 
codon are most prone to misreading errors? Can you see in the code a reflection 
of the fact that U and C in the third letter of the codon cannot be distinguished 
by the translation machinery (a phenomenon called “third-base wobble”)?

 f. In the real genetic code, chemically similar amino acids tend to be encoded 
by codons that differ by only one letter. Discuss how this might reduce the 
impact of translation errors on the fitness of the organism. In this sense, the 
genetic code is said to be “one in a million” (Freeland and Hurst, 1998).

 7.5 Optimal position of stop codons: The genetic code contains three stop codons that 
instruct translation to stop. One question is why three stop codons? And why these 
specific codons? In this exercise, we consider an answer based on minimizing the 
effects of frameshift errors: The ribosome can, at a low frequency, skip one letter in 
the mRNA. As a result, all subsequent codons are one letter off.

 a. Explain why it is beneficial to hit a stop codon as soon as possible in case of a 
frameshift.

 b. Itzkovitz and Alon (2007) found that the codons for the most common amino 
acids tend to reach stop codons upon a frameshift much more frequently than rare 
amino acids. Explain why this can help minimize the effect of frameshift errors.

 c. What might be the trade-off between having many and few stop codons in the 
genetic code?

 7.6 Optimal handicap in conformational proofreading: The free energy of binding of 
the correct and wrong target, ΔGc and ΔGw become ΔGc + h and ΔGw + h when 
a handicap h is added. Binding goes as 1/(1 + eΔG). Compute the value of h that 
maximizes the difference in binding of the correct and wrong targets as a function of 
ΔGc and ΔGw.
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 7.7 Optimal mismatch: An enzyme has a flexible binding pocket of size x, to bind a rigid 
target of size y. The most dangerous wrong target is also rigid and has size z which 
is larger than y. In an optimal conformational proofreading design, would x in the 
unbound conformation be larger or smaller than y?

 7.8 Demand rules for genes of concordant and opposing functions: Genes in the same 
pathway tend to have the same regulation mode (all activation or all repression), as in 
the SIM network motif of Chapter 4.

 a. Why does this make sense in light of the demand rules?

 b. What would you predict for genes that carry out antagonistic function, such as 
genes for synthesis of a molecule and genes for its degradation?

 7.9 Demand rules for phosphorylation: Proteins in the cell can be activated by 
phosphorylation, in which a phosphoryl group is added to a specific site on the 
protein. We will call such proteins phospho-active. Other proteins are inactivated by 
a phosphorylation event, and we will call these phospho-inactive. Phosphoryl groups 
are added by kinases, and removed by phosphatases.

 a. Develop demand rules to predict when a phospho-active versus a phospho-inactive 
design is best.

 b. How does the answer depend on the relative error rates of kinases and 
phosphatases?

 c. Proteins are often phosphorylated on multiple sites, with some sites activating and 
the others inhibiting. What rules might explain this regulation?

 d. The enzyme that synthesizes glycogen, the liver’s sugar-storage molecule, is 
phospho-inactivated. The enzyme that breaks glycogen down to glucose is 
phospho-activated. Both phosphorylations are carried out by the same kinase, 
which in turn is activated by the starvation hormone glucagon. Draw the circuit. 
Discuss using the demand rules.

 7.10 Avoiding crosstalk by efficient coding: Suppose that transcription factors in the cell 
recognize a site that is N = 6 letters (base-pairs) long. Each factor has a site sequence 
which it binds most strongly, and it binds with a weaker but still effective strength 
sites which are different by up to m = 2 letters.

 a. How can you design the binding sites for different transcription factors to avoid 
crosstalk?

 b. What is the maximal number of different factors that can be present in one cell, if 
no crosstalk is allowed? (Sengupta et al., 2002)

 c. In engineering, one can code information using binary strings such that there is a 
minimal chance for a misreading error to affect the meanings. How is this coding 
problem related to transcription factor sites?
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C h a p t e r  8

Robust Signaling by 
Bifunctional Components

The proofreading principles of the previous chapter can help a receptor to bind the correct 
signal molecule. Receptors can thus reliably measure the external concentration of the 
signal. We now ask how this information can be robustly transduced into the cell, so that 
the cell can respond to the signal.

The task of transducing information is carried out by signal-transduction circuits. 
These circuits begin with a receptor, which has one part outside the cell and another inside 
the cell. When the receptor binds the signal molecule outside the cell, it acts to chemically 
modify proteins inside the cell, thereby changing their activities. These proteins in turn 
modify other proteins, and so on. Finally, transcription factors get modified and activate 
the genes that respond to the signal. These reactions take place on the timescale of seconds 
to minutes. In Part 1 of the book, we considered these pathways as instantaneous, and 
regarded them as the signals SX and SY that activate transcription factors. Now we look into 
these pathways in more detail.

We will ask a robustness question: How can signal-transduction circuits work precisely 
despite the fact that they are built of proteins whose concentrations vary from cell to cell 
and over time? Thus, some cells will have more receptors than others, even when the cells 
are genetically identical and grown in the same conditions. If the average is 1000 receptors 
per cell, one cell will have 800 and another 1200. The same applies to each of the other 
proteins in the circuit (see Appendix D). How then can cells precisely transmit information 
and compute a response that is just right for the input signal level?

8.1 ROBUST INPUT–OUTPUT CURVES
Let’s define the robustness we seek. Suppose that a signal-transduction circuit has an input 
signal S, sensed by the receptor. The output of the circuit is the concentration of activated 
transcription factor. The output as a function of input, f(S), is the circuit’s input–output 
curve. We ask how the input–output curve can be precise despite cell-to-cell variations in 
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the concentrations of the proteins that make up the circuit, such as the receptor and the 
transcription factor.

If the input–output curve depends on the concentrations of the proteins that make up the 
circuit, we say that it is non-robust (Figure 8.1). Since variations in protein concentration are 
an unavoidable property of biological matter, a non-robust f(S) means that different individual 
cells will show a different response to the same input signal. The input is inaccurately read by 
most cells.

In contrast, a robust input–output curve is insensitive to (and ideally completely 
independent of) variations in the concentrations of the proteins that make up the circuit. 
A robust input–output curve f(S) allows all cells to have the same output to a given input 
signal (Figure 8.1). Cells accurately perceive their environment.

8.2  SIMPLE SIGNALING CIRCUITS 
ARE NOT ROBUST

Input–output robustness is difficult to achieve. To illustrate 
this, let’s consider a circuit made of the typical components 
of signal-transduction pathways (Figure 8.2). The signal S 
is sensed by a receptor protein X. Signal causes the receptor 
to change conformation and thus transmit information 
into the cell. Information is passed to a messenger 
protein Y in the form of a chemical modification, such as 
phosphorylation, in which a phosphoryl group is added 
to Y. To do this, X acts as a kinase, an enzyme that takes 
phosphoryl from ATP and adds it to protein Y. We say that 
X phosphorylates Y, at a rate that depends on the input 
signal.
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Phosphorylation causes Y, a transcription factor, to change into its active conformation 
(Y* = Yp). The phosphorylated messenger, Yp, binds promoters and activates output genes. 
Hence, Yp is the output of the circuit. To stop the signaling when the signal goes away, 
Yp is continually dephosphorylated by a phosphatase protein Z. The phosphatase removes 
the phosphoryl group from Yp and returns it to the cytoplasm in the form of inorganic 
phosphate, denoted Pi.

We will now solve the input–output curve of this circuit, to see that the curve depends 
on the concentrations of all of the three proteins that make up the circuit, X, Y and Z. We’ll 
see that there is no input–output robustness. The math is simple.

Solved Example 8.1: Show That the Signal-Transduction Pathway 
in Figure 8.2 Has a Non-Robust Input–Output Curve

Receptor X phosphorylates Y at a rate v(S) that depends on input signal S. The 
phosphorylation is removed by a phosphatase Z at rate vz. Let’s compute the steady-
state input–output curve Yp = f(S), and see how it depends on the concentrations of 
the three proteins in the circuit, X, Y and Z.

Y can either be phosphorylated, Yp, or not, Y0, so that the total concentration of Y 
protein is the sum of these two, YT = Y0 + Yp. This is an example of a conservation 
law. We’ll describe the dynamics of Yp using mass-action kinetics: phosphorylation 
occurs when X and Y0 collide, at a rate v(S)XY0. Dephosphorylation occurs when Yp 
and Z collide, at rate vzZYp. It’s convenient to use the conservation law to replace Y0 
by YT − Yp. At steady state, phosphorylation and dephosphorylation must balance, 
dYp/dt = v(S)X(YT − Yp) − vZZYp = 0. Solving for Yp, we find that the input–output 
curve is an increasing function of the signal v(S):

 
f S Y v S XY

v S X v Zp
T

Z
( ) ( )

( )= =
+  

(8.2.1)

The input–output curve rises with the 
input signal S, so that the cell receives 
information about the input signal. This 
input–output curve, however, depends 
on the levels of all three proteins in the 
circuit: the receptor X, total messenger YT 
and phosphatase Z (Figure 8.3). The more 
X and Y a cell has, or the less Z it has, the 
higher the input–output curve for a given 
signal S. Since protein concentrations 
typically vary by tens of percents, and this 
variation lasts an entire cell generation 
time, it will be common to have a twofold 
difference in output between cells. There 
is no input–output robustness.
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8.3 BACTERIAL TWO-COMPONENT SYSTEMS CAN ACHIEVE ROBUSTNESS
In order to achieve input–output robustness, the protein levels must somehow cancel out in 
the expression for the input–output curve. Remarkably, such robustness occurs in bacterial 
two-component systems – a class of thousands of systems. Each two-component system is 
made of a receptor X that senses specific inputs, and its dedicated messenger Y.

At the heart of the design of two-component systems is a bifunctional component: The 
receptor X catalyzes two opposing reactions: both phosphorylating and dephosphorylating Y 
(Figure 8.4).

Thus, the opposing kinase and phosphatase activities are rolled up into the same 
protein, instead of being separated on two different proteins.1 The receptor has another 
seemingly arbitrary biochemical detail that will turn out to be crucial: X is an autokinase 
and a phosphotransferase: it first uses ATP to phosphorylate itself and only then transfers 
the phosphoryl group to Y (Figure 8.4).

A canonical example of a two-component system is the osmotic response system of 
E. coli, EnvZ/OmpR. Here, the receptor X is EnvZ, and the messenger Y is OmpR. When 
external osmolarity is high, the receptor X phosphorylates itself and then transfers the 
phosphoryl group to Y0 to form Yp. The output, Yp, transcriptionally activates osmo-
response genes such as transporters and enzymes that act to adjust the cell to the osmotic 
pressure in its environment. A robust input–output curve is crucial in this system because 
the response to osmotic pressure had better be accurate, to avoid the cell bursting or 
imploding.

Tom Silhavy and colleagues discovered 
that X carries out two antagonistic 
reactions (Hsing et  al., 1998): it not only 
acts as a kinase that phosphorylates Y; it is 
also the phosphatase of Yp (Figure 8.4). It 
thus both adds and removes the chemical 
modification. This bifunctionality, acting 
as both a kinase and phosphatase, was 
suggested by Russo and Silhavy (1993) 
to enable robustness in the circuit. The 
intuitive reason is that a change in the 
concentration of the bifunctional protein 
X changes both phosphorylation and 
dephosphorylation rates by the same factor, 
thus canceling out the effect on the steady-
state output Yp.

1 Note that every enzyme catalyzes a reaction and its reverse, with total flux determined by the concentrations of product 
and substrate. Bifunctional enzymes do something more specific: they catalyze different reactions, at different catalytic 
sites. For example, phosphorylation entails breaking down ATP to ADP, whereas dephosphorylation is not the reverse 
reaction which returns the phosphoryl to ADP, but instead moves the phosphoryl into the cytoplasm as inorganic 
phosphate.
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Robustness in this system was modeled mathematically and demonstrated 
experimentally by Eric Batchelor and Mark Goulian (2003). Batchelor and Goulian 
experimentally changed the levels of the proteins X and Y in the circuit, by deleting 
the gene for X or Y in the DNA, and adding back a copy of the gene on a circular piece 
of DNA called a plasmid. They fused the added gene to a promoter that is regulated by 
a chemical inducer that can be added to the liquid media in which the cells grow. The 
chemical inducer allowed them to control the concentrations of X or Y in the cell. They 
found that the output is robust despite large changes in the levels of the proteins. For 
example, the output (the amount of Yp at a given input level of osmolarity) changed by 
less than 20% upon 10-fold changes in the amount of total Y protein.

Shinar et  al. (2007) extended the theoretical analysis of this system, showing how 
the special biochemical features of the receptor (autokinase, phosphotransferase and 
phosphatase) combine to make Yp levels completely insensitive to variations in the 
concentrations of all proteins in the circuit – X and Y – and yet responsive to the input 
signal of the system, S.

It’s fun to solve this system, in order to see how this cancellation comes about. The 
solution also uses a black-box trick that can be generalized to other systems.

Solved Example 8.2: Show That the Bifunctional EnvZ/OmpR 
Design Has Input–Output Robustness at Steady State with Respect 
to Fluctuations in the Levels of the Proteins X and Y

One way to solve this example is to write seven mass-action equations for the system 
of Figure 8.4, and find their fixed point. This algebra is described in Exercise 8.3. An 
easier way to obtain the input–output curve presents itself when we view the system 
as a black box that breaks down ATP and releases phosphoryl groups back to the 
cytoplasm (Figure 8.5). Consider the fluxes of phosphoryl into and out of the box. The 
influx, Jin, is due to the receptor that takes phosphoryl from ATP and phosphorylates 
itself at a rate that depends on the input signal, va(S). Thus, Jin = va(S)X0. The outflux 
is the rate of dephosphorylation of Yp 
by the receptor, Jout = vp(S)X0Yp, which 
releases the phosphoryl groups back into 
the cytoplasm as inorganic phosphate, 
Pi. At steady state, influx and outflux 
must balance, Jin = Jout, otherwise the 
black box would fill up with phosphoryl 
groups. This means that

 v X v X YS Sa p p( ) ( )0 0=  (8.3.1)
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Notice how X0 can be elegantly canceled out from both sides of the equation (as 
long as X0 ≠ 0). We obtain a robust input–output curve f(S) = Yp that depends only 
on kinetic rate constants:

 Y v vS Sp a p= ( ) ( )/  (8.3.2)

The output Yp thus responds to the input signal S, through the rate constants va(S) 
and vp(S). Importantly, the output YP does not depend on the level of any of the proteins 
in the system. The mechanism thus shows a robust input–output relationship.

Input-output robustness is achieved by the coordinated effect of the biochemical details 
of this system. If the receptor was not bifunctional, and instead dephosphorylation was 
carried out by a separate phosphatase protein Z, the balance of phosphoryl influx and 
outflux would require that X ∼ ZYP. No cancellation of X is possible. This would result 
in a steady-state level Yp ∼ X/Z that depends on the intracellular levels of both X and Z. 
Robustness would be lost. Similarly, the two-step nature of the kinase is also essential 
for robustness. If the receptor directly transferred a phosphoryl group from ATP to Y0 
without first phosphorylating itself, the influx would depend on the concentration of the 
complex XY0. Balancing influx and outflux gives XY0 ∼ XYp. As a result, the output YP 
would be proportional to Y0 and would thus depend on the total level of Y, YT, abolishing 
robustness.

In summary, robustness in the present mechanism seems to require the combined effects 
of several biochemical features. These features occur in virtually all of the thousands of 
known two-component systems that respond to stress and environmental signals in diverse 
bacterial species (Capra and Laub, 2012). For example, E. coli has about 30 different two-
component systems and all but one have this bifunctional design. We will discuss the 
exceptional circuit, bacterial chemotaxis, in the next chapter.

For years, I thought that input–output robustness is impossible due to considerations 
of units. The units of the output Yp are units of concentration. Units of concentration, in 
any mechanism that I could imagine, come from the concentrations of the proteins in the 
circuit (as in the simple circuit of Figure 8.2). So where do the units of concentration come 
from in the bifunctional mechanism? The answer is the molecular rate constants. The units 
of concentration come from the ratio of a uni-molecular and a bi-molecular rate constant, 
va/vp (va has units of 1/time, and vp of 1/time/concentration). These intrinsic molecular rate 
constants are determined by the structure of the circuit proteins, which is the same in all 
cells. The rate constants are therefore much more hard-wired (much less variable from cell 
to cell) than protein concentrations.

In fact, these intrinsic rate constants make the input–output curve even more elegant 
when the receptor does its two opposite functions according to Michaelis–Menten binding 
of the signal S (see Appendix A for an explanation of Michaelis–Menten functions). If 
the kinase rate rises with binding as va ∼ S/(K + S) and the phosphatase rate decreases 
with binding as vp ∼ K/(K + S), the output becomes linear in signal, Yp = va/vp ∼ S/K. 
It’s nice to have a linear undistorted readout of the input information.
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8.3.1 Limits of Robustness

Robustness always has its limits. In this 
system, robustness is lost if the total level of 
protein Y, denoted YT, falls below the robust 
Yp level of Equation 8.3.2 for a given input 
signal (Figure 8.6). There is not enough Y 
protein to provide the needed output.

When this happens, analysis of the 
model (Exercise 8.5) shows that all of the Y 
molecules become phosphorylated, so that 
Yp = YT. All of X is also phosphorylated 
Xp = XT. Hence, the system is maxed out 
and no longer responds to the input signal 
(mathematically speaking, X0 is zero and 
cannot be canceled out in the black-box equation). We conclude that both robustness and 
responsiveness to the signal require that total Y levels, YT, exceed a certain threshold, given 
by the maximal desired output level in the expected physiological conditions.

There is also call for caution. When studying models like this, we need to watch out 
for additional reactions in the cell, perhaps too weak to be experimentally detected, that 
can potentially ruin robustness. To explore this possibility, we can add to the model 
every possible reaction arrow and assign to it a small rate ε. For example, we can add 
spontaneous dephosphorylation of Yp (that is, Yp → Yo + Pi without help from X). This 
spontaneous reaction is known to occur in the EnvZ/OmpR system on a timescale of 
minutes, which is much slower than the other reactions that take seconds or less (thus, 
ε is ∼ seconds/minutes ∼ 0.01). We can also add spontaneous dephosphorylation of Xp, 
reverse phosphotransfer, effects of ATP and ADP as cofactors, and so on. Some of these 
possibilities are explored in Exercises 8.7 and 8.8. The upshot is that the effect on robustness 
of these additional reactions is either nonexistent, or is small (in the sense that the relative 
shift in the input–output curve due to protein fluctuations is of order ε).

8.3.2 Remarks on the Black-Box Approach

To analyze the robustness mechanism, we considered the system as a black box that breaks 
down ATP. The black-box approach can be used more generally, to suggest a wider class of 
systems that show robust input–output relations.

The black-box argument depends only on balancing two reactions, the entry and exit of 
phosphoryl groups from the box. This leaves us with freedom to add any number of reactions 
inside the box, as long as a stable steady state is reached and no new entry or exit points are 
added. For example, we can introduce a cascade of phosphotransfer events (as occurs in some 
bacterial signaling systems), Figure 8.7, and still maintain the robustness of Yp.

The black box also points to system characteristics that rule out such robustness. The black 
box suggests that robustness of the present type cannot generally occur if there is more than 
one reaction that introduces (or removes) phosphoryl groups into the system. If two different 
influxes Jin and ′Jin exist, they generally cannot be canceled out with Jout (in the sense of Equation 
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8.3.1 above), leading to a loss of robustness. 
If such secondary leaks or inputs are small, 
of order ε, robustness is only lost to order ε.

Not all bacterial signaling systems show 
the hallmarks of the present mechanism. 
Important examples include bacterial 
chemotaxis, which we will study in the 
next chapter, and sporulation. Apparently, 
these signaling systems do not need robust 
input–output relations, but instead rely on 
cell–cell variation in their output in order to 
provide a wider range of solutions to a given 
situation. A robust input–output mechanism 
should perhaps be expected only in signaling 
systems in which there is a sufficiently heavy 
fitness penalty for imprecision.

8.3.3 Bifunctional Components Provide Robustness in Diverse Circuits

The mechanism of robustness by bifunctional enzymes that catalyze antagonistic reactions 
(also called paradoxical enzymes) applies to other systems and organisms (Hart and Alon, 
2013). In each case, a bifunctional enzyme is at the core of the mechanism, and additional 
biochemical features combine to allow robustness. Examples include nitrogen regulation in 
E. coli, explored in Exercise 8.12, in which a paradoxical enzyme modifies and de-modifies 
a key metabolic enzyme in nitrogen control. Similarly, a paradoxical enzyme in human 
cells makes and breaks an allosteric regulator of the main nutritional pathway, glycolysis. 
Paradoxical enzymes also operate in tissue-level circuits. For example, a paradoxical 
enzyme called Piezo1 helps maintain proper numbers of epithelial cells. It makes epithelial 
cells both proliferate and die according to pressure signals that indicate if there are too 
few or too many cells in the tissue (Gudipaty et al., 2017). In the immune system, T-cells 
secrete a signal molecule called IL-2 that makes them both proliferate and die, helping 
to maintain a desired concentration of T-cells (Hart et al., 2014). Theoretical analysis of 
bifunctional enzymes led to a mathematical theorem that can predict which components 
of a complicated biochemical reaction system might be robust (Shinar and Feinberg, 2010; 
Karp et al., 2012).

In summary, in biological signaling circuits, bifunctional components can provide robust 
input–output curves despite unavoidable fluctuations in the levels of the proteins that make 
up the circuit. The robustness is due to a combination of specific biochemical details, and 
thus provides a systems-level meaning to biochemical reactions that may otherwise appear 
arbitrarily complicated.

FURTHER READING

(Batchelor and Goulian, 2003) “Robustness and the cycle of phosphorylation and dephosphorylation 
in a two-component regulatory system.”
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(Hart and Alon, 2013) “The utility of paradoxical components in biological circuits.”
(Shinar et al., 2007) “Input output robustness in simple bacterial signaling systems.”
(Shinar and Feinberg, 2010) “Structural sources of robustness in biochemical reaction networks.”

EXERCISES

 8.1 Mass-action for the non-robust circuit: Solve the mass-action kinetics of the three-
protein signaling circuit of Figure 8.2, taking into account the complexes of the 
reactants. Show that the input–output curve is not robust.

Solution:

  Let’s assume that ATP binds X strongly, a realistic assumption for most signaling 
systems, so that free X is always bound to ATP. The reactions are
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  Thus the rate of change of the complex [X ATP Y0] is a balance of binding, unbinding 
and catalysis
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  At steady state, d/dt = 0, and hence [X ATP Y0] = [X ATP]Y0/K1, where K1 = kon1/
(v(S) + koff1). Typically, v(S) can be neglected because it is much smaller than the off 
rates in enzymes. The phosphorylation rate is v(S) times the complex concentration, 
v(S)[X ATP Y0] = v(S)[X ATP]Y0/K1. The dephosphorylation rate, from an analogous 
calculation, is vZZ = Yp/K2 where K2 = kon2/(koff2 + vZ). Balancing the two, and using 
Y0 + YP = YT, we obtain
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  This input–output curve is non-robust because it depends on the concentrations of 
the proteins in the system.
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 8.2 Correlated expression can increase robustness: One way to partially address the non-
robustness of the three-protein signaling circuit of Figure 8.2 is to make fluctuations in 
protein levels correlated, by putting Y and Z on the same operon and hence expressed 
from the same mRNA molecule. Discuss why this can improve robustness, but not 
make the circuit absolutely robust.

Two-component mechanism

 8.3 The seven mass-action equations for the two-component circuit: A detailed two-
component mechanism includes ATP and ADP and the complexes of the reactants. 
The reactions are:
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  where T and D are ATP and ADP, A is the complex [X T], B is [XpY0], C is [AYp] and 
Pi is inorganic phosphate.

 a. Write the mass-action kinetic equations and conservation laws.

 b. Solve for the steady states.

 c. Show that one steady state describes the case where there is enough Y protein for 
the desired output, and the other applies when there is not enough Y.

Solution:

 a. There are two conservation laws, for total X:

 X X X A B CT p= + + + +0

  and total Y:

 Y Y Y B CT p= + + +0
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  The seven mass-action equations are:
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 b. Solving these at steady state shows two solutions. In solution 1, Xp,1 = XT, Yp,1 = YT 

and all other concentrations are equal to zero. In solution 2, Y
v
v k v kp
a

p
p,

( ) ( )2 3 3= ′ +
S / , 

which is robust because no protein concentrations appear in it.

 c. Stability analysis (try it yourself) shows that solution 2 is the only stable solution 
when Yp,2 < YT. If Yp,2 ≥ YT, solution 1 is the only stable solution.

 8.4 A more precise black-box calculation: The calculation in the main text did not take into 
account protein complexes. Repeat the black-box calculation taking into account the 
complexes.

Solution:

  The exit f lux is equal to the rate of dephosphorylation, Jout = vp[XYp]. Let’s compute 
the concentration of the complex [XYp]. The complex is formed by the binding of 
X to Yp, and lost when the constituents dissociate or when the dephosphorylation 
reaction takes place: d XY k XY k v XYp p p p[ ] ( )[ ]= − ′ +3 3 . Thus, at steady state, the 
concentration of the complex is proportional to the product of its component 
concentrations: [ ] ( )/XY k k v XYp p p= ′ +3 3 , which yields J v k k v XYout p p p= ′ +3 3/ ( ) . 
At steady state, Jin = Jout, otherwise the black box would fill up with phosphoryl 
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groups. Therefore, we obtain a robust input–output curve that depends only on 
kinetic rate constants:
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  which is the same as the full solution of Exercise 8.3b.

 8.5 Loss of robustness when YT is too low:

 i. Do a black-box calculation in the case that YT falls below the value of Yp expected 
from the robust solution. Show that the system enters a saturated state in which all 
of Y and all of X are phosphorylated. Why is this state a non-signaling state?

 ii. What happens when total levels of receptor X becomes very low? Does this place 
limitations on signaling?

 8.6 Limits to linearity of the output curve: In the robust mechanism, when va(S) ∼ S/(K + S) 
and vp(S) ∼ S/(K + S) both depend on Michaelis–Menten binding of the signal S, the 
output curve can be linear in S: Yp = va/vp ∼ S/K. But every linearity must have its 
limits. Explain what processes might break linearity.

 8.7 Reverse phosphotransfer from Yp does not affect robustness: Add a reverse phospho-
transfer reaction to the two-component model, in which Yp + X0 → Xp + Y0. Use the 
black-box approach to argue that this additional reaction does not affect robustness 
or the steady-state output.

 8.8 Spontaneous dephosphorylation leads to small loss of robustness: In the EnvZ/OmpR 
circuit, Yp can be spontaneously dephosphorylated without the action of X. The half-
life of Yp due to this reaction is much longer than the half-life of seconds due to the 
dephosphorylation catalyzed by X.

 a. Write an equation for Yp dynamics assuming the two-component mechanism also 
has a reaction of spontaneous dephosphorylation at rate ε.

 b. Use the black-box approach to calculate the steady-state level of Yp.

 c. Explain why robustness is only lost to order ε.

 8.9 Energy consumption: The EnvZ/OmpR system continually uses up ATP, even for 
constant input signals.

 a. Discuss why constant energy expenditure might be useful in this signaling circuit.

 b. Suppose there are 100 molecules of X per cell that use 100 ATP/second. Estimate 
the fraction of the bacteria’s ATP consumption that goes to running this circuit.
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 8.10 Dynamics of the robust mechanism: Suppose that the input signal rises in a step from 
level S1 to level S2.

 a. Compute the dynamics of the robust mechanism, Yp(t). Assume low signals so that 
most of X and Y are unphosphorylated.

 b. What is the response time?

 c. Is the response time robust to variations in X? in Y?

 8.11 Positive autoregulation and robust input–output relations: In many two-component 
systems, the output transcription factor Yp is a transcriptional activator of its own 
gene and the gene for the receptor X (often both genes are on the same operon). Since 
the signaling output Yp is robust to total X and Y levels, what can be the role of this 
positive autoregulation? (Hint: Consider strong input signals.)

 8.12 Paradoxical control in E. coli carbon/nitrogen balance: E. coli must balance their 
uptake of carbon and nitrogen. The key enzyme that assimilates nitrogen (from 
ammonia) into biomass is the enzyme GS, made of 12 identical subunits (a 
dodecamer). GS produces the amino acid glutamine, Q. The dilemma is that Q 
is made from a carbon backbone that is a key metabolite in the tricarboxylic acid 
(TCA) cycle, alpha-ketoglutarate, denoted K. Making too much Q depletes K and 
interferes with carbon metabolism; therefore, the Q/K ratio is important and stays 
nearly constant in a wide range of conditions (Senior, 1975; Brauer et al., 2006). The 
robustness of the Q/K ratio depends on a bifunctional enzyme AT/AR which both 
activates and deactivates GS by removing and adding an adenylyl modification. 
The levels of Q and K affect the rates of these two opposite reactions, v1 and v2. 
The twist is that AT/AR can bind two GS subunits in the same dodecamer (Figure 
8.8), and hence shows a strong avidity effect: if it binds one subunit, it is likely to 
bind both. Thus, a ternary complex T in which the bifunctional enzyme binds two 
substrates, one modified and the other unmodified, carries out most of the reactions 
(Figure 8.8). The rates of adenylation and de-adenylation must be equal at steady 
state: v1(Q,K)T = v2(Q,K)T.

 a. How can this design lead to a robust Q/K ratio?

 b. Explain the results of an experiment in which GS levels are controlled by expressing 
it from a plasmid, and the Q/K ratio is measured in wild-type cells and in cells 
deleted for the gene for AT/AR (Figure 8.8).

 c. Propose experiments to test the hypothesis that the bifunctionality of AT/AR is 
causal for robustness. Use the fact that the two reactions are carried out by different 
parts of the enzyme AT/AR, and that mutants are available that knock out one or 
the other function (Hart et al., 2011).
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C h a p t e r  9

Robustness in Bacterial 
Chemotaxis

9.1 INTRODUCTION
We’ve seen how bifunctional proteins can allow signaling circuits to robustly sense the 
precise level of an input signal. But not all signaling circuits need to simply sense the 
signal level. Some circuits are built to make more sophisticated computations, and to 
do so robustly. To see this, we will now consider the robustness of a remarkable system 
called bacterial chemotaxis, that allows bacteria to navigate. Bacterial chemotaxis is so 
well characterized on the level of molecules and behavior that it was a testing ground for 
important ideas in systems biology, including robustness. We will describe the biology of 
bacterial chemotaxis, and models and experiments that demonstrate how the computation 
performed by this protein circuit is made robust to changes in protein levels.

9.2 BACTERIAL CHEMOTAXIS, OR HOW BACTERIA THINK
9.2.1 Chemotaxis Behavior

When a pipette containing nutrients is placed in a plate of swimming E. coli, the bacteria 
are attracted to the mouth of the pipette and form a cloud (Figure 9.1). When a pipette 
with noxious chemicals is placed in the dish, the bacteria swim away from the pipette. This 
process, in which bacteria sense and move along gradients of specific chemicals, is called 
bacterial chemotaxis.

Chemicals that attract bacteria are 
called attractants. Chemicals that drive the 
bacteria away are called repellents. E. coli 
can sense a variety of attractants, such 
as sugars and the amino acids serine and 
aspartate, and repellents, such as certain 
metal irons and the amino acid leucine. 
Most bacterial species show chemotaxis, 

Bacterial chemotaxis

Attractant Repellent

FIGURE 9.1 
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and some can sense and move toward 
stimuli such as light (phototaxis) and even 
magnetic fields (magnetotaxis).

Bacterial chemotaxis achieves remarkable 
performance despite the physical limitations 
faced by the bacteria. Bacteria can detect 
concentration gradients as small as a change 
of one molecule per cell volume across the 
cell length. They detect such gradients over 
background concentrations spanning five 
orders of magnitude. All this is done while 
being buffeted by Brownian noise: if the cell 
tries to swim straight for 10 sec, its orientation 
is randomized by 90° on average.

How does E. coli manage to move up gradients of attractants despite these physical 
challenges? It is evidently too small to sense the gradient along the length of its own body.1 
The answer was discovered by Howard Berg in the early 1970s: E. coli uses a biased-random-
walk strategy to sample space and convert spatial gradients to temporal ones. In liquid 
environments, E. coli swims in a pattern that resembles a random walk. The motion is 
composed of runs, in which the cell keeps a rather constant direction, and tumbles, in 
which the bacterium stops and randomly changes direction (Figure 9.2). The runs last about 
1 sec on average and the tumbles about 0.1 sec.

To sense gradients, E. coli compares the attractant concentration to the concentration in 
the past. When E. coli moves up a gradient of attractant, it detects an increase of attractant. 
As a result, it reduces the probability of a 
tumble (it reduces its tumbling frequency) 
and tends to continue going up the 
gradient. The reverse is true for repellents: 
if the concentration of repellent increases 
with time, the cell increases its tumbling 
frequency, and thus tends to change 
direction and avoid swimming toward 
repellents. Thus, chemotaxis senses the 
temporal derivative of the concentration 
of attractants and repellents. It follows a 
simple strategy: If life is getting better, keep 
going, and if life is getting worse, change 
direction.

1 Noise prohibits a detection system based on differences between two antennae at the two cell ends. To see this, note that 
E. coli, whose length is about 1 micron, can sense gradients as small as 1 molecule per micron in a background of 1000 
molecules per cell volume. The Poisson fluctuations of the background signal, 1000 30∼  mask this tiny gradient, unless 
integrated over prohibitively long times. Animal cells, whose size is about 10 µm and whose responses take minutes, can 
sense spatial gradients directly.

Flagella

Motor

1 µm

FIGURE 9.3 
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FIGURE 9.2 Adapted from (Berg, 2004).
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The runs and tumbles are generated by different states of the motors that rotate the 
bacterial flagella. Each cell has several flagella motors (Figure 9.3) that can rotate either 
clockwise (CW) or counterclockwise (CCW). When the motors turn CCW, the flagella 
rotate together in a bundle that pushes the cell forward. When one of the motors turns CW, 
its flagellum breaks from the bundle, making the cell tumble and randomize its orientation. 
When the motor turns CCW again, the bundle is reformed and the cell swims in a new 
direction (Figure 9.4).

9.2.2 Response and Exact Adaptation

The basic features of chemotaxis can be 
described by a simple experiment. Bacteria 
are observed under a microscope swimming 
in a liquid with no gradients. The cells display 
runs and tumbles, with an average steady-
state tumbling frequency f, on the order 
of f ∼ 1 sec−1. We now add an attractant 
such as aspartate to the liquid, uniformly 
in space. The attractant concentration thus 
increases at once, but no spatial gradients 
are formed. The cells sense an increase in 
attractant levels, no matter which direction 
they are swimming. They think that things 
are getting better and suppress tumbles: the 
tumbling frequency of the cells plummets 
within about 0.1 sec (Figure 9.5).
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After a while, however, the cells realize they have been fooled. The tumbling frequency of 
the cells begins to increase, even though attractant is still present (Figure 9.5). This process, 
called sensory adaptation, is common to many biological sensory systems. For example, 
when we move from light to dark, our eyes at first cannot see well, but they soon adapt, and 
we can sense small changes in contrast. Adaptation in bacterial chemotaxis takes several 
seconds to several minutes, depending on the size of the attractant step.2

Bacterial chemotaxis shows exact adaptation: the tumbling frequency in the presence of 
attractant returns precisely to the same level as before attractant was added. In other words, 
the steady-state tumbling frequency is independent of attractant levels. If more attractant 
is now added, the cells again show a decrease in tumbling frequency, followed by exact 
adaptation. Changes in attractant concentration can be sensed as long as attractant levels 
do not saturate the receptors that detect the attractant.

Exact adaptation poises the sensory system at an activity level where it can respond 
to multiple steps of the same attractant, as well as to changes in the concentration of 
other attractants and repellents that can occur at the same time. It prevents the system 
from straying away from a favorable steady-state tumbling frequency that is required to 
efficiently scan space by random walk.

9.3 THE CHEMOTAXIS PROTEIN CIRCUIT
We now look inside the E. coli cell and 
describe the protein circuit that performs 
the response and adaptation computations. 
The input to this circuit is the attractant 
concentration, and its output is the 
probability per unit time that motors turn 
CW, which determines the cells’ tumbling 
frequency (Figure 9.6). The chemotaxis 
circuit was worked out using genetics, 
physiology and biochemistry, starting with 
J. Adler in the late 1960s, followed by several 
labs, including those of D. Koshland, 
S. Parkinson, M. Simon, J. Stock and others.

Attractant and repellent molecules are sensed by specialized receptors. The attractant 
and repellent molecules bound by a receptor are called its ligands. E. coli has five types 
of receptors, each of which can sense several ligands. There are a total of several thousand 
receptor proteins in each cell. They are localized in a cluster on the membrane, such that 
ligand binding to one receptor affects the state of neighboring receptors. Thus, a single 
ligand binding event is amplified, because it can affect more than one receptor (Bray, 2002), 
increasing the sensitivity of this molecular detection device (Segall, Block and Berg, 1986; 
Jasuja et al., 1999; Sourjik and Berg, 2004).

2 Each individual cell has a fluctuating tumbling frequency signal, so that the tumbling frequency varies from cell to cell 
and also varies along time for any given cell (Ishihara et al., 1983; Korobkova et al., 2004). The behavior of each cell shows 
the response and adaptation characteristics within this noise.
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Inside the cell, each receptor is bound to a protein kinase called CheA.3 We will consider 
the receptor and the kinase as a single entity, called X. X transits rapidly between two 
states, active (denoted X*) and inactive, on a timescale of microseconds. When X is 
active, X*, it phosphorylates a response-regulator protein, CheY which we will denote Y. 
Phosphorylated Y, denoted Yp, diffuses through the cell. It can bind the flagellar motor and 
increase the probability that it switches from CCW to CW rotation. Thus, the higher the 
concentration of Yp, the higher the tumbling frequency (Cluzel, Surette and Leibler, 2000).

The phosphorylation of Yp is removed by the phosphatase CheZ, denoted Z. At steady 
state, the opposing actions of X* and Z lead to a steady-state Yp level and a steady-state 
tumbling frequency.

Thus, the main pathway in the circuit is phosphorylation of Y by X*, leading to tumbles 
(Figure 9.6). We now turn to the mechanism by which attractant and repellent ligands can 
affect the tumbling frequency.

9.3.1 Attractants Lower the Activity of X

When a ligand S binds receptor X, it changes the probability4 that X will assume its active 
state X*. The concentration of X in its active state is called the activity of X. Attractant 
ligands reduce the activity X*, and hence reduce the rate at which X phosphorylates Y. 
Adding attractant therefore makes levels of Yp drop, resulting in fewer tumbles. These 
responses occur within less than 0.1 sec. The response time is mainly limited by the time 
it takes Yp to diffuse to the motors that are distributed all around the cell membrane.

The pathway from X to Y to the motor explains the initial response in Figure 9.5, in 
which attractant reduces tumbling. The 
reduction in activity X* due to the binding 
of attractant S is well described by a Hill 
function (Figure 9.7):

      

X X
S
K

max
n

* =

+








1

where Xmax is the maximal activity. The 
halfway-point for reduction of activity is 
K, the binding constant of the attractant 
to the receptor. The Hill coefficient n is 
due to clusters of n receptors that show 

3 The chemotaxis genes are named with the three-letter prefix che, because mutants in these genes are unable to perform 
chemotaxis.

4 Note the strong separation of timescales. The conformation transitions between X and X* are on a microsecond timescale. 
Ligands remain bound to the receptor for about 1 msec. Therefore, many transitions occur within a single-ligand binding 
event. The activity X* is obtained by averaging over many transitions (Asakura and Honda, 1984; Mello, Shaw and 
Tu, 2004; Keymer et al., 2006). Phosphorylation–dephosphorylation reactions equilibrate on the 0.1-sec timescale, and 
methylations occur on the sec-minute timescale.
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cooperativity: binding of ligand to one receptor in the cluster changes the activity of 
neighboring receptors. If this was all, attractant binding would result in reduced X* and hence 
sustained low tumbling frequency as long as attractant is around. What causes adaptation?

9.3.2 Adaptation Is Due to Slow Modification of X That Increases Its Activity

The chemotaxis circuit has a second pathway devoted to adaptation. As we saw, binding of 
attractant reduces the activity of the receptor 
X. However, each receptor has several 
biochemical “buttons” that can be pressed 
to increase its activity and compensate for 
the effect of the attractant (Figure 9.8). These 
buttons are methylation modifications, 
in which a methyl group (CH3) is added 
to four locations on the receptor. Each 
receptor can thus have between zero and 
four methyl modifications. The more methyl 
modifications, the higher the activity of the 
receptor.

The methylation buttons work by 
changing the binding constant K of the 
receptor to attractants. The more methylated 
the receptor, the higher is K (Figure 9.9). 
Each methylation seems to add free energy 
γ to the free energy of binding, so that 
K rises exponentially with methylation: 
K ∼ K0eγm (Tu, Shimizu and Berg, 2008). 
The higher K, the less attractant binds, so 
that there is less inhibition of X activity, X*. 
In this way, methylation increases receptor 
activity.

Methylation of the receptors is catalyzed 
by a protein called CheR and is removed 
by a protein called CheB, which we 
will denote R and B. Methyl groups are 
continually added and removed by these 
two antagonistic proteins, regardless of whether the bacterium senses any ligands (Figure 
9.10). This seemingly wasteful cycle has an important function: it allows cells to adapt.

Adaptation is carried out by a negative feedback loop through B. This protein 
removes methyl groups only from receptors in their active conformation, X*. Moreover, 
X* phosphorylates and thus activates B.

Imagine that attractant is added. Attractant reduces X activity, making B less active. 
Fewer methyl groups are removed by B. Methyl groups are still added, though, by 

X

S

methylation
increases X*

m

attractant
decreases

 X*  

m

FIGURE 9.8 

K1 log attractant
concentration, S

X*

K2 K3

m
=1

m
=2

m
=3

K4

m
=4

FIGURE 9.9 



Robustness in Bacterial Chemotaxis    ◾    159

R at an unchanged rate. Therefore, total 
methylation increases. Methylation 
makes the receptor more active, despite 
the presence of attractant, and tumbling 
frequency recovers.

Thus, the receptors X first become less 
active due to attractant binding, and then 
methylation level gradually increases, 
restoring X activity. This is a negative 
feedback loop with a slow arm in which 
X* reduces methylation, and a fast arm in 
which methylation raises X* (Figure 9.11).

Methylation reactions are indeed much 
slower – taking seconds to minutes – than 
the reactions in the main pathway from 
X to Yp to the motor that occur on a sub-
second timescale. The protein R is present 
at low amounts in the cell, about 100 
copies, and appears to act at saturation (zero-order kinetics). 
The slow rate of the methylation reactions explains why the 
recovery phase of the tumbling frequency during adaptation is 
slower than the initial response.

This feedback circuit is designed so that exact adaptation 
is achieved. That is, the increased methylation of X precisely 
balances the reduction in activity caused by the attractant. 
How is this precise balance achieved? Understanding exact 
adaptation is the goal of the model that we will describe next.

