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Preface

Many dynamical systems that occur naturally in the description of physical
processes are piecewise-smooth. That is, their motion is characterized by pe-
riods of smooth evolutions interrupted by instantaneous events. Traditional
analysis of dynamical systems has restricted its attention to smooth problems,
thus preventing the investigation of non-smooth processes such as impact,
switching, sliding and other discrete state transitions. These phenomena arise,
for example, in any application involving friction, collision, intermittently con-
strained systems or processes with switching components.

Literature that draws attention to piecewise-smooth systems includes the
comprehensive work of Brogliato [38, 39], the detailed analysis of Kunze [165],
the books on bifurcations in discontinuous systems [193, 177] and various re-
lated edited volumes [268, 35]. These books contain many examples largely
drawn from mechanics and control. Also there is a significant literature in the
control and electronics communities; see for example the book [193], which
has many beautiful examples of chaotic dynamics induced by non-smooth
phenomena. Earlier studies of non-smooth dynamics appeared in the East-
ern European literature; for instance the pioneering work of Andronov et al.
on non-smooth equilibrium bifurcations [5], Feigin [98, 80] on C-bifurcations,
Peterka [216] and Babitskii [19] on impact oscillators, and Filippov [100] on
sliding motion. Delving into this and other literature, one finds that piecewise-
smooth systems can feature rich and complex dynamics.

In one sense, jumps and switches in a system’s state represent the grossest
form of nonlinearity. On the other hand, many examples appear benign at
first glance since they are composed of pieces of purely linear systems, which
are solvable closed form. However, this solvability is in general an illusion
since one does not know a priori the times at which the switches occur. Nev-
ertheless, the analysis of such dynamics is not intractable, and indeed, many
tools of traditional bifurcation theory may be applied. However, it has become
increasingly clear that there are distinctive phenomena unique to discontinu-
ous systems, which can be analyzed mathematically but fall outside the usual
methodology for smooth dynamical systems.
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Indeed, for smooth systems, governed by ordinary differential equations,
there is now a well established qualitative, topological theory of dynamical
systems that was pioneered by Poincaré, Andronov and Kolmogorov among
others. This theory has led to a mature understanding of bifurcations and
routes to chaos—see, for example the books by Kuznetsov [168], Wiggins
[273], Arrowsmith & Place [9], Guckenheimer & Holmes [124] and Seydel [232].
The key step in the analysis is to use topological equivalence, Poincaré maps,
center manifolds and normal forms to reduce all possible transitions under pa-
rameter variation to a number of previously analyzed cases. These ideas have
also informed modern techniques for the numerical analysis of dynamical sys-
tems and, via time-series analysis, techniques for the analysis of experimental
data from nonlinear systems. The bifurcation theory methodology has shown
remarkable success in describing dynamics observed in many areas of applica-
tion including, via center-manifold and other reduction techniques, spatially
extended systems. However, most of these successes are predicated on the
dynamical system being smooth.

The purpose of this book then is to introduce a similar qualitative the-
ory for non-smooth systems. In particular we shall propose general techniques
for analyzing the bifurcations that are unique to non-smooth dynamical sys-
tems, so-called discontinuity-induced bifurcations (DIBs for short). This we
propose as a general term for all transitions in dynamics specifically brought
about through interaction of invariant sets of the system (‘attractors’) with
a boundary in phase space across which the system has some kind of dis-
continuity. First and foremost, we shall give a consistent classification of all
known DIBs for piecewise-smooth continuous-time dynamical systems (flows),
including such diverse phenomena as sliding, chattering, grazing and corner
collision. We will then describe a unified analytical framework for reducing
the analysis of each such bifurcation involving a periodic orbit to that of an
appropriately defined Poincaré map. This process is based on the construction
of so-called discontinuity mappings [198, 64], which are analytical corrections
made to account for crossing or tangency with discontinuity boundaries. We
introduce the notion of the degree of smoothness depending on whether the
state, the vector field or one of its derivatives has a jump across a disconti-
nuity boundary. We show how standard examples such as impact oscillators,
friction systems and relay controllers can be put into this framework, and
show how to construct discontinuity mappings for tangency of each kind of
system with a discontinuity boundary.

The analysis is completed by a classification of the dynamics of the
Poincaré maps so-obtained. Thus we provide a link between the theory of
bifurcations in piecewise-smooth flows and that associated with discontinuity
crossings of fixed points of piecewise-smooth maps—so-called border-collision
bifurcations [207, 21], which are just particular examples of a DIB. The pre-
sentation is structured in such a manner to make it possible for a reader to
follow a series of steps to take a non-smooth dynamical system arising in an
application from an outline description to a consistent mathematical charac-
terization.
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Throughout, the account will be motivated and illustrated by copious
examples drawn from several areas of applied science, medicine and engineer-
ing; from mechanical impact and friction oscillators, through power electronic
and control systems with switches, to neuronal and cardiac and models. In
each case, the theory is compared with the results of a numerical analysis or,
in some cases, with data from laboratory experiments. More general issues
concerning the numerical and experimental investigation of piecewise-smooth
systems are also discussed.