9.4 THE BARKAI–LEIBLER MODEL OF EXACT ADAPTATION
Early models of chemotaxis used equations to describe the reactions just presented and 
showed response to attractant and exact adaptation. However, in these models, exact 
adaptation depended on setting specific values for parameters such as the numbers of 
R and B proteins per cell. These parameters had to be tuned so that methylation could 
exactly compensate for the reduction in activity caused by attractant. Changing the protein 
levels ruined exact adaptation (Figure 9.12). After adding attractant, the cells responded, 
but then returned to a different basal activity than before the attractant step. We say that 
exact adaptation in these models is fine-tuned. A fine-tuned model is described in solved 
Exercise 9.4.

A robust mechanism for exact adaptation was proposed by Naama Barkai and Stan 
Leibler (Barkai and Leibler, 1997). In this mechanism, changing parameters such as R 
and B protein levels change the steady-state activity. But changing parameters does not 
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ruin exact adaptation: after a step of attractant, activity first drops but then returns to 
the pre-step level (Figure 9.13).

The full model includes several methylation sites and other details, and reproduces many 
observations on the dynamical behavior of the chemotaxis system (a two-methylation site 
version is solved in Exercise 9.5). Here, we will analyze a simplified version of the Barkai–
Leibler model, aiming to understand how a biochemical circuit can robustly adapt.

The Barkai–Leibler mechanism depends on two molecular features. First, R works at a 
constant rate independent of its substrate, unmethylated sites on the receptors. This constant 
rate occurs because R is found at such low numbers and works so slowly that it always has a 
receptor to which it can add a methyl group (until all methylation sites are modified, a limit 
in which adaptation breaks down). R thus adds methyl groups at a rate VRR, where R is the 
number of R proteins.
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The second essential feature is that the enzyme B works only on active receptors, X*. 
Active receptors have a conformation that exposes the methyl groups and allows B to 
remove them. Therefore, B removes methyl groups at a rate VBBX*, where B is the number 
of B proteins in the cell.

The rate of change of the total number of methyl groups bound to the receptors, m, is 
given by the difference between the rates of adding methyl by R and removing them by B:

 
dm
dt V R V BXR B= − *

 (9.4.1)

The steady state solution (dm/dt = 0) occurs at:

 X V R V Bst R B
* = /  (9.4.2)

Importantly, Xst
*  does not depend on attractant concentration. This means that our system 

always returns to the same activity level regardless of input signal: we have exact adaptation.
A rate plot of this equation, Figure 9.14, shows that the steady state is stable: if X* is smaller 

than Xst
* , methylation exceeds demethylation, and as a result X* rises, stopping when X X* *= st. 

Similarly, X* flows back to steady state if it is too high. The important point is that Xst
*  does 

not depend on attractant or repellant levels. Changing parameters like R and B changes the 
baseline level Xst

* . But for a given R and B, activity X* always returns to its baseline level Xst
* .

Figure 9.13 shows the dynamics of this model for two sets of parameters, in which R levels 
are varied by a factor of 2. It is seen that the steady-state activity changes, but adaptation 
remains exact, indicating that the model is robust.

Let’s review how this mechanism works. Initially the system is at steady state Xst
*  (Figure 

9.15, timepoint [a]). When attractant S is added, it binds the receptors and reduces their 
activity (Figure 9.15, timepoint [b]). Activity X* drops below Xst

*  within 0.1 sec. This 
causes the abrupt initial drop in tumbling frequency that is observed in the experiments. 
Adaptation occurs because B only works on the active receptors. The rate of demethylation 
by B is reduced because of the decrease in active receptors caused by the attractant. R, on 
the other hand, continues to methylate receptors at a constant rate. Therefore, methylation 
m gradually increases (Figure 9.15 timepoint 
[c]). Methylation increases receptor activity. 
Steady state is reached when the number of active 
receptors reaches a level that balances the effects of 
R and B, returning to the steady-state activity level 
Xst

*  (Figure 9.15 timepoint [d]). The activity is equal 
to the pre-attractant activity, despite the presence 
of attractant. We have exact adaptation.

Exact adaptation occurs for a wide range of 
variations in any of the parameters of the model, 
such as VR, VB, R and B. In contrast, the value of 
the steady-state activity to which the cells adapt 
depends on these parameters. In other words, 
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steady-state activity is a fine-tuned feature of this model (Figure 9.13). Exact adaptation, in 
which the steady state does not depend on ligand levels, is a robust feature of the model and 
does not depend on the precise values of the biochemical parameters.

There are limits to robustness – for example, if receptors become fully methylated, they 
can no longer compensate for attractants. Indeed, exact adaptation is broken in the case 
of some attractants such as serine: the serine receptor (Tsr), even when fully methylated, 
cannot compensate for high concentrations of serine, and there is no exact adaptation at 
high concentrations of serine.

Robustness of exact adaptation in this model depends on B working only on active 
receptors, and not on receptors that are in their inactive state. This is a specific biochemical 
detail that is essential for robust adaptation. The assumption that B works only on active 
receptors is not unrealistic, because proteins can be exquisitely specific in discriminating 
between molecular states. Relaxing this assumption by allowing a small relative rate ε for 
B action on inactive receptors entails a loss of exact adaptation by a factor on the order of ε.

9.4.1 Robust Adaptation and Integral Feedback

At the heart of this mechanism is a feedback loop called integral feedback (Yi et al., 2000), 
which is a central principle in engineering. In integral feedback, there is a slow component 
(methylation in our case) which integrates an “error” over time, and acts to decrease the 
error. In chemotaxis, the error is the difference between the activity and the steady-state 
activity: error X Xst= −* *. The power of integral feedback is that as long as the error is not 
zero, the integrator keeps accumulating, and the feedback grows until it forces the error to 
go to zero. There is no choice for the system but to return to Xst

* .
The mapping of the Barkai–Leibler model to integral feedback is easiest to see by 

rewriting the equation for methylation dynamics:

 
dm
dt =V B X XB st( ∗ ∗− )

 (9.4.3)
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Solving this equation by taking an integral over time on both sides shows that methylation 
integrates over the error:

 m t X X dt error t dtst( ) ~ ~ ( )* *∫ −( ) ∫  (9.4.4) 

Because of this integrator effect, the feedback does not stop until the error is zero (until 
X Xst

* *= ). Even a small error keeps being integrated over time to lead to a large feedback 
signal. Linearity is not crucial here: It is enough that methylation changes as a decreasing 
function of X*, dmdt g X/ ( ),*=  which crosses zero at Xst

* , g Xst( )* = 0, to ensure integral 
feedback and exact adaptation.

Engineers use integral feedback to achieve exact adaptation in many familiar situations. 
For example, integral feedback ensures that a heater can keep the temperature T of a room at a 
desired set point Tst. In this integral feedback controller, the power to the heater is governed by the 
integrated error T − Tst. The power changes slowly and is analogous to methylation (Exercise 9.6).

These equations for ligand binding and methylation capture many experiments on the 
dynamic response to changing ligands. We will use this model, which is a version of a model 
presented by Tu, Shimizu and Berg (2008), also in the next chapter. The model becomes 
simpler when we use the receptor binding constant K as a variable instead of methylation 
m. To do so, we use the relation K ∼ eγm and hence dK/dt ∼ K dm/dt. We also use as the 
output the receptor activity normalized by its maximal value a = X*/Xmax:

 
dK
dt cK a ast= −( )

 a S K n= +1 1/( ( ) )/  (9.4.5)

Parameters that match experimental 
data are ast = 0.3, c = 1/min and n = 6. 
Figure 9.16 shows how the activity a drops 
after a step addition of attractant, and 
shows a pronounced pulse when attractant 
is removed. Exact adaptation occurs in all 
cases, as the binding constant K slowly 
adjusts to the changes in input.

The binding constant K acts like an 
internal representation of the external 
signal S. It’s as if the receptor adjusts its half-
way point K to be sensitive near the new 
level of attractant. This is like gain-control 
in a camera, which adjusts its sensitivity to 
the ambient level of light. Without exact 
adaptation, the receptors could not be 
sensitive over many orders of magnitude of 
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attractant levels, any more than a camera without gain control could work across orders of 
magnitude of light.

9.4.2  Experiments Show That Exact Adaptation Is Robust, Whereas 
Steady-State Activity and Adaptation Times Are Fine-Tuned

An experimental test of robustness employed genetically engineered E. coli strains, which 
allowed controlled changes in the concentration of each of the chemotaxis proteins (Alon 
et al., 1999). This control was achieved by first deleting the gene for one chemotaxis protein 
(for example, R) from the chromosome, and then introducing into the cell a copy of the gene 
under control of an inducible promoter (the lac promoter). Thus, expression of the protein 
was controlled by means of an externally added chemical inducer (IPTG). The more inducer 
added, the higher the R concentration in the cells. In this way, R levels were varied from 0.5 
to 50 times their wild-type levels. The population response of these cells to a saturating step 
of attractant was monitored using video microscopy on swimming cells. The experiment 
was carried out with changes in the expression levels of different chemotaxis proteins.

The steady-state tumbling frequency and the adaptation time varied with the levels of 
the proteins that make up the chemotaxis network (Figure 9.17). For example, steady-state 

FIGURE 9.17 Adapted from (Alon et al., 1999).
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tumbling frequency increased with R levels, whereas adaptation time decreased. Despite 
these variations, exact adaptation remained robust to within experimental error. These 
results support the robust model for exact adaptation.

This experiment, which took 3 years, was the way that I transitioned from theoretical 
physics to experimental biology in my postdoc with Stanislas Leibler at Princeton. I got a 
lot of help from Mike Surrette who was a postdoc working on bacterial chemotaxis in the 
Stock lab next door. My fascination with the robust model was powerful enough to help me 
make the transformation from theorist to experimentalist.

9.5 INDIVIDUALITY AND ROBUSTNESS IN BACTERIAL CHEMOTAXIS
Spudich and Koshland (1976) observed that genetically identical bacterial cells appear to 
have an individual character as they perform chemotaxis. Some cells are “nervous” and 
tumble more frequently than others, whereas other cells are “relaxed” and swim with fewer 
tumbles than the norm. These individual characteristics of each cell last for tens of minutes. 
The adaptation time to an attractant stimulus also varies from cell to cell. Interestingly, 
these two features are correlated: the steady-state tumbling frequency f in a given cell is 
inversely correlated with its adaptation time, τ, that is, f ∼ 1/τ.

The robust model for bacterial chemotaxis can supply an explanation for these 
chemotactic personalities of E. coli cells. The explanation is based on the cell–cell variation 
in chemotaxis protein levels, and particularly in the least abundant protein in the system, R. 
Variations in R affect the tumbling frequency f and the adaptation time τ in opposite 
directions. The Barkai–Leibler model with multiple methylation sites suggests that f ∼ R 
and τ ∼ 1/R. Thus, the model predicts that f ∼ 1/τ, explaining the observed correlation in 
these two features (see solved Exercise 9.5).5

Despite the cell–cell variability in tumbling frequency, the vast majority of the cells in 
a population perform chemotaxis and climb gradients of attractants. On the other hand, 
mutant cells that have wild-type tumbling frequency but cannot adapt precisely (such as 
certain mutants in both R and B) are severely defective in chemotaxis ability. Evidently, 
tumbling frequency need not be precisely tuned for successful chemotaxis, whereas exact 
adaptation is important for most ligands.

In fact, there is an advantage to having 
a range of tumbling frequencies in a 
population of bacteria. This is because 
bacteria cannot know in advance which 
type of medium they will be moving 
through (Celani and Vergassola, 2010). In 
a free liquid, it is optimal to have long runs 
to sample space broadly (Figure 9.18). But 
in a liquid dense with obstacles, as occurs 
in the crowded environments of the soil or 

5 Detailed stochastic simulations of this protein circuit were pioneered by D. Bray and colleagues (Shimizu, Aksenov and 
Bray, 2003).
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the intestine, it is optimal to have shorter runs to avoid being stuck against an obstacle for 
long times. Thus, variation in protein levels can generate a bet hedging strategy in which 
different individuals are suited for different possible future environments. Not all of the 
eggs are in one basket. Thanks to robustness, no matter what the steady-state tumbling 
frequency is, every individual will have exact adaptation, and hence be able to work across 
many orders of magnitude of signal.

In summary, the bacterial chemotaxis circuit has a design such that a key feature – exact 
adaptation – is robust with respect to variations in protein levels. Other features, such as 
steady-state activity and adaptation times, are fine-tuned. These latter features show variations 
within a population due to intrinsic cell–cell variations in protein levels. Because of the robust 
design, the intrinsic variability in the cell’s protein levels does not abolish exact adaptation.

As a theorist, one can usually write many different models to describe a given biological 
system, especially if some of the biochemical interactions are not fully characterized. 
Of these models, only very few will typically be robust with respect to variations in the 
components. Thus, the robustness principle can help narrow down the range of models that 
work on paper to the few that can work in the cell. Robust design is an important factor in 
determining the specific types of circuits that appear in cells.
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EXERCISES

 9.1 Repellent: Repellent binding increases receptor activity. Explain how the chemotaxis 
circuit responds to a step of repellent.

 9.2 Reduction in attractant: Suppose attractant is removed in a step-like manner. What is 
the response of the cells?

 9.3 Sensory adaptation: Explain how the idea of exact adaptation applies to human senses: 
vision, hearing and smell. Are there senses which do not show exact adaptation? What 
might be the reason that some senses do and others do not show exact adaptation?

 9.4 Fine-tuned model for exact adaptation: In this exercise, we will solve a simplified 
version of a theoretical model of chemotaxis first proposed by Albert Goldbeter, 



Robustness in Bacterial Chemotaxis    ◾    167

Lee Segel and colleagues (Knox 
et  al., 1986). This study formed an 
important basis for later theoretical 
work on the chemotaxis system. We 
will see that exact adaptation in this 
model is fine-tuned.

  In the model (Figure 9.19), the 
receptor  complex X can become 
methylated Xm under the action 
of R, and demethylated by B. For 
simplicity, we ignore the precise number of methyl groups per receptor and group 
together all methylated receptors into one variable Xm. Only the methylated 
receptors are active, with activity a0 per methylated receptor; unmethylated 
receptors are inactive.

  To describe the dynamics of receptor methylation, we need to model the actions of 
the methylating enzyme R and the demethylating enzyme B. R works at saturation, 
(i.e., at a rate that is independent of the concentration of its substrate), with rate VR. 
In contrast, B works with Michaelis–Menten kinetics (Appendix A.7). Hence, the rate 
of change of Xm is the difference of the methylation and demethylation rates:

 
dX
dt V R V BX K Xm

R B m m= − +/( )
 

(P9.1)

  The parameters R and B denote the concentrations of R and B. At steady state, 
dXm/dt = 0, the dynamics reach a steady-state level of methylated receptor:

 X KV R V B V Rm R B R= −/( ) (P9.2)

  Recall that the unmethylated receptor has zero activity, whereas Xm has activity a0 per 
receptor, resulting in a total steady-state activity of:

 A a Xm0 0= steady-state activity with no attractant (P9.3)

  The activity of the receptors, A0, governs the rate at which Y is phosphorylated to create 
Yp which generates tumbles. The activity A0, therefore, determines the steady-state 
tumbling frequency, f = f(A0).

  Now saturating attractant is added to the cells, so that all of the receptors bind attractant 
ligand. The attractant causes receptors to assume their inactive conformation. As 
a result, the activity per methylated receptor drops to a1 ≪ a0. Therefore, the total 
activity drops to low values right after attractant is added:

 A a Xm1 1=  (P9.4)

tumbling

less tumbling

m

m
YYP

B

B

attractant

YP

R

R

FIGURE 9.19 



168   ◾   An Introduction to Systems Biology

  Gradually, however, the methylation feedback loop kicks in. In this loop, because 
the receptors bind attractant ligand, the rate of B action is decreased, from VB to ′VB : 
demethylation rate is reduced. Thus, this model assumes that the rate of B is a function 
of attractant concentration. As a result, receptor methylation Xm begins to increase 
due to continual methylation by R. Receptor methylation at steady state reaches a 
balance between methylation and demethylation, just as in Equation P9.2, but with 
the demethylation rate set to its new value, ′VB :

 ′ = ′ −X KV R V B V Rm R B R/( ) (P9.5)

  resulting in a new steady-state activity:

 A a Xm2 1= ′ steady-state activity with attractant (P9.6)

  Exact adaptation means that the steady-state activity before attractant addition is 
equal to the steady-state activity in the presence of ligand:

 A A0 2= exact adaptation (P9.7)

  To attain exact adaptation, the increase in receptor methylation must precisely balance 
the decrease in receptor activity caused by the ligand. This results in a relation that 
must be fulfilled by the parameters of the system, based on equating Equations P9.2 
and P9.5:

 a KV R V B V R a KV R V B V RR B R R B R0 1/( ) /( )− = ′ −  (P9.8)

  Let’s play with numbers to get a feel for how exact adaptation works in this model. 
Suppose that ligand binding causes a 10-fold reduction in receptor activity: activity 
per receptor before ligand binding is a0 = 10 and after ligand binding is a1 = 1. Let’s 
use K = 1, VRR = 1, VBB = 2 (units are not important for the present discussion). 
These values lead to an activity in the absence of attractant of:

 
A a KV R

V B V R
R

B R
0

0 10 2 1 10=
−

= − =/( )
 

(P9.9)

  After attractant addition, activity per receptor drops 10-fold to a1 = 1. In order to 
reach exact adaptation, Equation P9.8 constrains ′V BB  to drop to a specific value, 
namely, ′ =V BB 1 1. , so that the activity adapts to the pre-stimulus level:

 A a KV R V B V RR B R2 1 1 1 1 1 10= ′ − = − =( ) / ( . )  (P9.10)

  Exact adaptation in this model depends on a strict relation between the biochemical 
parameters. What happens if the parameters change? For example, suppose the 
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concentration of protein R is reduced by a factor of 20%, so that VRR goes from 1 to 
0.8. In this case:

 A0 = 10·0.8/(2 – 0.8) = 6.66 (P9.11)

  and

 A2 = 1·0.8/(1.1 – 0.8) = 2.33 (P9.12)

  We see that exact adaptation is lost, since A2 is no longer equal to A0. In this example, 
a modest 20% change in the level of a protein (R) caused almost a threefold difference 
in the steady state activities with and without ligand. Exact adaptation is a fine-tuned 
property in this model.

 9.5 Robust model with two methylation sites: In this exercise we solve the Barkai–Leibler 
model with two methylation sites. The receptor X can be methylated on two positions, 
and can thus have zero, one or two methyl groups, denoted X0, X1 and X2. The enzyme 
R works at saturation (zero-order kinetics) to methylate X0 and X1. The demethylating 
enzyme B works only on the active receptor conformation, removing methyl groups 
with equal rates from X X1 2

* *and . For simplicity, assume that B works with first-order 
kinetics. The reactions are:

methylation of X0    X0 → X1 at rate R VR X0/(X1 + X0),

  the last factor occurs because R is distributed between its substrates X0 and X1:

methylation of X1    X1 → X2 at rate R VR X1/(X1 + X0)

demethylation of X1*    X1* → X0 at rate B VB  X1*

demethylation of X2*   X2* → X1 at rate B VB  X2*

 a. What is the steady-state activity A =  X1* + X2*? Does it depend on the concentration 
of ligand S? Is there exact adaptation?

 b. Estimate the adaptation time, the time needed for 50% adaptation after addition 
of saturating attractant. Note that to adapt to saturating attractant, virtually all of 
the receptors need to be doubly methylated.

 c. Explain the finding of Spudich and Koshland (1976) that A ∼ 1/τ using the model, 
based on cell–cell variations in the concentration of R (Barkai and Leibler, 1997).

Solution:

 a. The rates of change of the doubly methylated receptor concentration and the non-
methylated receptor concentration are:

 d(X2+  X2*)/dt = R VR X1/(X1 + X0) – B VB  X2* (P9.13)



170   ◾   An Introduction to Systems Biology

 dX0/dt = –R VR X0/(X0 + X1) + B VB X1* (P9.14)

 Subtracting these two equations yields:

 d(X2+ X2* )/dt – dX0/dt = R VR − B VB (X1* + X2*) = R VR – B VB A (P9.15)

  The steady-state activity A = X1* + X2* is, therefore, (setting d/dt terms to zero):

 Ast = R VR/B VB (P9.16)

  This activity does not depend on the ligand concentration. Therefore, the 
mechanism displays exact adaptation.

 b. In the case of saturating ligand, receptors in all of their forms bind attractant 
ligand. The attractant reduces the activity of all methylated receptors, and thus at 
initial times X1

* is small. In addition, when adaptation is completed, X1
* is small 

because the majority of receptors need to be doubly methylated in order to balance 
the strong inhibitory effect of the saturating attractant. Thus, X1

* is relatively small 
throughout most of the dynamics. Since X1

* is small, the demethylation flux from 
X1

* to X0 is small. Hence, to a good approximation, X0 dynamics reflect only a 
reduction due to the action of R, because the term with B in Equation P9.14 is 
negligible:

 dX0/dt ≈ –R VR X0/(X0 + X1) (P9.17)

  so that X0 drops with time. At initial times (before attractant addition), let us denote 
by q the fraction of X0 among the possible substrates of R, q = X0/(X0 + X1). Thus, 
the initial slope of the drop in X0 is – q R VR. The adaptation time to saturating 
ligand (time to recover to 50% activity) is the time needed to build enough 
methylated receptors to restore activity, at the expense of most of the unmethylated 
ones. Thus, it is approximately the time for X0 to decline to 50% of its initial value. 
This adaptation time is equal to the number of methylation reactions needed (i.e., 
methylations equal to 50% of X0) divided by the rate at which they occur, namely 
(ignoring the changes in q over this time):

 τ ∼ 0.5 X0/q R VR (P9.18)

  Thus, the adaptation time becomes shorter the more R enzymes exist in the cell. 
This makes sense because the more R enzymes there are, the faster methylation 
occurs and the faster the adaptation.

Note that the simplified model discussed in the text has a different adaptation 
time, governed by B and not R. The adaptation time is generally governed by R in 
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realistic models with more than one methylation site (Barkai and Leibler, 1997). 
In experiments, the adaptation time is found to decrease with R (Figure 9.17), in 
agreement with the multi-site models.

 c. We saw above that the adaptation time varies as τ ∼ 1/R (Equation P9.18) and the 
steady-state activity varies as Ast ∼ R (Equation P9.16). Thus, if R is the protein 
with the largest variation between genetically identical cells, one would expect that 
Ast ∼ 1/τ, as observed. The protein R is the least abundant chemotaxis signaling 
protein in E. coli, with on the order of 100 copies per cell, whereas there are on the 
order of several thousand copies of B, Y, Z and X per cell. R, therefore, is the most 
prone to large relative stochastic variations.

 9.6 Integral feedback: A heater heats a room. The room temperature T increases at a rate 
proportional to the power of the heater, P, to other sources of heat, S, and decreases 
due to thermal diffusion to the outside:

 dT/dt = aP + S – bT (P9.19)

  An integral feedback controller (a thermostat) is placed in order to keep the room 
temperature at a desired point T0. In this feedback loop, the power to the heater is 
proportional to the integral over time of the error in temperature, T – T0:

 P = P0 – k ∫ (T – T0) dt (P9.20)

This feedback loop thus reduces the power to the heater if the room temperature is too 
high, T > T0, and increases the power when the room temperature is too low. Taking 
the time derivative of the power, we find:

 dP/dt = –k (T – T0) (P9.21)

 a. Show that the steady-state temperature is T0 and that this steady state does not 
depend on any of the system parameters, including the room’s thermal coupling 
to the heater, a, the additional heat sources, S, the room’s thermal coupling with 
the outside, b, or the time constant of the integrator, k. In other words, integral 
feedback shows robust exact adaptation for the room temperature.

 b. Demonstrate that integral feedback is the only solution that shows robust exact 
adaptation of the room temperature, out of all possible linear control systems. That 
is, assume a general linear form for the controller:

 dP/dt = c1T + c2P + c3 (P9.22)

  and show that integral feedback as a structural feature of the system is necessary 
and sufficient for robust exact adaptation.
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 9.7 Zero-order ultrasensitivity (Goldbeter and Koshland, 1981): In this exercise, we will 
see how two antagonistic enzymes can generate a sharp switch, provided that they 
work near their zero-order range. A protein X can be in a modified X1 or unmodified 
X0 state. Modification is carried out by enzyme E1, and demodification by enzyme E2. 
The rate V2 of E2 is constant, whereas the rate V1 of E1 is governed by an external signal. 
Consider V1 to be the input and X1 to be the output of this system.

 a. Assume that E1 and E2 work with first-order kinetics. What is the output X1 as a 
function of input V1.

 b. What is the sensitivity of this circuit, defined as the relative change in X1 per 
relative change in V1, S(X1, V1) = (V1/X1)dX1/dV1.

 c. Assume now that E1 and E2 work with zero-order kinetics. What is X1 as a function 
of V1? Note that X0 + X1 sum up to the total concentration Xtot.

 d. What is the sensitivity of the zero-order circuit? Explain why this is called “zero-
order ultra-sensitivity.”

 e. Compare the switching time (time to 50% change in X1 upon a change in V1) 
between the cases of (a) and (c) above.

 9.8 Same operon: CheY, CheZ, CheR and CheB are all on one operon, and are thus all 
transcribed from one long mRNA.

 i. Explain why this reduces the relative fluctuations in their protein numbers as 
opposed to having each transcribed from its own mRNA.

 ii. How might this reduced noise affect the robustness of exact adaptation, and of the 
steady-state activity? (Kollmann et al., 2005).

 9.9 Linear integral feedback cannot filter out ramps of input: Suppose that the input signal 
rises linearly with time, s t rt( ) = . Show that a linear integral feedback circuit cannot 
adapt precisely:

 Use  dxdt k y y= −( )0  and dy
dt s x y= − −( )t .

 a. Solve the equations.

 b. What is the steady-state level of the output y as a function of the slope of the ramp, r?

 c. Do you think there is a circuit that can filter out such input ramps (show exact 
adaptation to ramps)?
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C h a p t e r  10

Fold-Change Detection

In this chapter, we continue to explore the sensory systems of cells, building on bacterial 
chemotaxis. Most types of biological circuits we have looked at so far are sensitive to 
absolute signal levels. Here, we will study the remarkable ability of certain biological circuits 
to respond to relative changes in signal, instead of absolute changes.

10.1 UNIVERSAL FEATURES OF SENSORY SYSTEMS
Sensory systems have certain universal features that make them good measurement 
devices. One such feature is exact adaptation, found in the bacterial chemotaxis system of 
the previous chapter, and in animal vision, olfaction and hearing. Exact adaptation is the 
ability to perfectly adjust to the background signal. When we go from sunlight into a dark 
room lit by a candle, at first we don’t see very well but after a while our pupils dilate to let 
in more light and our eyes adjust.

A second universal feature is the sensing of relative changes rather than absolute 
changes. Suppose that we adapt to a room lit by a candle, and then we add a second candle. 
We sense a large change in light. But if we add the same candle to a room lit by a chandelier 
with 50 candles, we barely notice the change. The absolute number of photons added is the 
same, one candle’s worth, but the relative change is very different.

Response to relative changes was described in human senses by Weber in the nineteenth 
century. For example, Weber studied the sense of weight perception. He let people hold 
a weight x0 for a while, and then slowly added small weights to measure the minimal 
detectable increase Δxmin, at which people first felt the extra weight. The minimal detectable 
increase was proportional to the initial weight, Δxmin = kx0, where k is Weber’s constant. 
This is called Weber’s law: the just-noticeable difference is proportional to the background 
signal. If k = 0.1, for example, you can detect 10 g against a background of 100 g, but you 
only detect 100 g against a background of 1 kilo. The same law applies to detecting light or 
sound, with a different constant k for each sense.

In all cases, sensing of relative changes is found for an intermediate range of several 
decades of input signal (typically 2–5 decades). Relative sensing is lost at very weak signals 
on the brink of detection or very strong signals that saturate the receptors.
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Even psychological senses seem to work in terms of relative changes. For example, 
psychologists measure subjective well-being using questionnaires. Each person has an 
individual steady-state level of well-being. Positive events such as getting a raise in salary 
increase well-being for a while, but then well-being adapts back to baseline. The immediate 
change in well-being seems to depend on relative changes. If you have been earning $10 a 
week, a $10 raise is cause for celebration. If you have been earning $1000 a week, the same 
$10 raise will go almost unnoticed.

Many sensory systems of cells also show these universal features – exact adaptation 
and sensing of relative changes. For cells, as well as for animals, sensing relative changes 
is important in order to be robust to noise in the input. To respond correctly, the cell must 
tell the difference between a true input signal and noise.

Suppose that a cell senses a signal molecule by means of receptors. It suddenly experiences 
an increase of 10 binding events per second of the signal molecule to the receptors. Is this 
a true signal or just noise?

The answer depends on the background level of the input signal – or in other words, on 
the recent context of the signal. If the cell has been sitting for a while in a background of 
1 binding event per second, a rise of 10/sec is an eyebrow-raising 10-fold increase, and is 
likely to be important. If instead the cell has been soaking in 1000 binding events/sec, the 
same increase of 10/sec is tiny (even smaller than the typical noise of 1000 30∼ /sec), and 
should be rejected as a fluctuation. Such decisions had best be based on relative changes, 
not absolute changes.

In this chapter, we will ask how relative changes are sensed. We’ll begin with bacterial 
chemotaxis, and go on to ask which kinds of circuits in general can sense relative changes.

10.2  FOLD-CHANGE DETECTION IN BACTERIAL CHEMOTAXIS
The chemotaxis system of E. coli can sense relative changes across several orders of 
magnitude of background signal. This wide dynamic range was discovered by Mesibov, 
Ordal and Adler (1973). They placed swimming E. coli in a dish and let them adapt to a 
background level S0 of the attractant alpha-methyl aspartate. Then they placed a pipette with 
attractant concentration that is 3.2 times higher than S0 into the dish (Figure 10.1). They 
repeated this experiment with different levels of S0. The number of bacteria that swam into 
the pipette in an hour was roughly the same across several orders of magnitude of attractant 
levels (Figure 10.2). It made no difference whether concentrations were in micromolar or 
millimolar, bacteria could still detect the 
3.2-fold higher concentration of attractant 
in the pipette.

A direct test for relative sensing in bacterial 
chemotaxis was presented by Milena Lazova, 
Tom Shimizu and colleagues (Lazova et al., 
2011). They used a microfluidic device to 
present E. coli cells with temporal changes 
in the concentration of the attractant alpha-
methyl aspartate, S(t). The signals were all FIGURE 10.1 
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based on the same pattern: S(t) started at 
a background level S0 and then wiggled up 
and down. Then they multiplied the same 
signal, including its background, by a factor 
λ. In this way, they presented the bacteria 
with a series of signals that had a scale λ that 
ranged across several orders of magnitude. 
This experimental design provided input 
signals with the same fold change over the 
background, F(t) = S(t)/S0, but very different 
absolute changes (Figure 10.3).

Lazova and Shimizu measured the 
chemotaxis output, which we denote a(t), 
using a fluorescence system developed by 
Sourjik and Berg, in which the interaction 
of CheY and flagellar motor is accurately 
visualized using f luorescence energy 
transfer (FRET). They found that the 
output was invariant to the multiplicative 
constant λ across three decades of 
background concentration, from about 
20 µM to 3 mM of attractant. Bacterial 
chemotaxis senses relative changes.

10.2.1  Definition of Fold-Change 
Detection (FCD)

Let’s define what we mean by sensing relative 
changes more precisely. Weber’s law states that 
the just-noticable-difference in input signal 
is proportional to the background. Here, we 
will generalize Weber’s law and apply it to the 
entire dynamic response curve of the system. 
We want the entire shape of the output curve 
to depend only on the signal normalized 
by its background, which is called the fold 
change of the signal. Consider a system with 
output a(t) that is adapted to a background 
signal S0. Now let the signal change with time, 
S(t). We define fold-change detection (FCD) 
as a response curve a(t) whose entire shape, 
including peak amplitude and response time, 
depends only on the relative change in input 
S(t)/S0, and not on the absolute change.

FIGURE 10.2 Adapted from (Mesibov, Ordal and 
Adler 1973).
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For example, an input step from level 
S = 1 to level S = 2 yields exactly the same 
response curve as a step from 2 to 4 (Figure 
10.4). This is because both steps have the  
same twofold change, even though the 
second step is larger in absolute terms. 
A step from 1 to 3 will yield a larger response, 
because the fold change is larger. A step from 
3 to 9 will have a response identical to that 
of the step from 1 to 3.

If we present a system with FCD with 
a series of steps with the same absolute 
levels, say from 1 to 2 to 3 to 4, the response will diminish because the fold change gets 
smaller and smaller (Figure 10.5).

10.2.2  The Chemotaxis Circuit Provides FCD by Means 
of a Nonlinear Integral-Feedback Loop

Let’s understand how bacterial chemotaxis achieves FCD. The intuitive mechanism is 
that output activity a(t) is a function of attractant signal S(t) divided by its binding 
constant to the receptors K(t), a = f(S/K). The binding constant K rises proportionally to 
the background signal thanks to the adaptation system. Thus, if input S is multiplied by 
a factor λ, so is K, and hence f(S/K) remains unchanged. K is a slowly changing memory 
that normalizes out the background signal. Let’s solve the chemotaxis model to see the 
origin of FCD.

Solved Example 10.1: The Robust Model for Bacterial Chemotaxis Shows FCD

The equations for the model of bacteria chemotaxis (Equations 9.4.5) show that 
activity a(t) is a Hill function of the attractant S(t)
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The binding constant K(t) is determined by the methylation reactions, which in 
turn depend on activity a, providing integral feedback to maintain the steady-state 
activity ast:
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Suppose the system adapts to a constant 
background attractant S0. To reach ast, 
Equation 10.2.2 adjusts K to match the 
background S0 so that f(S0/Kst) = ast 
(Figure 10.6). The solution is

    Kst = S0  /f  –1ast  (10.2.3)

If we multiply S0 by λ, and let the 
system adapt, it goes back to the same 
output ast thanks to exact adaptation. 
Thus, K must also rise by the same factor 
of λ (Figure 10.6), because this is the only way that the ratio S/K stays at the proper 
value f(λS0/λK) = f(S0/K) = ast. In other words, at steady state K is proportional to the 
attractant background.

Now let the input S(t) change with time. To establish FCD, we need to show that if 
we multiply S(t) by any positive constant λ, we still get the same output dynamics a(t). 
To test this, we use an important technique that rescales S and K to dimensionless 
variables. Our strategy will be to use these dimensionless variables to obtain dynamic 
equations that do not depend on input S(t) directly, but instead depend only on the 
fold change in input. We will also find that the initial conditions do not depend on 
S(t). Since both the differential equations and their initial conditions depend only 
on fold change, so does the entire dynamics of the output  a(t).

Suppose we begin at steady state with S = S0. We define the fold change as 
F(t) = S(t)/S0, and the scaled binding constant as �K t K t S( ) ( )= / 0. First note that at steady 
state, these variables do not depend on attractant, because F = 1 and �K f ast= −1 1/ ( ), 
from Equation 10.2.3. The scaled equations can be found by plugging in these new 
variables into Equations 10.2.1 and 10.2.2:
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dt cK a ast
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Note that S(t) does not appear in these equations, only the fold change F(t). In order 
to prove that the entire dynamics is independent on S, we only need to show that 
the initial conditions, �K( )t = 0  and F(t = 0), also do not depend on S. As mentioned 
above, at steady state these scaled variables have S-independent values, F(0) = 1 and 
�K f ast= −1 1/ ( ). Since the differential equations and their initial conditions do not 
depend on S0, the entire dynamics of the variables, including the output a(t), does 
not depend on S0. You can multiply S(t) by any number λ, and because this keeps 

FIGURE 10.6 
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fold F(t) unchanged, the output a(t) won’t be affected by λ. We conclude that the 
output a(t) is determined only by the fold change in input, hence FCD.

10.3 FCD AND EXACT ADAPTATION
Bacterial chemotaxis thus has FCD. It also has exact adaptation as we saw in the previous 
chapter, in which the output returns to a baseline value that is independent of any constant 
background signal. Is it a coincidence that both of these features, FCD and exact adaptation, 
appear in the same system? The answer is no: any system with FCD must show exact 
adaptation. This is because FCD demands that the output remain the same if we multiply 
the input S0 by any λ > 0. Thus, steady-state output ast is independent of the background 
signal, precisely the definition of exact adaptation.

Does every system with exact adaptation show FCD? The answer again is no. Exact 
adaptation by itself is not enough to guarantee FCD. In fact, the best-known circuit for exact 
adaptation in engineering, linear integral feedback, does not show FCD, nor does any other 
linear circuit. This is because linear equations show output changes that are proportional to 
absolute (not relative) input changes (Exercise 10.13). The chemotaxis circuit shows FCD by 
virtue of the nonlinear nature of its integral feedback loop, in which K multiplies the error 
signal: dK/dt ∼ K(ast − a) rather than the linear form dK/dt ∼ ast − a. That extra K gives a 
logarithmic flavor to the equation, dlog(K)/dt ∼ ast − a, needed to reject the input scale λ. 
The log comes from  the fact that dlog(K)/dt = (1/K) dK/dt. To emphasize the difference from 
linear integral feedback, this circuit is termed a nonlinear integral feedback loop (NLIFBL).

FCD is a pretty tough demand on a system – the entire dynamical response must depend 
only on fold change. Are there any other circuits that show FCD?

10.4 THE INCOHERENT FEEDFORWARD LOOP CAN SHOW FCD
Demanding FCD narrows down the possible circuits to a very few. Intriguingly, among 
these few is a common network motif. This motif is the incoherent type-1 FFL (I1-FFL), 
our friend from Chapter 3. It was the first circuit shown to have FCD, by Lea Goentoro and 
Marc Kirschner et al. (Goentoro et al., 2009).

In the I1-FFL, the input X activates an output gene Z and its repressor Y. In Chapter 3, 
we modeled the I1-FFL using logic input functions (AND and OR gates). To see its FCD 
property, we need a more graded regulation.

The I1-FFL can provide FCD when (i) the binding of X to its target promoters is weak 
(so that Michaelis–Menten terms become approximately linear: X/(Kx + X) ∼ X/Kx), and 
(ii) binding of the repressor Y is strong (i.e., when Y exceeds its binding constant Ky to the 
Z promoter, Y >> KY, so that the Michaelis–Menten binding term 1/(1 + [Y/KY]) becomes, 
to a good approximation, KY/Y). In this case, we can write

 
dY
dt X Y= −β α1 1  

(10.4.1)

 
dZ
dt

X
Y Z= −

β
α2

2  
(10.4.2)
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Upon a step of X, output Z first rises, 
but then Y rises to repress Z production, 
forming a pulse of output Z that adapts 
exactly to its previous steady state (Figure 
10.7). The repressor Y does not adapt. 
Instead, it tracks the input level X, like an 
internal representation of the input. As in 
chemotaxis, the ratio X/Y in the second 
equation normalizes out the input scale. 
In the following solved exercise, we show 
that these equations have FCD, using 
dimensionless variables.

Solved Example 10.2: The I1-FFL Can Show FCD

Show that Equations 10.4.1 and 10.4.2 have FCD.

Solution:
First, let’s see if the circuit has exact adaptation. To test for exact adaptation, we solve 
the steady-state condition dY/dt = 0, dZ/dt = 0 for a constant input X0. This yields 
Yst = β1X0/α1, so that the repressor level Y is proportional to the background input. 
The steady-state output is Zst = β2α1/β1α2, which does not depend on input level X0. 
Thus, Z shows exact adaptation.

Now let the input signal vary with time, X(t). To test for FCD, let’s define new 
variables, as we did for chemotaxis, by rescaling Y to the steady-state input �Y Y X= / 0 
and define the fold change F(t) = X(t)/X0. With these new variables we get, by dividing 
Equation 10.4.1 by X0, scaled equations that depend only on the fold change F(t):

 
dY
dt F Y
�

�= −β α1 1

 
dZ
dt

F
Y

Z= −
β

α2
2�

Thanks to exact adaptation, the initial conditions are independent of X0. The 
dynamic equations and their initial conditions depend only on fold change F, and 
thus the output dynamics Z(t) are completely determined by the fold change in input, 
and hence display FCD.

FCD breaks down in the I1-FFL when Y is too small to ignore the binding 
coefficient KY.

FCD in the I1-FFL circuit occurs for any value of the production and removal rates α1,2 
and β1,2 in Equations 10.4.1 and 10.4.2. These parameters affect the shape of the dynamics, 
by setting the amplitude and response time of the output pulse.
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10.5  A GENERAL CONDITION FOR FCD
The two circuits we saw so far, I1-FFL and the nonlinear 
integral feedback loop (NLIFBL), are the only FCD 
circuits that have been experimentally characterized 
in biological systems to date (Figure  10.8, note that 
node Y in the NLIFBL has autoregulation because K 
in Equation 10.2.2 multiplies its own production rate). 
Are there other possible FCD circuits, and if so, how 
many?

To address this, Oren Shoval, Eduardo Sontag and 
colleagues (Shoval et al., 2010) defined a homogeneity 
condition for FCD by which you can check equations for the FCD property. This condition 
generalizes the dimensionless variable approach we used above. It requires that if the 
input is multiplied by a constant λ, the 
system has an internal variable Y that also 
increases by a factor of λ (or more generally 
systematically changes with λ). The inner 
variable Y is used as a memory that divides 
the output Z, normalizing out λ.

Consider a system with input X, 
output Z and internal variable Y (Figure 
10.9). The dynamics of Y and Z are given 
by the differential equations

 
dY
dt f X Y Z= ( , , )

 
(10.5.1)

 
dZ
dt g X Y Z= ( , , )

 
(10.5.2)

A sufficient condition for FCD is that the system has a stable steady-state solution, that 
the output Z shows exact adaptation and that g and f satisfy the following homogeneity 
conditions for any λ > 0:

 f X Y Z f X Y Z( , , ) ( , , )λ λ λ=  (10.5.3)

 g X Y Z g X Y Z( , , ) ( , , )λ λ =  (10.5.4)

If f is linear, the condition is also necessary.
The proof is essentially the same as for the solved examples above. A generalization in 

which Y can depend more generally on λ is shown in Exercise 10.3.
Both the chemotaxis and the I1-FFL equations above satisfy these homogeneity conditions. 

For the I1-FFL, for example, f(x, y, z) = β1x − α1y, so that f(λx, λy, z) = λf(x, y, z). Similarly, 
g(x, y, z) = β2(x/y) − α2z, so that g(λx, λy, z) = g(x, y, z). In the chemotaxis circuit f(S, K, 
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a) = cK(ast − a), so that f(λS, λK, a) = λf(S, K, a). In contrast, linear integral feedback 
(without the K in front of the parenthesis) does not satisfy the conditions. It shows exact 
adaptation, but f(S, K, a) = c(ast − a), which fails the homogeneity test.

These conditions highlight the fact that details are important for FCD. A different 
implementation of the I1-FFL, called a sniffer (Tyson, Chen and Novak, 2003) in which Y 
inhibits Z not by transcription (dZ/dt = X/Y − Z) but by degradation (dX/dt = X − YZ) 
does not show FCD. FCD is not found in the sniffer because response time depends on 
absolute (and not relative) input changes.

To look for additional types of FCD circuits, Miri Adler, Pablo Szekely, Avi Mayo and 
colleagues (Adler et al., 2017) used these homogeneity conditions to perform an analytic 
scan of a class of half-a-million three-node circuits. Only 0.1% of the circuits showed FCD, 
as opposed to 10% that showed exact adaptation. Due to the enormous number of circuits, 
this 0.1% meant several hundred FCD circuit topologies. Intriguingly, Adler et al. showed 
that the two observed designs, I1-FFL and nonlinear integral feedback loop (NLIFBL), are 
among the handful of circuits that (i) have the minimal number of interaction arrows and 
(ii) optimally trade-off performance in tasks such as large response amplitude and fast 
response time. All other minimal FCD circuits do worse on at least one task. We will study 
such trade-offs in more detail in Chapter 14.

10.6 IDENTIFYING FCD CIRCUITS FROM DYNAMIC MEASUREMENTS
Often, FCD can be observed experimentally using input–output measurements, but the 
architecture of the underlying circuit is not fully known. Can one use dynamic measurements 
to tell if an FCD circuit is feedforward (an I1-FFL) or feedback (like the chemotaxis circuit 
NLIFBL), even if the molecular interactions are not yet known?

The answer is yes, in some cases. I1-FFL and NLIFBL differ, for example, in the way that 
the amplitude of their output pulse depends on the fold change of an input step. You present 
the system with a series of input steps of different fold changes, and measure the maximum 
output in the resulting pulses. A noncooperative I1-FFL has a logarithmic dependence on the 
fold-change F of an input step, whereas the NLIFBL has a linear or power-law dependence 
(Figure 10.10) (Adler, Mayo and Alon, 2014). Interestingly, both circuits have an adaptation 
time that decreases with F.

Feedback and feedforward can also 
sometimes be distinguished by their 
response to pairs of input pulses (Rahi 
et  al., 2017). Another test applies a 
strong input step: if the output shows 
damped  oscillations (sometimes called 
ringing), it must contain a feedback system, 
because purely feedforward circuits never 
ring.

Let’s end this chapter by thinking of 
the functions that FCD can provide to 
biological systems.
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10.7  FCD PROVIDES ROBUSTNESS TO INPUT NOISE 
AND ALLOWS SCALE-INVARIANT SEARCHES

One answer was mentioned in the 
beginning of this chapter, that FCD helps 
sensory systems distinguish between a 
true input signal and noise. FCD responds 
only to changes that are on the same scale 
as the background, weeding out small 
fluctuations. A given input surge is ignored 
or noticed depending on the background 
signal (Figure 10.11). FCD therefore allows 
a wide input dynamic range, by changing 
sensitivity according to background level, 
a feat which in engineering is called gain 
control.

As we saw, FCD has another role: it 
makes the response robust to unwanted 
effects that multiply the input signal by a 
constant λ, whose value cannot be known 
in advance. This solves a crucial problem in cells, as exemplified in an elegant experiment by 
Susan Gaudet and colleagues. Gaudet studied NF-kB in mammalian cells, a transcription 
factor that responds to signals such as tumor-necrosis factor, TNF, by entering the 
nucleus and activating genes for inflammation and stress response. The readout of nuclear 
NF-kB had better be accurate, so that cells can know whether to promote inflammation. 
Inflammation is a massive response that can fight pathogens, but causes tissue damage and 
contributes to cancer and other diseases if it occurs too often.

The challenge for precise signaling is that there is a large variation between cells in the 
total level of NF-kB protein. One cell might have 10,000 NF-kB proteins and its neighbor cell 
might have 30,000. After a given TNF signal, the more NF-kB a cell has, the more will enter 
the nucleus to activate genes. Thus, for the same signal, each cell will see a different amount of 
NF-kB in the nucleus. In other words, an unknowable factor λ – the basal amount of NF-kB 
in each individual cell – multiplies the amount of nuclear TF seen after a given signal. If the 
response of the downstream genes was absolute and not relative, cells would decide whether 
to respond based on an arbitrary signal, the cell-to-cell variation in basal NF-kB.

Gaudet showed that cells resolve this by using an I1-FFL downstream of NF-kB in order 
to respond only to fold change in nuclear NF-kB (Figure 10.12). The role of Y is played by 
inhibitors such as p50 dimers that compete with NF-kB for the same site on target genes, and 
thus inhibit its effects. The I1-FFL allows the cells to get used to the cell-specific level of NF-kB 
and to normalize it away. Such a capability to filter out multiplicative protein noise might 
help explain the prevalence of the I1-FFL in transcription networks from bacteria to humans.

Multiplicative effects with an unknowable factor also occur in human vision. Here, the 
multiplicative factor is ambient light, L. Light levels can vary by almost ten orders of magnitude 
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between midday and a moonless night. Yet we 
can see effectively over much of this range. To 
understand the role of ambient light, imagine 
a visual search for a face in the crowd. We are 
interested in the contrast field R which carries 
information about the face. But our eyes see 
a light input that is the contrast R multiplied 
by the ambient light x = RL. To remove the 
multiplicative constant L, FCD in the visual 
system normalizes out the ambient light, and 
allows us to make an efficient search that is 
invariant to a wide range of light levels.

Here is an interesting detail: At the 
level of the retina, there is no FCD because 
the neuronal output does not show exact 
adaptation but instead a steady-state level 
that is logarithmic in light L, providing 
the brain with information about ambient 
light. However, the full visual system 
processes the input from the retina in various brain regions, and displays exact adaptation. 
This is shown by experiments that deviously move the visual field to cancel out our rapid 
eye movements, called saccades. Thus, the subject sees a constant input image. After a few 
seconds, the visual field seems to turn gray and vision stops working. We see thanks to the 
changes caused by rapid eye movements.

A similar multiplicative factor occurs in bacterial chemotaxis. Here the goal is to move 
toward sources of attractants, and the unknowable multiplying factor is the strength of the 
attractant source. The concentration of attractant diffusing away from a source of strength 
Ssource is proportional to Ssource, due to the linearity of the diffusion (or convection) equation. 
Specifically, at a distance r from the source, the attractant level is S(r, t) ∼ Ssourcee−r2/2Dt, 
which is proportional to Ssource. Thanks to FCD, the navigating bacterium can show run-
and-tumble statistics that are invariant to Ssource (as long as concentrations are within the 
range for FCD). The upshot is that bacteria can efficiently find the source position, regardless 
of the source strength. Such a process explains the experiments of Mesibov et al. (1973) with 
the pipette in the dish (Figure 10.1).

These properties of vision and chemotaxis can be called scale-invariant search, and 
are expected whenever an FCD system controls the movement of an agent in an input field 
plagued by an unknowable multiplicative factor.

In an imaginary experiment, a person searches for a cheesecake in a dark room using 
only the sense of smell. The room is in a cheesecake factory and has a certain background 
level of cheesecake aroma. After some sniffing around, the cake is found. Now do a search 
for half a cheesecake, but also halve the background level. If olfactory search is FCD, the 
average search time should be the same.

FIGURE 10.12 
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An intriguing question is whether FCD circuits can also explain scale invariance in 
psychology, especially since FCD narrows down the range of possible circuits to a very few. 
Recent evidence suggests that human creative search might have FCD properties (Hart 
et al., 2018).

Fold-change detection may be an instance where biological circuits evolved to “learn” a 
scaling symmetry of the physical world: the multiplicative nature of ambient light, protein 
levels or chemotaxis source strengths. FCD makes the output invariant to the scalar 
multiplying the input. There are other possible symmetries and invariances to explore. In 
the next chapter, we will explore an invariance of hormone circuits to certain physiological 
parameters. Such symmetries and invariances play a fundamental role in physics, and offer 
a field for further discovery in biology.

FURTHER READING
(Adler and Alon, 2018) “Fold-change detection in biological systems.”
(Adler et al., 2017) “Optimal regulatory circuit topologies for fold-change detection.”
(Adler, Mayo and Alon, 2014) “Logarithmic and power law input–output relations in sensory systems 

with fold-change detection.”
(Bialek, 2012) “Biophysics: searching for principles.”
(Goentoro et al., 2009) “The incoherent feedforward loop can provide fold-change detection in gene 

regulation.”
(Lazova et al., 2011) “Response rescaling in bacterial chemotaxis.”
(Shoval et al., 2010) “Fold-change detection and scalar symmetry of sensory input fields.”

EXERCISES

 10.1 Homogeneity conditions: Which circuits have FCD? The input is x, the internal variable 
is y and the output is z.

 i. dy
dt x y dz

dt
x
y z= − = −2 ;  (P10.1)

 ii. dy
dt x y dz

dt
x
y z= − = −( ) ;2   (P10.2)

 iii. dy
dt zy z z dz

dt
x
y zo= − = −( );  (P10.3)

 iv. dy
dt x y dz

dt x yz= − = −;  (P10.4)

 v. dy
dt x y dz

dt
x
y z

n
m= − =









 −;  (P10.5)

 vi. dy
dt x z z dz

dt
x
y zo= − = −( );  (P10.6)

 vii. dy
dt x y dz

dt x y z= − = − −; 2  (P10.7)

 10.2 Which of the circuits of Exercise 10.1 have exact adaptation?
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 10.3 Show that the sufficient conditions for FCD can be generalized to cases where the 
inner variable goes as a general function of scale λ: FCD holds if f(λX, φ(λ, Y)Y, 
Z) = ∂Yφ(λ, Y) f(X, Y, Z) and g(λX, φ(λ, Y)Y, Z) = g(X, Y, Z). Hint: Use the scaling 
approach.

 10.4 Use Exercise 10.3 to show that the following model has FCD: dY/dt = Z − Z0, 
dZ/dt = log(X) − Y − Z.

 10.5 I1-FFL as FCD circuit: Solve this I1-FFL circuit exactly: dy/dt = x − y, dz/dt = x/y − z. 
What is the dependence of peak amplitude in response to a step input on the fold 
change of the step F?

 10.6 Response time: Plot the response time in the I1-FFL as a function of fold-change F 
of a step input. Explain why response time decays with F.

 10.7 Y removal: Show that response amplitude to a given step input is larger in the I1-FFL 
the slower the dynamics of Y, that is the smaller α1. Explain this intuitively.

 10.8 Response laws: simulate I1-FFL and NLIFBL for different fold input (use all 
parameters = 1) for input steps of different fold F. Show that amplitude is 
approximately logarithmic with F for the I1-FFL and approximately linear for the 
NLIFBL.

 10.9 Decreasing adaptation time with fold: Simulate the NLIFBL (use all parameters = 1) 
for steps of different fold F.

 a. Compute the adaptation time, the time it takes to go down halfway from the peak 
of the pulse back to steady state. Plot the adaptation time as a function of fold. 
Explain the decreasing curve intuitively.

 b. Compute the peak time of the pulse as a function of F. Explain.

 10.10 Response to ramp: (i) Show that the I1-FFL and NLIFBL circuits with FCD adapt 
exactly when input goes up linearly with time X = γt. (ii) Repeat with an exponential 
ramp X = eγt, and show that both circuits have a steady-state dependent on rate of 
exponential growth γ. 

 10.11 Immune FCD (Sontag, 2017): Pathogens produce proteins (antigens) that are 
recognized by the immune system. In one important process, T-cells are stimulated 
by antigen X to differentiate into helper T-cells Z that fight the pathogen and 
regulatory T-cells that inhibit the helper T-cells. This forms an I1-FFL-type circuit.

 a. Write equations for this system that show FCD.

 b. If pathogens grow exponentially, X ∼ eγt, how does the immune system respond? 
What happens if the pathogens grow only linearly with time? Explain how this 
system can detect exponentially growing threats.

 10.12 Simultaneous input signals (Hart et  al., 2013): FCD systems, such as bacterial 
chemotaxis, often sense two or more signals with the same receptor. For example, 
for independent binding of two ligands, receptor activity is the product of two 
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Michaelis–Menten functions: X ∼ (S1/(K1 + S1)) (S2/(K2 + S2)). Far from saturation, 
when signal levels are lower than the K’s, one has X ∼ S1S2/K1K2. An I1-FFL 
downstream of this receptor the can be written as

 
dY
dt X Y= −β α1

 
dZ
dt

X
Y Z= −α2

 a. Show that a step of fold F1 in input S1, and a simultaneous step F2 in input S2, 
provide the same response as a step of size F1F2 in one input with the other 
remaining constant.

 b. What if input 1 rises by twofold and input 2 falls by twofold?

 c. Solve a and b if binding is a product of two Hill-type functions with Hill 
coefficients n1 and n2 for the two input ligands, in the limit of low signal levels.

 d. How can FCD help to interpret two simultaneous input signals for the same 
system? What is the problem with an absolute response system, given that the 
two signals can have unpredictable background levels?

 e. The olfactory system can sense complex odors, like that of a rose, which combine 
tens of different odorants. These odorants arrive at the nose in a correlated 
fashion as air whiffs from the rose. Use the results of this exercise to explain how 
the olfactory system might distinguish a rose with great accuracy, despite the fact 
that the background concentration of each of these odorants can vary widely and 
independently.

 10.13 Linear systems can never show FCD: Consider the linear system dx/dt = Ax + B + u 
where u is the input vector, A and B are a constant matrix and vector respectively. 
Let’s define the steady state xst = −A−1(B + ust), and the output y = x − xst. Show 
that the system cannot show FCD.
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C h a p t e r  11

Dynamical Compensation and 
Mutant Resistance in Tissues

We now turn to circuits at a higher level of organization – the level of tissues and organs. 
Tissues are made of cells that signal to each other. Distant tissues can communicate via 
hormones that flow in the blood stream. We will see that at the tissue level there are new, 
fundamental challenges. Tissues must:

 i. Maintain a proper size, despite the fact that cells tend to grow exponentially.

 ii. Signal precisely to other tissues whose parameters are unknown.

 iii. Avoid mutant cells that can grow and take over the tissue.

We will see that new principles arise to allow organs to work robustly, keep the right 
functional size and resist mutants. In fact, a unifying circuit design can solve all three 
problems at once.

11.1  THE INSULIN-GLUCOSE FEEDBACK LOOP
As a model system, we will study the insulin control of blood glucose. Glucose is the main 
sugar used by our cells. When we eat a meal, blood glucose concentration rises. Within a 
few hours, glucose returns to its baseline concentration of 5 mM (Figure 11.1). This 5 mM 
baseline is kept constant to within 10% over time and between people.

Tight control over blood glucose is important: if glucose drops too low, the brain doesn’t 
have enough energy and we can pass out and even die. If glucose is too high, it damages 
blood vessels and other systems over the years, causing the symptoms of diabetes.

Not only is steady-state glucose kept constant, the entire glucose dynamics G(t) after 
a meal is tightly controlled. For example, in a clinical test for diabetes, called the glucose 
tolerance test, you are asked to drink 75 g of glucose. Then, glucose levels are measured 
in the blood over the next two hours. Different healthy people show nearly the same 
glucose dynamics (Figure 11.1). Deviation from the expected dynamics (e.g., more than 
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11 mM glucose after 2 h) is a criterion to diagnose 
diabetes (Figure 11.2).

This exquisite control is carried out by a 
hormone circuit. Glucose is sensed by special 
cells in the pancreas called beta cells. Glucose 
causes beta cells to secrete the hormone insulin 
that is carried by the blood to all tissues. Insulin 
is sensed by receptors in the cells of many tissues, 
and instructs the cells in the muscle, liver and fat 
to take up glucose from the blood, reducing blood 
glucose concentration. This closes a negative 
feedback loop (Figure 11.3) whose timescale is 
hours. If glucose G is high, insulin level I rises to 
bring glucose down again.

A classic model for this negative feedback 
loop, called the minimal model, was developed 
by Richard Bergman et  al. (Bergman et  al., 
1979), and is used to analyze clinical data. The 
concentration of blood glucose is increased by 
a meal input m and is reduced by the action of 
insulin that promotes removal of glucose from 
the blood. Thus, the removal rate of glucose rises 
with insulin:

 
dG
dt m s IG= −

 
(11.1.1)

The parameter s, called insulin sensitivity, is the effect of a unit 
of insulin on the removal rate of glucose.

Insulin, in turn, is produced by beta cells, that we denote B, at 
a rate that increases with glucose, qf(G). Insulin is degraded at a 
rate γ, with a half-life on the order of 30 min:

 
dI
dt qBf G I= −( ) γ

 
(11.1.2)

Solving this model shows that a meal input causes a rise in glucose, eliciting a rise in 
insulin, causing glucose to drop back down (Figure 11.1).1

A fascinating thing about the tight regulation of glucose around 5 mM is that it occurs 
despite large differences between people in insulin sensitivity, s. This parameter can be measured 
by injecting insulin and noting the reduction in blood glucose. People can vary by a factor of 

1 Many effects are ignored here because they are not crucial to understand the principles in this chapter. This includes 
production of glucose by the liver, insulin-independent uptake of glucose by the brain, the hormone glucagon which 
increases liver glucose production when glucose falls below 5 mM, the effects of fat and amino acids in the diet, the delay 
for insulin to reach peripheral tissues, and so on.
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ten in insulin sensitivity, which is affected 
by exercise, pregnancy, inflammation, 
stress, obesity, genetics and other factors. 
Low insulin sensitivity is also called 
insulin resistance.

Insulin sensitivity varies because 
it is a physiological parameter that 
controls glucose allocation between 
bodily systems. For example, exercise 
increases insulin sensitivity and diverts 
more glucose to muscle tissues. Infection 
decreases sensitivity, causing more 
glucose to stay in the blood to be used by 
the immune system. Pregnancy decreases 
mom’s insulin sensitivity and hence diverts more glucose for the growth of the fetus – in 
pathological cases placing the mother at risk for diabetes.

Importantly, despite the large variation in insulin sensitivity, most people do not have 
diabetes, and show the normal glucose level of 5 mM and the normal glucose dynamics in 
the glucose test. For example, people with obesity have very low s (high insulin resistance), 
but most of them have no diabetes, with 5 mM glucose and normal glucose dynamics 
(Figure 11.4). Our goal is to understand how the system compensates for variations in an 
important parameter like s.

11.2  THE MINIMAL MODEL IS NOT ROBUST 
TO CHANGES IN INSULIN SENSITIVITY

So how does the insulin circuit compensate for variations in insulin sensitivity, namely 
variations in the intrinsic effectiveness of insulin on far-away tissues? The minimal 
model cannot account for this compensation. It shows a steady-state glucose level and 
response dynamics that depend on the 
parameter s. Low levels of s, for example, 
cause higher steady-state glucose, higher 
peak responses and longer response 
times, as can be seen in a numerical 
solution of the model in Figure 11.5. We 
next solve the minimal model to analyze 
this non-robustness.
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Solved Example 11.1: Show That Steady-State Glucose Depends on Insulin  
Sensitivity in the Minimal Model

At steady state, dG/dt = 0 and dI/dt = 0. Assuming a constant glucose input m0 (e.g., 
the basal production of glucose by the liver when we fast overnight), we find from 
Equation 11.1.1 that sIstGst = m0 and from Equation 11.1.2 that qBf(Gst) = γIst. Hence, 
Gst = γ m0/sqGst  f(Gst). Let’s use f(G) = G2 as proposed by Topp (Topp et al., 2000). 
This yields a steady-state glucose level of Gst = (γ m0/sqB)1/3, which depends on s. For 
example, 10-fold reduction in s leads to about a twofold increase in Gst, with blood 
sugar going from 5 mM to a pathological 10 mM. The time it takes glucose to return to 
baseline would also be longer (Figure 11.5). The minimal model thus shows dynamics 
whose shape depends on the parameter s. Such dependence on parameters is typical of 
most models that we can write.

The minimal model cannot explain the robustness of glucose levels to variations in insulin 
sensitivity. Therefore, robustness must involve additional processes beyond the minimal 
model’s glucose-insulin loop. Indeed, 
the way that the body compensates for 
decreased insulin sensitivity is by increasing 
the number of beta cells in order to increase 
insulin levels, to exactly match the decrease 
in s. For example, people with obesity that 
are insulin resistant have more beta cells 
than lean individuals. They thus secrete 
more insulin, compensating for their insulin 
resistance.

The compensation is seen in a hyperbolic 
relation that exists between healthy people: 
an inverse relationship between s and 
steady-state insulin that keeps the product of 
the two approximately constant: sIst = const 
(Kahn et al., 1993). People thus compensate 
for low insulin sensitivity with more insulin 
(Figure 11.6). People with diabetes have 
values that lie below this hyperbola.

11.3  A SLOW FEEDBACK LOOP 
ON BETA-CELL NUMBERS 
PROVIDES COMPENSATION

To explain how such compensation can 
come about, we need to expand the minimal 
model. We need to add equations for the 
way that beta-cell numbers, B, can change.
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Here, we enter the realm of the dynamics 
of cell populations. Cell dynamics are quite 
unlike the dynamics we studied so far for 
the concentrations of proteins inside cells. 
For proteins we used equations that, at their 
core, have production and removal terms, 
dx/dt = β − αx, and safely converge to a 
stable fixed point, xst = β/α (Figure 11.7).

Cells, however, live on a knife’s edge.  
Their basic equations contain an inher-
ent instability. The equations describe 
cell  proliferation and removal (cell death;  
Figure 11.8). Since all cells are made by 
cells, the proliferation rate is intrinsically 
autocatalytic, a rate constant times the con-
centration of cells: proliferation = pB. As a 
result, the balance between proliferation  
rate pB and death rate dB leads to expon-
ential growth of cells at rate µ = p − d

 
dB
dt pB dB p d B B= − = − =( ) µ

 
(11.3.1)

If proliferation exceeds death, growth 
rate µ is positive and cell numbers rise 
exponentially, B ∼ eµt (Figure 11.9). If death 
exceeds proliferation, µ is negative, and 
cell numbers exponentially decay to zero. 
Such an explosion in cells numbers occurs in cancer, and a decay in cell numbers occurs in 
degenerative diseases. This is the problem of tissue size control.

To keep cell numbers constant, we need additional feedback control, because we need 
to balance proliferation and death in order to reach zero growth rate, µ = 0. Moreover, 
the feedback loop must keep the tissue at a 
good functional size. Hence, the feedback 
mechanism must somehow register 
the biological activity of the cells and 
accordingly control their growth rate.

Such feedback control occurs for beta 
cells, as described by Brian Topp and Dianne 
Finegood (Topp et al., 2000). The feedback 
signal is blood glucose: glucose controls 
the cells, proliferation and death rates, so 
that µ = µ(G). The death rate of beta cells 
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is high at low glucose, and falls sharply 
around 5 mM glucose (Figure  11.10). 
Death rate rises again at high glucose, a 
phenomenon called glucotoxicity, which 
we will return to soon. For now, let’s focus 
on the region around 5 mM. Proliferation 
rises with glucose, so that the curves 
describing the rates for proliferation and 
death cross near G0 = 5 mM (Figure 
11.11). Therefore, G0 = 5 mM is the fixed 
point that we seek with zero growth rate, 
µ(G0) = 0 (Figure 11.12).

Our revised model, the BIG model 
(Beta-cell-Insulin-Glucose model, 
Figure 11.13), includes a new equation 
for the beta cells B

dG
dt m s IG= −

         
(11.3.2)

dI
dt qBf G I= −( ) γ

      
(11.3.3)

dB
dt B G G= =µ µ( ) ( )0 0

    
(11.3.4)

The point G0 = 5 mM is a stable fixed point for both beta-
cells and blood glucose. We can analyze this using the rate plot, 
Figure 11.11. Note that the horizontal axis is G, unlike the rate 
plots in earlier chapters. If glucose is above 5 mM, beta cells 
have proliferation > death, they increase in number, leading 
to more insulin, pushing glucose back down towards 5 mM. If 
glucose is too low, beta cells die more than they divide, leading 
to less insulin, pushing glucose levels back up.

This feedback loop operates on the timescale of weeks, which is the proliferation rate of beta 
cells. It is much slower than the insulin-glucose feedback that operates over minutes to hours. 
This slow feedback loop keeps beta cells at a proper functional steady-state number and 
keeps glucose, averaged over weeks, at 5 mM. The principle is, in essence, the same as integral 
feedback in chemotaxis: the only way to reach steady state in Equation 11.3.4 is when G = G0.

The steep drop of the death curve at G0 is important for the precision of the fixed point. 
Due to the steepness of the death curve, variations in proliferation rate do not shift the 5 mM 
fixed point by much (Figure 11.11). The steep death curve is generated by the cooperativity 
of key enzymes that sense glucose inside beta cells (Karin et al., 2016).
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11.4  DYNAMICAL COMPENSATION ALLOWS THE CIRCUIT 
TO BUFFER PARAMETER VARIATIONS

The slow feedback on beta cells can thus maintain the 5 mM glucose steady state despite 
variations in insulin sensitivity, s. Remarkably, this feedback model can also resolve the 
mystery of how glucose dynamics on the scale of hours are invariant to changes in insulin 
sensitivity. I mean that the BIG model shows how, in the glucose tolerance test, the response 
to an input m of 75 g glucose yields the same output G(t), including the same amplitude 
and response time, for widely different values of the insulin sensitivity parameter s. This 
independence of the entire dynamical curve on a parameter such as s is very unusual, 
because changing a key parameter in most models changes their dynamics.

This ability of a model to compensate for variation in a parameter was defined by Omer 
Karin et al. (Karin et al., 2016) as dynamical compensation (DC): Starting from steady 
state, the output dynamics in response to an input is invariant with respect to the value of 
a parameter. To avoid trivial cases, the parameter must matter to the dynamics, when you 
start away from steady state. To establish DC in our model requires rescaling of the variables 
in the equations, as done in the next solved example.

Solved Example 11.2: Show That the BIG Model Has Dynamical  
Compensation (DC)

To establish DC, we need to show that starting at steady state, glucose output G(t) in 
response to a given meal input m(t) is the same regardless of the value of s. To do so, we 
will derive scaled equations that do not depend on s. To get rid of s in the equations, we 
rescale insulin to �I sI= , and beta cells to �B sB= . Hence, s vanishes from the glucose 
equation

 
dG
dt m IG= −�

 
(11.4.1)

Multiplying the insulin and beta-cell equations (Equations 11.3.3 and 11.3.4) by s leads 
to scaled equations with no s

 
dI
dt qBf G I
�

� �= −( ) γ
 

(11.4.2)

 
dB
dt B G G
�
�= =µ µ( ) ( )with 0 0 

(11.4.3)

Now that none of the equations depends on s, we only need to show that the initial 
conditions of these scaled equations also do not depend on s. If both the equations 
and initial conditions are independent of s, so are the entire dynamics. There are three 
initial condition values that we need to check, for G, �I  and �B. First, G(t = 0) = Gst is 
independent of s because Gst = G0 is the only way for �B to be at steady state in Equation 
11.4.3. Therefore, from Equation 11.4.1, �I m Gst = 0 0/  is independent of s, which we can 
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use in Equation 11.4.2 to find that � �B I f Gst st= γ /q ( )0  is also independent of s. Because 
the dynamic equations and initial conditions do not depend on s, the output G(t) for 
any input m(t) is invariant to s, and we have DC.

Although G(t) is independent of s, insulin and beta cells do depend on it, as we can 
see by returning to original variables B B s= �/  and I I s= �/ . The lower s, the higher the 
steady-state insulin. In fact, the product of insulin and insulin sensitivity is constant, 
sIst = m0/G0 = const., which explains the hyperbolic relation of Figure 11.6. Also, 
sBst = const., as beta cell mass rises to precisely compensate decreases in s.

Similar considerations show that the model has DC with respect to the parameter q, 
the rate of insulin secretion per beta cell, and also to the total blood volume (Exercise 
11.8). There is no DC, however, to the insulin removal rate parameter, γ.

Let’s see how dynamical compensation works. Suppose that insulin sensitivity drops by a 
factor of two, representing insulin resistance (Figure 11.14). As a result, insulin is less effective 
and glucose levels rise. Due to the death curve, beta cells die less, and their numbers rise over 
weeks (Figure 11.14 upper panels show the dynamics on the scale of weeks). More beta cells 
means that more insulin is 
secreted, and average glucose 
gradually returns to baseline. 
In the new steady state, there 
are twice the number of beta 
cells and there is as much 
insulin. Glucose returns to 
its 5 mM baseline.

Let’s now zoom in to 
the timescale of hours 
(Figure 11.14, lower panel). 
The response of glucose 
to a meal, long after the 
drop in  s (time-point 3), 
is exactly the same as the 
response to a meal before 
the change in s (time-point 
1). The insulin response, 
however, is two times 
higher. Glucose dynamics 
in response to a meal are 
abnormal only during the 
transient period of weeks 
in which beta-cell numbers 
have not yet reached their 
new, compensatory, steady 
state (time-point 2).
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The DC model thus predicts that people with different s should show the same glucose 
meal dynamics, but have insulin dynamics that scale with s. This is indeed seen in 
measurements that follow non-diabetic people with and without insulin resistance over a 
day with three meals (Figure 11.15, lower panels). Insulin levels are higher in people with 
insulin resistance, but when normalized by the fasting insulin baseline, there is almost no 
difference between the two groups (Figure 11.15). The model (upper panels in Figure 11.15) 
captures these observations.

The DC property arises from the structure of the equations: the parameter s cancels out 
due to the linearity of the dB/dt equation with B, which is a natural consequence of cells 
arising from cells. s also cancels out due to the linearity in B of the insulin secretion term 
qBf(G), a natural outcome of the fact that beta-cells secrete insulin.

These basic features needed for DC exist in most hormone systems, in which glands secrete 
hormones that work on distant tissues. For example, free blood calcium concentration 
is regulated tightly around 1 mM by a 
hormone called PTH, secreted by the 
parathyroid gland (Figure 11.16). The 
circuit has a negative feedback loop similar 
to insulin-glucose, but with inverted signs: 
PTH causes increase of calcium, and 
calcium inhibits PTH secretion. The slow 
feedback loop occurs because parathyroid 
cell proliferation is regulated by calcium.

Other hormone systems and even neuronal systems have similar circuits (Figure 11.17), in 
which the size of the gland or organ expands and contracts to buffer variation in effectivity 
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parameters. Moreover, as embryos and 
children grow, these slow feedback loops 
can help each gland grow precisely at a 
rate that keeps important variables such 
as glucose and calcium at their desired 
steady-state level (see Exercise 11.8).

The feedback mechanism seems so 
robust. What about diseases such as 
diabetes? How and why do things break 
down? We will see that some forms 
of diabetes may be due to a dynamic 
instability that is built into the feedback 
loop.

11.5  TYPE 2 DIABETES IS LINKED WITH INSTABILITY 
DUE TO A U-SHAPED DEATH CURVE

Type 2 diabetes occurs when production of insulin does not meet the demand, and glucose 
levels go too high. It is linked with the phenomenon of glucotoxicity that we mentioned 
briefly above: at very high glucose levels, beta-cell death rate rises (by death here we include 
all processes that remove beta cell function such as beta-cell exhaustion, de-differentiation 
and senescence), and eventually patients are not able to make enough insulin.

Glucotoxicity is dangerous because it adds an unstable fixed point, the point at which 
proliferation rate crosses death rate a second time (white circles in Figure 11.18). As long as 
glucose fluctuations do not exceed the unstable point, glucose safely returns to the stable 
5 mM point. However, if glucose (averaged over weeks) crosses the unstable fixed point, death 
rate exceeds proliferation rate. Beta cells die, there is less insulin and hence glucose rises even 
more. This is a vicious cycle, in which glucose disables or kills the cells that control it.

This rate plot can explain several risk factors for type 2 diabetes. The first risk factor is a diet 
high in fat and sugars. Such 
a diet makes it more likely 
that glucose fluctuates to 
high levels, crossing into the 
unstable region. A lean diet 
can move the system back 
into the stable region. The 
second risk factor is ageing. 
With age, proliferation rate 
of cells drops in all tissues, 
including beta cells. This 
means that the unstable fixed 
point moves to lower levels 
of G (Figure 11.19), making it 
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easier to cross into the 
unstable region. Note that 
the stable fixed point also 
creeps up to slightly higher 
levels. Indeed, with age, the 
glucose set point mildly 
increases in healthy people.

A final risk factor is 
genetics. It appears that 
the glucotoxicity curve is 
different between people. A 
shifted glucotoxicity curve 
can make the unstable fixed 
point come closer to 5 mM 
(Figure 11.20).

Why does glucotoxicity 
occur? Much is known 
about how it occurs 
(which is different from 
why it occurs), because 
research has focused 
on this disease-related 
phenomenon. Glucotoxicity 
is regulated by the same 
processes that govern beta-
cell proliferation and insulin secretion. It is enhanced by reactive oxygen species (ROS) 
generated by the accelerated glycolysis in beta cells presented with high glucose. ROS cause 
extensive cell damage, and beta-cell death. The sensitivity of beta cells to ROS does not seem 
to be an accidental mistake by evolution. Beta cells seem designed to die at high glucose – 
they are among the cells most sensitive to ROS, lacking protective mechanisms found in 
other cells types. Thus, it is intriguing to find a functional explanation for glucotoxicity.

11.6  TISSUE-LEVEL FEEDBACK LOOPS ARE FRAGILE TO 
INVASION BY MUTANTS THAT MISREAD THE SIGNAL

Omer Karin et  al. (Karin and Alon, 2017) provide an explanation for glucotoxicity by 
considering a fundamental fragility of tissue-level feedback circuits. This fragility is to 
takeover by mutant cells that misread the input signal. Mutant cells arise when dividing 
cells make errors in DNA replication, leading to mutations. Rarely but surely, given the 
huge number of cell divisions in a lifetime2, a mutation will arise that affects the way that 
the cell reads the input signal.

2 A gram of tissue has about 109 cells. If they divide 1/month, there are about 1010 divisions in a year. Mutation rate is 10−9/base-
pair/division, so there will be about 10 cells expressing each possible point mutation. Depending on the tissue, cells are 
renewed on average every few days (intestinal epithelium), weeks-months (skin, lungs, blood cells) or never (most neurons).
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Let’s examine such a mutation in beta 
cells. Beta cells sense glucose by breaking it 
down in a process called glycolysis, leading 
to ATP production, which activates insulin 
release through a cascade of events. The 
first step in glycolysis is phosphorylation of 
glucose by the enzyme glucokinase. Most 
cell types express a glucokinase variant 
with a halfway-binding constant to glucose 
of K = 40 µM, but beta cells express a 
special variant with K = 8 mM – perfect 
as a sensor for the 5 mM range. Mutations 
that affect the K of glucokinase, reducing it, say, by a factor of five, cause the mutant cell to 
sense five times too much glucose. The mutant beta cells do glycolysis as if there was much 
more glucose around. It’s as if the mutant distorts the glucose axis in the rate plots by a 
factor 5, “thinking” that glucose G is actually 5G.

If our feedback design did not include glucotoxicity, such a mutant that interprets 5 mM 
glucose as 25 mM would have higher proliferation rate (black curve) than death rate (red 
curve). It would think “Oh, we need more insulin!” and proliferate (Figure 11.21). The mutant 
cell therefore has a growth advantage over other beta cells, which sense 5 mM correctly. 
The mutant will multiply exponentially and eventually take over. This is dangerous because 
when the mutant takes over, it pushes glucose down to a set-point level that it thinks is 
5 mM, but in reality is 1 mM – causing lethally low glucose.

11.7  BIPHASIC (U-SHAPED) RESPONSE CURVES CAN 
PROTECT AGAINST MUTANT TAKEOVER

To resist such mutants, we must give them a growth disadvantage. This is what glucotoxicity 
does. The mutant cell misreads glucose as very high, has a death curve that exceeds the 
proliferation curve and kills itself (Figure 
11.22). Mutants are removed.

The downside of this strategy is that 
it creates the unstable fixed point, with 
its vicious cycle. There is thus a trade-off 
between resisting mutants and resisting 
disease.

In our evolutionary past, lifestyle and 
nutrition was probably such that average 
glucose rarely stayed very high, and thus 
the unstable fixed point was rarely crossed. 
Modern lifestyle makes it more likely for 
glucose to exceed the unstable point, 
exposing a fragility to disease.
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The glucotoxicity strategy eliminates mutants that strongly misread glucose. However, 
this strategy is still vulnerable to certain mutants of smaller effect: for example, mutants 
that misread 5 mM glucose as a slightly higher level that lies between the two fixed points 
(hatched region in Figure 11.22). Such mutants have a growth advantage, because they 
are too weak to be killed by glucotoxicity, but still have higher proliferation rate than 
removal rate.

Luckily, such intermediate-effect mutants are rarer than mutants that strongly activate 
or deactivate signaling. Designs that can help against intermediate mutants are found 
in beta cells: beta cells are arranged in the pancreas in isolated clusters of ∼1000 cells 
called islets of Langerhans, so that a mutant can take over just one islet and not the entire 
tissue. Slow growth rates for beta-cells also help keep such mutants in check. Karin and 
Alon (2017) estimate that a small fraction of the islets are taken over by mutants in a 
lifetime.

This mutant-resistance mechanism can be generalized: to resist mutant takeover of a 
tissue-level feedback loop, the feedback signal must be toxic at both low and high levels. 
Such U-shaped phenomena are known as biphasic responses, and occur across physiology. 
Examples include neurotoxicity, in which both under-excited and over-excited neurons 
die, and immune-cell toxicity at very low and very high antigen levels. These toxicity 
phenomena are linked with diseases, for example Alzheimer’s and Parkinson’s in the case 
of neurons.

11.8 SUMMARY
Tissues have robustness constraints beyond those of protein circuits inside cells. First, 
tissues have a fundamental instability due to exponential cell growth dynamics. They 
require feedback to maintain steady state and a proper size. Such feedback loops use a 
signal related to the tissue function, to make both organ size and function stay at a proper 
stable fixed point. This fixed point is maintained as the cells constantly turn over on the 
scale of days to months.

Tissue-level circuits, such as hormone circuits, are also challenged by the fact that 
they need to operate on distant target tissues. These target tissues have variation in their 
interaction parameters, such as insulin resistance. Hormone circuits can show robustness 
to such parameters by means of dynamical compensation (DC), which arises due to an 
invariance built into the structure of the equations. In dynamical compensation, tissue size 
grows and shrinks in order to precisely buffer the variation in parameters.

Tissue-level feedback loops need to be protected from another consequence of cell 
growth – the unavoidable production of mutants that misread the signal and can take 
over the tissue. This constraint leads to a third principle: biphasic responses found across 
physiological systems, in which the signal is toxic at both high and low levels. Biphasic 
responses can protect against mutants by giving them a growth disadvantage. This comes at 
the cost of fragility to dynamic instability and disease. Additional principles of tissue-level 
circuits no doubt await to be discovered.
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Dynamical Compensation
(Karin et al., 2016) “Dynamical compensation in physiological circuits.”

History of the Minimal Model
(Bergman, 2005) “Minimal model: perspective from 2005.”

Resistance to Mis-Sensing Mutants
(Karin and Alon, 2017) “Biphasic response as a mechanism against mutant takeover in tissue 

homeostasis circuits.”

The BIG Model
(Topp et al., 2000) “A model of β-cell mass, insulin, and glucose kinetics: pathways to diabetes.”

EXERCISES

11.1 The minimal model – linear analysis:

 a. Perform a linear stability analysis of the minimal model, Equations 11.1.1 and 
11.1.2.

 b. Show that the response time to small changes in input m depends on insulin 
sensitivity, s.

 11.2 The minimal model – additional insulin compartments: Some models of the insulin-
glucose loop include terms for the diffusion-like movement of insulin between 
physiological compartments.

 a. Interpret this extension of the minimal model

 
dG
dt m s I G= − 2  

(P11.1)

 
dI
dt qBf G aI I1

1 1 1= − −( ) γ
 

(P11.2)

 
dI
dt aI I2

1 2 2= −γ
 

(P11.3)

  What is the meaning of the parameter a?

 b. Solve these equations numerically, and compare to the minimal model of 
Equations 11.1.1 and 11.1.2. How are glucose dynamics affected by the equations 
for the additional compartment?
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 11.3 Liver production of glucose: The liver produces glucose at a rate that decreases with 
insulin. The effect of a unit of insulin on glucose production rate is proportional to a 
liver insulin sensitivity parameter sL.

 a. Write the BIG model with an additional term describing this effect.

 b. Does the steady-state glucose level change when this term is added?

 c. Suppose that s and sL change in the same proportions, as they do in healthy people. 
Show that the model has DC with respect to these parameters.

 d. What happens when only one of the two parameters s and sL changes? What is the 
impact on the glucose tolerance test?

 11.4 Brain uptake of glucose: The brain takes up glucose at an insulin-independent rate.

 a. Write a BIG model with a term describing this effect.

 b. Does the steady-state glucose level change?

 c. Is there dynamical compensation (DC) in this model?

 11.5 Linear analysis of the fixed points in the BIG model:

 a. Construct the Jacobian of the BIG model (Equations 11.3.1 through 11.3.3).

 b. Assume all positive values in the Jacobian are 1, and all negative values are −1. 
Write the characteristic equation for the three eigenvalues.

 c. Show that the three eigenvalues have negative real parts at the low fixed point 
dµ/dG < 0, and that one has a positive real part at the high fixed point dµ/dG > 0. 
Interpret this in terms of the stability of the fixed points.

 11.6 Compensation time in the BIG model: Compute the compensation time in the BIG 
model, the time for beta cells to reach halfway to their new level upon a step change 
in s. Assume that f G Gn( ) = 1 and µ µ( ) (( / ) )G G G n= −0 0

2 1 . Use a quasi-steady-state 
approximation for the fast variables G and I.

 a. Plot the response time as a function of n1 and n2.

 b. Explain why a steep death curve (the observed curve has n2 ∼ 8) speeds 
compensation time.

 c. Compute the response time of glucose to a meal. Assume that beta cell number B 
is unchanging over the timescale of hours. Show that large n1 (beta cell stimulation 
by glucose) reduces response time to a meal.

 d. Explain why the model shows a trade-off between fast compensation time and 
rapid glucose response to a meal.

 11.7 Dynamical compensation (DC) for insulin production per beta cell, q: Show that 
Equations 11.3.1 through 11.3.3 provide glucose with DC with respect to variations 
in the parameter q. How does this DC work?
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 11.8 Dynamical compensation for blood volume: Blood volume changes during growth of 
children, pregnancy, exercise and other situations.

 a. Show that changes in blood glucose act effectively as changes in the parameter q. 
Hint: Each cell secretes a certain number of molecules of insulin per unit time, 
which is distributed throughout the body’s blood volume.

 b. Conclude that the BIG model has DC to this variation, as opposed to the minimal 
model.

 c. Explain why such DC can be crucial during childhood growth. Explain data that 
show that beta cell numbers are proportional to body weight over growth.

 11.9 Equations for calcium control: Write equations for the PTH system of Figure 11.16.

 11.10 Calcium compensation time: Repeat Exercise 11.6 for the PTH system.

 11.11 Calcium mutant resistance: Draw the analog of Figure 11.22 for the PTH system. 
What kind of biphasic behavior is required to weed out mis-sensing mutants?

 11.12 General conditions for DC: Show that DC with respect to variation in a parameter s 
occurs in a general class of models with input m, output G and hormone I secreted 
by cells X:

 
dG
dt f m G sI= ( , , )

 
(P11.4)

 
dI
dt g G X I= ( , , )

 
(P11.5)

 
dX
dt Xh G= ( )

 
(P11.6)

  provided the following conditions apply: (i) for all s the system is stable, and there exists 
a unique solution sI = I* for f(0, G*, sI) = 0 and a unique solution sX = X* for g(G, 
sX, I*) = 0, (ii) homogeneity condition: g(G, sX, sI) = sg(G, X, I) (Karin et al., 2016).

 11.13 Biphasic mechanism – Position of the unstable point: The biphasic mechanism has 
two fragilities: (i) dynamical instability – if glucose rises above the unstable point, 
diabetes can set in, (ii) mutation vulnerability – mutant cells can take over that 
mis-sense 5 mM glucose as slightly higher levels that range between 5 mM and the 
unstable fixed point.

 a. Suppose that natural selection can select for changes that cause glucotoxicity 
(the rise in beta-cell death rate) to occur at lower or higher levels of glucose. How 
would that affect the position of the unstable fixed point?

 b. What situations (e.g., nutrition) will cause pressure to evolve higher or lower 
values for the unstable fixed point?
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 c. A desert rodent (Psammomys obesus) quickly gets obesity and diabetes in the lab 
when fed on a normal mouse diet. Provide an explanation based on the biphasic 
mechanism.

 11.14 Type 1 diabetes: Type 1 diabetes is an autoimmune disease in which the immune 
system attacks and removes beta cells. Plot a version of Figure 11.17 for this disease. 
When the immune removal rate is strong enough, show that B = 0 is the only steady-
state solution.
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C h a p t e r  12

Robust Spatial Patterning 
in Development

Continuing with principles at the level of tissues, we now ask how tissues arise during 
the remarkable process of embryonic development. In embryonic development, a single cell, 
the egg, becomes a multicellular organism. The egg divides many times to form the cells 
of the body. All of these cells have the same genome. If they all expressed the same proteins, 
the adult would be a shapeless mass of identical cells.

During development, therefore, the progeny of the egg cell must express different genes 
in a spatially organized manner to become the various tissues of the organism. In order to 
form the intricate patterns of the tissues, many gene expression decisions need to occur at 
the right place and time. In this chapter, we will consider how these spatial patterns can be 
formed precisely.

To make a spatial pattern requires positional information, so that each cell knows where it 
is positioned. This information is often carried by gradients of signaling molecules (usually 
proteins) called morphogens. In the simplest cases, morphogen gradients are formed in 
a process that involves diffusion. Morphogen is produced at a certain source position and 
diffuses into the region that is to be patterned, called the field. A concentration profile is 
formed, in which the concentration of the morphogen is high near the source and decays 
with distance from the source. The cells in the field are initially all identical and can sense 
the morphogen by means of receptors on the cell surface. Morphogen binds the receptors, 
which in turn activate signaling pathways in the cell that lead to expression of a set of genes. 
Which genes are expressed depends on the concentration of morphogen. The fate of a cell 
therefore depends on the morphogen concentration at the cell’s position.

The prototypical model for morphogen patterning is called the French flag model 
(Figure 12.1; L. Wolpert, 1969; Lewis, Wolpert and Szathmáry, 2002). The morphogen 
concentration M(x) decays with distance from its source at x = 0. Cells that sense an M 
concentration greater than a threshold value T1 assume fate A. Cells that sense an M lower 
than T1 but higher than a second threshold, T2, assume fate B. Fate C is assumed by cells 
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that sense low morphogen levels, M < T2. 
The result is a three-region pattern (Figure 
12.1). Morphogens often lead to patterns 
with more than three different fates.

Figure 12.1 depicts a one-dimensional 
tissue, but real tissues are three-
dimensional. Patterning in three 
dimensions is often broken down into 
one-dimensional problems in which each 
axis of the tissue is patterned by a specific 
morphogen.

Complex spatial patterns are not formed 
all at once. Rather, patterning is a sequential 
process. Once an initial coarse pattern is 
formed, cells in each region can secrete new 
morphogens to generate finer sub-patterns. 
Some patterns require the intersection of two or more morphogen gradients. In this way, an 
intricate spatial arrangement of tissues is formed. The sequential regulation of genes during 
these patterning processes is carried out by the developmental transcription networks that 
we discussed in Chapter 5. Additional processes (which we will not discuss), including cell 
movement, contact, mechanical forces and adhesion, further shape tissues in animals.

Patterning by morphogen gradients is achieved by diffusing molecules sensed by 
biochemical circuitry, raising the question of the sensitivity of the patterns to variations in 
biochemical parameters. A range of experiments has shown that patterning in development 
is robust with respect to a broad variety of genetic and environmental perturbations 
(Waddington, 1959; Von Dassow, Meir, Munro and Odell, 2000; Eldar, Shilo and Barkai, 
2004). The most variable biochemical parameter in many systems is, as we have seen, the 
production rates of proteins. Experiments show that changing the rate of morphogen 
production often leads to very little change in the sizes and positions of the regions formed. 
For example, a classic experimental approach shows that in many systems the patterning 
is virtually unchanged upon a twofold reduction in morphogen production, generated by 
mutating the morphogen gene on one of the two sister chromosomes.

In this chapter, we will consider mechanisms that can generate precise long-range 
patterns that are robust to such perturbations, following the work of Naama Barkai and her 
colleagues (Eldar et al., 2002; Eldar, Rosin, Shilo and Barkai, 2003; Eldar, Shilo and Barkai, 
2004). We will see that the most generic patterning mechanisms are not robust. Requiring 
robustness leads to special and rather elegant biochemical mechanisms.

12.1 THE FRENCH FLAG MODEL IS NOT ROBUST
Let’s begin with the simplest mechanism, in which morphogen is produced at a source located 
at x = 0 and diffuses into a field of identical cells. The morphogen is degraded at rate α. We 
will see that the combination of diffusion and degradation leads to an exponentially decaying 
spatial morphogen profile, which varies strongly if the source strength is varied.

Region A Region B Region C 

M
or

ph
og

en
 c

on
ce

nt
ra

tio
n 

M

Position, x

threshold 1

threshold 2

M(x)

FIGURE 12.1 



Robust Spatial Patterning in Development    ◾    211

The concentration of morphogen M in our model is governed by a one-dimensional 
diffusion–degradation equation. In this equation, the diffusion term, D∂2M/∂x2, seeks 
to smooth out spatial variations in morphogen concentrations. The larger the diffusion 
constant D, the stronger the smoothing effect. The degradation of morphogen is described 
by the usual linear term −αM, resulting in an equation that relates the rate of change of M 
to its diffusion and degradation:

 ∂ ∂ = ∂ ∂ −M t D M x M/ /2 2 α  (12.1.1)

 To solve this diffusion–degradation equation in a given region, we need to consider 
the values of M at the boundaries of the region, called the boundary conditions. The 
boundary conditions are a steady concentration of morphogen at its source at x = 0, namely 
M(x = 0) = M0, and zero boundary conditions far into the field, M(∞) = 0, because far into 
the field all morphogen molecules have been degraded.

At steady state, ∂M/∂t = 0, Equation 12.1.1 becomes a linear ordinary differential 
equation:

 
D d M

dx
M

2

2 0− =α

whose solution is an exponential decay that results from a balance of the diffusion and 
degradation processes:

 M x M e x( )= −
0

/λ
 (12.1.2)

Thus, the morphogen level is highest at the source at x = 0, and decays with distance into 
the field. The decay is characterized by a decay length λ:

 λ α= D /  (12.1.3)

The decay length λ is the typical distance that a morphogen molecule travels into the field 
before it is degraded. The larger the diffusion constant D and the smaller the degradation 
rate α, the larger is this distance. The decay is dramatic: at distances of 3λ and 10λ from 
the source, the morphogen concentration drops to about 5% and 5 · 10−5 of its initial value. 
Therefore, λ is the typical size of the regions that can be patterned with such a gradient.

The fate of each of the cells in the field is determined by the concentration of M at the 
cell’s position: the cell fate changes when M crosses threshold T. Therefore, a boundary 
between two regions occurs when M is equal to T. The position of this boundary, x0, is given 
by M(x0) = T, or, using Equation 12.1.2,

 x M T0 0= ( )λ log /  (12.1.4)

Let’s now ask about the robustness of the pattern to variations in the morphogen 
production rate. What happens if the production rate of the morphogen source is perturbed, 
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so that the concentration of morphogen at 
the source M0 is replaced by ′M0? Equation 
12.1.4 shows that the position of the 
boundary shifts to ′ = ′( )x M T0 0λ log / . The 
difference between the original and the 
shifted boundary is

 δ λ= ′ − = ′( )x x M M0 0 0 0log /  (12.1.5)

Thus, a twofold reduction in M0 leads to 
a shift of the position of the boundary to 
the left by about −λ log (1/2) ∼ 0.7λ, a large 
shift that is on the order of the size of the 
entire pattern (Figure 12.2). Region A in 
Figure 12.1 would be almost completely lost.

Hence, this type of mechanism does not seem to explain the robustness observed in 
developmental patterning. To increase robustness, we must seek a mechanism that reduces 
the shift δ that occurs upon changes in parameters such as morphogen production.

12.2  INCREASED ROBUSTNESS BY SELF-ENHANCED 
MORPHOGEN DEGRADATION

The simple diffusion and degradation process described above generates an exponential 
morphogen gradient that is not robust to the morphogen level at its source M0. To generate 
a more robust mechanism, let’s try a more general diffusion–degradation process with a 
nonlinear degradation rate F(M):

 ∂ ∂ = ∂ ∂ − ( )M t D M x F M/ /2 2
 (12.2.1)

The boundary conditions are as before, a constant source concentration, M(x = 0) = M0, 
and decay to zero far into the field, M(∞) = 0. This diffusion process has a general property 
that will soon be seen to be important for robustness: the shift δ in the morphogen profile 
upon a change in M0 is uniform in space – it does not depend on position x. That is, all 
regions are shifted by the same distance upon a change in M0.

This uniform shift certainly occurs in the exponential morphogen profile of the previous 
section. The shift in boundary position δ described by Equation 12.1.5 does not depend 
on x. Thus, if several regions are patterned by this morphogen, as in Figure 12.1, all 
boundaries will be shifted by the same distance δ if morphogen production is perturbed.

More generally, spatially uniform shifts are found with any degradation function 
F(M) in Equation 12.2.1. This property is due to the fact that the cells in the field are 
initially identical (unpatterned), and that the field is large (zero morphogen at infinity). 
This means that Equation 12.2.1 governing the morphogen has translational symmetry: 
the diffusion–degradation equations are invariant to a coordinate change x → x + δ. Such 
shifts only produce changes in the boundary value at x = 0, that is, in M0, as illustrated 
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in Figure  12.3.  The spatial shift that 
corresponds to a reduction of M0 to ′M0  is 
given by the position δ at which the original 
profile equals ′M0, M M( )δ = ′0. The solution of 
Equation 12.2.1 with boundary condition ′M0 
is identical to the solution with M0 shifted to 
the left by δ.

Our goal is to increase robustness, that is, 
to make the shift δ as small as possible upon 
a change of M0 to ′M0. To make the shift as 
small as possible, one must make the decay 
rate near x = 0 as large as possible, so that ′M0 
is reached with only a tiny shift. This could be 
done with an exponential profile only by decreasing the decay length λ. However, decreased 
λ comes at an unacceptable cost: the range of the morphogen, and hence the size of the 
patterns it can generate, is greatly reduced.

Thus, we seek a profile with both long range and high robustness. Such a profile should 
have two features:

 1. Rapid decay near x = 0 to provide robustness to variations in M0.

 2. Slow decay at large x  to provide long range to M.

A simple solution would be to make M degrade faster near the source x = 0 and slower 
far from the source. However, we cannot make the degradation of M explicitly depend on 
position x (i.e., we cannot set α = α(x) in Equation 12.1.1), because the cells in the field 
are initially identical. A spatial dependence of the parameters would require positional 
information that is not available without pre-patterning the field.

Our only recourse is nonlinear, self-enhanced degradation: a feedback mechanism that 
makes the degradation rate of M increase with the concentration of M. A simple model for 
self-enhanced degradation employs a degradation rate that increases polynomially with M, 
for example,

 ∂ ∂ = ∂ ∂ −M t D M x M/ /2 2 2α  (12.2.2)

This equation describes a nonlinear degradation rate that is large when M concentration 
is high, and small when M concentration is low. Note that the parameter α in Equation 
12.2.2 has units of 1/(time concentration). Such nonlinear degradation can be achieved by 
several mechanisms described below.

At steady state, ∂M/∂t = 0, the morphogen profile that solves Equation 12.2.2 is not 
exponential, but rather a power law:
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T h i s  p owe r- l aw 
morphogen profile can have 
a very long range compared 
to exponential profiles.

To obtain long-range 
patterns, it is sufficient to 
make the source M0 very 
large, so that the parameter 
ε ∼ 1/√M0 in Equation 
12.2.3 is much smaller than 
the pattern size. In  this 
limit of large source, the 
morphogen profile in the 
field does not depend on M0 at all:

 M A x∼ / 2 (12.2.4)

so that shifts are negligible even upon large perturbations in M0. Patterning is very robust to 
variations in M0, as long as M0 does not become too small. This is illustrated in Figure 12.4 
that compares a French flag exponential gradient and a power-law gradient that generate 
a region of length Δx. The power-law profile shows a much smaller shift δ upon a twofold 
reduction in M0.

The power-law profile is not robust to changes in the parameter A ∼ D/α, the ratio of 
the diffusion and degradation rates. However, parameters such as diffusion constants and 
specific degradation rates usually vary much less than production rates of proteins such as 
the morphogen.

In summary, self-enhanced degradation allows a steady-state morphogen profile with a 
non-uniform decay rate. The profile decays rapidly near the source, providing robustness 
to changes in morphogen production. It decays slowly far from the source, allowing long-
ranged patterning.

12.3  NETWORK MOTIFS THAT PROVIDE DEGRADATION 
FEEDBACK FOR ROBUST PATTERNING

We’ve seen that robust long-range patterning can be achieved using feedback in which the 
morphogen enhances its own degradation rate. Morphogens in the developmental processes 
of many species participate in certain network motifs that can provide this self-enhanced 
degradation. The robustness gained by self-enhanced degradation might explain why these 
regulatory patterns are so common.

The morphogen M is usually sensed by a receptor R on the surface of the cells in the field. 
When M binds R, it activates a signal transduction pathway that leads to changes in gene 
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expression. Two types of feedback loops are 
found throughout diverse developmental 
processes (Figure 12.5).

The first motif is a feedback loop 
in which the receptor R enhances the 
degradation of  M. An example is the 
morphogen M = Hedgehog and its 
receptor R = Patched, which participate in patterning the fruit f ly and many other 
organisms (Li et  al., 2018). Morphogen binding to R triggers signaling that leads 
to an increase in the expression of R. Degradation of M is caused by uptake of the 
morphogen bound to the receptor and its breakdown within the cell, in a process called 
endocytosis. Thus, M enhances R production and R enhances the rate of M endocytosis 
and degradation (Figure 12.5a), forming a self-enhancing degradation loop.

The second type of feedback occurs when R inhibits M degradation (Figure 12.5b). A well-
studied example in fruit flies is the morphogen M = Wingless and its receptor R = Frizzled. 
Binding of M to R triggers signaling that represses the expression of R. R in turn inhibits the 
degradation of M by binding to and inhibiting a protein that degrades M (an extracellular 
protease) or by repressing the expression of the protease.

In both of these feedback loops, M increases its own degradation rate, promoting robust 
long-range patterning.

Next, we discuss a different and more subtle feedback mechanism that can lead to robust 
patterning. Our goal is to demonstrate how the robustness principle can help select the 
correct biological mechanism from among many plausible alternatives.

12.4  THE ROBUSTNESS PRINCIPLE CAN DISTINGUISH 
BETWEEN MECHANISMS OF FRUIT FLY PATTERNING

We end this chapter by considering a specific example of patterning in more detail (Eldar 
et al., 2002). We begin with describing the biochemical interactions in a small network of 
three proteins that participate in patterning one of the spatial axes in the early embryo of 
the fruit fly Drosophila. These biochemical interactions can, in principle, give rise to a large 
family of possible patterning mechanisms. Of these mechanisms, only a tiny fraction is 
robust with respect to variations in all three protein levels. Thus, the robustness principle 
helps to home in on a non-generic mechanism, making biochemical predictions that turned 
out to be correct.

The development of the fruit fly Drosophila begins with a series of rapid nuclear divisions. 
We consider the embryo after 2.5 h of development. At this stage, it includes about 5000 
cells, which form a cylindrical layer about 500 µm across. The embryo has two axes: head–
tail (called the anterior–posterior axis) and front–back (called the ventral–dorsal axis).

We will consider the patterning of the dorsal region (DR). Our story begins with a coarse 
pattern established by an earlier morphogen, which sets up three regions of cells along 
the circumference of the embryo (Figure 12.6a). The DR is about 50 cells wide. The goal 
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of our patterning process is to subdivide 
this region into several sub-regions using 
a gradient of the morphogen M.

The cells in the DR have receptors that 
activate a signaling pathway when M is 
present at sufficiently high levels. Proper 
patterning of the DR occurs when the 
activity of this signaling pathway is high 
at the middle of the DR and low at its 
boundaries (Figure 12.6b), that is, when 
active morphogen M is found mainly near 
the midline of the region.

The molecular network that achieves this 
patterning is made of M and two additional 
proteins. The first is an inhibitor I that binds 
M to form a complex C = [MI], preventing 
M from signaling to the cells. The final 
protein in the network is a protease P that 
cleaves the inhibitor I. Note that P is able 
to cleave I when it is bound to M, liberating 
M from the complex. The morphogen M 
is not degraded in this system. The three 
proteins M, I and P, called scw, sog and tld, 
diffuse within a thin fluid layer outside of 
the cells. M is produced everywhere in the 
embryo, whereas I is produced only in the 
regions adjacent to the DR, and P is found 
uniformly throughout the DR.

The simplest mechanism for patterning 
by this system is based on a gradient of 
inhibitor I, set up by diffusion of I into 
the DR and its degradation by P (Figure 
12.7). The concentration of I is highest 
at the two boundaries of the DR, where 
it is produced, and lowest at the midline 
of the DR. Since the inhibitor I binds 
and inhibits M, the activity of M (the 
concentration of free M) is highest at the 
midline of the DR, and the desired pattern 
is achieved. In this model, the steady-state 
concentration of total M (bound and free) 
is uniform, but its activity profile (free M) 
is peaked at the midline.
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Unfortunately, this 
simple mechanism is not 
robust to changes in the 
expression of M, I or P. 
Changes of twofold in 
any of the three proteins 
lead to significant changes 
in the morphogen profile 
and the resulting patterns 
(Figure 12.8a). In contrast, 
experiments show that the 
profile of free morphogen 
is robust to changes in the levels of any of the proteins in the system. Figure 12.6b shows 
that free morphogen is insensitive to deleting one copy of the M, I or P genes.

To make this mechanism robust, we might propose self-enhanced degradation of M, 
as in the previous section. However, we cannot directly apply the nonlinear degradation 
mechanism of the previous section, because in this system, M is not appreciably 
degraded.

To understand how a robust mechanism can be formed with these molecules, 
let us  consider the general equations that govern their behavior. We will learn the 
approach of numerical screening of parameters, to identify a surprising class of robust 
mechanisms.

The free inhibitor I diffuses and is degraded by P at a rate αI. Since P is known to be 
uniformly distributed throughout the DR, the degradation rate of I is spatially uniform and 
proceeds at a rate αIPI. Free inhibitor is further consumed when it binds free M to form a 
tightly bound complex, at rate k:

 ∂ ∂ = ∂ ∂ − −I t D I x kIM PII I/ /2 2 α  (12.4.1)

The complex C = [IM] is formed at rate kIM and degraded by P at rate αC:

 ∂ ∂ = ∂ ∂ + −C t D C x kIM PCC C/ /2 2 α  (12.4.2)

The free morphogen M diffuses, binds inhibitor I at rate k and is liberated when the 
complex C is degraded:

 ∂ ∂ = ∂ ∂ − +M t D M x kIM PCM C/ /2 2 α  (12.4.3)

These nonlinear equations are too tough to solve analytically. Eldar and Barkai therefore 
studied these equations numerically (Eldar et al., 2002). The profiles of M, I and C were 
found for a given set of parameters (diffusion constants, degradation rates and k). The shift 
in the free morphogen profile was determined upon a twofold change in the production rate 
of each of the three proteins M, I and P. This was repeated for different sets of parameters, 

C
on

ce
nt

ra
tio

n
Position

-1 -0.5 0 0.5 1

T

Position
-1 -0.5 0 0.5 1

T total M

total M

(a) (b)

FIGURE 12.8 



218   ◾   An Introduction to Systems Biology

scanning four orders of magnitude of change in each parameter – a numerical screen. 
The vast majority of the parameter combinations gave non-robust solutions (97% of the 
solutions were non-robust according to the robustness threshold used).

The non-robust solutions typically showed exponentially decaying profiles of M activity 
(Figure 12.8a). The profiles varied strongly when production rates were perturbed, as shown 
by the different lines in Figure 12.8a. The amount of total M (free and bound to I) was 
uniform in space.

However, about 0.5% of the parameter sets showed a very different behavior. The profile 
was robust to changes in any of the protein production rates (Figure 12.8b). The morphogen 
activity profile was non-exponential and instead had power-law tails. In addition, the 
distribution of total morphogen was not spatially uniform. Morphogen was concentrated 
near the midline of the region (Figure 12.8b).

Inspection of the parameter values that provided the robust solutions showed that they 
all belonged to the same limiting class, in which certain parameters were much smaller 
than others. In particular, robustness was found when free M could not diffuse; only M 
within a complex C could diffuse (so that the diffusion constant of the complex is much 
larger than the diffusion constant of the free morphogen, D DC M� ). Thus, the inhibitor is 
bifunctional: it not only inhibits M, it also acts as a shuttle for M by allowing it to diffuse. 
Because of this, this model is called the shuttling mechanism. Furthermore, in the robust 
model, free I is not degraded by the protease P. In fact, P can only degrade I within the 
complex C (α αC � I).

The robust shuttling mechanism is well-described by the following set of steady-state 
equations, setting time derivatives to zero. They are simpler than the full equations because 
they have two parameters equal to zero (DM = 0, αI = 0):

 D I x kIMI ∂ ∂ − =2 2 0/  (12.4.4)

 D C x kIM PCC C∂ ∂ + − =2 2 0/ α  (12.4.5)

 − + =kIM PCCα 0 (12.4.6)

Remarkably, these nonlinear equations can be solved analytically. Summing Equations 
12.4.5 and 12.4.6 shows that the complex C obeys a simple equation:

 D C xC ∂ ∂ =2 2 0/  (12.4.7)

The general solution of this equation is C(x) = ax + C0, but due to the symmetry of the 
problem in which the left and right sides of the DR are equivalent, the only solution is a 
spatially uniform concentration of the complex:

 C x const C( )= = 0 (12.4.8)
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Using this in Equation 12.4.6, we find that the product of free I and M is spatially uniform, 
because P is spatially uniform:

 kIM PCC=α 0 (12.4.9)

and therefore, Equation 12.4.4 can be written explicitly for M, using the relation between I 
and M from Equation 12.4.9, to find a simple equation for 1/M:

 ∂ ∂ =−2 1 2M x k DI/ /  (12.4.10)

whose solution is a function peaked near x = 0:

 M x A x A D kI( )= +( ) =/ 2 2 2ε /  (12.4.11)

The only dependence of the morphogen profile on the total levels of M, Mtot, is through 
the parameter ε:

 ε2∼ π A/Mtot (12.4.12)

The parameter ε can be made very small by making the total amount of morphogen Mtot 
sufficiently large. In this case, the morphogen profile effectively becomes a power law that 
is not dependent on any of the parameters of the model (except A = 2DI/k which is a hard-
wired ratio of diffusion and kinetic constants),

 
M x A

x( ) >>∼ ε2 ; ,far from midline  x
 

(12.4.13)

In particular, the free M(x) profile away from the midline does not depend on the total 
level of M or I. The profile also does not depend on the level of the protease P or its rate of 

TABLE 12.1 Principles for Robustness of Biological Functions in the Face of Different Sources of Noise

Principle Function Noise Chapter

Kinetic and conformational 
proofreading,

Demand rules

Recognition of correct target Mis-binding of wrong target 7

Paradoxical components Precise readout of signal Variations in protein
Levels

8

Integral feedback Exact adaptation Variations in protein
Levels

9

Fold-change detection Sensing across many orders 
of magnitude

Noise in input signal 10

Dynamic compensation Hormone signalling and 
tissue size control

Variations in physiological 
parameters

11

Biphasic response curves Resistance to mutant takeover Mutants that mis-sense the signal 11
Self-enhanced degradation,
Shuttling

Patterning of tissues Variations in morphogen 
production rates

12
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action, since these parameters do not appear in this solution at all. In summary, the free 
morphogen profile is robust to the levels of all proteins in the system and can generate long-
range patterns due to its power-law decay.

How does the shuttling mechanism work? Morphogen M cannot move unless it is 
shuttled into the DR by complexing with the inhibitor I. Once the complex is degraded, the 
morphogen is deposited and cannot move until it binds a new molecule of I. Since there are 
more molecules of I near its source at the boundaries of the DR, morphogen is effectively 
pushed into the DR and accumulates where concentration of I is lowest, at the midline. 
Free inhibitor that wanders into the middle region finds so much M that it complexes and 
is, therefore, rapidly degraded by P. Hence, it is difficult for the inhibitor to penetrate the 
midline region to shuttle M away.

This is a subtle but robust way to achieve an M profile that is sharply peaked at the midline 
and decays more slowly deep in the field. These properties are precisely the requirements 
for long-range robust patterning that we discussed in Section 12.2. But unlike Section 2.2, 
this is done without M degradation. Interestingly, both mechanisms lead to long-ranged 
power-law profiles.

The shuttling mechanism requires two important biochemical details, as mentioned 
above. The first is that inhibitor I is degraded only when complexed to M, and not when 
free. The second is that M cannot diffuse unless bound to I. Both of these properties have 
been demonstrated experimentally, the latter following the theoretical prediction (Eldar 
et al., 2002).

We can now celebrate the end of Part 2 of this book, devoted to the principle of robustness. 
We went from proteins to circuits to tissues, finding a range of principles as summarized 
in Table 12.1. Robustness can help distinguish between different mechanisms and point 
to unexpected designs. Only a small fraction of the designs that generate a given function 
can do so robustly. Therefore, the principle of robustness can help us arrive at biologically 
plausible mechanisms. Furthermore, the robust circuits often show a pleasing elegance.

FURTHER READING

(Berg, 1993) “Random walks in biology.”
(Eldar et  al., 2002) “Robustness of the BMP morphogen gradient in Drosophila embryonic 

patterning.”
(Eldar et al., 2003) “Self-enhanced ligand degradation underlies robustness of morphogen gradients.”
(Eldar et al., 2004) “Elucidating mechanisms underlying robustness of morphogen gradients.”
(Kirschner and Gerhart, 2005) “The plausibility of life.”
(Lawrence, 1995) “The first coordinates.” in “The making of a fly: the genetics of animal design.”
(Li et al., 2018) “Morphogen gradient reconstitution reveals Hedgehog pathway design principles.”
(Slack, 1991) “From egg to embryo.”
(Turing, 1952) “The chemical basis for morphogenesis.”
(Wolpert, 1969) “Positional information and the spatial pattern of cellular differentiation.”

EXERCISES

 12.1 Diffusion from both sides: A morphogen is produced at both boundaries of a region 
of cells that ranges from x = 0 to x = L. The morphogen diffuses into the region 
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and is degraded at rate α. What is the steady-state concentration of the morphogen 
as a function of position? Assume that the concentration at the boundaries is 
M(0) = M(L) = M0. Under what conditions is the concentration of morphogen at the 
center of the region very small compared to M0?

  Hint: The morphogen concentration obeys the diffusion–degradation equation at 
steady state:

 D∂2M/∂x2 − αM = 0 (P12.1)

  Find a solution that satisfies the diffusion–degradation equation and the boundary 
conditions.

 12.2 Diffusion with degradation at boundary: A morphogen is produced at x = 0 and 
enters a region of cells where it is not degraded. The morphogen is, however, strongly 
degraded at the other end of the region, at x = L, such that every molecule of M that 
reaches x = L is immediately degraded. The boundary conditions are thus M(0) = M0 
and M(L) = 0.

 a. What is the steady-state concentration profile M(x)?

 b. Is patterning by this mechanism robust to changes of the concentration at the 
source, M(0) = M0?

  Hint: The morphogen obeys a simple equation at steady state: D∂2M/∂x2 = 0. Try 
solutions of the form M(x) = Ax + B, and find A and B that satisfy the boundary 
conditions.

  Next, find the position where M(x) equals a threshold T, and find the changes in this 
position upon a change of M0.

 12.3 Diffusion with reflecting boundary: A morphogen is produced at x = 0 and enters a 
region of cells where it is not degraded. The morphogen is reflected from the membrane 
at the other end of the region, at x = L. This means the boundary conditions are 
M(0) = M0 and ∂M/∂x = 0 at x = L.

 a. Explain the boundary conditions.

 b. What is the steady-state concentration profile M(x)?

 12.4 Diffusion inside the bacterium in the chemotaxis system: In the chemotaxis system 
of E. coli, the protein CheY is phosphorylated at the receptor cluster localized at one 
end of the cell, to form Yp. The phosphatase Z is localized to the same cluster, where 
it dephosphorylates Yp.

 a. What is the steady-state spatial profile of Yp? Assume reflecting boundary 
conditions at the far end of the cell, x = L. Use Exercise 12.3.

 b. What would be the steady-state profile if Z was distributed evenly throughout the 
cell, leading to a uniform removal rate α?
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 c. The flagellar motors which Yp regulates are arranged at random locations in the 
cell’s membrane. Their rotation is very sensitive to the local concentration of Yp. 
What might be the advantage of Z localized at one end of the cell as opposed to 
uniformly in the cell?

 12.5 Polynomial self-enhanced degradation. Find the steady-state concentration profile of 
a morphogen produced at x = 0, which diffuses into a field of cells with nonlinear 
self-enhanced degradation described by

 ∂ ∂ = ∂ ∂ −M t M x Mn/ /D 2 2 α  (P12.2)

  When is patterning with this profile robust to the level of M at the boundary, M0?

  Hint: Try a solution of the form M(x) = a(x + b)m and find the parameters a and b in 
terms of D, M0 and α.

 12.6 Robust timing: A signaling protein X inhibits pathway Y. At time t = 0, X production 
stops and its concentration decays due to degradation. The pathway Y is activated 
when X levels drop below a threshold T. The time at which Y is activated is tY. Our goal 
is to make tY as robust as possible to the initial level of X, X(t = 0) = X0.

 a. Compare the robustness of tY in two mechanisms, linear degradation and self-
enhanced degradation of X (note that in this problem, all concentrations are 
spatially uniform). Which mechanism is more robust to fluctuations in X0? Explain.

 b. Explain why a robust timing mechanism requires a rapid decay of X at times close 
to t = 0.

 12.7 Activator accumulation vs. repressor decay (harder problem): Compare the robustness 
of tY in Exercise 12.6 to an alternative system, in which X is an activator that begins to 
be produced at t = 0, activating Y when it exceeds threshold T. Consider both linear 
or nonlinear degradation of X. Is the accumulating activator mechanism more or less 
robust to the production rate of X than the decaying repressor mechanism?

 12.8 Flux boundary condition: Morphogen M is produced at x = 0 and diffuses into a large 
field of cells where it is degraded at rate α. Solve for the steady-state profile, using 
a boundary condition of constant flux J at x = 0, J = D∂M/∂x. Compare with the 
solution discussed in the text, which used a constant concentration of M at x = 0, M0.

 12.9 Salt-and-pepper pattern using Notch-Delta lateral inhibition: Consider a lattice of cells, 
like a chess board. Each cell expresses a receptor X (Notch) and can also express its 
ligand Y (Delta) which is displayed on the membrane. When cell A expresses Y, it binds 
the receptors X on its neighboring cell B. Binding of X to Y activates the receptor, which 
turns on signalling that inhibits production of Y in cell B. Thus, a cell that produces Y 
inhibits Y production in its neighbors. The cells start out with random amounts of Y.

 a. Explain how this circuit can produce salt-and-pepper patterns of cells, in which there 
are two types of cell fates arranged like black and white squares on a chess board.
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 b. Write a computer program that can simulate this system. How long does it take 
patterns to form? Do the patterns have defects?

 c. What possible mechanisms can reduce the risk of defects? (Sprinzak et al., 2010; 
Lubensky, Pennington, Shraiman and Baker, 2011; Glass, Jin and Riedel-Kruse, 2016)

 12.10 Turing patterns: Alan Turing in a foundational paper in 1952 entitled The Chemical 
Basis of Morphogenesis described a way in which patterns in nature such as stripes and 
spots can arise naturally out of a homogeneous, uniform state. The idea is a based on 
two chemical reactions that interact with each other. X is autocatalytic and produces 
itself and Y, whereas Y removes X. Furthermore, X diffuses more slowly than Y.

 a. Explain intuitively why such a mechanism can form patterns in which X is high 
in certain regions and low in others.

 b. Write equations for this process (choose reasonable functional forms) and find 
conditions for linear stability.

 12.11 Spontaneous symmetry breaking using LEGI: In order to move in a certain direction, 
cells sometimes need to choose a point on their membrane. Here is a mechanism 
to spontaneously choose such a point. When autocatalytic X is localized to the cell 
membrane and Y which inhibits X diffuses in the cytoplasm, a “local excitation, 
global inhibition” (LEGI) mechanism can help the cell spontaneously choose one 
point on its membrane with high X. Read about LEGI and explain this symmetry-
breaking process (Levchenko and Iglesias, 2002; Altschuler, Angenent, Wang and 
Wu, 2008; Xiong, Huang, Iglesias and Devreotes, 2010).

 12.12 Scaling of pattern proportions using expansion-repression: Scaling is the remarkable 
feature of development in which proportions of the developing body plan are 
maintained with precision despite variations in total body size. Large and small 
individuals are all perfectly proportioned.

 a. Show that the French flag and shuttling models of patterning by morphogen 
gradients discussed in this chapter do not support scaling.

 b. Show that scaling arises naturally in a feedback strategy in which the range of 
the morphogen gradient increases (e.g., its diffusion constant grows) with the 
abundance of a diffusible molecule X, whose production, in turn, is repressed by 
morphogen signalling.

 c. Show that this “expansion–repression” mechanism is analogous to an integral-
feedback controller (Chapter 9) (Ben-Zvi, Shilo, Fainsod and Barkai, 2008).
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C h a p t e r  13

Optimal Gene Circuit Design

13.1 INTRODUCTION
Welcome to Part 3 of this book, devoted to optimality in biological systems. Optimality 
theory is based on the ability of natural selection to maximize fitness, and hence to converge 
on particular circuit designs and parameter values in a given environment. Thus, optimality 
theory aims to predict and understand which circuit and parameters will arise in each 
situation.

There is extensive evidence that biological circuits are optimized, at least to a certain 
extent. For example, most mutations and other changes to the cells’ networks cause a 
decrease in performance. Furthermore, we’ve seen that evolution converges again and again 
to the same network motifs, presumably due to their functional benefits.

To understand evolutionary optimization more precisely, one needs to define a fitness 
function that is to be maximized. One difficulty in optimization theories is that we may 
not know the fitness function in the real world. For example, we currently do not know the 
fitness functions of cells in complex organisms. Such cells live within a society of other cells, 
the different tissues of the body, in which they play diverse roles. Fitness functions might 
not even be well-defined in some cases; disciplines such as psychology and economics deal 
with processes that do not appear to optimize a single fitness function, but only “satisfice” 
(Simon, 1997) in the sense of fulfilling several conflicting and incomparable constraints. 
We will discuss such multi-objective optimality in the next chapter.

We consider optimality as an idealized assumption that is a good starting point for 
generating testable hypotheses. The goal is to understand the constraints under which a 
circuit has evolved, and to predict which circuit will evolve in a given environment. You 
can end up concluding that a certain circuit in the cell is a historical accident or a vaguely 
good enough solution, but it is a mistake to start by assuming this in advance.

This chapter will, therefore, treat systems in which one can describe the fundamental 
forces at play during natural selection. For additional examples, see the work on optimality 
in metabolic networks in books by Savageau, Heinrich and Schuster, and Palsson, and 
optimality in animals by McNeil Alexander (see Further Reading at the end of this chapter).



228   ◾   An Introduction to Systems Biology

Our first question is: What sets the expression level of a protein? Why are some proteins 
produced at a few copies per cell, others at thousands and yet others at tens or hundreds of 
thousands?

13.2  OPTIMAL EXPRESSION LEVEL OF A PROTEIN 
UNDER CONSTANT CONDITIONS

To address this question, we begin with a situation in which fitness can be precisely defined: 
bacteria that grow in a constant environment that is continually replenished. In this case, 
the fitness F is the growth rate of the cells. The number of cells, N, grows exponentially with 
time at rate F until they get too dense:

 N t N eFt( ) ( )= 0  (13.2.1)

Now, if two bacterial species with different values of F compete for growth and utilize the 
same resources, the one with higher F will outgrow the other and inherit the test tube. Thus, 
natural selection will tend to maximize F over time. This type of evolutionary process was 
elegantly described by G.F. Gause in “The Struggle for Existence” (Gause, 1934).

Fitness can help us address our question: What determines the level of expression of 
a protein? To be specific, we will consider a well-studied gene system, the lac system of 
Escherichia coli, which was mentioned in previous chapters. The lac system encodes proteins 
such as LacZ, which breaks down the sugar lactose for use as an energy and carbon source, 
and LacY, which transports lactose into the cell. When fully induced, E. coli makes about 
Z = 60,000 copies of the LacZ protein per cell. Why not 50,000 or 70,000?

Note that we ask “Why the cell makes 60,000 copies?” and not “How the cell makes 60,000 
copies?” “How” questions relate to mechanisms such as the regulatory system, the promoter 
sequence, and so on, which are well-characterized in the lac system. “Why” questions aim 
to place the system within a wider theory, in this case optimality theory.

Optimality theory predicts that the protein expression level that is selected maximizes 
the fitness function. The fitness function in this case is growth rate F as a function of the 
number of copies of the protein expressed 
in the cell, F(Z) (Figure 13.1).

In principle, F(Z) can have local 
maxima and minima (Figure 13.2). A 
journey on this fitness function can get 
stuck on the local maxima or blocked by 
impassable valleys. Random mutations 
can cause noise along this journey, as can 
sampling noise when population sizes 
are small, an effect called genetic drift. 
Therefore, it is unclear a priori whether 
evolution can reach the global maximum 
and if so, how long this might take.

ZZopt

Natural 
selection

Maximum
fitness

Fitness
F(Z)

FIGURE 13.1 
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To answer such questions requires 
an experiment. We will consider an 
environment in which conditions are 
constant. In the case of LacZ, this means an 
environment with a constant concentration 
of the sugar lactose. The fitness is composed 
of two terms: the cost of the protein LacZ 
and the benefit it provides to the cells, 
both in units of growth rate, such that 
F = benefit − cost. Erez Dekel, when he was 
a postdoc with me, designed an experiment 
that measured benefit and cost in order to 
test the predictions of optimality theory in 
the lac system (Dekel and Alon, 2005).

13.2.1 Cost of the LacZ Protein

To experimentally measure the cost function, Erez Dekel used a classic experimental 
tool, the inducer IPTG, a chemical that mimics the structure of lactose. IPTG binds 
to the lac repressor and causes expression of the lac proteins. Since IPTG cannot be 
metabolized by the cells, it confers no benefit on its own, and is hence called a gratuitous 
inducer.

To measure the cost of the lac system, IPTG was used to induce the lac system to various 
levels in the absence of lactose. The cells grew on another carbon source, glycerol. Expression 
of LacZ reduced the growth rate of the cells (Figure 13.3). The cost c(Z) is defined as the 
relative reduction in the growth rate when Z units of the protein are made. Similar costs 
were measured using mutants with altered expression of the lac system, instead of IPTG 
(triangles in Figure 13.3).

The cost rises linearly with Z at first, so 
that each unit of protein reduces growth 
by a fixed amount. At higher protein 
levels, the cost starts to accelerate. The 
more proteins produced, the larger the 
cost of each additional protein. The reason 
is that production and maintenance of 
the lac proteins not only requires the use 
of the cells’ resources, but also reduces 
the resources available to other useful 
proteins.

To describe this cost function, we can 
assume that the growth rate of the cell 
depends on an internal resource R (such 
as the number of free ribosomes in the cell 
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or the cell’s energy balance1). The growth rate is typically a saturating function of resources 
such as R, following a Michaelis–Menten function:

 
F R

K R~
+  

(13.2.2)

The production of protein Z, and its maintenance, places a burden on the cells. This 
burden can be described as a reduction in the internal resource R, so that each unit of 
protein Z reduces the resource by a small amount, R → R − εZ. Plugging this into Equation 
13.2.2 shows, after a few lines of algebra, that the cost begins to diverge as Z approaches a 
cutoff level M, in which so much Z is produced that R is depleted (see solved Exercise 13.4):

 
c Z c Z

Z M( ) =
−

0

1 /  
(13.2.3)

When only a few copies of the protein are made, the cost goes as c(Z) ∼ c0Z. The cost of 
a single protein is about 10−6, which makes sense because there are about 106 proteins in 
the bacterial cell. The cost increases more steeply when Z becomes comparable to the upper 
limit of expression, M, when it begins to seriously interfere with essential functions of the 
cell. Proteins cannot come too close to the point Z = M, where the cost function diverges. 
In this experiment, M is about twice the number of Z copies expressed by the cell under 
saturating lactose, ZWT = 60,000/cell. For other proteins, M can be much larger, and cost 
functions are often linear over a wider range than in the case of the lac system.

The experimental measurements of the cost function agree reasonably with Equation 
13.2.3 (Figure 13.3). They show that the relative reduction in growth rate due to the fully 
induced lac system is about 4.5%. Note that this cost of a few percent makes sense, because 
the fully induced lac proteins make up a few percent of the total number of proteins in 
the cell.

13.2.2 The Benefit of the LacZ Protein

We now turn to the benefit, defined as the relative increase in growth rate due to the 
action of the protein. In the case of LacZ, the benefit is proportional to the rate at which 
LacZ breaks down its substrate, lactose. The rate of LacZ is well-described by standard 
Michaelis–Menten kinetics (see Appendix A). Hence, LacZ breaks down lactose at a rate 
that is proportional to the number of copies of the protein, Z, times a saturating function 
of the concentration of lactose, L:

 
b Z L b ZL

K L( , ) =
+

0

 
(13.2.4)

1 The cost in this experiment is due primarily to the action of the transporter LacY. When LacY imports a lactose molecule, 
it exports a proton. This reduces the membrane potential, and thus a good candidate for R is the cell,s proton motive force 
(Eames and Kortemme, 2012).
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where K is the Michaelis constant2 and b0 
is the maximal growth rate advantage per 
LacZ protein at saturating lactose.

To measure benefit, growth was 
measured in the presence of different 
levels of lactose, by keeping the system 
maximally induced by means of IPTG. The 
growth medium included glycerol so that 
cells could grow even without lactose.

The observed benefit function rose with 
lactose levels (Figure 13.4), and was well-
described by Equation 13.2.4 (black curve 
in the figure). The relative increase in 
growth rate due to the fully induced level 
of LacZ with saturating amounts of lactose 
is about 17% under the conditions of the experiment.

13.2.3  Fitness Function and the Optimal Expression Level

Now that we have the cost and benefit 
functions, we can calculate the fitness 
function, equal to the difference between 
benefit and cost. The fitness function is the 
growth rate of cells that produce Z copies 
of LacZ in an environment with a lactose 
concentration of L:

  

F Z L
b ZL
K L

c Z
Z M

( , ) = −

=
+

−
−

benefit cost

0 0
1 /  

(13.2.5)

The fitness function displays a 
maximum, an expression level Z that 
maximizes growth rate, as shown in Figure 13.5. The position of this maximum, namely 
the optimal protein level Zopt, depends on lactose level, L. The optimal protein level Zopt 
can be found by the point at which the derivative of the fitness function with respect to Z 
equals zero:

 
dF
dZ = 0

 
(13.2.6)

2 The Michaelis constant in this case is determined by the transporter LacY, K = 0.4 mM. This is because the influx rate of 
lactose is limiting under most conditions.
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Solving this equation shows that the optimal expression level increases with lactose L:

 
Z M

c K L
b Lopt = −

+( )










1 0

0  
(13.2.7)

Zopt rises with L because lactose increases the benefit per LacZ protein, and hence 
increases the selection pressure to produce more proteins. The fully induced wild-
type expression level, ZWT = 60,000/cell is predicted to be optimal when L ∼ 0.6 mM 
under these experimental conditions, as shown in Figure 13.5. Growth at higher lactose 
levels is predicted to be maximized by protein levels that exceed the wild-type level. 
Conversely, low levels of lactose are predicted to have lower optimal expression levels 
(Figure 13.5).

When there is no lactose in the environment, the optimal level is Zopt = 0, because the 
lac proteins confer only costs and no benefits. In fact, zero expression is optimal as long as 
lactose L is lower than a threshold Lc, because costs exceed benefits. The threshold Lc can 
be found by asking when Zopt in Equation 13.2.7 becomes equal to zero:

 
Z L L K b
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(13.2.8)

Under the conditions of the experiments described above, the threshold level of lactose 
needed for selection of the gene system is Lc ∼ 0.06 mM. If lactose environments with 
L < Lc persist for many generations, the organism will tend to lose the gene encoding LacZ. 
The loss of unused genes is a well-known phenomenon; for example, bacteria grown in a 
chemostat3 on glucose medium with no lactose lose the lac genes within a few days (Hartl 
and Dykhuizen, 1984).

13.2.4  Cells Reach Optimal LacZ Levels in a Few Hundred Generations 
in Laboratory Evolution Experiments

To test the predictions of this cost–benefit analysis, Erez 
Dekel performed a laboratory evolution experiment. 
The evolution experiment used the technique of serial 
dilution. E. coli cells were grown in tubes with a specified 
level of lactose. Every day, 1/100 of the cells from each tube 
were passed to a tube with fresh medium (Figure 13.6). The 
cells grew in the tube until they reached stationary phase. 
The next morning, 1/100 of the cells were again passed 
to a fresh tube, and so on. Thus, every day, the cells grew 

3 A chemostat is a device that keeps bacteria growing at a constant growth rate, by supplying a constant flow of fresh 
medium into a mixed aerated chamber, from which medium with cells is removed at the same rate. Cell generation time 
locks onto the time for exchange of half of the medium in the chamber (Novick and Weiner, 1957; Balagaddé et al., 2005; 
Ronen and Botstein, 2006).
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100-fold, corresponding to log2(100) = 6.6 
generations. Richard Lenski has been 
evolving E. coli for several decades with 
serial dilution, reaching tens of thousands 
of generations (Good et al., 2017).

Erez ran the experiment for several 
months, with seven tubes in parallel, each 
with a different lactose level, L = 0, 0.1, 
0.2, 0.5, 1, 2 and 5 mM. IPTG was added to 
the tubes, to make sure that lac system is 
fully induced, and glycerol was present as 
a backup carbon source. The concentration 
of the LacZ protein was monitored over 
time.

The cells heritably changed their LacZ 
expression level within several hundred 
generations (Figure 13.7). Strikingly, the 
LacZ protein level reached the predicted 
optimal level in each tube to a good 
approximation (Figure 13.8).

Cells growing with no lactose lost 
their lac expression altogether (Figure 
13.7). These cells could no longer grow on 
lactose as the sole nutrient. Cells growing 
on 0.1 and 0.2 mM lactose reached levels 
of expression lower than wild-type. Cells 
growing with 0.5 mM lactose kept close 
to the wild-type expression level of 60,000 
per cell, as predicted.

Cells growing with more than 0.5 mM 
lactose reached higher levels of expression. 
Cells evolving at the highest lactose level, 5 mM, reached the predicted expression of about 
20% more LacZ. Then at about 400 generations, they showed an unexpected jump to even 
higher levels (Figure 13.7). This is a great thing about evolution experiments- they often 
surprise you. Further experiments showed that these cells gained a mutation that increased 
M, the upper limit in the cost function.

Analysis of the evolutionary dynamics indicated that the cells reached their optimal, 
adapted levels in each case by means of a mutation that changed the LacZ protein level. 
For each lactose concentration, there are on the order of 100 possible mutations that can 
reach the desired optimal expression level. At zero lactose, there are on the order of 1000 
mutations that lose expression altogether. Many of these mutants arise in parallel in each 
tube and outgrow the wild-type cells, eventually taking over the tube (Good et al., 2017). 
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Takeover takes on the order of hundreds of generations for the selection pressures in this 
experiment, which are on the order of a few percent.

In summary, proteins like LacZ have costs and benefits, which can be used to calculate 
a fitness function. The fitness function can predict the optimal protein level in a given 
environment. Cells evolve to this optimal value in evolutionary experiments in several 
hundred generations. This gives us a sense of the speed and precision in which biological 
networks can adjust parameters such as protein expression levels.

So far we considered a constant environment. What happens when conditions change 
with time? We will next treat the principal way that cells deal with changes: gene regulation.

13.3  TO REGULATE OR NOT TO REGULATE? OPTIMAL 
REGULATION IN CHANGING ENVIRONMENTS

In this section, we ask why some genes are regulated while other genes are expressed 
continually without regulation. When does it pay to regulate a gene?

Consider an environment that changes over time. Suppose that our gene product Z 
provides benefit to the cells only in environmental condition Cz. For example, a sugar 
metabolism enzyme Z is beneficial only when the sugar is available in the environment. 
The environment displays the condition Cz with probability p, and other conditions, in 
which Z is superfluous, with probability 1 – p. The probability p is called the demand for Z 
(as we’ve seen in Chapter 7).

To analyze the optimal strategy, let’s compare three organisms with different designs for 
Z regulation. In organism one, protein Z is not regulated and is produced at a constant rate 
under all conditions. This is known as constitutive expression.

This organism constantly produces Z, with a cost c, but gains its benefit b only a fraction 
p of the time, when Z is in demand, so that it has a fitness

 F pb c1 = −  (13.3.1)

The second organism uses a dedicated regulatory system to produce Z only under the 
proper conditions. This organism thus saves unneeded production and pays the cost, c, only 
a fraction p of the time. However, it bears the cost of the regulatory system that can read the 
environment, calculate and implement the required changes in Z production. It pays this 
cost of regulation, r, all of the time:

 F pb pc r2 = − −  (13.3.2)

Finally, the third organism lacks the system altogether. It has no benefit or cost, and has 
a baseline fitness that we will define as zero:

 F3 0=  (13.3.3)

Regulation will be selected when organism two has the highest fitness, F2 > F1,F3. This 
leads to the following inequalities:

 
p r

c p r
b c< − >

−
1 ,

 
(13.3.4)
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Similarly, the unregulated design in which Z is constitutively expressed will be 
selected when

 
p c

b p r
c> > −, 1

 
(13.3.5)

These inequalities link a property of the environment, the fraction of time p that condition 
Cz occurs, to the cost and benefit parameters of protein Z and its regulatory system.

The range of environments in which 
each of the three designs is optimal is 
shown in the phase diagram of Figure 13.9. 
Regulation is selected at an intermediate 
range of demand, p. High demand tends 
to favor systems that are continually 
expressed. Constitutive expression of Z 
is always optimal when p = 1, because if 
Z is always needed, regulation becomes 
superfluous. When p = 0, the protein is 
never needed and the optimal mechanism 
is to never express it. The gene is eventually 
lost. Thus, in constant environments (p = 0 
or p = 1), there is no regulation.

There exist organisms in nature whose environment is quite constant. For example, a close 
cousin of E. coli, a bacterium called Buchnera, lives in symbiosis inside insects called aphids. The 
aphids supply Buchnera with nutrients and stable conditions. In such constant environments, 
every protein has either p = 1 or p = 0. These organisms indeed lose virtually all of their 
regulation systems, such as transcription factors. They also lose most of their genes (keeping 
only about 600 out of E. coli’s 4500). They hold this small set of genes continually expressed. This 
agrees with the behavior shown in Figure 13.9, on the lines p = 1 and p = 0.

At the other extreme are bacteria that live in changing and challenging environments 
such as the soil. These organisms have comparatively large genomes and many regulation 
systems.4 They probably have 0 < p < 1 for most genes, so that regulation is selected as 
shown in Figure 13.9.

This analysis assumes that periods CZ in which Z is in demand are long compared to a 
cell generation, so that we can ignore transients in which Z levels rise or fall when the gene 
is turned on or off. When environments change rapidly enough, a fourth strategy can be 
optimal – stochastic gene expression in which a fraction q of the cells express Z constitutively 
and the rest do not express Z. The cells gamble. This strategy is called bet hedging, because if 
Z is in demand, the cells that happen to produce it win, and if Z is not in demand, the other 

4 The number of transcription factors tends to increase with the number of genes in the genome as Na, where N is the number 
of genes and a ∼ 2 in bacteria and a ∼ 1.3 in eukaryotes (Huynen and Van Nimwegen, 1998; Yang et al., 2003). Thus, 
increasing the number of genes seems to require increasingly elaborate regulation mechanisms with more transcription 
factors per gene (Maslov et al., 2009).
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cells win. The optimal fraction of Z-expressing cells, q, rises with the fraction of time that Z 
is in demand, p (Kussell and Leibler, 2005).

In summary, regulation makes sense if the environment is sufficiently variable.
As a final example, let’s turn to cost–benefit analysis of a gene circuit.

13.4  ENVIRONMENTAL SELECTION OF THE 
FEEDFORWARD LOOP NETWORK MOTIF

We will now ask under which environmental conditions a particular circuit might be 
selected. For this purpose, we’ll examine a common network motif, the coherent feedforward 
loop (FFL).

As we saw in Chapter 3, the FFL can perform a basic dynamical function: it can filter out 
brief input pulses, and respond only to persistent stimuli. Although the FFL is widespread in 
transcription networks, not every gene is included in a FFL. In E. coli, for example, about 40% 
of the genes regulated by two inputs are 
regulated by a FFL, whereas the remaining 
60% are regulated by a simple two-input 
design which is not a FFL (the two circuits 
are shown in Figure 13.10). It is, therefore, 
interesting to ask why the FFL is selected in 
some systems and not in others.

To answer this question, we will do a 
cost–benefit analysis for the FFL in a given 
dynamically f luctuating environment 
(Dekel, Mangan and Alon, 2005). Here, 
the term environment means the time-
dependent profiles of the input signals. We 
will find conditions that the environment 
must satisfy in order for the FFL to be 
selected over a simple-regulation circuit. We 
will also determine the optimal values of the 
delay of the FFL circuit as a function of the 
environment. The full calculations are given 
in solved Exercises 13.5 through 13.9.

Suppose that the system is presented 
with a pulse of input SX of duration D. The 
impact of this pulse on the cell’s growth is 
given by the integrated fitness over the pulse 
duration, φ( ) ( )D F t dtD= ∫ 0 . This integrated 
fitness shows that brief pulses of input 
signals have a detrimental effect on growth 
(Figure 13.11): they lead to a reduction in 
growth rate. The reason for this reduction is 
that when the input pulses are shorter than 
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a critical pulse duration, Dc, protein Z does not have time to build up to levels in which the 
accumulated benefit exceeds the costs. Very brief pulses thus bear the cost of producing Z 
without giving it a chance to do any good.

Because fitness is reduced by brief input pulses, a circuit that can avoid responding to 
brief pulses, but still respond to persistent pulses, can be advantageous. The coherent FFL 
can perform precisely this type of filtering task. In the coherent type-1 FFL with an AND 
input function, Z is expressed only at a delay after the signals appear. Therefore, only pulses 
of input signals longer than the delay time of the FFL will lead to Z expression.

The delay in the FFL, TON, results from the time it takes for transcription factor Y to 
accumulate and cross its activation threshold for gene Z. Recall that this delay time is 
determined by the biochemical parameters of protein Y, namely its degradation rate, 
maximal level and activation threshold for Z (Chapter 3). The delay can, therefore, be tuned 
by natural selection to best fit the environment.

The delay in the FFL filters out pulses that are shorter than TON (Figure 13.12, right 
panel). This avoids the reduction in growth caused by short pulses. However, the delay also 
has a disadvantage, because during long pulses, Z is produced only at a delay and misses 
some of the potential benefit of the pulse (Figure 13.12). This means that in some situations 
the FFL does more harm than good.

To assess whether the FFL confers a net advantage to the cells relative to simple regulation 
requires analysis of the full distribution of pulses in the environment, where the probability 
of pulse of duration D is P(D).

Let us assume for simplicity that the pulses are far apart, so that the system starts each 
pulse from zero initial Z levels (and Y levels in the FFL). In this case, the average fitness, 
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averaged over many input pulses, can be 
found by integrating the fitness per pulse 
over the pulse distribution, F = ∫P(D)
φ(D)dD. The design with higher average 
fitness has a selective advantage.

These considerations map out when each 
circuit has a selective advantage in terms 
of the environment in which they evolve. 
This is expressed as relations between 
certain integrals of the pulse distribution. 
Exercises 13.7 and 13.8 show that these 
relations can be solved exactly for certain 
distributions.

These solutions indicate that the FFL 
is selected in some environments and not 
in others. For example, the FFL is never 
selected over simple regulation in environments with an exponential pulse distribution, 
P D e D D( ) ~ − / 0. This distribution is memoryless, and there is no way to predict how long a 
pulse will last based on its current duration – the FFL is useless. On the other hand, the FFL 
can be selected in environments with a bimodal pulse distribution, which has a probability 
p for beneficial long pulses and probability 1 – p for short pulses that reduce fitness. The 
optimal delay for a FFL in such an environment is equal to the duration of the short pulses. 
This delay filters out the non-beneficial pulses, with minimal negative impact on fitness 
during long pulses.

The regions in which each type of circuit is selected can be displayed in a phase 
diagram, Figure 13.13. This diagram shows that the FFL is more fit than simple regulation 
when deleterious brief pulses are common and the benefit-to-cost ratio is not too high. 
Simple regulation is superior when brief pulses are rare. When costs exceed benefits, 
neither circuit is selected. Exercise 13.10 applies this to the case of two sugar systems 
in E. coli.

I hope that this analysis gives a taste for the possibility of using cost–benefit analysis to 
study the selection of gene circuits and their optimal parameters.

13.5 INVERSE ECOLOGY
We currently have more information about the structure of biological circuits than about 
the precise environment and ecology in which they evolved. One can imagine an inverse 
problem – “inverse ecology” – deducing information about the environment based on 
the observed circuits. This is based on the idea that optimal circuits contain, in a sense, 
an internal model of the environment. For example, the optimal delay time of the FFL 
contains information about the distributions of input pulses. Thus, an intriguing goal is 
to use optimality considerations to connect the molecular details of mechanisms and the 
environment in which they were selected.

We will continue with these ideas in the next chapter.
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FURTHER READING
Debates over Optimality

A critique of optimality approaches by Gould and Lewontin calls them “just-so stories” 
(Gould and Lewontin, 1979). A humorous response by David Queller notes that unlike 
just-so stories, well-constructed optimality approaches are scientific hypotheses that 
generate ideas for specific new experiments (Queller, 1995).

Francois Jacob argued that biological systems must be contingent and imperfect because 
evolution works like a tinkerer, cobbling together existing parts and modifying them (Jacob, 
1977). A response (Alon, 2003) notes that one should avoid confusing product with process: 
while the process of evolution resembles tinkering with available parts, the products of 
evolution can show design principles similar to engineering, including reuse of a small set 
of circuit motifs, robustness, optimality and modularity.

Evolution and Optimality
An excellent review is (Parker and Maynard Smith, 1990) “Optimality theory in evolutionary 

biology.”
(Elena and Lenski, 2003) “Evolution experiments with microorganisms: the dynamics and genetic 

bases of adaptation.”
(Gause, 1934) “The struggle for existence.”
(Good et al., 2017) “The dynamics of molecular evolution over 60,000 generations.”

Optimality and Evolution in the lac System
(Dekel and Alon, 2005) “Optimality and evolutionary tuning of the expression level of a protein.”
(Eames and Kortemme, 2012) “Cost-benefit tradeoffs in engineered lac operons.”
(Hartl and Dykhuizen, 1984) “The population genetics of Escherichia coli.”
(Poelwijk, De Vos and Tans, 2011) “Tradeoffs and optimality in the evolution of gene regulation.”
(Towbin et al., 2017) “Optimality and sub-optimality in a bacterial growth law.”

Optimality Principles in Metabolism and Animals
(Alexander, 1996) “Optima for animals.”
(Heinrich and Schuster, 1996) “The regulation of cellular systems.”
(Ibarra, Edwards and Palsson, 2002) “Escherichia coli K-12 undergoes adaptive evolution to achieve 

in silico predicted optimal growth.”
(Meléndez-Hevia and Isidoro, 1985) “The game of the pentose phosphate cycle.”

Selection of the FFL Network Motif
(Dekel, Mangan and Alon, 2005) “Environmental selection of the feed-forward loop circuit in gene-

regulation networks.”

EXERCISES

 13.1 Limiting substrate: Protein X is an enzyme that acts on a substrate whose concentration 
is L. Calculate the fitness function F(X,L) assuming linear cost, c = c0X and a benefit 
b(X,L) = B0LX/(X + K), appropriate for cases where the substrate, rather than the 
enzyme X, is limiting. Calculate the optimal enzyme level Xopt as a function of L and K.



240   ◾   An Introduction to Systems Biology

 13.2 Minimal substrate for selection: For Exercise 13.1, what is the minimal substrate level 
Lc required for maintenance of the gene for X by the organism? When is the gene lost? 
Explain.

 13.3 Optimal expression of a subunit:

 a. Multiple units of protein X act together in a multi-unit complex. The benefit is a 
Hill function, b(X) = b0Xn/(Kn + Xn), and the cost function is linear in X. Estimate 
the optimal protein level. Explain.

 b. Protein X brings benefit to the cell only when its concentration exceeds X0, so that 
b(X) = θ(X > X0), where θ is the step function. What is the optimal expression 
level of X?

 13.4 Cost function:

 a. Derive the cost function in Equation 13.2.3, based on a limiting resource R, such 
that the growth rate is equal to F = F0R/(K + R). Each unit of protein Z reduces R 
by a small amount ε.

 b. In bacterial cells, the resource R often increases as the growth rate decreases 
(Korem et  al., 2018). For example, the fraction of free ribosomes increases as 
growth rate slows, because at high growth rates the ribosomes are mostly engaged 
in making new ribosomes. This effect can be added to the model to find similar 
cost functions at the low to intermediate expression levels of Z relevant to the 
experiments described in this chapter. Assume that R = m/F, where F is the growth 
rate and m is a parameter. Derive the cost function in this case.

Solution for (a):

  The burden of Z production can be described as a reduction in the internal resource 
R, such that each unit of protein Z reduces the resource by a small amount ε, so 
that R goes to R – εZ. Hence, the cost, defined as the relative reduction in growth 
rate, is as in Equation 13.2.3:

 
c Z F F Z

F c Z Z
M( ) ( ) ( )

( ) /=
−

= −










0
0 10

  where the initial reduction per subunit of Z is c0=Kε/(K+R) and the parameter 
M = (K + R)/ε. Note that the cost can never diverge, because when Z depletes all of 
the resource R, that is, when Z = R/ε, one finds F(Z) = 0 and the cost is equal to c = 1.

 13.5 Brief input pulses have a negative effect on growth: Exercises 13.5 through 13.9 analyze 
the selection conditions of the FFL and simple-regulation circuits. Consider a simple 
gene regulation mechanism with two-input transcription factors X and Y that regulate 
gene Z (i.e., regulation without the third edge X → Y in the FFL). The two inputs are 
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both needed for Z expression, so that this may be described as a simple-regulation 
circuit with an AND input function (Figure 13.10). In this design, Z is produced at 
a constant rate β in the presence of both signals SX and SY, and production rate is 
otherwise zero. The benefit of Z occurs only while the input SX is present. Show that 
pulses of the signal SX that are very short lead to a reduction in fitness. Only pulses 
that are long enough lead to a net growth advantage.

Solution:

  We’ll employ cost–benefit analysis to describe the effects of Z on the growth rate of the 
cells. We assume that Z production entails a reduction in growth rate C = −cβ, where 
β is the rate of production of Z and c is the reduction in growth rate per Z molecule 
produced. On the other hand, the action of protein Z conveys a growth benefit, b(Z). 
The overall effect of Z on the growth rate is a sum of the cost and benefit terms:

 F c b Z= − +β ( ) (P13.1)

  For simplicity, we neglect the nonlinear cost effects described in Section 13.2. 
Also, note that typically, the costs for the production of the transcription factors X 
and Y are negligible compared to the production cost of enzyme Z, since they are 
typically produced in far fewer copies per cell than enzymes (Nguyen et al., 1989; 
Ghaemmaghami et al., 2003). If Y costs are not negligible, the advantage of FFL over 
simple regulation increases, because the FFL prevents unneeded Y production.

   Now consider a pulse of input signals, in which SX is present at saturating levels 
for a pulse of duration D in the presence of SY. The growth rate of cells with simple 
regulation, integrated over time D, is given by:

 
φ β( ) ( ) ( )D F t dt c D b Z dt

D D

= = − +∫ ∫
0 0  

(P13.2)

  When the pulse begins, protein Z begins to be produced at rate β, and removed at 
rate α. The dynamics of Z concentration are given by the dynamical equation we 
discussed in Chapter 1:

 
dZ
dt Z= −β α

  resulting in the familiar exponential approach to steady state

 Zst =
β
α  

(P13.3)
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 Z t Z est
t( ) ( )= − −1 α  (P13.4)

  For long pulses (Dα ≫ 1), the protein concentration Z is saturated at its steady-state 
value Z = Zst. Protein Z has a net positive effect on cell growth:

 φ β( ) ( )D c D b Z Dst≈ − + > 0 (P13.5)

  provided that the benefit of Z exceeds its production costs:

 b Z cst( )> β (P13.6)

  Short pulses, however, can have a deleterious effect on growth. To see this, consider 
short pulses such that Dα ≪ 1. During the short pulse, the concentration of Z rises 
approximately linearly with time (as we saw in Equation 1.4.7), with a slope equal to 
the production rate

 Z t t( ) ∼ β  (P13.7)

  Since Z cannot reach high levels during the short induction pulse, we can use a series 
expansion of the benefit function b(Z) ≈ b′Z, where b′ = db/dZ at Z = 0. Using this 
in Equation P13.2, we find that the integrated growth rate is a quadratic function of 
the duration of the pulse, D (plotted in Figure 13.11):

 
φ β β β

β( ) ( )D c b t dt c D b D
D

= − + ′ = − +
′

∫
0

2

2
 

(P13.8)

  Importantly, the expression of Z causes a reduction in growth (φ(D) < 0) for pulses 
shorter than a critical pulse duration, Dc, found by solving φ(Dc) = 0:

 D c bc = ′2 /  (P13.9)

  Pulses with D = DC are at the break-even point: cost exactly equals the benefit. Only 
pulses longer than DC give a net benefit to the cells. Thus, simple regulation leads 
to growth reduction in environments that have mainly brief pulses, even though Z 
confers a net advantage for sufficiently long input pulses (Figure 13.12).

 13.6 Conditions for selection of FFL over simple regulation: Exercise 13.5 showed that 
expression of Z in response to brief input pulses reduces fitness. Hence, a circuit 
that filters out brief pulses, and allows responses only to persistent pulses, can be 
advantageous. The coherent FFL can perform this filtering task. In the coherent FFL, 
Z is expressed at a delay TON after the signals appear. Thus, only pulses of input signals 
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longer than TON lead to Z expression. However, the filtering of short pulses has a 
disadvantage, because during long pulses, Z is produced only at a delay and misses 
some of the potential benefit of the pulse (Figure 13.12). To assess whether the FFL 
confers a net advantage to the cells, relative to simple regulation, requires analysis 
of the distribution of pulses in the environment. The environment of the cell can be 
characterized by the probability distribution of the duration of input pulses, P(D). 
Assume that the pulses are far apart, so that the system starts each pulse from zero 
initial Z levels (and Y levels in the case of the FFL). In this case, the overall fitness, 
averaged over many cell generations, can be found by integrating the fitness per pulse 
over the pulse distribution. Find conditions for the selection of the FFL over simple 
regulation.

Solution:

  For simple-regulation circuits, the integrated fitness is an integral over all possible 
pulses, times the fitness per pulse φ(D):

 
Φsimple =

∞

∫
0

P D D dD( ) ( )φ

 
(P13.10)

  For FFL circuits, production starts after a delay TON. Pulses shorter than TON result 
in no Z production and hence φ(D < TON) = 0. Long pulses begin to be utilized 
only after the delay TON, so that their duration is effectively D − TON (Figure 13.12), 
resulting in a contribution in the integral only from pulses longer than TON:

 

ΦFFL ON

ON

= −

∞

∫
T

P D D T dD( ) ( )φ

 
(P13.11)

  Note that the simple-regulation case is equivalent to a FFL with TON = 0. The resulting 
condition for selection of FFL over simple regulation is when its averaged fitness 
exceeds that of simple circuits and is positive:

 Φ Φ ΦFFL simple FFLand> > 0 (P13.12)

  Simple regulation is selected when its integrated fitness exceeds that of the FFL

 Φ Φ Φsimple FFL simpleand> > 0 (P13.13)

  Neither circuit is selected otherwise (ΦFFL < 0, Φsimple < 0). For the purpose of this 
comparison, the FFL is chosen to have the optimal value for TON that maximizes ΦFEL, 
because natural selection can tune this parameter to best adapt to the environment.
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 13.7 The FFL is not selected in the case of exponential pulse distributions: Analyze the average 
fitness of the FFL and simple regulation in an environment in which pulses have a 
constant probability per unit time to end. Such environments have an exponential 
pulse distribution:

 P D D e D D( ) /= − −
0

1 0  (P13.14)

Solution:

Using Equations P13.10 and P13.11, we find that

 

ΦFFL

T

T
D

D
D

T
D

P D D T dD e D e D dD

e

= − =

=

∞
−

∞

− −

−

∫ ∫
ON

ON

ON

ON( ) ( ) ( )φ φ0 0

0

0

0
1

ΦΦ Φsimple simple<  (P13.15)

  Thus, the FFL is never selected since ΦFEL < Φsimple. An intuitive reason is related to the 
fact that exponential distributions are memoryless. Knowledge that a pulse has lasted 
for time t does not help us to predict how long it will continue to last. The FFL, which 
effectively reduces the pulse duration by a delay TON, confers no advantage relative to 
simple regulation.

 13.8 The FFL can be selected in bimodal environments with long and short pulses: Consider 
an environment that has two kinds of pulses. A pulse can have either a brief duration, 
D1 ≪ Dc, with probability p, or a long duration, D2 ≫ 1/α, with probability 1 – p. 
Analyze the conditions for selection of FFL and simple regulation as a function of p 
and the benefit-to-cost ratio of protein Z (Figure 13.13).

Solution:

  The brief pulses D1 are detrimental, since they are shorter than the critical pulse width 
at which Z reaches the break-even point, Dc (Figure 12.11). In contrast, the long pulses 
D2 are beneficial and have a benefit of approximately (applying Equation P13.5)

 φ β( ) ( )D c D b Z Dst2 2 2 0= − + >  (P13.16)

  In this case, it is easy to calculate the optimal delay in the FFL: the optimal delay is 
TON = D1, because this delay blocks the short pulses precisely; a longer delay would 
only reduce the benefit of the long pulses. The condition for selection of FFL over 
simple regulation, found by solving Equations P13.10 and P13.11, yields

 Φsimple = − − −( )( ( ) )1 2 1p b Z c D pc Dst β β

 ΦFFL = − − −( )( ( ) )( )1 2 1p b Z c D Dst β
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  This shows that the FFL is more fit when the probability of short pulses exceeds a 
factor related to the ratio of cost to benefit of Z,

 p c b Zst> −1 β / ( ) (P13.17)

  The phase diagram for selection is shown in Figure 13.13. When the ratio of benefit 
to cost, b(Zst)/cβ, is small, neither circuit is selected (costs outweigh benefits). At 
large relative benefits, the FFL is selected if brief pulses are common enough – that 
is, if p is large enough (Equation P13.17). If brief pulses are rare, simple regulation is 
selected. At a given p, the higher the benefit-to-cost ratio, the more likely the selection 
of simple-regulation circuits.

 13.9 FFL selection in E. coli sugar systems: In this exercise, we will apply, in a qualitative 
way, the results of Exercise 13.8 to the case of two sugar systems in E. coli. Why is the 
FFL selected in the arabinose utilization system (ara system discussed in Chapter 3), 
whereas simple regulation is selected in the lactose system (lac system)?

Solution:

  Both ara and lac systems share the same transcription activator, X = CRP, whose 
input signal is SX = cAMP, a signaling molecule produced by the cell upon glucose 
starvation. Thus, both systems have the same SX pulse distribution. However, the 
systems differ in their benefit-to-cost ratio, b(Zst)/cβ. The benefit per lactose molecule, 
which LacZ splits into glucose + galactose, is greater than the benefit per arabinose 
molecule (approximately 70 ATPs per lactose molecule vs. approximately 30 ATPs 
per arabinose molecule). In addition to its smaller benefit, the cost of the ara system 
may be larger than the cost of the lac system, because there are at least seven highly 
expressed Ara proteins (the metabolic enzymes AraB, AraA and AraD, and the pumps 
AraE and AraFGH), compared to only three highly expressed lac proteins (LacZ, LacY 
and LacA). Thus, the parameter b(Zst)/cβ for the ara system may be more to the left 
in Figure 13.13 relative to the lac system, favoring selection of FFL in the former. The 
delay in the FFL can be tuned by natural selection. As mentioned in Chapter 3, the 
delay in the ara system appears to be on the timescale of the deleterious short pulses 
in the environment.

 13.10 Cascades vs: FFLs: Repeat the calculations of Exercises 13.6 and 13.7 for a cascade 
X → Y → Z. Show that cascades are never more optimal than FFLs for environments 
with pulses of input signals. Explain this result.

 13.11 Population dynamics and mutational targets: Cells grow exponentially at rate F0, 
from an initial number N(0).

 a. A mutant arises with probability p per division, and grows at a faster rate F1. 
What is the ratio of mutant to wild-type cells as a function of time?

 b. The experiment of Dekel and Alon (2005) used 10 mL of growth medium to 
grow the bacteria. Cells grow exponentially until they stop growing (reach 
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stationary phase) at a density of about 109 cells/mL. How many of the above-
mentioned mutants are present in the initial tube in the experiment when it 
reaches stationary phase?

 c. The mutational target is the effective number of point mutations that confer a 
particular feature. The probability for a point mutation in the genome (a change 
of one DNA letter) is about p0 = 10−9 per cell division. Thus, if the effective 
probability for a given mutant phenotype p is K times more than p0, we say the 
mutational target is K. Plot the mutant cell number dynamics for K = 100 and 
K = 1000 for the conditions of the experiment, with F1/F0 = 1.05 signifying a 5% 
growth advantage. Which values of K correspond more closely to the data for 
L = 0 and L = 0.2 in Figure 13.7? Explain.

 13.12 Flagella phases: The bacterium Salmonella typhimurium has a special design for a 
gene that makes the flagellum. The DNA for this gene can be flipped by special 
enzymes that cut and paste the gene in a reversed orientation. The flagellar protein 
produced by the flipped gene has a different structure but can also make a flagellum. 
The flipping occurs stochastically, so that only some cells have a flipped gene. This 
means that a population of cells can have two different kinds of flagella.

 a. Explain why this strategy can be useful for Salmonella, which is a pathogen that needs 
to evade the immune system that can produce antibodies against flagella proteins.

 b. Suppose that Salmonella spends a fraction p of the time exposed to the immune 
system. The immune system in a given infected host recognizes only one of the 
two phases, but it is not possible to know which. The cost of the reversing enzyme 
is r and occurs all of the time. When is the gene-reversing strategy selectable 
based on cost–benefit analysis?

 13.13 Randomizing forces: Discuss which factors can prevent natural selection from 
reaching the fitness peak. Discuss the roles of population size, mutation rate, the 
shape of the fitness function, and physical and chemical constraints.

 13.14 The cost of noise:

 a. A protein Z has a fitness function F(Z). Cells express Z at its optimal level plus 
noise N which has a mean of zero and standard deviation of σ. Estimate the mean 
reduction in fitness due to this noise. Hint: Use a Taylor series expansion of F(Z) 
to second order around the maximum.

 b. For the lac proteins, use the fitness function in the main text to compute the cost 
of the noise. Use a 10% noise amplitude, namely σ = 0.1ZWT.

 13.15 Paradox of the plankton: If two organisms in a test tube share the same resource, only 
one can survive (the one with higher growth rate F), a principle known as competitive 
exclusion. In contrast, a cup of sea water contains hundreds of different coexisting 
species of plankton that compete over a much smaller number of resources. How 
might one resolve this “paradox of the plankton?”
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C h a p t e r  14

Multi-Objective 
Optimality in Biology

14.1 INTRODUCTION
So far, we considered evolution toward a single objective, such as maximizing the growth 
rate of bacteria. A single objective is appropriate for carefully controlled experiments. In 
nature, however, biological systems usually have multiple objectives. Bacteria, for example, 
need to grow quickly and also need to survive stresses. We will call such biological objectives 
‘tasks’. Multiple tasks lead to a fundamental trade-off: no design can be optimal at all tasks 
at once. There is no animal that can fly like an eagle, swim like a dolphin and run like a 
cheetah.

In this chapter, we will ask how evolution can optimize in the presence of multiple tasks. 
This is the art of optimal trade-offs. We will see that multiple tasks lead to simple geometrical 
patterns in biological data. These patterns can help us to understand the evolutionary trade-
offs at play.

14.2 THE FITNESS LANDSCAPE PICTURE FOR A SINGLE TASK
Let’s start with the classical framework for evolutionary theory, the fitness landscape picture. 
Consider the evolution of a bird’s beak. The genotype, DNA, leads to the phenotype, the 
shape of the beak, which leads to fitness, by eating seeds. The better the beak is at eating 
seeds, the more the bird will have viable chicks and grand-chicks on average, and the higher 
its fitness. It will pass its genes to the next generation. Thus

 genotype phenotype fitness→ →  (14.2.1)

Now suppose we take a ruler and measure the beak length, width, depth, curvature, and 
so on. These are called beak traits, Ti. Each beak phenotype can be represented as a point 
in a space whose axes are the traits, called trait space. We can (in principle) plot the fitness 
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of each beak in trait space, F T
�

( ), where 
�
T  

is the vector of traits, resulting in a fitness 
landscape.

The fitness landscape is a multi-
dimensional version of the fitness function 
from the previous chapter. The fitness 
landscape can have hills and valleys. 
Figure 14.1 shows the contours of a fitness 
landscape as a function of two traits 
shaped as a circular hill. Natural selection 
will tend to converge to the summit of 
the fitness landscape, to the phenotype 
that maximizes fitness. Phenotypes will 
perhaps form a cloud around the peak due 
to randomizing forces.

14.3  MULTIPLE TASKS ARE CHARACTERIZED 
BY PERFORMANCE FUNCTIONS

But what if the beak needs to do two different tasks that both contribute to fitness: to crack 
seeds and to pick pollen from flowers? You can’t be optimal at two tasks with one beak. 
Cracking seeds require a beak shaped like a pair of pliers, whereas picking pollen requires 
a beak shaped like a pair of pincers (Figure 14.2). In this case, we need to modify the 
genotype → phenotype → fitness picture, and add in the notion of performances at the 
two tasks (Arnold, 1983). The genotype determines the traits of the phenotype, 

�
T , which 

determine performance at task 1 (cracking seeds) P T1

�
( ) and performance at task 2 (picking 

pollen) P T2

�
( ). Fitness is a function of these two performance functions: F F P T P T= ( ) ( )( )1 2

� �
,

 

genotype phenotype
performanceat task

performanceat task
→

↗

↘

↘

↗

1

2
ffitness

 

(14.3.1)

Notably, fitness is an increasing function 
of the two performances (dF/dPi > 0): 
make a beak better at both tasks and fitness 
is sure to increase.

The precise form of the fitness function 
depends on the niche. In some niches one 
task is more important than the other, so 
that F(P1,P2) gives more weight to that 
particular task. In other niches the other 
task is more important. The precise shape 
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of the fitness function F in each niche is usually not known. But, as we will see below, 
conclusions can be reached that do not depend on knowing the form of F.

14.4  PARETO OPTIMALITY IN PERFORMANCE SPACE
So which beak shapes will evolve under the trade-off 
between these two tasks? Engineers routinely need to solve 
this type of problem. They use an approach called Pareto 
optimality. Suppose that you want to design a car. The 
design specifications require performance at two tasks, say 
acceleration (time from 0 to 100 km/h) and fuel economy 
(say km/liter). You take all possible designs, and plot them 
according to their performance at the two tasks. In this 
plot, whose axes are the two performances, each design is 
a point in performance space.

Now consider a design B. If there exists a design A that 
is better than B at both tasks (has higher performance at 
both tasks), we erase design B (Figure 14.3). We say that B 
is dominated by A. Erasing in this way all points which are 
dominated by another point, we remain with the Pareto 
front (Figure 14.4). It is the set of designs that cannot be 
simultaneously improved at both tasks. This front is what 
engineers care about.

Which design from the front you choose is based on 
the market niche of the car: a family car requires better 
economy at expense of acceleration, and a sports car 
requires better acceleration at the expense of economy 
(Figure 14.5).

This approach can be used to analyze biological 
circuits. For example, Adler et  al. (2017) analyzed the 
performance space of circuits that have fold-change 
detection (FCD), as mentioned in Chapter 10. They chose 
performance functions such as large response amplitude 
and fast response time, and considered circuits with 
a minimal number of interaction arrows. The Pareto 
front included only a handful of circuits. Many other 
minimal circuits did worse on at least one task, and were 
therefore not on the front. Among the few circuits on the 
Pareto front were the two circuits observed in biological 
systems, the I1-FFL and the nonlinear integral feedback 
loop discussed in Chapter 10. Thus, the Pareto front offers 
a way to understand why only a few circuit designs are 
found again and again in different systems, and most 
other circuits are not found.
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The Pareto optimality idea can also be used, in a lighthearted way, to help us understand 
how to choose scientific problems (Alon, 2009). The axes are how feasible and interesting 
the problem is.

14.5 PARETO OPTIMALITY IN TRAIT SPACE LEADS TO SIMPLE PATTERNS
This standard use of Pareto optimality requires us to define 
in advance what the tasks are. However, in many cases in 
biology we don’t know what the tasks are in advance. We 
can make an educated guess, but we can’t be sure. Thus, 
we can not directly use performance space to do Pareto 
optimality, because we don’t know what tasks to compare. 
Even if we did, we cannot evaluate the performance of 
each phenotype at each task.

Remarkably, we can still make progress, using an 
approach called Pareto task inference, or ParTI (Shoval 
et al., 2012, Hart et al., 2015). We simply plot the data in 
trait space, using all the traits that we can measure. The 
axes are the traits, and each phenotype is a point in this 
space. For example, each beak is a point in a space of traits 
such as beak width, depth, curvature, and so on.

We will now see that evolution under several tasks 
makes the data show particular geometric shapes. These 
shapes can help us discern the number of tasks, and 
even what the tasks might be. Thus, we solve the inverse 
problem of Pareto optimality, by inferring the tasks from 
the data. For example, when there are two tasks at play, the 
data will fall on a line segment (or sometimes on a slightly 
curved segment as discussed below). The two ends of the 
segment give us clues about what the tasks are.

To see where this line-segment geometry comes from, 
let’s imagine that each of the two tasks has a performance 
function, P T1

�
( ) and P T2

�
( ). The contours of these 

performance functions are plotted in trait space in Figure 
14.6. The peak of each performance function is a special 
phenotype, called the archetype. The archetype is the 
phenotype (trait combination) that is best at the task. If 
there was only that one task, evolution would converge to 
the archetype. Archetype 1 is the best beak for seeds, and 
archetype 2 is the best beak for pollen. Performance drops 
with distance from the archetype.

We want to find the beak shape that maximizes fitness, 
F(P1,P2), where F can be any increasing function. The surprise 
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is that, no matter what F is, one can prove that, under certain 
assumptions, the optimal solution must fall on the line 
segment that connects the two archetypes. The assumption 
of the theorem is that the performance functions drop with 
a metric distance from the archetype (for example, with 
Euclidean distance in Figure 14.6). But for some reason, as 
we will see when we look at data, the theorem seems to work 
well even in cases where it has no right to.

To understand why phenotypes fall on the line segment 
between the two archetypes, consider a phenotype B that 
is not on the line segment (Figure 14.7). The performance 
of B in each task is determined by its distances to the 
archetypes. There is a phenotype A on the line segment connecting the archetypes which is 
closer to both archetypes (by the triangle inequality) as shown in Figure 14.8. Phenotype A, 
therefore, has better performance at both tasks, and, therefore, higher fitness than B. In an 
evolutionary race, A would win, and we can, therefore, erase B.

Now, there was nothing special about point B, so we can erase all of the points and 
remain with the line segment between the two archetypes (Figure 14.9). This is the set of 
phenotypes that cannot be improved at both tasks at once – the Pareto front (plotted in 
trait space, not in performance space).

14.6  TWO TASKS LEAD TO A LINE SEGMENT, THREE TASKS 
TO A TRIANGLE, FOUR TO A TETRAHEDRON

Thus, a trade-off between two tasks predicts phenotypes on a line segment in trait space. 
Suppose we measure many beak traits, say 100 traits, making a 100-dimensional trait 
space. The beaks will still fall on the line segment between the two archetypes in this 
100-dimensional trait space (Figure 14.10a). Measuring any two of these traits will still show 
a line, because the projection of the line on any plane is a line (thin line in Figure 14.10a). 
Thus, it is not too important which traits you measure, as long as they have to do with the 
same tasks.
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If there are three tasks, we expect the optimal phenotypes to fall inside a triangle, whose three 
vertices are the three archetypes (Figure 14.10b). If there are four tasks, the phenotypes will fall 
inside a tetrahedron (Figure 14.10c). In the case of very many traits, we can use dimensionality 
reduction methods such as principal component analysis (PCA) to visualize these shapes.

In general, a trade-off between k tasks will result in a Pareto front shaped as a polytope with 
k vertices (a polytope is the generalization of a polygon or 
polyhedron to any dimension). Each vertex is an archetype 
for one of the tasks. A proof is given in Solved Exercise 14.1.

The key idea is that fitness is not just any function of 
traits F T

�
( ), it is an increasing function of k performance 

functions of the traits F P T P T P Tk1 2

� � �
( ) ( ) … ( )( ), , , . The 

maxima of these performance functions define k points in 
trait space, which is a polytope. The maximum of F needs 
to be close to these k points, and hence inside the polytope.

If you make a nonlinear transformation of the traits (e.g., 
measure T2 instead of T), the polytopes will be deformed 
(Figure 14.11). Deformed shapes can also result from other 
situations, such as a non-metric decline of performance 
functions (Exercise 14.6). Even if the shapes are deformed, 
they still have sharp corners at the archetypes.

The neat use of this approach is to discover what the 
tasks are directly from biological data. The sharp corners 
(vertices) of the polytopes can help us infer the tasks: The 
phenotypes closest to a vertex should be specialists at 
something, and that something gives clues to what the 
task might be (Figure 14.12). Phenotypes near the center 
of the polytope should be generalists. This is the ParTI 
approach of inferring the tasks from the geometric shape 
of the data in trait space (Hart et al., 2015).

14.7 TRADE-OFFS IN MORPHOLOGY
Let’s see how this works in practice by looking at some data. We’ll start with animal 
morphology, and then move to proteins and gene expression. Morphology is a field that 
measures the shapes of organisms, and morphology books are full of lines called allometric 
relationships. For example, the molar teeth of rodents (the three big teeth at the back of 
the mouth called M1, M2 and M3) vary in shape between rodent species. One can plot each 
species in a trait space of the relative tooth areas, the ratios M2/M1 and M3/M1.1 These are 
dimensionless traits that normalize out the total size. In this trait space, the rodent species 
fall on a line (Figure 14.13). Most tooth configurations are not found, and thus most of the 
trait space is empty.

1 Tooth areas, the traits favored by morphologists, give straight lines. If we plotted tooth length or volume instead of area, 
the line would be curved.
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Each rodent species is represented by a point on the line. The position on the line 
depends on what the rodent eats. Plant eaters (herbivores) are found at one end, meat eaters 
(faunivores) at the other end and omnivore generalists in the middle. This suggests a plant-
eating archetype with equally sized molars (flat molars 
with area ratios of 1:1:1), and a meat-eating archetype with 
spiky molars with area ratios of 2:1:0. The line provides a 
rule in which the area of the middle molar is the average of 
its two neighbors. This rule applies also to dinosaur teeth, 
allowing fossil hunters to infer how much meat versus 
plants a dinosaur ate.

Kavanagh et al. (2007) also perturbed the development 
of rodent teeth, by adding morphogens or by blocking 
morphogen diffusion. The perturbations changed the teeth 
proportions, but most of the the new proportions were still 
close to the line. This finding is related to the robustness of 
the developmental pathways, and to their ability to generate 
useful shapes even under perturbations, a feature called 
canalization (Chapter 12). Some perturbations, however, 
led to phenotypes far from the line, showing that the empty 
trait space is not impossible, and can be reached.

Morphological data also shows triangles. An example 
is found in the classic study of Darwin’s finches by Peter 
and Rosemary Grant (Grant, 1986). The Grants lived on a 
tiny island in the Galapagos and observed finch evolution 
over decades. They measured five traits for each finch – 
including mass, bone size and beak shape. This 5D data 
falls on a plane (the first two principal components 
explain over 90% of the variation). On this plane, the 
finches fall within a triangle (Figure 14.14). Their diet 
reveals three tasks: near the three vertices are species 
which are specialists at eating large seeds, small seeds and 
pollen/insects from cactus plants. Species in the middle 
of the triangle do a combination of these tasks.

A triangle is seen also when each data point is an ant 
from the same nest (Figure 14.15). E.O. Wilson measured 
the size of leaf-cutter ants versus the relative size of 
the gland which makes the pheromone for the ant trail 
(Wilson, 1980). He also recorded the behavior of each 
ant. There are three tasks: staying in the nest and nursing, 
soldiering and foraging. Ants fill a continuum inside the 
triangle defined by these three archetypes.

You might ask what is the functional role of the ants in 
the middle of the triangle? Why not make three clusters of 
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specialists – optimal nursers, foragers and soldiers, without the generalist ants in the middle 
which are suboptimal at all tasks? Ant researchers believe that one reason for generalists is 
dynamic flexibility. Suppose the nest is attacked – there is no time to make more soldiers. 
Instead, generalist ants can be recruited to supply the needed tasks quickly. We will use this 
as a metaphor soon for division of labor between cells in an organ.

14.8 ARCHETYPES CAN LAST OVER GEOLOGICAL TIMESCALES
We can also ask whether the archetype positions in trait space move over long evolutionary 
timescales. A model system for this question is ammonites, marine creatures with detailed 
morphological data covering 350 million years of evolution. The detailed data was collected 
in part because ammonite fossils are used to date rocks.

Ammonite shells can be described in an elegant 
trait space with two parameters, as proposed by 
paleontologist David Raup (Raup, 1967; Figure 14.16). 
In this trait space, the outer shell is a logarithmic spiral, 
whose radius grows with each whorl by a factor  W, 
the whorl expansion rate. The inner shell is also a 
logarithmic spiral, with a constant ratio between the 
inner and outer shell radii, denoted D.

In this W-D trait space, ammonite shapes fill out 
a triangle (Figure 14.17). There is empty trait space, 
without ammonites, at large D and W. This empty 
trait space includes shells shaped like French horns, 
which are found in other clades, but not ammonites. 
The three archetypes at the corners of the triangle 
match the shell shapes that are optimal for three tasks: 
economy (maximal internal volume per shell material), 
swimming (lowest drag) and predator avoidance (rapid 
growth of shell diameter) (Tendler, Mayo 
and Alon, 2015).

There were three mass extinctions in 
which ammonites were wiped out except for 
a few surviving genera. For example, the blue 
dots in Figure 14.17 mark the two surviving 
genera after the Permian/Triassic extinction 
252 million years ago. Remarkably, in about 
10 million years after each extinction, 
ammonites diversified to refill essentially the 
same triangle. This suggests that tasks and 
archetypes did not move much in this case.

Only with the last extinction that wiped 
out the dinosaurs, 65 million years ago, this 
triangle-filling trick didn’t work, perhaps 
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due to competition with mammals. There is only one surviving genus in the ammonite 
lineage, called Nautilus.

If archetypes remain relatively fixed, there remains the question of how radically new 
tasks can appear. How did novelties like vision and flight evolve, given that such tasks 
require complex organs such as eyes and wings. Organisms must somehow move out of an 
existing polytope toward a new archetype (e.g., flight performance).

Current thinking is that adaptation to a novel task arises by reuse of parts that have 
already evolved for a different task. One example is the evolution of wings from body 
appendages that served as thermal regulation devices. These appendages had selection 
pressure to grow in order to better radiate heat. When the appendages were large enough, 
they allowed the organism to glide, sparking selection pressure for aerodynamic gliding 
properties. Finally, the gliding appendages allowed rudimentary flight, and selection 
pressure worked to improve their performance as wings. This picture is called stepping-
stone evolution, because each new task is a stepping stone to the next.

14.9 TRADE-OFFS FOR PROTEINS
Let’s turn now from animals to proteins. A protein can also have multiple tasks. For example, 
Rubisco, one of the most abundant proteins in plants, is tasked with capturing CO2 from the 
air and adding it to a sugar molecule that can be used to build biomass. All of the carbon in 
our bodies comes from Rubisco that made the plant biomass that is the basis for our food.

Rubisco can be characterized by a trait space with four kinetic parameters. Two of these 
parameters are the catalytic speed kcat and affinity Km for CO2. The other two are the catalytic 
speed and affinity, ′kcat and ′Km, for the main competitor of CO2, oxygen O2. Capturing O2 
instead of CO2 is a mistake that requires energy to correct.

To study trade-offs in Rubisco, Yonatan Savir and Tsvi Tlusty compiled these four 
kinetic traits from different photosynthetic organisms (Savir et al., 2010). They found that 
the Rubiscos fall approximately on a line in the 4D trait space. Figure 14.18 shows the data 
in the space of three traits, kcat, Km and the specificity S k K k Kcat m cat m= ′ ′/ , together with 
the projections of the data on the three 
planes. At one end of the line segment 
are the fastest Rubiscos, which occur in 
organisms like corn, known as C4 plants, 
that can concentrate CO2 relative to the 
atmospheric concentration. Since these 
plants reach a high CO2 concentration 
inside their leaves, they do not need to 
worry about oxygen. At the other end are 
the slowest Rubiscos, which bind CO2 most 
strongly. These occur in organisms that do 
not concentrate CO2 and face competition 
from O2. Thus, this protein seems to evolve 
under a speed-specificity trade-off.
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14.10 TRADE-OFFS IN GENE EXPRESSION
The ParTI approach can also be applied to gene expression. At first glance, gene expression 
in a cell might seem very different from beaks or proteins. Cells can rapidly change gene 
expression according to their needs, whereas if you are born with a beak of a certain shape, 
you are stuck with it. Still, gene expression also faces trade-offs.

Consider a brief time period, say a second, in which the cell can make say 1000 proteins. 
You can’t make proteins to optimize rapid growth and at the same time make proteins to 
optimize stress resistance. Growth and stress require very different sets of proteins. The cell 
needs to choose which protein portfolio to express based on its expectation of the future. 
Thus, the cell faces trade-offs between tasks and hence it makes sense to look for polytopes 
in gene expression data.

Indeed, gene expression of the top 200 promoters in E. coli, which make up 90% of the 
total promoter activity, falls on a line segment (Figure 14.19). Here, trait space is a space of 
gene expression, in which each axis is 
the fraction of the total promoter activity 
in the cell devoted to promoter i, with 
i = 1 … 200. At one end of the line segment 
is the growth archetype, in which gene 
expression is focused on making ribosomes 
and machinery for biomass production. At 
the other end is the survival archetype in 
which cells express stress-response genes 
(and a small number of ribosomes in order 
to restart growth when things improve).

When placed in a test tube with nutrient, 
E. coli starts out close to the growth 
archetype, and grows exponentially until it 
begins to deplete the nutrient and pollute its environment. 
It gradually slides down the line to the survival archetype 
until conditions are so bad that growth stops. E.  coli 
follows approximately the same line for different nutrients 
and conditions.

Thus, all that E. coli needs to do in a new condition is 
decide about its position on the line segment. This means 
that it needs to choose a number θ between zero and one, 
with the growth archetype at θ = 0 and stress archetype 
at θ = 1. To choose this number, E. coli uses a simple 
mechanism to put its gene expression on a line. This line-
making mechanism is based on competition between two sigma factors, proteins that bind 
RNA polymerase (RNAp) and allow it to bind sites in promoters (Figure 14.20). One factor, 
σ70, binds sites in the promoters of growth genes and the other, σS, binds promoters for 
stress-response genes.
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Thus, the position on the line is given by the fraction of RNAp bound to σS, namely 
θ = σS/(σS + σ70). E. coli has signaling systems that read the environment and accordingly 
produce and degrade the two sigma factors, in order to determine where the cell lies 
between the tasks of growth and survival. The coordinates of the archetypes are encoded 
in the strength of the sites for the two sigma factors in each promoter (many promoters 
have binding sites for both sigma factors). A polytope with k vertices can be achieved by a 
similar design with k competing factors.

14.11  DIVISION OF LABOR IN THE INDIVIDUAL 
CELLS THAT MAKE UP AN ORGAN

We now turn from bacteria to gene expression in human cells. Human tissues are made 
of different types of specialized cells: brains are made of neurons and livers are made of 
hepatocytes. Having different cell types for each tissue allows a useful division of labor, 
assigning metabolic tasks to the liver and thinking tasks to the brain.

What about division of labor between cells of a given type, say the hepatocyte cells in 
the liver? Recall the ants, which divide labor toward a collective goal of colony survival and 
reproduction. Are there specialists and generalists also within a cell type?

Analysis of gene expression from individual cells all from the same organ indicates that 
division of labor is widespread. Gene expression of cells of a given cell type typically falls 
in a continuum bounded inside shapes with pointy vertices (Korem et al., 2015; Adler et al., 
2019). The tasks of the cell type can thus be inferred.

For example, liver hepatocytes are famous for doing multiple functions. They 
synthesize blood proteins and other essential compounds, they detoxify the blood, get 
rid of ammonia by turning it into urea and regulate glucose levels by storing it into 
glycogen or making it from amino acids when needed (gluconeogenesis). Individual liver 
cells fill out a tetrahedron in gene expression space, where each axis is the expression 
of gene i, with i = 1 … 20,000. This tetrahedron is plotted in Figure 14.21, where each 
point is a cell, and the axes are the first three principal components of gene expression.

At the vertices of the tetrahedron are cells that specialize in four key tasks: synthesis 
of blood proteins (such as albumin), 
gluconeogenesis, detoxification and, 
surprisingly, lipid metabolism/iron 
homeostasis. Each archetype has additional 
secondary tasks, so that each specialist 
carries out a “syndrome of tasks”: for 
example, the gluconeogenesis archetype 
also produces the antioxidant glutathione.

The specialist cells have a particular 
arrangement in space across the liver 
(Halpern et al., 2017). The liver is made of 
repeating hexagonal columns called liver 
nodules, about 15 cells across. The cells that 
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specialize in synthesis (albumin, glutathione) tasks that require much oxygen, are found 
in the oxygen-rich boundary of the hexagons, near the portal veins. Cells that specialize 
in detoxification, which requires less oxygen, are found at the oxygen-poor center of the 
hexagon where the central vein drains the lobule. Lipid/iron specialist cells are found in the 
middle. This placement of specialists at positions best suited to their task helps maximize 
the organ performance at all tasks (Adler et al., 2019).

These individual liver-cell experiments are an example of the technologies that provide 
the ability, undreamed of when I was a postdoc 20 years ago, to measure thousands of 
numbers from each individual cell. They produce massive amounts of data. How can we 
analyze such information-rich experiments in biology? The challenge is that human beings 
cannot visualize high-dimensional data. We can deal with a 2D picture or sometimes a 3D 
volume, but 4D, not to speak of 20,000D, is alien to us. That is why we need approaches to 
reduce dimensionality into something we can comprehend.

The problem is that each dimensionality reduction method has an implicit model of 
how the data is structured. If the data is unlike that model, the method can be misleading. 
Consider a commonly used approach, called data clustering. Data clustering assumes 
that data is arranged in distinct, well-separated clouds, and clustering algorithms can 
easily detect those clouds. However, clustering does poorly when data is arranged in a 
continuum – there are no natural distinct clusters.

In this case, other algorithms, known as archetype analysis algorithms (Mørup and 
Hansen, 2012), can help detect whether data can be approximated as a continuum filling a 
polytope, and how many vertices the polytope has (Hart et al., 2015). These algorithms focus 
on the outside contours of the data. As in any approach, be wary of artifacts that make data 
spuriously look like a line or triangle (see Exercise 14.19).

14.12 VARIATION WITHIN A SPECIES LIES ON THE PARETO FRONT
Let’s end by returning to animal morphology, in an example that opens up new questions. 
This example helped to start the ParTI framework, when Kathy Kavanagh showed me data 
on bird toes in 2009. The fourth toe of the bird has four bone segments called phalanges – 
similar to the bones in our fingers. Each bird species can be plotted in a trait space whose 
axes are the areas of three of the phalanges normalized by the area of the fourth. In this 
3D trait space, birds fall approximately on a plane and on that plane they fill out a triangle 
(Figure 14.22).

If I wrote this chapter clearly, you can see that the triangle suggests that the bird toes 
have three tasks. We can infer the tasks by looking at the birds closest to each vertex of the 
triangle. We see parrots and other perching birds near one archetype. The task is grasping, 
and the toe shows the biomechanical optimum for grasping a branch, namely equal-sized 
(and curved) phalanges. The second archetype is close to ostriches and other walking 
birds – it is the walking archetype with phalanges that decrease in area with ratios 4:2:1:0. 
Again, a biomechanical optimum: If you ever wondered about the difference between your 
hands and feet, your hands are for grasping and have equal-sized parts, and your feet are 
for walking and have a long footpad with short toe for kicking off. The third archetype is 
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for raptoring/scratching, and has a long fourth phalanx that provides a good-sized lever for 
the talon.

But let’s ask a different question. The point for a given species, say chicken, is the average 
over all chickens measured. What if we look at individual chickens? Each chick is born 
with slightly different bone ratios (and these ratios are set for life already in the egg). This 
variation is due to the combination of the parents’ genomes that provide each individual 
with a unique combination of genetic differences called polymorphisms. Variation further 
arises from the randomizing effect of noise during development. So individuals form a 
cloud in trait space around the chicken average. Does this cloud go in all directions, or is it 
flattened like a pancake along the triangle defined by different species?

Kathy Kavanagh tested this by hatching 100 chicken eggs and 100 zebra-finch eggs 
(Kavanagh et al., 2013). She found that the cloud of variation is flattened like a pancake 
along the triangle defined by different species (Figure 14.23). Exaggerate the difference 
between two individuals and you get a caricature of another bird species.

How can this be? As mentioned above, variation between individuals comes from 
a combination of noise and polymorphisms. To maintain the chicks on the front, the 
prevalent polymorphisms must push the phenotype along the front, but importantly not 
off of the front. We will call such polymorphisms aligned polymorphisms (Figure 14.24), 
because their effect is aligned with the front. Aligned polymorphisms can be selected 
because chickens have a range of niches in which walking, grasping and scratching are 
differentially important (Sheftel et al., 2018). Each individual gets a mix of polymorphisms 
that create a cloud of variation aligned with the front. Polymorphisms that move the 
phenotype off of the front face the risk of a competitor on the front with higher performance 
at all tasks.

Furthermore, in order to produce the observed variation, developmental patterning 
mechanisms need to somehow focus the effects of noise along useful directions aligned 
with the front, a kind of “aligned canalization.”
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The importance of aligned genetic variation and 
canalization can be appreciated if we recall that every 
individual is a never-tried-before combination of mom 
and dad, a pastiche of their millions of genetic differences. 
It’s like designing a new jet plane and flying it out of the 
hangar without ever testing it. Aligned polymorphisms 
and canalization mean that every offspring has a good 
chance to lie somewhere on the Pareto front, and, 
therefore, can be competitive in one of the niches available 
to the species.2 What types of developmental mechanisms 
and genetic population structure is needed for this type of 
variation is an open question.

In sum, natural selection is usually a multi-objective 
optimization problem. Organisms are, therefore, rarely optimal for a single task, but instead 
evolve under trade-offs. Evolutionary trade-offs lead to patterns in phenotype space in 
which a continuum of possibilities is bounded within polyhedral-like shapes with pointy 
vertices. The pointy vertices can be used to infer the tasks at play. The position of each 
phenotype relative to the vertices (the archetypes) tells us how important each task was 
in its evolution. This notion applies in principle to any scale – molecules, circuits, cells, 
organisms – as long as natural selection has had enough time, population size and genetic 
variation to approach the optimal trade-offs between tasks.

2 One more requirement is that the genetic variation be additive in the sense that multiple polymorphisms do not generate 
components perpendicular to the front. Such additivity can itself be selected (Sheftel et al., 2018).
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FURTHER READING
Natural Selection as a Multi-Objective Problem
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Evolutionary Trade-Offs and Pareto Task Inference
(Adler et al., 2019) “Continuum of gene-expression profiles provides spatial division of labor within 

a differentiated cell type.”
(Sheftel et al., 2013) “The geometry of the Pareto front in biological phenotype space.”
(Shoval et al., 2012) “Evolutionary Trade-Offs, Pareto Optimality, and the Geometry of Phenotype 

Space.”

Animal Morphology
(Grant, 1986) “The ecology and evolution of Darwin’s finches.”
(Kavanagh, Evans and Jernvall, 2007) “Predicting evolutionary patterns of mammalian teeth from 

development.”
(Kavanagh et al., 2013) “Developmental bias in the evolution of phalanges.”
(McGhee, 2006) “The geometry of evolution: adaptive landscapes and theoretical morphospaces.”

Algorithms for Archetype Analysis
(Hart et al., 2015) “Inferring biological tasks using Pareto analysis of high-dimensional data.”
(Mørup and Hansen, 2012) “Archetypal analysis for machine learning and data mining.”
R software package for ParTI by Vitalii Kleshchevnikov: https://github.com/vitkl/ParetoTI

EXERCISES

 14.1 Mathematical proof for the main theorem in this chapter: Prove that if (i) fitness is an 
increasing function of k performance functions in trait space, and (ii) each performance 
function i = 1 … k has a maximum at a point called archetype i, and (iii) performance 
drops with Euclidean distance from the archetype, then the point of maximum fitness 
is found inside the polytope defined by the k archetypes (Shoval et al., 2012).

Solution:

  Each phenotype is described by a vector of traits T (for convenience we will drop the 
vector sign from now on). Fitness F is an increasing function of the performance at 
the k different tasks, F(T)  =  F(P1(T),P2(T), … ,Pk(T)). Each performance function 
Pi has a maximum at archetype i, Ai, and performance decreases with Euclidean 
distance from the archetype Pi(T) = Pi(||T − Ai||). We will show that the optimal 
phenotype (the phenotype that maximizes F) is a weighted average of the archetypes 
with weights that are positive and sum to one. This is equivalent to saying that the 
optimal phenotype is inside the polytope defined by the k archetypes. Another way 
to say this is that the optimal phenotypes are convex combinations of the archetypes.

   The optimal phenotype maximizes fitness, dF/dT = 0. The second derivative 
also needs to be negative for a maximum (or zero with conditions on higher-
order derivatives), see exercise 14.9. Let’s denote the distance from the archetype 

https://github.com/
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  where all derivatives are at Topt. Note that the weights sum to one, Σθi = 1. The weights 
are positive θi > 0 because F increases with performances (so that ∂F/∂Pi > 0) and 
performance decreases with distance from the archetype (dPi/dri < 0) so that all terms 
have a negative sign which cancels out. Hence,

 i. The optimal phenotype is a weighted average (convex combination) of the 
archetypes Topt = ΣθiAi.

 ii. The weights are positive and sum to one (θi > 0, Σθi = 1). Another way to say this 
is that the k maxima of the k performance functions define a k – 1 dimensional 
shape in trait space (the convex hull of those k points), and optimal phenotypes are 
trapped within inside this shape. For two tasks, k = 2, this shape is a line segment:

 T = θA1 + (1 − θ)A2, 0 ≤ θ ≤ 1 (P14.3)

 14.2 Phenotype position is determined by fitness and performance gradients: This exercise 
shows that the position inside the polytope can provide information. Exercise 14.1 
shows that the optimal phenotype for a given fitness function F is a weighted average 
of the archetypes.

 a. Show that the weight for each task can be interpreted as the importance of the task 
to fitness times the sensitivity of its performance to changes in the traits.

 b. Show that in a niche in which one task has much greater effect on fitness than the 
other tasks, the phenotype will be close to the corresponding archetype. This is a 
specialist phenotype.

 c. In the case of ammonites, how can the position in the triangle help us to understand 
what might have been the selective conditions for each ammonite?

 d. Discuss the effects of adding a new task to k existing tasks. This new task has a small 
effect on fitness and can be carried out effectively out by a large range of traits.
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Solution to (a): the weights from Exercise 14.1 are
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The weight for task i is therefore the normalized product of the importance of the 
task to fitness ∂F/∂Pi times the sensitivity of the performance to changes in the trait 
dPi/dri.

 14.3 Multiple tasks break the symmetry of neutral spaces: 
Consider a system with two tasks. Task  1 has a 
performance function whose maximum is at point 
A, the archetype for that task, and performance 
decays with Euclidean distance from the archetype. 
Task 2, however, has a maximum performance not 
attained at a single point, but instead in an entire 
region N in trait space (Figure 14.25). Such a region, 
in which all points have the same performance, is 
called a neutral space. Performance decreases with 
Euclidean distance from N (distance to the closest 
point in N).

 a. Show that only one point in N is on the Pareto front. It’s as if task 1 “chooses” one 
point in N. It thus breaks the symmetry between the points in N.

 b. Show that the Pareto front is a line segment that connects point A with a point on 
the boundary of N.

 c. Give a biological example for a task which is maximized at a region and not a point 
in trait space.

 d. What would happen if task 2 was the only task affecting fitness?

 Solution to a: 

 a. The chosen point is the point in N closest to A. To see this, let’s call this point B. 
Choose a point C in N other than B. Its performance in task 1 is lower than B 
(because B is closer to A by definition), and its performance at task 1 is the same 
as B since both are in the neutral space. Hence, C is dominated by B and can be 
removed. We are left with point B.

 14.4 The Pareto front is where performance contours are tangent:

 a. Show that the Pareto front is the set of points in which the contours of the 
performance functions are externally tangent.
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 b. Use this to explain why, when performance functions decline with Euclidean 
distance from their maxima, contours are circular and the set of tangent points is 
a line (Figure 14.26a).

 14.5 Pareto front is a line if both performances decay with the same inner-product norm: This 
exercise shows that when the performance functions decline not with Euclidean distance, 
but all decline with the same inner-product norm (giving different traits differential 
impact on performance, with elliptical contours), the theorem of Exercise 14.1 still applies.

   Consider the case of two tasks, in which performance functions decay with distance 
given by an inner product norm, ri = (T − Ai)TQ(T − Ai) where Q is a positive definite 
matrix. The inner product norm is the same for both tasks. Their contours are, 
therefore, concentric parallel ellipses around the archetype, such that both tasks have 
ellipses of the same orientation and eccentricity (Figure 14.26).

 a. Sketch the contours.

 b. Show that the Pareto front is a line segment (use Exercise 14.4).

 c. Compute the Pareto front for the case of k tasks. Show that it is exactly the same 
as in the case of Euclidean norms – a polytope with vertices at the archetypes. 
(Hint: Rotate and dilate space until the contours are circular.)

 14.6 Pareto front is curved if performances decay with different norms: Consider the case 
of two tasks, and performances that each decays by a different inner-product norm. 
Their contours are therefore concentric parallel ellipses around each archetype, but 
with different orientation and eccentricity (Figure 14.26c).

 a. Explain why the Pareto front is curved. Show graphically that the most curved 
front occurs when the long axes of the ellipses are at 45 degrees to each other, and 
the long axes are much longer than the short axes.

 b. Consider the case where the long axes of the ellipses for the two tasks are orthogonal 
to each other. Sketch the contours. Is the front curved or straight?

 c. What is the biological meaning of the difference in norms and contour shape?
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 14.7 Bounds for general performance functions: This exercise shows that even when we 
know nothing about the shape of the performance functions (no norms or even no 
monotonic decay from the archetype), one can still bound the Pareto front in a region 
between the archetypes that lies between certain contours (Sheftel et al. 2013).

   Consider the case of two traits and two tasks. Performance functions can have a 
general form, with global maxima at the archetypes A1 and A2.

 a. Show that the Pareto front is bounded inside the region between two special 
contours, C12, the contour of performance 1 that goes through A2, and C21, the 
contour of performance 2 that goes through A1 (Figure 14.27a).

 b. Suppose that the performance functions have local maxima in addition to the 
global maximum, such that the contours C12 and C21 have disconnected pieces that 
go around the local maxima (Figure 14.27b). Show that generally, the local maxima 
do not affect the Pareto front. Show that only when the local maxima of the two 
performance functions happen to be close to each other, the Pareto front can have 
multiple disconnected pieces (Figure 14.27c).

 14.8 Too few traits measured: Suppose a system has four tasks, but only two traits are 
measured experimentally. What kind of shapes would describe the optimal phenotypes 
in the 2D trait space?

Solution: 

  Triangle or kite. The four tasks generally lead to a tetrahedron with four archetypes 
at the vertices. Measuring two traits means projecting the tetrahedron on a plane. 
Projections of a tetrahedron are shaped as a quadrangle (kite) or a triangle. The latter 
case is when one of the archetypes is occluded.

 14.9 Empty regions in the polytope: The theorems we discussed so far are silent on the 
question of where in the polytope the points can lie. This exercise will show that some 
regions of the polytope can be empty (forbidden) if the performance functions have 
certain curvatures. We will use a 1D example, with a single trait T and two tasks.

 a. Show that the Pareto front is the line segment between the two archetypes.

 b. Show that a condition for optimality is d2F/dT2 < 0.
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 c. Show that this requires a condition on the curvature of the performance functions 
d2Pi/dT2.

 d. Show that when both curvatures are positive, there is an empty region with no 
phenotypes.

 e. What happens when the performance functions are Gaussians that decay with 
distance from the archetype?

 f. What other reasons might explain an empty region inside a polytope. (Hint: 
Consider physical constraints on the phenotype.)

 14.10 Mass-longevity triangle (Szekely et al., 2015): Plotting the longevity of mammalian 
and bird species versus their mass shows a continuum inside a triangle-like shape 
(Figure 14.28). At the three vertices are shrews (that weigh a few grams and live 
about 2 years), elephants and whales (tens of tons, ∼100 years) and small bats (a few 
grams, ∼50 years). Near the bat archetype are mammals that live in trees and social 
mammals that live underground (e.g. naked mole rat). Flying birds are found near 
the bat archetype and walking birds near the bottom edge of the triangle. Interpret 
these findings in terms of trade-offs and tasks.

 14.11 Different modules of tasks: Suppose that an organism has two parts or modules, each 
with a different set of tasks and traits. For example, a bird has beak traits devoted to 

FIGURE 14.28 Adapted from (Szekely et al., 2015).
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tasks of eating and toe traits devoted to the tasks of walking/grasping. Suppose that 
each module has two traits and two tasks.

 a. What would the Pareto front look like in the 4D trait space?

 b. What would happen in a ParTI analysis if we didn’t realize that toes and beaks 
are separate and mixed the traits together into one big dataset?

 c. Harder problem: Devise an algorithm to detect in a large dataset whether there 
are multiple separable modules of traits and tasks, each with each own Pareto 
front (give outline of algorithm, 100 words).

 14.12 Molecular mechanism for polytopes in gene expression: In this exercise, we consider 
a mechanism that can generate a polytope with k vertices for gene expression. 
It is a generalization of the σ-factor mechanism in Figure 14.20. Suppose that 
k transcription factors Xi, with i = 1 … k, regulate genes, but are active only when 
bound to protein Y, in the complex [XiY]. The binding is strong with affinity Ki. Each 
gene promoter has binding sites for one, some or all of the Xi. The expression of gene 
j when [XiY] binds its site is wij, and the effects of the regulators add up (SUM gate).

 a. Show that the expression of gene j is T Y w X K X Kj T i ij i i i i i= − −Σ Σ1 1/  where YT 
is the total level of Y.

 b. Show that gene expression lies in a polytope with k vertices in gene expression 
space whose axes are Tj.

 c. What are the coordinates of the archetypes in terms of the mechanism 
parameters?

 d. In each condition, the cell regulates the concentrations of Xi. What is the 
concentration combination that leads to gene expression near vertex 1? Near the 
middle of the polytope? Outside of the polytope?

 e. What happens to the polytope if we delete one of the regulators?

 f. What happens if we change the level of Y, YT?

 14.13 Aligned mutations in the polytope mechanism: Consider the mechanism of Exercise 
14.12. Suppose a mutation can change one regulator concentration Xi, one binding 
site strength wij or YT.

 a. Which mutations move the phenotype inside the front?

 b. Which mutations move the phenotype off of the front?

 c. Which mutations change the archetype coordinates?

 d. Which mutations would you expect to see at high prevalence (i.e., common 
polymorphisms) in a population of organisms facing niches that share the same 
k tasks, but where each niche gives different weighting to each task?



270   ◾   An Introduction to Systems Biology

 14.14 Pareto optimality in engineering: Consider the performance space of car designs, with 
the performances of acceleration and economy (Figure 14.5).

 a. Where are the archetypes in performance space?

 b. What would be examples of relevant traits in a trait space of cars?

 c. How is ParTI different from Pareto analysis in performance space?

 14.15 Trade-offs in a network motif: Consider the negative autoregulation network motif of 

Chapter 2, with dynamics dX
dt X

K

Xn=

+








−
β

α

1

 where X is a stable protein. Suppose 

the tasks are speed (fast response time) and economy (minimal protein production 
integrated over one cell generation, log(2)/α).

 a. Plot performance space and trait space, with the traits β, K, n.

 b. What is the Pareto front?

 c. When is simple regulation selected?

 14.16 Performance space of fold-change-detection (FCD) designs: Read Adler et al. (2017). 
Explain how the Pareto front concept is used to define a handful of FCD circuit designs.

 14.17 Aligned canalization: Analyze the French flag model of morphogen pattern formation 
(Chapter 12). In this model, morphogen X is produced at position x = 0 and diffuses with 
diffusion coefficient D and is degraded at rate α. Cell fate decisions are in these regions 
defined by the points in space where morphogen crosses the thresholds T1 and T2.

 a. What is the effect of varying thresholds, D, and α on the patterns?

 b. Define a trait space given by the ratio of the lengths of cell-fate regions. What 
suite of variations occurs upon changes in threshold D, and α?

 c. Could such a design provide aligned canalization for a given set of tasks?

 14.18 Optimal arrangement in space (Adler et al., 2019): Consider a tissue with a spatial 
coordinate x, with gradients of oxygen and nutrients across x. Cells in the tissue 
have two tasks, whose performance depends on space and on gene expression, 
Pi(x) = φi(x)P(||T(x) − Ai||) where T(x) is gene expression of the cells at position x 
and Ai are the archetypes. The collective performance at task i, summed over all 
cells, is Si. The overall function of the tissue is an increasing function of the collective 
performances F  =  f(S1,S2).

 a. Suppose that performance functions P have negative curvature. Solve for the gene 
expression profiles as a function of position T(x).

 b. Are there specialist cells and generalist cells?

 c. Task 1 is performed best near x = 0, and task 2 is insensitive to space (φ1 = 1 − x, 
φ2 = 1). What is the spatial expression profile?
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 d. Relate this problem to the case of hepatocytes in the main text.

 e. What Pareto front shapes might be expected in a tissue with 3D spatial gradients?

 14.19 Triangles can result from other reasons: A coin is tossed N times, and the number of 
heads H is recorded. This is repeated 100 times for N = 1,2, … 100.

 a. Sketch the data in a trait space whose axes are the number of tosses N versus the 
number of heads H.

 b. Explain why the data resembles a triangle.

 c. Is there anything special about the data points near the vertices?

 14.20 Why only 2–4 archetypes, and not more, in most datasets?

  In the systems analyzed in this chapter, we saw evidence for 2, 3 or 4 tasks, namely 
lines, triangles or tetrahedra. Why don’t we see many more tasks, say 10 or 100?

Solution: 

  To see k archetypes requires k tasks to have the same, large, influence on fitness. 
More precisely, the traits on the Pareto front are convex combinations of the 
archetypes ΣiθiAi with the weight for archetype i proportional to the impact of task 
i on fitness fi  =  ∂F/∂Pi times the sensitivity of the performance at task i to the traits: 
si = dPi/dri namely θi  =  fisi/Σifisi (Exercise 14.2). It is reasonable to assume that tasks 
have widely distributed impacts and sensitivities, so that it is unlikely that a large 
number of different tasks will have large weights with the same order of magnitude. 
Biological systems usually have many additional tasks of small impact and/or small 
sensitivity (i.e., can be performed well by many phenotypes), and these tasks exert 
a weak “gravitational pull” on the data. They are undetectable without very precise 
data. Can you think of such low-impact tasks, for example, for bird beaks?
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C h a p t e r  15

Modularity

15.1 THE ASTOUNDING SPEED OF EVOLUTION
After the extinction of the dinosaurs, a few small mammalian species survived. They found 
a world with many empty niches. In about 10 million years, these ancestors evolved to 
organisms as different as whales, bats and primates.

Ten million years is about 107 generations. In this chapter, we’ll see that this is extremely fast 
if you compare it to simulations of evolution. For example, we will simulate evolving a logic-
gate circuit from scratch. In 107 generations, you can barely evolve a logic circuit with a dozen 
inputs. Thus, we need to explain the speed at which evolution can generate complex organisms.

15.2   MODULARITY IS A COMMON FEATURE 
OF ENGINEERED AND EVOLVED SYSTEMS

Clues can be found by considering a different process that generates complex systems: 
human engineering. Engineering is unlike biological evolution in many ways. Evolution 
tinkers by making random changes to available parts, whereas engineers work with top-
down principles and learn from the vast experience of other engineers. But although 
evolution did not go to engineering school, its outcomes, evolved biological systems, have 
striking similarities to certain aspects of engineered systems.

We have seen these similarities throughout this book. One similarity is the reuse of 
a small set of elementary circuits. Engineers use tested tried-and-true circuit elements 
like amplifiers and logic gates to build complex devices. As we saw in Part 1 of this book, 
biological regulation networks are also made of a small set of network motifs, which can 
be connected to generate elaborate computational functions. A second shared principle 
is robustness, a major concern of engineers who use principles such as integral feedback 
control. As we saw in Part 2 of this book, the need for robustness shapes the way that 
biological systems are built. In Part 3, we have discussed optimality, and were inspired by 
concepts of cost–benefit analysis and Pareto optimality used by engineers.

In this chapter, we focus on an additional powerful principle that allows both engineers 
and biological evolution to scale up and produce remarkably complex systems that work in 
the real world: modularity.
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A modular system is a system that can be decomposed, at least to a first approximation, 
into structurally independent parts. Each part also has a specific function. Modules have 
input and output ports to interface with other modules. Inside the module are internal 
connections that are shielded from the rest of the system. For example, a car can be 
decomposed into modules such as the motor and the battery, and well-written software 
can be decomposed into independent subroutines.

Figure 15.1 shows an example of 
two networks, one with a non-modular 
structure and another that is modular. 
The structural modularity of a network 
can be quantified by algorithms, such 
as the Newmann–Girvan algorithm 
(Appendix C). These algorithms attempt 
to partition the network into parts, such 
that the parts have more connections 
inside them than to other parts. The degree to which a network can be decomposed 
in such a way can be used to provide a modularity score. With this quantification, 
networks can be placed on a continuum between modular and non-modular. The vast 
majority of random networks are non-modular. But biological systems on all scales 
show modularity.

15.3  MODULARITY IS FOUND AT ALL LEVELS 
OF BIOLOGICAL ORGANIZATION

The body is made of organs. Each organ is a module with 
special structural organization and specific functions. 
For example, the liver module supplies glucose and blood 
proteins to the rest of the body (Figure 15.2). The lung 
supplies oxygen and removes CO2. These two modules are 
linked by their functional output (glucose from the liver to 
the lung, oxygen from the lung to the liver). You can evolve 
the lung without need to modify the liver, as long as the 
lung supplies the needed oxygen.

The organs are made of cells, a classic biological module. 
Each cell has subparts called organelles with specific 
function such as the nucleus that houses the genes. Genes, 
in turn, are organized into promoters, introns and exons. 
Promoters have modules such as binding sites. Delete a 
binding site and you lose a specific regulatory feature. 
For example, deleting a DNA region (the eve stripe  2 
enhancer) from the promoter of the eve gene causes the 
loss of stripe number 2 of the 7 expression stripes in the 
fruit-fly embryo (Figure 15.3), keeping the other 6 stripes 
of expression intact.
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Proteins themselves are made of modular domains: 
for example, a typical transcription factor such as the lac 
repressor LacI has a domain that binds to its input signal, 
a domain that binds DNA and a protein-binding domain 
to form LacI tetramers (Figure 15.4). Biologists routinely 
glue together domains from different proteins to make 
new proteins that recombine the features of the original 
proteins.

15.4  MODULARITY IS NOT FOUND 
IN SIMPLE COMPUTER 
SIMULATIONS OF EVOLUTION

Why does modularity exist in biological networks, and 
how did it evolve? It is important to realize that not all 
evolved networks are modular. The opposite is true: non-modular solutions are the norm 
in simple computer simulations of evolution.

In evolutionary simulations, a population of networks is evolved by randomly 
adding, removing and changing connections between nodes – and even duplicating and 
recombining parts of the networks – until the networks perform a given computation 
goal, that is, until the networks give the correct output-to-input relationship.

Unlike biological networks, simulated networks evolved in this way are usually 
 non-modular. They have a highly interconnected structure that cannot be decomposed 
into  nearly independent subsystems (Thompson, 1998). Since the evolved networks 
are non-modular it is difficult to understand how they work. These non-modular solutions 
are often more highly optimized than their modular, human-engineered counterparts.

The fundamental reason for the lack of modularity in these evolved networks is that 
modular structures are far rarer and usually less optimal than non-modular ones for a given 
task. Typically, there are many possible connections that break modularity and increase 
fitness. Thus, even an initially modular solution rapidly evolves into one of many possible 
non-modular solutions.

Viewed in this perspective, the modularity of biological networks is puzzling. To 
understand how biological modularity might have evolved, we need to add something to 
these computer simulations that is biologically plausible.

Here, we will explore a mechanism for the evolution of modularity, using simulated 
evolution of circuits made of logic gates. These simulations will serve as a metaphor for 
understanding biological evolution.

15.5 SIMULATED EVOLUTION OF CIRCUITS MADE OF LOGIC GATES
Evolving circuits is fun and can teach us about basic aspects of evolution. We will evolve 
circuits made of Boolean logic gates. Each gate has two inputs that can be 0 or 1. For 
example, an AND gate outputs 1 only if both inputs are 1, and outputs zero otherwise 
(Figure 15.5). An XOR gate (exclusive-OR) outputs 1 if either input is 1, but not both 
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FIGURE 15.4 Adapted from 
(Raman et al., 2004).
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(Figure 15.5). A NAND gate (not-AND) 
is the inverse of AND, and outputs a 1 
unless both inputs are 1 (Figure 15.5).

We will use NAND gates as our basic 
units, because they are universal gates: you 
can build any logic function from NAND 
gates. Our circuits will be built of NAND 
gates wired together – an example with five 
gates is shown in Figure 15.6. The circuits 
have input ports, like the four inputs X, 
Y, Z and W in Figure 15.6. One gate is 
specified as the circuit’s output.

We’ll evolve the circuits by rewiring 
them until they meet a certain goal. For 
example, the goal can be to compute the 
logic statement

 
 G1 = (X XOR Y) AND (Z XOR W) (15.5.1)

The fitness of a circuit can be evaluated by inputting all possible combinations of input 
values (24 = 16 combinations for the case of four inputs, because each input can be 0 or 1), 
and counting the fraction of times that the output node gives the correct output according 
to the goal G1. To mimic the biological cost of components, we can add a small fitness cost 
proportional to the number of gates n, cost = εn. thus

 fitness fraction of correct outputs= −   εn (15.5.2)

The simulations start with an initial population of N random circuits, say N = 100 
(Figure 15.7). A fraction p of the circuits is mutated, by randomly rewiring a connection. 
Each circuit is then evaluated for fitness by providing all possible input combinations and 
seeing which outputs it gives. The circuits with the highest fitness are selected (say the 
top 50%), and the rest are discarded. The surviving circuits are replicated, by making an 
identical copy of the circuit, until we again have a population of N circuits. This is the 
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initial population for the next iteration 
(Figure 15.7). We repeat this process of 
mutation, selection, making copies, until 
we find a circuit that satisfies the goal G1 
perfectly. Each such round represents one 
generation.

The mutation step is inspired by 
biological mutations. The circuits are 
described by a genome in which each gate 
is represented by two numbers that specify 
its two inputs. The circuit of Figure 15.6 
has the genome shown in Figure 15.8. The 
genome specifies, for example, that gate 7 
receives inputs from gates 5 and 6.

A point mutation means changing one 
of the connections in the circuit (Figure 
15.9), by changing one number in the 
genome. Other types of mutations add a 
new gate, or remove a gate. One can also 
duplicate a gate together with its inputs, a 
change called gene duplication. A special 
type of mutation, that occurs in biological 
mating, is recombination: a new circuit 
is made by taking the genomes of two 
circuits, cutting them at a certain point 
and pasting the first part of one genome to 
the second part of the other (Figure 15.10).

Running our simulation, we can plot the 
fitness of the best circuit in the population 
as a function of generations (Figure 15.11). 
The circuits initially have low fitness, 
as expected for random circuits. Then, 
after a few tens of generations, fitness 
begins to rise. It rises again after a few 
hundred generations, then again after a 
few thousand, until a perfect circuit is 
found in about 10,000 generations. Note 
that the rate of improvement slows down, 
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a phenomenon known as logarithmic slowdown that is typical of 
both simulated evolution and laboratory evolution, such as serial 
dilution experiments on bacteria discussed in Chapter 13.

As expected, the structure of the evolved perfect solution 
is non-modular, Figure 15.12. Different simulation runs find 
different non-modular solutions. The evolved solutions use the 
minimal possible number of gates for this goal, n = 10, due to the 
cost term in the fitness.

The evolved circuit is non-modular despite the fact that we chose 
a goal G1 that is modular – it is made of two XORs combined by an 
AND. Modularity does not evolve in the simulations even if we use 
different population sizes, or different rates for point mutations, 
gene duplications and recombinations. Gene duplication and 
recombination can generate new modules if modules existed 
before, but they cannot generate functional modules from scratch.

So how do modules arise in biology? To make progress, let’s 
consider the reasons that engineers use modules. Modules are useful in engineering when 
the design goals change over time. If you use modules, you don’t have to build a new device 
or write new software from scratch. Instead you can reuse old modules and wire them 
together to meet new goals (Wagner and Altenberg, 1996; Lipson, Pollack and Suh, 2002).

So let’s try to switch goals once in a while and see if modularity evolves.

15.6 RANDOMLY VARYING GOALS CAUSE CONFUSION
We can repeat the same simulations, but switch the goal every E = 20 generations. Thus, the 
circuits start evolving toward one goal G1 for E generations, and then the goal is switched 
to G2 for E generations, then back to G1, and so on. Suppose we choose goal G2 arbitrarily, 
for example by generating a Boolean logic function with random 0 and 1 values for its 
outputs. Switching back and forth between G1 and G2 typically causes fitness to remain 
low. Perfect solutions are not found. Switching confuses evolution by making it switch 
directions incessantly.

15.7  MODULARLY VARYING GOALS LEAD TO 
SPONTANEOUS EVOLUTION OF MODULARITY

Something different happens if we choose a goal G2 that uses some of the same sub-goals 
of G1. Recall that G1 was

 G1 = (X XOR Y) AND (Z XOR W) (15.7.1)

For G2, let us choose, for example

 G2 = (X XOR Y) OR (Z XOR W) (15.7.2)

This goal uses two XOR functions like G1, but combines them using an OR gate instead 
of an AND gate.
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The biological rationale for using G2 
with the same sub-goals as G1 is that the 
changing goals of biological organisms 
and molecules often have shared sub-goals. 
For example, animals need to move, eat 
and reproduce. But in a new environment 
some of these sub-goals might change 
while others remain the same, for example 
eating different foods without affecting 
reproduction. Similarly, a protein that 
needs  both to bind a signaling molecule 
and bind DNA may face evolutionary goals 
in which one type of binding needs to change without the changing the other.

Switching between two such modular goals is called modularly varying goals or MVG. 
Switching between G1 and G2 every E = 20 generations, fitness increases and reaches a 
perfect solution within about 2000 generations (Figure 15.13). Similar results are found for 
other switching rates E between 5 and 1000 generations.

A perfect solution in MVG means that when the goal is G1, the circuits perfectly solve 
G1. When the goal switches to G2, fitness drops (because the circuits solve G1 and not 
G2) but within about a few generations, a perfect solution to G2 evolves and takes over the 
population (Figure 15.13, inset). Then when the goal switches back to G1, fitness drops and 
within a few generations a perfect solution to G1 is again found.

Strikingly, the solutions found in MVG evolution are modular in structure (Figure 15.14). 
Each of the modules also has a specific function. There are two XOR modules made of four 
NAND gates. The outputs of these two XOR modules go to a three-gate module that can 
rewire between AND and OR by changing two connections (shown in red in Figure 15.14).
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The modular solution found by MVG uses 
more gates than the non-modular solutions 
found when the goal is constant (n = 11 
instead of n = 10). Thus, in terms of the cost 
of components, modularity is suboptimal. 
Indeed, if we start with a modular solution 
and stop switching the goals, modularity 
decays within tens of generations and 
evolution converges on a non-modular 
solution (Figure 15.15). Thus, the need to 
adapt to a changing environment creates 
selection pressure to maintain modularity 
against forces that would wash it out.

Why does modularity evolve in MVG? 
It’s as if evolution learns the shared sub-
goals by seeing two examples, G1 and G2. If only one of the goals is constantly presented, 
the sub-goals cannot be picked out. It’s like a student learning to solve equations: after 
seeing enough examples, the basic recurring steps can be mastered.

At first sight, MVG seems to be a tougher task than evolution toward a constant goal, 
such as presenting G1 constantly. MVG is tougher because it needs to generate perfect 
solutions to two goals instead of one. Remarkably, MVG does this in one-fifth the time that 
it takes constant-goal evolution to find a perfect solution to one goal (about 2000 versus 
10,000 generations)!

15.8  THE MORE COMPLEX THE GOAL, THE MORE 
MVG SPEEDS UP EVOLUTION

The speedup by MVG is also found when evolving circuits that are more complex. 
For  example, one can evolve toward goals with six inputs, such as G1 = (X XOR Y) 
AND (Z XOR W) OR (U XOR V). Here, 
constant-goal evolution takes much longer 
than the four-input goal G1 above, rising to 
millions of generations. As always, it gives 
rise to non-modular circuits. Using MVG 
that periodically switches between several 
goals G1, G2, G3 and G4 that each change 
only one of the sub-goals (e.g., an AND 
to an OR) leads to evolution of modular 
circuits. And it does so faster than when 
the goal is constant.

It turns out that the speedup provided 
by MVG is larger the more complex the 
goal. To quantify this, we can define goal 
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complexity C as the number of generations 
it takes to evolve it on average in constant-
goal evolution. Speedup S is how much 
faster MVG evolves a perfect solution 
for the same goal. Simulations show that 
speedup rises with complexity, S ∼ Ca 
with a ∼ 0.7 − 0.9 (Figure 15.16; Kashtan, 
Noor and Alon, 2007). For example, MVG 
can evolve a circuit that would take 109 
generations under a constant goal in only 
106 generations, a thousand times faster.

How does speedup work? Constant-
goal evolution is slow because it often 
gets stuck in local fitness maxima 
(Figure 15.17a). This is the reason for the 
logarithmic slowdown of Figure 15.10. 
MVG helps evolution get unstuck by 
changing the fitness landscape every time 
the goal changes (Figure 15.17b). Thus, a 
local fitness maximum for the previous 
goal is no longer a local maximum for the 
new goal. When the varying goals share 
the same sub-goals, it seems that a local 
maximum for G1 is usually replaced by a 
high-slope region for G2 and vice-versa, 
because circuit modules useful for one goal provide benefit also for the other goal. Varying 
the goals again and again thus creates an effective fitness ramp. Evolution climbs this ramp 
until it reaches perfect modular solutions for the two goals that can reach each other by a 
few mutations (Figure 15.17c).

15.9 MODULAR GOALS AND BIOLOGICAL EVOLUTION
We used simulations of circuit evolution as a metaphor for biological evolution. MVG is one 
mechanism for evolution of modularity and speedup of evolution, but by no means the only 
one. Modularity is enhanced, for example, when there is a “wiring” cost for connections 
between components, as in neuronal and vascular systems (Wagner, Pavlicev and Cheverud, 
2007; Clune, Mouret and Lipson, 2013). Simulation is a good way to experiment and test 
mechanisms for modularity and other hallmarks of evolved systems.

Does MVG happen in real biological evolution? One prediction of MVG is that the more 
variable the goal, the more modular the structure. For example, the ribosome, a machine 
that has had the same primary goal for billions of years – to translate the genetic code – is an 
example of a non-modular complex of about 50 proteins and RNA molecules. It is difficult 
to say what each individual protein subunit does in the ribosome. Lack of variation in goals 
leads to a non-modular, fully wired solution.
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In contrast, a system like bacterial chemotaxis appears in almost all bacterial species. In each 
case, different ligands are detected, and often different types of motor systems are engaged. The 
chemotaxis system is modular, with receptors for detecting inputs, chemotaxis kinases and 
phosphatases for information processing and motors for moving. You can replace a receptor 
and get chemotaxis to a new ligand. A non-modular design might, for example, have put signal-
detection in the same protein complex as signal-processing and moving.

We conclude this chapter by returning to our mammalian ancestor that evolved to bats, 
whales, cats and primates. Animals have universal sub-goals such as breathing, eating, 
moving and reproducing. Each of these sub-goals is met by specialized organs – limbs for 
moving, lungs for breathing. Our mammalian ancestor had modules for each of these sub-
goals. Its new niches presented a host of new combinations and modifications of these sub-
goals. Because of the modularity, each module, such as the limb, could evolve without ruining 
the other modules, such as the lung.

Let’s zoom in on the mammalian 
limb (Figure 15.18). All mammals share 
the same basic bone structure in their 
forelimb: one humerus, then the pair of 
bones called radius and ulna, then many 
carpals and then fingers with metacarpals 
and small phalanges. The same bones 
were tuned to make a whale fin, a bat wing 
and a primate hand by changing the bone 
proportions. Note the serial duplication of 
the phalanges to make the whale flipper. In 
this way, the limb could be shaped to swim, fly or grasp using the same modular pattern.

One might ask how limbs can evolve, given that a mutation that changes a bone length in 
the limb can be deadly: you need to accordingly change the muscles, nerves, blood vessels 
and brain region to control the limb. Otherwise, you get a useless appendage, and low 
fitness: the mutation would not get passed to the next generation. How is coordination 
between these processes achieved to obtain a useful limb?

Here is a place where engineers can perhaps learn from biology. Development uses a 
“follow the bone” principle (Kirschner and Gerhart, 2005). The bone lays down the structure, 
and the rest of the tissues use a random search strategy to find their place. For example, cells 
lacking oxygen emit a signal that attracts blood vessels. Blood vessels grow and shrink until 
they find this signal, which stabilizes the blood vessels and provides oxygen where needed. 
If you look at the veins in your arms, you will see that each arm has a different vein pattern 
as a result of this random search strategy. Similar exploratory processes allow muscles to 
grow and shrink until they find bones that have not yet been connected. Nerves grow and 
shrink until they find muscle that has not been innervated. Modular brain regions such as 
cortical barrels develop and expand when they get the proper neural input. In this way, a 
change in the bone can allow the coordinated formation of an entire functional limb.

It is likely that many more principles remain to be discovered in biological systems and 
their evolution.
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FURTHER READING
Detecting and Quantifying Modularity
(Girvan and Newman, 2002) “Community structure in social and biological networks.”
(Sporns and Betzel, 2016) “Modular brain networks.”

Modularity in Biology
(Bhattacharyya et al., 2006) “Domains, motifs and scaffolds: the role of modular interactions in the 

evolution and wiring of cell signaling circuits.”
(Clune, Mouret and Lipson, 2013) “The evolutionary origins of modularity.”
(Kirschner and Gerhart, 2005) “The plausibility of life.”
(Simon, 1969) “The architecture of complexity.”
(Wagner, Pavlicev and Cheverud, 2007) “The road to modularity.”

Modularly Varying Goals
(Kashtan and Alon, 2005) “Spontaneous evolution of modularity and network motifs.”
(Kashtan, Noor and Alon, 2007) “Varying environments can speed up evolution.”
(Parter, Kashtan and Alon, 2008) “Facilitated variation: how evolution learns from past environments 

to generalize to new environments.”

EXERCISES

 15.1 Spectrum of modularity: Describe an example of a modular biological system, and an 
example of a biological system that is more non-modular. Can you estimate which 
system has more variable goals?

 15.2 Hierarchical modularity: A hierarchically modular system can be decomposed into 
modules, each of which can be decomposed into further modules.

 a. Give an example from engineering, in a device or software. Give an example from 
biology.

 b. What might be the use of hierarchical modularity?

 c. How would you design an MVG simulation to test how hierarchical modularity 
might evolve?

 15.3 Evolving XOR: Write a code that does simulated evolution on circuits of NAND gates, 
with two input ports, toward the goal G1 = X XOR Y.

 a. Plot the mean and maximal fitness as a function of generations.

 b. Do you observe steps in the evolutionary search?

 15.4 Universal gate: Use NAND gates to produce circuits that act as AND, OR, XOR and 
EQ gates (EQ outputs 1 only if both inputs are equal).

 15.5 All languages have common features such as nouns and verbs: The brain displays regions 
which, to some approximation, can be considered as dedicated to different aspects of 
language. Discuss this organization in terms of MVG.
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 15.6 MVG switching rate: In MVG, goals are changed every E generations.

 a. What determines the fastest rate at which goals can be changed, and the slowest 
rate, in order to obtain modular solutions?

 b. What happens if E is too small or too large?

 15.7 Bowties (Csete and Doyle, 2004; Friedlander et al., 2015): Many biological systems 
show the following feature, called a bowtie or hourglass: Many inputs funnel into a 
few intermediates, which fan out into many outputs. Examples include metabolism in 
which many input nutrients are broken down to build twenty amino acid intermediates 
that form thousands of proteins in the cell.

 a. Provide three other examples of bowties in biology.

 b. Bowties appear in engineering. Diverse energy sources (coal, solar, wind, etc.) are 
converted to 110/220 V electricity, which powers many output devices. What might 
be the use of such a bowtie design?

 c. What was the design used to couple energy sources to devices before the electrical 
revolution?

 d. Provide another example of bowties in technology or economics, and discuss their 
historical precedents.

 e. How might a bowtie structure evolve in biological systems? Suggest a simulation 
study to explore this.

 f. Given a set of varying goals, what might determine the number of intermediates 
that evolve (the size of the ‘waist’ in the bowtie)?
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APPENDIX A

The Input Functions of Genes 
Michaelis–Menten and Hill Equations

A.1 BINDING OF A REPRESSOR TO A PROMOTER
This appendix introduces basic models in biochemistry. We begin with understanding the 
interaction of a repressor protein with DNA and with its inducer. The repressor X binds 
to a specific DNA site, D, in a promoter. Thus, X and D bind to form a complex, [XD]. 
Transcription of the gene occurs only when the repressor is not bound, that is, when D 
is free. The DNA site can be either free, D, or bound, [XD], resulting in a conservation 
equation:

 D XD DT+ =[ ]  (A.1.1)

where DT is the total concentration of the site. For example, a single DNA binding 
site per bacterial cell means that DT = 1/cell volume ∼ 1/µm3 ∼ 1 nM. In eukaryotic 
cells, the volume of the nucleus is on the order of 10–100 µm3, making DT 10-100 times 
smaller.

The repressor X and its target D diffuse and occasionally collide to form the complex 
[XD]. This process can be described by mass-action kinetics: X and D collide and bind each 
other at a rate kon. The rate of complex formation is thus proportional to the collision rate, 
given by the product of the concentrations of X and free D:

 rate of complex information = k XDon

The complex [XD] falls apart (dissociates) at a rate koff. The rate of change of [XD] based 
on these collision and dissociation processes is described by

 d XD dt k XD k XD[ ]/ [ ]= −on off  (A.1.2)
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The rate parameter for the collisions, kon, describes how many collision events occur per 
second per protein at a given concentration of D, and thus has units of 1/time/concentration. 
It is useful to remember that kon in biochemical reactions is often limited by the rate of 
collisions of a diffusing molecule hitting a protein-size target, and has a diffusion-limited 
value of about kon ∼ 108–109 M−1 sec−1, independent of the details of the reaction. For the 
case of a transcription factor and DNA, the diffusion limit is usually about ten times higher 
because of one-dimensional diffusion effects due to sliding of the transcription factor along 
the DNA (Berg, Winter and von Hippel, 1981).

The off-rate koff, on the other hand, has units of 1/time and can vary over many orders of 
magnitude for different reactions, because koff is determined by the strength of the chemical 
bonds that bind X and D.

Equation A.1.2 approaches a steady state in which concentrations do not change with 
time, d[XD]/dt = 0. Solving Equation A.1.2 at steady state, we find that the balance between 
the collision of X and D and the dissociation of [XD] leads to the chemical equilibrium 
equation:

 K XD XDd[ ]=  (A.1.3)

where Kd is the dissociation constant,

 K k kd = off on/

The dissociation constant Kd has units of concentration. The larger the dissociation 
constant, the higher the rate of dissociation of the complex, that is, the weaker the binding 
of X and D.

Solving for the concentration of free DNA sites, D, using Equations A.1.1 and A.1.3, we 
find Kd (DT − D) = XD, which yields

 

D
D X KT d

=
+

1
1 /  

(A.1.4)

For many repressors, [XD] complexes dissociate within less than 1 sec, (i.e., koff > 1 sec−1). 
Therefore, we can average over times much longer than 1 sec and consider D/DT to be the 
probability that site D is free, averaged over many binding and unbinding events.

The probability that the site is free, D/DT, is a decreasing function of the concentration 
of repressor X. When there is no repressor, X = 0, the site is always free, D/DT = 1. The site 
has a 50% chance of being free, D/DT = 1/2, when X = Kd.

When site D is free, RNA polymerase can bind the promoter and transcribe the gene. 
The rate of transcription (number of mRNAs per second) from a free site is given by the 
maximal transcription rate β. (In the main text we used β to denote the rate of protein 
production. This rate is proportional to the transcription rate times the number of proteins 
translated per mRNA.)
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The maximal transcription rate depends on the DNA sequence and position of the RNA 
polymerase binding site in the promoter and other factors. It can be tuned by evolutionary 
selection, for example, by means of mutations that change the DNA sequence of the RNAp 
binding site. In different genes, β ∼ 10−4 − 1 mRNA/sec. The rate of mRNA production, 
called the promoter activity, is β times the probability that site D is free:

 

promoter activity =
+

β

1 X
Kd  

(A.1.5)

Figure A.1 shows the promoter activity 
as a function of X (here X is the repressor 
in its active, DNA binding form, denoted 
X* in the main text). When X is equal to 
Kd, transcription is reduced by 50% from 
its maximal value. The value of X needed 
for 50% maximal repression is called the 
repression coefficient.

For efficient repression, enough 
repressor is needed so that site D is 
almost always occupied with repressor. 
From Equation A.1.4, this occurs when 
repressor concentration greatly exceeds the 
dissociation constant, such that X/Kd ≫ 1. 
This is the case for many repressors, 
including the lac repressor LacI.

So far we’ve discussed how the repressor binds the promoter and inhibits transcription. 
To turn the gene system ON, a signal Sx must cause X to unbind from the DNA. We will 
treat the simplest case, in which a small molecule (an inducer) is the signal. The inducer 
directly binds to protein X and causes it to assume a molecular conformation where it does 
not bind D with high affinity. Typically, signals can reduce the affinity of X to its DNA sites 
by a factor of 10–100. Thus, the inducer frees the promoter and allows transcription of the 
gene. We now consider the binding of inducer to X.

A.2  BINDING OF AN INDUCER TO A REPRESSOR PROTEIN: 
THE MICHAELIS–MENTEN EQUATION

The repressor protein X is designed to bind a small-molecule inducer Sx, which can be 
considered its input signal. The two can collide to form a bound complex, [XSx]. The 
repressor is therefore found in either free form, X, or bound form, [XSx]. A conservation 
law states that the two forms sum up to the total concentration of repressor protein XT:

 X X XST x= +[ ] (A.2.1)
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We do not need a conservation equation for Sx because usually the number of Sx molecules 
is much larger than the number of X molecules, and so almost all molecules of Sx are 
unbound. For example, in the lac system, the number of LacI repressors, each made of a 
tetramer of LacI proteins, is XT ∼ 10 units/cell, which is negligible relative to Sx, which is at 
least 1000/cell for a detectable response.

According to mass-action kinetics, X and Sx collide to form the complex [XSx] at a rate 
kon, and the complex [XSx] falls apart (dissociates) at a rate koff. Thus, the equation is:

 d XS dt k XS k XSx x x[ ] [ ]/ = −on off  (A.2.2)

At steady state, d[XSx]/dt = 0, and we find the chemical equilibrium relation:

 K XS XSx x x[ ]=  (A.2.3)

where Kx = koff/kon is the dissociation constant. For the lac repressor, Kx ∼ 1 µM ∼ 1000 
inducer (IPTG) molecules/cell. Using the diffusion-limited value for kon ∼ 109/M/sec, we 
find the lifetime of the complex is 1/koff ∼ 1 msec.

Using the conservation of total repressor X (Equation A.2.1), we arrive at a useful 
equation that recurs throughout biology. This equation is known as the Michaelis–Menten 
equation in the context of enzyme kinetics; we use the same name in the present context 
of inducer binding:

 
[ ]XS X S

S Kx
T X

X X
=

+
−Michaelis Menten equation

 
(A.2.4)

The Michaelis–Menten term (Figure A.2) has three notable features:

 1. It rises approximately linearly with Sx when Sx is low (Sx ≪ Kx).

 2. It reaches saturation (stops rising) at high Sx.

 3. It is half maximal when Sx = Kx.

The dissociation constant thus provides 
the scale for detection of signal: Sx 
concentrations far below Kx are not detected; 
concentrations far above Kx saturate the 
repressor at its maximal binding.

Recall that in cases like LacI, only X 
unbound to Sx, is active, X*, in the sense 
that it can bind the promoter D to block 
transcription. Because free X is active, 
we denote it by X*. Active repressor, 
X* = XT − [XSx], decreases with increasing 
inducer levels:
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T

X X
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/=

+1 concentration of not bound toX SX
 

(A.2.5)

A.3 COOPERATIVITY OF INDUCER BINDING AND THE HILL EQUATION
Before returning to the input function, we comment on a more realistic description of 
inducer binding. Most transcription factors are composed of several repeated protein 
subunits, for example, dimers or tetramers. Each of the protein subunits can bind inducer 
molecules. Often, full activity is only reached when multiple subunits bind the inducer. A 
useful phenomenological equation for this process, called the Hill function, can be derived 
by assuming that n molecules of Sx can bind X.

To describe the binding process, we assume a simple case: the protein (multimer) X 
can either be bound to n molecules of Sx, described by the complex [nSx X], or unbound, 
denoted Xo (thus, in this simple treatment, intermediate states where fewer than n molecules 
are bound are neglected). The total concentration of bound and unbound X is XT, and the 
conservation law is thus

 [ ]nS X X Xx o T+ =  (A.3.1)

The complex [nSx X] is formed by collisions of X with n molecules of Sx. Thus, the rate 
of the molecular collisions needed to form the complex is given by the product of the 
concentration of free X, Xo and the concentration of Sx to the power n (the probability of 
finding n copies of Sx at the same place at the same time):

 collision rate on o= k X Sxn (A.3.2)

where the parameter kon describes the on-rate of complex formation. The complex [nSx X] 
dissociates with rate koff:

 dissociation rate off= k nS Xx[ ] (A.3.3)

The total rate of change of the concentration of the complex is thus the difference between 
the rate of collisions and dissociations:

 d nS X dt k X S k nS Xx o x
n

x[ ]/ [ ]= −on off  (A.3.4)

This equation reaches equilibrium within milliseconds for typical inducers. Hence, we 
can make a steady-state approximation, in which d[nSx X]/dt = 0, to find that dissociations 
balance collisions:

 k nS X k X Sx o x
n

off [ ]= on  (A.3.5)
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We can now use the conservation equation (Equation A.3.1) to replace Xo with 
XT − [nSxX], to find

 ( )[ ] ( [ ])k k nS X X nS X Sx T x x
n

off on/ = −  (A.3.6)

Finally, we can solve for the fraction of bound X, to find a binding equation known as 
the Hill equation:

 
[ ]nS X
X

S
K S

X

T

X
n

X
n

X
n=

+
Hill equation

 
(A.3.7)

where we have defined the constant KX such that

 K k kn
X = off on/  (A.3.8)

Equation A.3.7 can be considered the 
probability that the site is bound, averaged 
over many binding and unbinding events 
of Sx.

The parameter n is known as the Hill 
coefficient. When n = 1, we obtain the 
Michaelis–Menten function (Equation 
A.2.4). As shown in Figure A.3, both the 
Michaelis–Menten and Hill equations 
reach half-maximal binding when Sx = Kx.

The larger the Hill coefficient n, the 
steeper the Hill curve (Figure A.3). In the 
lac system, n = 2 with the inducer IPTG (Yagil and Yagil, 1971). Reactions described by 
Hill coefficients n > 1 are often termed cooperative reactions.

The concentration of unbound repressor X is given by:

 

X
X S

K
T X

X

n

*
=

+










1

1
 

(A.3.9)

A.4 THE MONOD–CHANGEUX–WYMAN MODEL
We note that a more rigorous and elegant analysis of cooperative binding based on 
symmetry principles is due to Monod, Changeux and Wyman, in a paper well worth 
reading (Monod, Wyman and Changeux, 1965), usually also described in biochemistry 
textbooks. This approach includes all of the intermediate states in which a multimer can 
bind different numbers of inducer molecules. In this model X switches to an active state X* 

[n
S

x X
]

X
T

n=1

n=2

n=4

SX/Kx

1/2

1

1

FIGURE A.3 



The Input Functions of Genes     ◾    293

and back. The signal Sx binds X with dissociation constant KX, and binds X* with a lower 
dissociation constant K*X. Up to n molecules of SX can bind to X. The two states, X and X* 
spontaneously switch such that in the absence of SX, X is found at a probability larger by L 
than X*. The result is:
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(A.4.1)

Interesting extensions to this model make analogies to Ising models in physics (Duke et al., 
2001). One difference between the rigorous models and the Hill curve is that binding at low 
concentrations of SX is linear in SX rather than a power law with coefficient n, as in Equation 
A.3.7. This linearity is due to the binding of a single site on X, rather than all sites at once.

A.5 THE INPUT FUNCTION OF A GENE REGULATED BY A REPRESSOR
We can now combine the binding of inducer to the repressor (Equation A.2.5) and 
the binding of the repressor to the DNA (Equation A.1.4) to obtain the input function of 
the gene. The input function in this case describes the rate of transcription as a function 
of the input inducer concentration Sx:
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(A.5.1)

Figure A.4 shows how the transcription rate of a gene repressed by X increases with 
increasing inducer concentration SX. Note, when no inducer is present, there is a leakage 
transcription rate, f(SX = 0) = β/(1 + XT/Kd), also called the basal promoter activity. 
This leakage is smaller the stronger X 
binds its DNA site, that is the larger XT/Kd. 
In Figure  A.4, the parameter values are 
XT/Kd = 10 (top curve) and XT/Kd = 50 
(bottom curve), both with n = 2. Half-
maximal induction is reached at SX = 3KX 
and SX = 7KX, respectively. The half-
maximal induction point, SX = S1/2, is 
approximately (when XT ≫ Kd)
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The halfway inducer concentration S1/2 can be significantly larger than KX (Figure A.4). 
For LacI, for example, XT/Kd ∼ 100 and n = 2, so that S1/2 ∼ 10 KX.

We now turn to describe transcription activators.

A.6 BINDING OF AN ACTIVATOR TO ITS DNA SITE
In the decade following the discovery of the lac repressor, other gene systems were found 
to have repressors with a similar principle of action. It is interesting that it took several 
years for the scientific community to accept evidence that there also existed transcriptional 
activators.

An activator protein increases the rate of transcription when it binds to its DNA site 
in the promoter. The rate of transcription is thus proportional to the probability that the 
activator X is bound to D. Using the same reasoning as above, the binding of X to D is 
described by a Michaelis–Menten function:

 
promoter activity =

+
βX

X Kd

*

*  
(A.6.1)

Many activators have a specific inducer, Sx, such that X is active, X*, in the sense that it 
can bind DNA to activate transcription, only when it binds Sx.1 Thus, we obtain

 
X X S

K S
T X

n

X
n

X
n

* =
+  

(A.6.2)

The gene’s input function is

 f S X K Xx d( ) ( )* *= +β /  (A.6.3)

This function, shown in Figure A.5, is 
an increasing function of signal. The basal 
transcription level is zero in this regulation 
function, f(Sx = 0) = 0. Simple activators 
thus can have lower leakage than repressors. 
If needed, however, a nonzero basal level can 
be readily achieved by allowing RNAp to 
bind and activate the promoter to a certain 
extent even in the absence of activator.

The inducer level needed for half-
maximal induction of an activator can be 
much smaller than KX:

2 In other cases the activator is active when it is not bound to Sx and inactive when it is bound. In such cases, Sx is an 
inhibitor of X. Similarly, some repressors can be activated by binding Sx. These cases can be readily described using the 
reasoning in this appendix.

no
rm

al
iz

ed
 in

pu
t f

un
ct

io
n,

 f(
S

x)
/β

SX/Kx

1/2

1

1/31/7

FIGURE A.5 



The Input Functions of Genes     ◾    295

 
S K

X Kd

T

n
X1 2

1

/ ∼








  

(A.6.4)

in contrast to the repressor case (Equation A.5.2). In Figure A.5, for example, Sx ∼ 1/3 Kx 
and Sx ∼ 1/7 Kx for the cases of XT/Kd = 10 (bottom curve) and XT/Kd = 50 (top curve), 
both with n = 2.

Overall, similar input function shapes as a function of inducer SX can be obtained with 
either activator or repressor proteins. Rules that govern the choice of activator or repressor 
for a given gene are discussed in Chapter 7.

In this appendix, we described a simplified model that captures the essential behavior of 
a simple gene regulation system, in which proteins are transcribed at a rate that increases 
with the amount of inducer Sx. Many real systems have additional important details that 
make them tighter and sharper switches. The present description is sufficient, however, to 
understand basic circuit elements in transcription networks.

A.6.1 Comparison of Dynamics with Logic and Hill Input Functions

How good is the approximation of using logic input functions (see Section 1.3.4) instead 
of graded functions like Hill functions? In Figure A.6, the dynamics of accumulation 
of a simple one-step transcription cascade are shown, using three different forms of the 
input function f(X). The input functions are Hill functions with n = 1 and n = 2, and 
a logic input function. At time t = 0, X* starts to be produced, and its concentration 
increases gradually with time. The graded input functions show expression as soon as 
X* appears, whereas the logic input function shows expression only when X* crosses 
the threshold K. Overall, the qualitative dynamics in this cascade are similar for all 
three input functions.

A.7 MICHAELIS–MENTEN ENZYME KINETICS
We now briefly describe a useful model of the action of an enzyme X on its substrate S, 
to catalyze formation of product P. Enzyme X and substrate S bind with rate kon to form 

FIGURE A.6 
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a complex [XS], which dissociates with rate koff. This complex has a small rate v to form 
product P, so that

 

X S
k

k
XS X P

v
+  → +

on

off

�

 

(A.7.1)

The rate equation for [XS], taking into account the dissociation of [XS] into X + S, as 
well as into X + P, is

 d XS dt k XS k XS v XS[ ]/ [ ][ ]= − −on off  (A.7.2)

At steady state, we obtain

 [ ]XS k v k XS= +on off/( )  (A.7.3)

If substrate S is found in excess, we need only worry about the conservation of enzyme X:

 X XS XT+ =[ ]  (A.7.4)

Using this in Equation A.7.3, we find the Michaelis–Menten equation:

 
v XS v X S

K S
T

m
[ ]=

+
−Michaelis Menten equation

 
(A.7.5)

where the Michaelis–Menten coefficient of the enzyme is:

 K v k km = +( )/off on (A.7.6)

This constant has units of concentration and is equal to the concentration of substrate 
at which the production rate is half-maximal. When substrate is saturating, S ≫ Km, 
production is at its maximal rate, equal to vXT. Thus, the production rate does not depend 
on S, (i.e., it depends on S to the power zero) and is known as zero-order kinetics:

 production rate zero-order kinetics= vXT  (A.7.7)

In the main text we will sometimes make an approximation to this function when the 
substrate S is found in low concentrations, S ≪ Km. In this case, the production rate becomes 
linear in S, as can be seen from Equation A.7.5 by neglecting S in the denominator. This 
regime is known as first-order kinetics:

 
production rate first-order kinetics= vX S

KT
m  

(A.7.8)
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FURTHER READING

(Ackers, Johnson and Shea, 1982) “Quantitative model for gene regulation by lambda phage 
repressor.”

(Berg et al., 2002) “Biochemistry enzymes: basic concepts and kinetics.”
(Monod, Wyman and Changeux, 1965) “On the nature of allosteric transitions: a plausible model.”
(Ptashne, 2004) “Genetic switch: phage lambda revisited.”
(Setty et al., 2003) “Detailed map of a cis-regulatory input function.”

EXERCISES

 A.1 Given a simple repressor with parameters β, XT, Kd, KX and n, design an activator that 
best matches the performance of the repressor. That is, assign values to the parameters 
for the activator so its input function will have the same maximal expression, and the 
same S1/2, and the same slope around S1/2 as the repressor input function.

 A.2 Derive the approximate value of diffusion-limited kon based on dimensional analysis. 
Dimensional analysis seeks a combination of the physical parameters in the problem 
that yields the required dimensions. If only one such combination exists, it often 
supplies an intuitive approximate solution to otherwise complicated physical problems. 
Assume a target protein with a binding site of area a = 1 nm2, and a small molecule 
ligand that diffuses with diffusion constant D = 1000 µm2/sec. The affinity of the site 
is so strong that it binds all ligand molecules that collide with it.

Solution:

  To study the on-rate kon, imagine a single protein in a solution of 1 M ligand L 
(concentration of ligand is ρ = 1 M = 6 · 1023 molecules/liter ∼ 109 molecules/µm3). 
The number of L molecules colliding with the binding site of the protein has dimensions 
of molecules/sec and should be constructed from ρ, D and a. The combination with 
the desired dimensions is kon ∼ ρD a1/2, because D has units of [length]2/[time] and 
a has units of [length]2. This combination makes sense: it increases with increasing 
ρ, a and D as expected. Inserting numbers, we find kon ∼ ρ D a ∼ 109 molecules/
µm3 · 1000 µm2/sec · 10−3 µm = 109 molecules/sec, hence kon ∼ 109/M/sec. Note that 
dimensional analysis neglects dimensionless prefactors and is often only accurate to 
within an order of magnitude (Milo and Philipps, 2015).

 A.3 What is the expected diffusion-limited kon for a protein sliding along DNA to bind a 
DNA site? The protein is confined to within r = 1 nm of the DNA. The total length of 
DNA in a bacterium such as E. coli is on the order of 1 mm (!), and the volume of the 
E. coli cell is about ∼1 µm3. Discuss the biological significance of the increase in kon 
relative to free diffusion in space.

 A.4 Off-times

 a. Estimate the off-time (1/koff) of a diffusion-limited repressor that binds a site with 
Kd = 10−11 M.
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 b. What is the off-time of a small-molecule ligand from a receptor that binds it 
with Kd = 10−6 M (bacterial chemotaxis attractants), Kd = 10−12 M (mammalian 
hormone binding to receptors)?

 c. Mammalian ligands that bind a receptor on the cell surface are often taken up 
into the cell and destroyed or recycled together with the receptor, in a process 
called endocytosis. Explain how the ligand can remain bound for long enough if 
endocytosis takes minutes?
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APPENDIX B

Multi-Dimensional 
Input Functions

Many genes are regulated by more than one transcription factor. The combined effect of 
these regulators is described by a multi-dimensional input function. As an example, we 
consider a simple case and then discuss the more general forms of the input function.

B.1  INPUT FUNCTION THAT INTEGRATES 
AN ACTIVATOR AND A REPRESSOR

Let’s take a look at an input function that integrates an activator X and a repressor Y at a 
promoter. How can an activator and repressor work together?

A common situation is that the activator and repressor bind the promoter independently 
on two different sites. Thus, there are four binding states of promoter D: D, DX, DY and DXY, 
where DXY means that both X and Y bind to D. Transcription occurs mainly from the state 
DX, in which the activator X but not the repressor Y bind. In the following, we use X and Y 
to denote the active forms X* and Y*.

The probability that X is bound is given by the (now familiar) Michaelis–Menten function 
(Appendix A):

 
P X

K X
X K
X KX bound =

+
=

+1

1

11
/

/  
(B.1.1)

The probability that Y is not bound is given by the Michaelis–Menten term equal to 1 minus 
the probability of binding:

 
P Y

K Y Y KY not bound = −
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(B.1.2)

Since the two binding events are independent, the probability that the promoter D is 
bound to X and not to Y is given by the product of the two probabilities:

 
P P P X K

X K Y K XY KX Y X Ybound AND not bound bound not bound= =
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and the output promoter activity is given by the production rate βz times this probability:

 P X K X K Y K XY K Kz z= + + +β / / / /1 1 2 1 21/ ( ) (B.1.4)

This results in an input function that resembles the logic function X AND NOT Y 
shown in Figure B.1a. Fans of statistical physics will recognize the partition function in 
the denominator of this expression. The relation of partition functions to promoters has 
been worked out by Ackers, Johnson and Shea (1982) and Buchler, Gerland and Hwa (2003).

In many promoters, when the repressor binds, repression is only partial and there is 
basal transcription (leakage). In such cases, the state in which both X and Y bind, DXY, also 
contributes a transcription rate, ′ <β βz z, to the promoter activity of Z:

 
P X K XY K K

X K Y K XY K Kz
z z=

+ ′
+ + +

β β/ /
/ / /

1 1 2

1 2 1 21  
(B.1.5)

This results in an input function with three plateau levels: zero when X = 0, βz when X is 
high but Y is low and ′βz  when both are high (Figure B.1b, with ′ =βz 0 3.  and Kx = Ky = 10). 
This continuous input function can be approximated by a logic function

 P X K Y K Y Kz z z= > > + ′ >θ β θ β θ( )( [ ( )] ( ))1 2 21−  (B.1.6)

where θ is the step function, equal to 0 or 1.
These results have some generality. The input functions can often be described by the 

ratio of polynomials of the active concentrations of the input transcription factors Xi, 
i = 1, … , N. For example, with activation/repression coefficients Ki and Hill coefficients 
ni, one finds

full repression by Y(a) (b) partial repression by Y

FIGURE B.1 
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For each activator m ni i=  and for each repressor mi = 0. These types of functions match 
well with experimentally determined input functions (Setty et al., 2003). More complicated 
expressions are possible if the different transcription factors interact with each other on the 
protein level (Buchler, Gerland and Hwa, 2003).

EXERCISE

B.1 This promoter ain’t big enough: Activator X and repressor Y bind a promoter. The 
repressor and activator sites overlap so that X and Y cannot both bind at the same 
time. What is the resulting input function? How does it differ from the input function 
obtained from independent binding?
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APPENDIX C

Graph Properties of 
Transcription Networks

C.1 TRANSCRIPTION NETWORKS ARE SPARSE
What is the maximal number of arrows (called in this appendix edges according to the 
usage in graph theory) in a network with N nodes? Each node can have an outgoing edge 
to each of the N − 1 other nodes, for a total of Emax = N(N − 1) edges. If we also allow 
self-edges, there are an additional N possible edges, for a total of Emax = N2. Note that 
a maximally connected network has a pair of edges in both directions (mutual edges) 
between every two nodes.

The number of edges actually found in transcription networks, E, is much smaller than 
the maximum possible number of edges. The networks are thus sparse, in the sense that 
E/Emax << 1. Typically, less than 0.1% of possible edges are found in the network.

Transcription networks are the product of evolutionary selection. It is easy to lose an edge 
in the network: a single mutation in the binding site of X in the promoter of Y can cause 
the loss of the interaction. The sparse nature of the network reflects the fact that only very 
few and specific interactions, with useful function, are selected and appear in the network.

C.2  TRANSCRIPTION NETWORKS HAVE LONG-TAILED OUT-DEGREE 
SEQUENCES AND COMPACT IN-DEGREE SEQUENCES

Each node in a transcription network represents a gene (or operon). Incoming edges to a 
node in the network correspond to transcription factors that regulate the gene. The number 
of edges that point into a node is called the node’s in-degree. Similarly, the out-degree is the 
number of edges pointing out of a node, corresponding to the number of genes regulated by 
the transcription factor protein that is encoded by the gene that corresponds to the node.

The mean number of edges per node, called the mean connectivity of the network, is 
λ = E/N. Typically, λ is on the order of 2–10 edges/node.

Do all nodes have similar degrees? Transcription networks have nodes that show much 
higher out-degrees than the average node. Many transcription factors regulate a few 
genes, fewer regulate tens of genes and even fewer regulate hundreds of genes. The latter 
are called global regulators and usually respond to key environmental signals to control 
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large ensembles of genes. Examples of global regulators in bacteria include CRP, which 
responds to glucose starvation, and RpoS, which responds to general stresses. Thus, the 
out-degree distribution has a long tail and can be roughly described as a power law, at 
least over a certain range (Barabási and Oltvai, 2004). That is, the number of nodes with 
out-degree k is roughly P(k) ∼ k−γ, with γ ∼ 1–2. Note that the out-degree distribution is 
only approximately a power law; for example, it is bounded by the total number of genes N.

In contrast to the long tail of the out-degree distribution, the in-degree distribution 
is concentrated around its average value (Thieffry and Thomas, 1998; Guelzim et  al., 
2002; Shen-Orr et al., 2002). The in-degrees range between zero and a few times the mean 
connectivity, λ. There is little chance of finding a node regulated by 10 or 100 times more 
inputs than the average node. In other words, the in-degree distribution does not have a 
long tail, and instead resembles compact distributions such as the Poisson distribution, 
whose standard deviation is about the same as the mean.

The compact distribution of in-degrees may be due in part to a physical limitation. 
In simple organisms, promoters are short. The region near the RNAp binding site that 
participates in regulation is on the order of a few hundred base-pairs (DNA letters). There 
is no space in the promoter region to accommodate more than a few binding sites for 
transcription factors (each on the order of 10 base-pairs). In more complex organisms, 
transcription factors can affect a gene even if bound far away on the DNA, through DNA-
looping interactions and other effects. Such action-at-a-distance can increase the number 
of input transcription factors to a given gene. Animal cells often display larger in-degrees 
than microorganisms, accommodating the computations needed during development – the 
same DNA must serve many different cell types.

Networks with long-tailed degree distribution are sometimes called “scale-free” because 
the number of edges per node has no typical scale. Nodes with many more connections than 
the average are called hubs. Many natural and engineered networks have hubs and degree 
distributions that appear to be power laws over a certain range (Barabási and Oltvai, 2004).

This power-law-like behavior can stem from multiple different reasons, and probably has 
a different origin in each type of network. A general mechanism for generation of power law 
connectivity was proposed in the context of networks by Barabási and Albert (1999). In this 
model, called preferential attachment, new nodes are added to a growing network and connect 
with higher probability to nodes that already have many connections. This process generates 
networks with scale-free degree distributions. However, this is not a reasonable model of the 
evolution of transcription networks in which edges are continually selected for function.

In some communication networks, scale-free distributions have been proposed to afford 
robustness of network connectivity with respect to the deletion of random nodes. However, 
robustness to node removal does not appear to be the function of the degree distribution 
in transcription networks. These networks are often not robust to mutations (deletion of 
nodes), especially in bacteria. We believe that the origin of long-tailed degree distribution 
lies in a broad distribution of the benefit of the functions that need to be performed by the 
cells, and which require partitioning of gene resources into co-regulated modules of widely 
differing sizes. An interesting theory on the origin of power laws in designed or optimized 
systems along these lines has been suggested by Carlson and Doyle (2000).
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C.3 CLUSTERING COEFFICIENTS
An additional statistical property of graphs is the clustering coefficient, which corresponds 
to whether the neighbors of a given node are connected to each other. Let us consider 
the network as nondirected; that is, disregard the direction of the edges. A node with 
k neighbors can be a part of at most k(k – 1)/2 triangles, one for each possible pair of 
neighboring nodes. The clustering coefficient C is the average number of triangles that a 
node participates in, divided by this maximal number. Transcription networks have average 
clustering coefficients larger than those of randomized networks.

As described in Chapter 3, network motifs in sensory transcription networks generally 
include one main type of triangle, the feedforward loop. The major contribution to the 
clustering coefficient of transcription networks therefore stems from feedforward loops. 
This pattern appears to be selected due to its functions.

The clustering coefficient can also be measured as a function of the number of neighbors 
that each node has, resulting in a clustering sequence C(k). Often, C(k) ∼ 1/k over a certain 
range, so that the more neighbors a node has, the lower its clustering coefficient (Barabási 
and Oltvai, 2004). In transcription networks, this tendency appears to correspond to the 
way that feedforward loops connect to each other. The chief arrangement of feedforward 
loops in sensory transcription networks is the multi-output FFL, discussed in Chapter 4. 
In the multi-output FFL, node X regulates (and is thus a neighbor of) Y, and both X 
and Y regulate k output nodes. These output nodes are typically not neighbors. Thus, 
node X has k + 1 neighbors (Y and the k output nodes), with only k connections between 
these neighbors (the connections of Y to the outputs), resulting in a clustering coefficient 
C ∼ k/k2 ∼ 1/k.

Generally, it appears that global statistical properties of biological networks such as degree 
sequences and clustering sequences are the result of selection working on the detailed circuit 
patterns in each individual system. Different networks have different selection constraints, 
which must be understood in order to understand their graph properties.

C.4 QUANTITATIVE MEASURE OF NETWORK MODULARITY
Network modularity is the degree to which it can be separated into nearly independent sub-
networks (Chapter 15). A quantitative measure of modularity was developed by Newman 
and Girvan (Newman and Girvan, 2004). Briefly, the Newman and Girvan algorithm finds 
the division of the nodes into modules that maximizes a measure Q. This measure is the 
fraction of the edges in the network that connect between nodes within a module minus 
the expected value of the same quantity in a network with the same assignment of nodes 
into modules but random connections between the nodes:
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where K is the number of modules, L is the number of edges in the network, ls is the 
number of edges between nodes in module s and ds is the sum of the degrees of the nodes 
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in module s. The rationale for this modularity measure is as follows (Guimerà and Amaral, 
2005): a good partition of a network into modules must include many within-module edges 
and as few as possible between-module edges. However, if we try to minimize the number of 
between-module edges (or equivalently maximize the number of within-module edges), the 
optimal partition consists of a single module and no between-module edges. Equation C.4.1 
addresses this difficulty by imposing Q = 0 if nodes are placed at random into modules or 
if all nodes are in the same module.

This measure can be further refined by normalizing it with respect to randomized 
networks. The normalized measure Qm is (Kashtan and Alon, 2005):

 
Q Q Q

Q Qm =
−
−

real rand

randmax  
(C.4.2)

where Qreal is the Q value of the network, Qrand is the average Q value of randomized 
networks and Qmax is the maximal possible Q value of a network with the same degree 
sequence as the real network. The values of Qreal, Qrand and Qmax can be calculated by efficient 
algorithms (Kashtan and Alon, 2005).

The Qm measure of modularity normalizes out the effects of network size and connectivity. 
Biological networks show high modularity according to this measure: The transcription 
network of the bacterium Escherichia coli has Qm = 0.54, the neuronal synaptic network of 
C. elegans has Qm = 0.54 and a human signal transduction network has Qm = 0.58.
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APPENDIX D

Noise in Gene Expression

D.1 INTRODUCTION
The concentration of each protein in a 
population of genetically identical cells varies 
from cell to cell due to stochastic processes 
(reviewed in McAdams and Arkin [1997] 
and Kærn et al. [2005]). The concentration 
of a given protein often has a coefficient of 
variation (standard deviation divided by the 
mean) in the range CV = 0.1 to 1 (Elowitz 
et al., 2002; Ozbudak et al., 2002; Blake et al., 
2003; Raser and O’Shea, 2004). That is, the 
cell–cell variations are on the order of tens 
of percents of the mean. When a protein is 
produced and degraded such that its levels change with time, each cell shows fluctuations around 
the mean trajectory (Figure D.1). This stochastic behavior is called gene-expression noise.

Noise is not just a fluke, it’s a major fact of life in biological systems. An organism without 
any stochastic behavior would seem to us robotic and un-lifelike.

Resisting noise is a central constraint that shapes biological circuits, as described in 
Part 2 of the book, on robustness. Cells also use noise as a random number generator 
to produce oscillations, stochastic differentiation, and to provide bet-hedging: noise adds 
diversity that allows organisms to deal with unexpected situations. The uses of noise are 
reviewed in Eldar and Elowitz (2010).

D.2 EXTRINSIC AND INTRINSIC NOISE
One important source of noise is extrinsic noise, in which the cellular capacity to produce 
proteins, and the regulatory systems that regulate a gene, fluctuate over time. For example, 
fluctuations in a transcription factor concentration can affect the expression rate of its target 
genes. The correlation time of these variations in production rates is often on the scale of a 
cell generation: that is, a cell with high production levels often tends to stay high for a cell 
cycle or more (Rosenfeld et al., 2005).
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In addition to extrinsic 
noise, there is also intrinsic 
noise, which is due to 
stochastic variations in 
the transcription and 
translation events of the 
gene. An elegant experiment 
by Michael Elowitz and 
colleagues (Elowitz et  al., 
2002) measured the relative 
level of intrinsic and extrinsic 
noise. Elowitz measured the 
levels of two fluorescent 
proteins, one yellow and one 
cyan (YFP and CFP), expressed from identical promoters (Figure D.2) in the same bacterial 
cell. Genetically identical cells grown in the same conditions (dots in Figure D.2) showed 
different amounts of yellow and cyan fluorescence. This variation can be decomposed into a 
shared component in which yellow and cyan are both high or both low, and a perpendicular 
component in which the ratio between yellow and cyan varies. The shared component is due 
to extrinsic noise: the variation shared by the genes due to upstream factors such as variations 
in regulators and the cells’ metabolic capacity. The perpendicular component is due to intrinsic 
noise that changes the ratios of the two colors, due to stochastic steps in transcription and 
translation of each gene. Intrinsic noise appears to fluctuate on a timescale of minutes in bacteria 
(Rosenfeld et al., 2005). The two types of noise are not independent: intrinsic noise in the levels 
of a regulator can show up as extrinsic noise in expression of its targets.

D.3 DISTRIBUTION OF PROTEIN LEVELS
The cell–cell distribution of the number of copies of a given protein, P(X), is captured by a 
well-studied model of noise, in which protein is produced in stochastic bursts. The bursts 
originate from various processes (Golding and Cox, 2006), such as a transition of the gene 
between two states: an ON state in which mRNA is transcribed, and an OFF state in which 
transcription is zero. The frequency of bursts is a per protein half-life, and in each bursts b 
proteins are produced on average.

In the case where mRNA lifetime is much shorter than protein lifetime, as is typical of 
bacteria and yeast, this process results in a Gamma distribution of protein numbers per 
cell at steady state:

 P X C X ea x b( ) /= − −1
 (D.3.1)

When there are many bursts per protein half-life, a > 1, this distribution is approximately 
bell-shaped and slightly skewed to the right (Figure D.3a). When there is less than one burst 
per protein half-life, protein levels fluctuate widely over time, and P(X) is sharply skewed with 
a maximum at X = 0 (Figure D.3b). These distributions agree with precise measurements 
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of protein variation between 
cells in microorganisms 
(Friedman, Cai and Xie, 2006) 
and mammalian cells (Cohen 
et al., 2009).

A more precise calcu lation 
makes adjus tments for proteins 
of very low abundance (b close to 
one) yielding a negative binomial 
distribution (Paulsson, 2004), 
which closely resembles Gamma 
distributions when b is large.

Different proteins have different burst frequencies and sizes, and hence different mean 
abundance <X> and standard deviation σ. Measurements show a typical relationship 
between the abundance of a protein and its standard deviation between cells. The coefficient 
of variation drops with protein abundance as

 CV X X= < >= < >σ/ 1/  (D.3.2)

until hitting a minimal noise floor CV0 for proteins of high abundance due to extrinsic 
noise. More precisely,

 ( / ) /σ α β< > = < > + +X X CVp m
2

0
21 /  (D.3.3)

where αp is the protein removal rate and βm is the transcription rate (Paulsson, 2004; 
Taniguchi et al., 2010; Bar-Even et al., 2006).

D.4 NETWORK MOTIFS AFFECT NOISE
Regulatory circuits affect the noise. For example, protein levels can be made to fluctuate 
less by means of negative autoregulation, as discussed in Chapter 2. Conversely, positive 
autoregulation can increase cell–cell 
variability. Positive feedback can lead 
to bistability as discussed in Chapter 5 
(Figure D.4). In fact, stochastic effects 
can lead to bistability even when 
deterministic equations do not show it: a 
non-cooperative positive autoregulation 
loop (Hill coefficient = 1) can lead to 
bistability in the presence of noise (Berg 
et al., 2002; Friedman, Cai and Xie, 2006).

Bistability leads to a bimodal 
distribution (Figure D.4), with two cell 

Protein per cell

0 100 200 300

0.005

0.010

O
cc

ur
re

nc
e

0

100

200

0 300 600

P
ro

te
in

 

Time

0

O
cc

ur
re

nc
e

Protein per cell

0 25 50 75 100
0.0

0.1

0.2

0

40

80

0 300 600

P
ro

te
in

 

Time

(a) (b)

FIGURE D.3 

log X

# 
ce

lls

bimodal

X

X

simple regulation

FIGURE D.4 



310   ◾   Appendix D

populations, with high and low expression 
(Novick and Weiner, 1957; Siegele and Hu, 
1997; Ferrell and Machleder, 1998; Ozbudak 
et al., 2002). Bimodality is fundamental to 
the ability of a cell to randomly take one 
of two different fates in a given condition. 
These effects of positive and negative 
autoregulation can be calculated exactly 
(Friedman, Cai and Xie, 2006). The effects 
of noise on gene circuits can be efficiently 
simulated on the computer using the 
Gillespie algorithm (Gillespie, 1976).

Noise can also be amplified by regulatory 
cascades: each step in the cascade receives 
variability from its upstream regulator, and hence variation increases down the cascade 
(Figure D.5; Blake et al., 2003; Hooshangi, Thiberge and Weiss, 2005; Pedraza and Van 
Oudenaarden, 2005). Rapidly degraded proteins can have narrower distributions than 
stable proteins, because stable proteins integrate the noise in production rates over longer 
times. Stable proteins also have longer autocorrelation times in their noise, remaining 
higher or lower than average for longer times than short-lived proteins (Sigal et al., 2006). 
As a rule of thumb, the faster the response time of a system, the smaller the fluctuations.

D.5 POSITION OF NOISIEST STEP
One interesting observation is that the position of the noisiest step in a pathway can influence 
the overall noise (McAdams and Arkin, 1999; Ozbudak et al., 2002). This is because each 
step in the pathway usually amplifies noise in the previous steps.

For example, consider two mechanisms that produce 100 proteins per hour: In 
mechanism A, one mRNA molecule is made and is translated to 100 proteins on average. 
In mechanism B, 100 mRNAs are made and are each translated to one protein on average. 
The fluctuations in protein production are much larger in mechanism A, because an average 
of one mRNA normally means that in some cells either 0 or 2 mRNAs will be made in a 
given hour, resulting in 0 or ∼200 proteins. In mechanism B, there is little chance to make 
zero mRNAs during an hour, and fluctuations are smaller.

The chromosomal position of a gene can also affect noise, due to local differences in 
chromatin regulation (Blake et al., 2003; Becskei, Kaufmann and Van Oudenaarden, 2005). 
Generally, noise level can be tuned over evolutionary timescales by changing the parameters 
of the noisy steps in the expression of each gene. It appears that essential proteins and 
complex-forming proteins are less noisy than other proteins, whereas stress-response 
proteins are noisier (Bar-Even et al., 2006).

Noise in biological systems can be modeled using stochastic mathematical equations. 
Such theoretical treatment of stochastic effects is beyond the present scope – if you want to 
learn more, good places to start are  reviews on noise in biology (Paulsson, 2004; Kærn et al., 
2005). Excellent texts on stochastic processes, such as those by Gardiner and Van Kampen, 
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can give access to the highly developed field of stochastic theory in physics, chemistry and 
engineering.

FURTHER READING
(Acar, Becskei and Van Oudenaarden, 2005) “Enhancement of cellular memory by reducing 

stochastic transitions.”
(Bar-Even et al., 2006) “Noise in protein expression scales with natural protein abundance.”
(Berg, 1978) “A model for the statistical fluctuations of protein numbers in a microbial population.”
(Blake et al., 2003) “Noise in eukaryotic gene expression.”
(Elowitz et al., 2002) “Stochastic gene expression in a single cell.”
(Friedman, Cai and Xie, 2006) “Linking stochastic dynamics to population distribution: an 

analytical framework of gene expression.”
(Kærn et al., 2005) “Stochasticity in gene expression: from theories to phenotypes.”
(McAdams and Arkin, 1997) “Stochastic mechanisms in gene expression.”
(Novick and Weiner, 1957) “Enzyme induction as an all-or-none phenomenon.”
(Ozbudak et al., 2002) “Regulation of noise in the expression of a single gene.”
(Raser and O’Shea, 2004) “Control of stochasticity in eukaryotic gene expression.”
(Rosenfeld et al., 2005) “Gene regulation at the single-cell level.”
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A

Activation coefficient, 9
Activator(s), 5, 8

accumulation, 222
binding to DNA site, 294–295
input function integrates repressor and, 299–301

Activator and repressor demand rule, 130
Aligned canalization, 262
Aligned polymorphisms, 261–262
Allometric relationships, 254
Alternating stability of fixed points, 92
Amino acids, 118, 120
Ammonite shells, 256
AM strategies, 112
Antagonistic reactions, 144
APC, 105
Arabinose, 129

system of E. coli, 45–46
AraC, 45
Archetype, 252–253, 256–257

analysis algorithms, 260
Arginine (Arg), 118
Astounding speed of evolution, 273
Attractants, 153
Autogenous control, 23
Autokinase, 140
Autoregulated cascade, 33
Autoregulation, 21, 23–24; see also Negative 

autoregulation (NAR); Positive 
autoregulation (PAR)

with Hill input function, 31–32
Avidity effect, 149

B

Bacillus subtilis, 70
interlocked feedforward loops in sporulation 

network, 70–73

Bacterial chemotaxis, 144, 153, 282
adaptation, 158–159
attractants lowering activity of X, 157–158
behavior, 153–155
E. coli, 176–177
fold-change detection in, 176–178
individuality and robustness in, 165–166
protein circuit, 156–159
response and exact adaptation, 

155–156
Bacterial two-component systems, 140

bifunctional components, 144
black-box approach, 143–144
limits of robustness, 143

Bang-bang control, 111
Barkai–Leibler model of exact adaptation, 

159–162
experiments, 164–165
robust adaptation and integral feedback, 

162–164
Basal expression level, 10
Basal promoter activity, 293
Basins of attraction, 79, 81
Beta-cell-Insulin-Glucose model 

(BIG model), 196
compensation time in, 205
and DC, 197–200
linear analysis of fixed points, 205

Beta cells, 192
Bet hedging strategy, 166, 235
Bi-fan, 64

dynamics, 74
signal integration by, 68–69

Bifunctional components, 140, 144
Bifunctional enzymes, 140n1
BIG model, see Beta-cell-Insulin-Glucose model
Bimodality, 310
Biological oscillations, 97
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Biological oscillators
delay oscillators, 102–103
noise-induced oscillations, 101–102
oscillations requiring negative feedback and 

delay, 97–101
positive and negative feedback loop motif, 

103–107
robust bistability using two positive feedback 

loops, 107–109
Biphasic mechanism, 206–207
Biphasic response, 50–51, 57–58, 203

curves, 202–203, 219
Bistability, 79, 105, 309–310
Black-box approach, 143–144
Black-box calculation, 147–148
Blood proteins, 259
Brain uptake of glucose, 205
Buchnera, 235
Bursts of gene expression, 308

C

C1 (transcription factor), 83
C1-FFL, see Coherent type-1 FFL
Caenorhabditis elegans, 89–90
Calcium homeostasis

compensation time, 206
mutant resistance, 206

cAMP, 45
Canalization, 255
Cascades, 18

of repressors, 84
Cdc25 kinase, 105
CDK1, 105
Cell-cycle

clock, 108
oscillator circuits, 105

CFP, see Cyan fluorescent protein
CheA, 157
CheB, 158
Chemostat, 232n3
Chemotaxis, 66

circuit providing FCD, 178–180
system, 221–222

CheR, 158
Clustering coefficients, 305
Codon, 119
Coefficient of variation, 307, 309
Cognitive problem of cell, 3–4
Coherent FFLs, 40, 51, 55–57, 87
Coherent type-1 FFL (C1-FFL), 40–41, 72; see also 

Incoherent type-1 FFL (I1-FFL)
dynamics of C1-FFL with AND logic, 41–42

OR-gate C1-FFL, 46–47
sign-sensitive delay element, 42–46

Collision rate, 291
Compact in-degree sequences, 303–304
Compensation time in BIG model, 205
Competitive exclusion, 246
Conformational proofreading, 128, 219; see also 

Kinetic proofreading
optimal handicap in, 134
specificity without consuming energy, 

128–129
Conservation equation, 287
Conservation law, 139, 291
Conservative evolution, 51
Constitutive expression, 234
Convergent evolution of FFLs, 51–52
Cooperativity, 100
Cortisol, 50–51
Cost

function, 240
of LacZ protein, 229–230
of noise, 246

cro (transcription factor), 83
Crosstalk, 130

avoiding crosstalk by efficient coding, 135
CRP, 45, 49, 69, 304
Cyan fluorescent protein (CFP), 308
Cyclin, 105

D

DAGs, see Directed acyclic graphs
Dale’s rule, 8n1
Damped oscillations, 98–99
Data clustering, 260
DC, see Dynamical compensation
De-ubiquitinating enzyme, 127
Degradation rate, 49
Degree-preserving random networks (DPRNs), 55
Delay

in metabolic pathways, 74–75
oscillators, 102–103

Demand, 234
Demand rules, 219

for gene regulation, 129–130
for genes of concordant and opposing 

functions, 135
for phosphorylation, 135

Dense overlaping regulons (DORs), 69–70
signal integration by, 68–69

Dephosphorylation, 139
Desert rodent, see Psammomys obesus
Detailed balance conditions, 132
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Developmental patterning mechanisms, 261
Developmental timing, 84
Developmental transcription networks, 210

long transcription cascades and developmental 
timing, 84

network motifs in, 77
PAR, 78–80
regulating feedback and regulated feedback, 

83–84
two-node positive feedback loops for decision-

making, 80–83
Diamond pattern, 56, 58
Diffusion, 220–222

and degradation process, 212
diffusion-limited value, 288
equation, 185

Diffusion–degradation equations, 211–213
Dimensionality reduction method, 260
Dimensionless variables, 179
Directed acyclic graphs (DAGs), 73
Dissociation

balance collisions, 291
rate, 291

Dissociation constant (Kd), 288
DNA site, activator binding to, 294–295
DORs, see Dense overlaping regulons
Dorsal region (DR), 215
Double-negative feedback loop, 80–81
Double-positive feedback loop, 80

positive autoregulation in, 92
Double-positive feedback, nullclines for, 92
Downstream protein half-life, 112
DPRNs, see Degree-preserving random 

networks
DR, see Dorsal region
Drosophila (fruit fly), 215

patterning mechanisms, 215–220
Dynamical compensation (DC), 197–200

for beta-cell secretion rate, 205
for blood volume, 206
Dynamic measurements, FCD circuit 

identification from, 183
Dynamics

of cell populations, 195
compensation, 219
of robust mechanism, 149
of transcription networks, 13–15

E

Endocytosis, 215
Energy consumption, 148

Environmental selection of FFL network motif, 
236–238

EnvZ/OmpR, 140
Equal timing, 73
Equilibrium binding of tRNAs, 119–121
Erdös–Rényi model (ER model), 23, 31
ER model, see Erdös–Rényi model
Error rate, 120

in delay mechanism, 126
Escherichia coli, 3–4, 66, 69, 129, 154, 156, 228, 232, 

235, 238, 245, 258, 306
chemotaxis system of, 176–177
network, 23
sign-sensitive delay in arabinose system of, 

45–46
Evolutionary dynamics analysis, 233
Evolutionary optimization, 227
Evolutionary theory, 249
Exact adaptation, 155–156

Barkai–Leibler model, 159–162
Exact adaptation, FCD and, 180
Exclusive-OR gate (XOR gate), 275–276
Expansion–repression mechanism, 223
Exponential pulse distribution, 244
Extrinsic noise, 307–308

F

Fan out, 18
FBLs, see Feedback loops
FCD, see Fold-change detection
Feedback, 183

inhibition, 62, 74
mechanism, 195, 200, 213, 215
strength, 99–100

Feedback loops (FBLs), 54, 215
Feedforward, 183
Feedforward loop (FFL), 39, 61, 77, 87, 236; see also 

Multi-output feedforward loop
convergent evolution, 51–52
dynamics of coherent type-1 FFL with AND 

logic, 41–42
environmental selection of FFL network motif, 

236–238
incoherent type-1 FFL generating pulses of 

output, 47–51
network motif, 37–39
no oscillations in, 94
OR-gate C1-FFL, 46–47
selection, 242–245
structure of FFL gene circuit, 39–41
types, 51

FFL, see Feedforward loop
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Field, 209
FIFO order, see First-in-first-out order
Fine-tuned model, 159

for exact adaptation, 166–169
First-in-first-out order (FIFO order), 64
First-order kinetics, 296
Fitness, 229, 237, 250

of circuit, 276
landscape picture for single task, 249–250

Fitness functions, 227–228
and optimal expression level, 231–232

Fixed point of equation, 28
Flagellar motor, 66–67
Flagellar phases, 246
Fluorescence resonance energy transfer (FRET), 177
Fluorescence system, 177
Flux boundary condition, 222
FM strategies, 112
Fold-change detection (FCD), 177–178, 187–188, 

219, 251
in bacterial chemotaxis, 176
chemotaxis circuit providing, 178–180
and exact adaptation, 180
general condition for, 182–183
identifying FCD circuits from dynamic 

measurements, 183
incoherent feedforward loop, 180–181
provides robustness to input noise and allows 

scale-invariant searches, 184–186
universal features of sensory systems, 175–176

Fold change, 179
“Follow the bone” principle, 282
Frameshift errors, 134
French flag model, 209–210
Frequency of bursts, 308
FRET, see Fluorescence resonance energy transfer
Fruit fly, see Drosophila

G

Gain control, 184
Galactose utilization genes, 49
Gamma distribution of protein abundance, 308
Gene

duplication, 277–278
gene-expression noise, 307
recombination, 277–278

Gene expression
trade-offs in, 258–259

Generalists, 254
Generalized diamond, 74
Gene input function

binding of activator to DNA site, 294–295

binding of inducer to repressor protein, 
289–291

binding of repressor to promoter, 287–289
cooperativity of inducer binding and Hill 

equation, 291–292
input function of gene regulated by repressor, 

293–294
Michaelis–Menten enzyme kinetics, 295–296
Monod–Changeux–Wyman model, 292–293

Genetic code, 118
Genetic drift, 228
Genome, 277
Genotype, 249
GFP, see Green fluorescent protein
Gillespie algorithm, 310
Glucose, 45, 191–192

dynamics, 197–198
tolerance test, 191

Glucotoxicity, 196, 200–201, 203
Glycolysis, 202
Goal, 276

MVG, 278–280
randomly varying goals cause 

confusion, 278
Green fluorescent protein (GFP), 45, 102

H

Hill coefficient, 9, 292
Hill function, 9–10, 291–292, 295
Homeostasis, 86
Homogeneity conditions, 186

for FCD, 182
Homologous genes, 51
Hopf bifurcation, 104
Hubs, 304

in networks, 54–55
Hybrid FFL motifs, 87
Hybrid network motifs, 85–87
Hysteresis, 106

I

I1-FFL, see Incoherent type-1 FFL
IFFLs, see Incoherent feedforward loops
IL-2, 144
Immune FCD, 187
Immune system, recognition of self and non-self by, 

123–127
Incoherent feedforward loops (IFFLs), 40, 49, 51, 

57–58, 87, 180–181
with microRNA, 58
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Incoherent type-1 FFL (I1-FFL), 40, 47, 72, 180–181, 
183; see also Coherent type-1 FFL (C1-FFL)

biphasic steady-state response curves, 50–51
as FCD circuit, 187
generating pulses of output, 47–51
speeds response times, 48–50

Individuality in bacterial chemotaxis, 165–166
Induced fit, 128
Inducer binding

cooperativity and Hill equation, 291–292
to repressor protein, 289

Inhibition function, 81
Input dynamic range, 34–35
Input functions, 9–10
Input-output robustness, 142
Insulin, 192

minimal model non robust to changes in, 
193–194

resistance, 193
sensitivity, 192–193

Insulin-glucose
feedback loop, 191, 204

Integral feedback, 162–164, 171, 219
Integrated fitness, 243
Interconnected FFLs, 58
Interlocked feedforward loops in B. subtilis 

sporulation network, 70–73
Intermediate states, 127
Intrinsic noise, 307–308
Inverse ecology, 238
Islets of Langerhans, 203

J

Jacobian matrix, 99, 104
Just-in-time production, 63

K

Kinetic proofreading, 117–118, 219; see also 
Conformational proofreading

in diverse processes in cell, 127–128
equilibrium binding of tRNAs, 119–121
of genetic code reducing error rates, 118–123
increasing fidelity of T-cell recognition, 125–127
low error rate of immune recognition, 124–125
recognition of self and non-self by immune 

system, 123–127

L

Labor division in individual cells, 259–260
lac promoter, 164

lac repressor (LacI), 289
tetramers, 275

Lac system, 12
Lactose system, 129
LacZ protein, 228

benefit of, 230–231
cost of, 229–230

Last-in-first-out order (LIFO order), 62, 68
Leakage transcription rate, 293
LEGI mechanism, see Local excitation, global 

inhibition mechanism
LIFO order, see Last-in-first-out order
Ligands, 156
Limit cycle, 104
Linear integral feedback cannot filter out ramps of 

input, 172
Linearity of output curve, limits to, 148
Linearized positive autoregulation, 34
Linear ordinary differential equation, 211
Linear stability analysis, 35, 98, 111
Linear systems, 188
Linkage rate, 120
Liver hepatocytes, 259
Local excitation, global inhibition mechanism 

(LEGI mechanism), 223
Lock-on mechanism, 80
Lock and key, 128
Logarithmic slowdown, 278
Logic gates, simulated evolution of circuits made of, 

275–278
Logic input functions, 10–11, 180, 295
Long-tailed out-degree sequences, 303–304
Long-term memory, 79
Long transcription cascades, 84
Lysogenic mode, 83
Lytic mode, 83

M

Mammalian limb, 282
Mass-action

equations for two-component circuit, 146
kinetics, 139, 287
for non-robust circuit, 145

Mathematically controlled comparison, 27
Maximal promoter activity, 9–10
Memory

of multiple past inputs, 94
in regulated feedback network motif, 93

Metabolic pathways, 62
Methylation modifications, 158
Methyl group, 158
MHCs, 123
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Michaelis–Menten
enzyme kinetics, 295–296
equation, 289, 294, 296
functions, 142, 188, 299
kinetics, 167

Minimal model, 192–194, 204
Modified-ER (MER), 31
Modular goals, 281–282
Modularity, 273

in all levels of biological organization, 274–275
of components, 8
modular goals and biological evolution, 

281–282
non-modular solutions in simple computer 

simulations, 275
simulated evolution of circuits made of logic 

gates, 275–278
Modularly varying goals (MVG), 279

leads to spontaneous evolution of modularity, 
278–280

speeds up evolution, 280–281
Modular system, 274
Molecular network, 216
Monod–Changeux–Wyman Model, 292–293
Monotonic response functions, 50
Morphogen, 209–210, 218, 221

gradients, 209–210
Morphology, trade-offs in, 254–256
mRNA dynamics, 16–17
Multi-cellular organisms, 77
Multi-dimensional input functions, 11–12, 299–301
Multi-input FFL, 74

as coincidence detector, 93–94
in neuronal networks, 89–91

Multi-objective optimality
archetypes, 256–257
fitness landscape picture for single task, 249
labor division in individual cells, 259–260
multiple tasks characterized by performance 

functions, 250–251
Pareto optimality in performance space, 251–252
Pareto optimality in trait space leads to simple 

patterns, 252–253
trade-offs between tasks, 253–254
trade-offs for proteins, 257
trade-offs in gene expression, 258–259
trade-offs in morphology, 254–256
variation within species lies on Pareto front, 

260–262
Multi-output AND C1-FFL, 74
Multi-output FFL, 64–66

generating FIFO temporal programs, 66–68
persistence detector, 68

Multi-output OR C1-FFL, 74
Multiple tasks, 249–251
Mutant cells, 201
Mutational targets, 245–246
MVG, see Modularly varying goals

N

NAND gate, see Not-AND gate
NAR, see Negative autoregulation
Nautilus, 257
Near-irreversibility, 121n2
Negative autoregulation (NAR), 21, 23, 49; see also 

Positive autoregulation (PAR)
as linear filters, 35
promoting robustness to fluctuations in 

production rate, 29–30
rate analysis, 28–29
speeds response time of gene circuits, 24–29

Network
dynamics, 10–11

Network modularity, quantitative measure of, 
305–306

Network motifs, 21–23, 37, 70, 214–215
affect noise, 309–310
algorithm for detecting, 54
detection by comparison to randomized 

networks, 23
in developmental transcription networks, 77
in neuronal networks, 88–91
PPI networks, 85–87

Neuronal networks
multi-input FFLs in, 89–91
network motifs in, 88–91

Neurons, 89
Neurotoxicity, 203
Newmann–Girvan algorithm, 274
NF-κB protein, 184
Niche, 250
NLIFBL, see Nonlinear integral feedback loop
Noise, 29, 307

cost, 246
distribution of protein levels, 308–309
extrinsic and intrinsic noise, 307–308
in gene expression, 307
network motifs affect noise, 309–310
noise-induced oscillations, 101–102
position of noisiest step, 310–311

Nonlinear degradation, 213
Nonlinear integral feedback loop (NLIFBL), 

178–180, 182–183
Non-monotonic response, 50
Non-robust, 138
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Not-AND gate (NAND gate), 276
Notch-Delta lateral inhibition, 222–223
Nullcline

analysis, 81
for double-positive feedback, 92

Numerical screening approach, 217–218

O

OFF steps of signal, 42–44, 47
One-dimensional diffusion–degradation 

equation, 211
One-node circuits, 110–111
ON steps of signal, 42–44, 47
Operons, 67, 172
Optimal gene circuit design

environmental selection of FFL network motif, 
236–238

evolutionary optimization, 227
inverse ecology, 238
optimal expression level of protein, 228–234
optimal regulation in changing environments, 

234–236
Optimal genetic code for minimizing errors, 

133–134
Optimal handicap in conformational proofreading, 

134
Optimality theory, 227
Optimal mismatch, 135
Optimal position of stop codons, 134
Optimal tRNA concentrations, 132–133
OR-gate

C1-FFL, 46–47
logic, 55

Organelles, 274
Oscillations, 97

noise-induced oscillations, 101–102
requiring negative feedback and delay, 97–101
sizable delay to negative feedback loop, 97–101
transcription factors, 112

Oscillator motif, equations for, 111
Osmotic response system of E. coli, 140
Overdamped system, 100

P

p53 (guardian of genome), 100
PAR, see Positive autoregulation
Paradoxical components, 219
Paradoxical control in E. coli carbon/nitrogen 

balance, 149
Paradoxical enzymes, see Antagonistic reactions
Paradox of plankton, 246

Parameter sensitivity coefficient, 32–33
Pareto front, 251, 253

variation within species lies on, 
260–262

Pareto optimality
in performance space, 251–252
in trait space, 252–253

Pareto task inference (ParTI), 252, 258, 260
ParTI, see Pareto task inference
Patterning, 210
Patterns, 21–23
PCA, see Principal component analysis
Performances, 250

functions, 250–251
Performance space, 251

Pareto optimality in, 252–252
Persistence detector, 44
Phage lambda, 82
Phalanges, 260
Phase diagram, 235, 238, 245
Phase portraits, 93

of circuit, 81
Phenotype, 249–250
Phosphatase, 139
Phosphorylated messenger, 139
Phosphorylation, 87, 139
Phosphotransferase, 140
Piezo1, 144
Plasmid, 141
Poincaré–Bendixson theorem, 104
Point mutation, 277
Polymorphisms, 261
Polynomial self-enhanced degradation, 222
Polytope, 254
Population dynamics, 245–246
Positive autoregulation (PAR), 78, 82, 149; see also 

Negative autoregulation (NAR)
in double-positive feedback loop, 92
as linear filters, 35
slows responses and lead to bistability, 

78–80
with step function, 34

Positive feedback, 103, 309
Power-law morphogen profile, 214
PPI networks, see Protein–protein interaction 

networks
Preferential attachment, 304
Principal component analysis (PCA), 254
Production rate, 78, 104

change in, 16
of gene, 29–30

Promoter, 5
activity, 289
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Protein, 3, 13n2, 275
benefit of LacZ Protein, 230–231
cells reach optimal LacZ levels, 232–234
cost of LacZ protein, 229–230
fitness function and optimal expression level, 

231–232
levels distribution, 308–309
optimal expression level of, 228
trade-offs for, 257

Protein–protein interaction networks (PPI 
networks), 85

feedforward loops, 87
hybrid FFL motifs, 87
hybrid network motifs, 85–87
network motifs in, 85–87

Psammomys obesus (desert rodent), 207
PTH, 199
Pulse of activation, 18
Pulse trains, 111

Q

Quantitative measure of network modularity, 305–306

R

Randomized networks, 21–23, 31
Randomizing forces, 23, 38, 246, 250
Rate analysis, 28–29
Rate plot, 28
Reactive oxygen species (ROS), 201
RecA, 83
Recognition, 117

of self and non-self by immune system, 
123–127

Reduction in attractant, 166
Regulated feedback, 83–84
Regulating feedback, 83–84
Relative changes, 33, 48, 175–176
Relative sensing, 175
Relaxation oscillators, 106
Removal rate, 78
Repellents, 153, 166
Repressilator, 58, 102

stability analysis, 112
Repression

coefficient, 289
threshold, 30

Repressors, 5, 8
binding to promoter, 287–289
decay, 222
gene input function regulated by repressor, 

293–294

inducer binding to repressor protein, 289
input function integrates activator and, 

299–301
Resisting noise, 307
Response adaptation, 155–156
Response time, 187

of simple regulation, 13–15
of stable proteins, 15

Reverse phosphotransfer, 148
Ribosome, 118
RNA polymerase (RNAp), 5, 258, 288
Robust(ness), 117, 220, 273

adaptation, 162–164
in bacterial chemotaxis, 165–166
of biological functions, 219
bistability using positive feedback loops, 

107–109
design, 166
expression ratios, 111
input–output relations, 149
loss of, 148
principle, 215–220
self-enhanced morphogen degradation, 212–214
shuttling mechanism, 218
timing, 73–74, 222

Robust model
for bacterial chemotaxis, 178
with two methylation sites, 169–171

Robust signaling by bifunctional 
components, 137

bacterial two-component systems, 140–144
robust input–output curves, 137–138
simple signaling circuits, 138–139

Robust spatial patterning
French flag model, 209–212
increased robustness by self-enhanced 

morphogen degradation, 212–214
network motifs, 214–215
robustness principle, 215–220

ROS, see Reactive oxygen species
Runs, 154–155

S

Salmonella typhimurium, 246
Salt-and-pepper pattern, 222–223
Scale-free distributions, 304
Scale-invariant searches, FCD allowing, 184–186
Scaling, 223
Self-arrows in random networks with transcription 

factors, 31
Self-enhanced degradation, 219
Self-enhanced morphogen degradation, 212–214
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Sensing of relative changes, 175
Sensory adaptation, 156, 166
Sensory systems, universal features of, 175–176
Sensory transcription networks, 73, 77

global structure of, 70
Serial dilution, 232
Series of pulses, 94
Serine receptor (Tsr), 162
Shuttling mechanism, 218–220
Sigma factors, 258
Sign-sensitive delay

in arabinose system of E. coli, 45–46
element, 42–46

Signal-transduction circuits, 137
Signal integration by bi-fans and dense-overlapping 

regulons, 68–69
SIM, see Single-input module
Simple regulation as filter for high-frequency noise, 

linear analysis, 35
Simulated networks, 275
Simulations of circuit evolution, 281
Single-input module (SIM), 61, 68, 77

with autoregulation, 74
network motif, 61–62
software, 74
temporal gene expression programs, 62–64

Single objective, 249
Single task, 249–250
Slow dynamics, 78
Slow feedback loop, 196, 199–200
Sparse, 303

network, 53
Speedup, 28

for I1-FFL, 57
Spiral fixed point, 99
Spontaneous dephosphorylation, 148
Spontaneous symmetry breaking, 223
Statistical property of graphs, 305
Steady-state

glucose depends on insulin sensitivity, 194
response, 57
tumbling frequency, 155

Step-like stimulation, 41
Stepping stone evolution, 257
Subgraphs, 37

in random networks, 53–54
Synthetic circuit, 49

T

Takeover by mutant cells, 201
TCA cycle, see Tricarboxylic acid cycle
T-cells, 123–124, 144

increasing fidelity of recognition, 125–127
receptors, 125

Temporal gene expression programs, 62–64
Temporal order, 62–64
TFs, see Transcription factors
Thermodynamic box conditions, 132
Thermostat, 86
Third-base wobble, 134
Three-component negative feedback loop, 102
Three-node feedback loops, 73, 89
Tight control over blood glucose, 191
Time-dependent production and decay, 17–18
Timescales, separation of, 7–8
Tissue-level feedback loops, 201–202
Tissue size control, 195
TNF, see Tumor-necrosis factor
Toggle switch, 81–82
Trade-off, 202, 249

in gene expression, 258–259
in morphology, 254–256
for proteins, 257
between tasks, 253–254

Traits, 249
Trait space, 249

Pareto optimality in, 252–253
Transcription factors (TFs), 3–4, 102, 137, 291

proteins, 6
Transcription networks, 5, 61, 69, 303

biological parameter values, 4
clustering coefficients, 305
cognitive problem of cell, 3–4
dynamics and response time of simple 

regulation, 13–15
elements, 5–12
quantitative measure of network modularity, 

305–306
long-tailed out-degree sequences and compact 

in-degree sequences, 303–304
Transient memory, 87

in FFL, 94
Translational symmetry, 212
Translation machinery, high fidelity of, 121
Tricarboxylic acid cycle (TCA cycle), 149
Tristability, 92–93
tRNA, 118–123, 127–128
Tumbles, 154–155
Tumbling frequency, 154
Tumor-necrosis factor (TNF), 184
Tunable frequency, 107
Turing patterns, 223
Turn-OFF order, 68
Turn-ON order, 68
Turning off autoregulation, 34
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Two-node positive feedback
for decision-making, 34, 80–83

Two-output FFL, 64
Type 1 diabetes, 207
Type 2 diabetes, 200–201

U

Ubiquitin, 127–128
Understandability, 72
U-shaped death curve, 200–201
U-shaped response curves, 202–203

W

W-D trait space, 256
Weber’s law, 175

Wee1, 105
Wide input dynamic range, 184

X

XOR gate, see Exclusive-OR gate

Y

Yeast, 69
Yellow fluorescent protein (YFP), 308

Z

Zero-order
kinetics, 296
ultrasensitivity, 172
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