The manner of discourse will rely heavily on geometric intuition through
the use of sketch figures. Nevertheless, care will be taken to single out as
theorems those results that do have a rigorous proof, and where the proof is
not presented, a reference will be given to the appropriate literature.

The level of mathematics assumed will be kept to a minimum: nothing
more advanced than multivariable calculus, differential equations and linear
algebra traditionally taught at undergraduate level on mathematics, engineer-
ing or applied science degree programs. A familiarity with the basic concepts
of nonlinear dynamics would also be useful. Thus, although the book is aimed
primarily at postgraduates and researchers in any discipline that impinges on
nonlinear science, it should also be accessible to many final-year undergradu-
ates.

We now give a brief outline each chapters.

Chapter 1. Introduction. This serves as a non-technical motivation for
the rest of the book. It can in fact be read in isolation and is intended as
a primer for the non-specialist. After a brief motivation of why piecewise-
smooth systems are worthy of study, the main thrust of the chapter is to
immerse the reader in the kind of dynamics that are unique to piecewise-
smooth systems via a series of case studies. The first case study is the
single-degree-of-freedom impact oscillator. The notion of grazing bifurca-
tion is introduced along with the dynamical complexity that can result
from this seemingly innocuous event. Agreement is shown among theory,
numerics and physical experiment. After brief consideration of bi-linear
oscillators, we then consider two mathematically related systems that can
exhibit recurrent sliding motion: a relay controller and a stick-slip fric-
tion system. The next case study concerns a well-used electronic circuit
with a switch, the so-called DC–DC converter. Finally, we consider one-
dimensional maps that arise through the study of these flows, including a
simple model of heart attack prediction. Here we introduce the ubiquitous
period-adding cascade that is unique to non-smooth systems.

Chapter 2. Qualitative theory of non-smooth dynamical systems.
The aim here is to set out concisely the mathematical and notational
framework of the book. We present a brief introduction to the qualita-
tive theory of dynamical systems for smooth systems, including a brief
review of standard bifurcations, stressing which of these also makes sense
for piecewise-smooth systems. The formalism of piecewise-smooth systems
is introduced, although no specific attempt is made to develop an exis-
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tence and uniqueness theory. However, a brief introduction is given to the
extensive literature on other more rigorous mathematical formulations for
non-smooth dynamics, such as differential inclusions, complementarity sys-
tems and hybrid dynamical systems. A working definition of discontinuity-
induced bifurcation is given from a topological point of view, which moti-
vates a brief list of the kinds of discontinuity-induced bifurcations that are
likely to occur as a single parameter is varied. The notion of discontinuity
mapping is introduced, and such a map is carefully derived in the case
of transverse crossing of a discontinuity boundary. The chapter ends with
a discussion on numerical techniques, both direct and indirect, that will
be used throughout the rest of the book for investigating the dynamics of
example systems and calculating the appropriate bifurcation diagrams.

Chapter 3. Border collision in piecewise-smooth continuous maps.
This chapter contains results on the dynamics of discrete-time continuous
maps that are locally composed of two linear pieces. First border-collision
bifurcations are analyzed whereby a simple fixed point passes through the
boundary between the two map pieces. General criteria are established
for the existence and stability of simple period-one and -two fixed points
created or destroyed in such transitions, by using information only on the
characteristic polynomial of the matrix representation of the two sections
of the map. Analogs of simple fold and period-doubling bifurcations are
shown to occur, albeit where the bifurcating branch has a non-smooth
rather than quadratic character. The cases of one and two dimensions are
considered in detail. Here, more precise information can be established
such as conditions for the existence of period-adding, and cascades of such
as another parameter (representing the slope of one of the linear pieces)
is varied. Finally, we consider maps that are noninvertible in one part of
their domain. For such maps, conditions can be found for the creation of
robust chaos, which has no embedded periodic windows.

Chapter 4. Bifurcations in general piecewise-smooth maps. Here the
analysis of the previous chapter is generalized to deal with maps that
crop up as normal forms of the grazing and other non-smooth bifurcations
analyzed in subsequent chapters, and which change their form across a
discontinuity boundary. First, we treat maps that are piecewise-linear but
discontinuous. We then proceed to study continuous maps that are a com-
bination of a linear and a square-root map, and finally maps that combine
a linear map with an O(3/2) or a quadratic map. In each case we study
the existence of both periodic and chaotic behavior and look at the transi-
tions between these states. Of particular interest will be the identification
of period-adding behavior in which, under the variation of a parameter, the
period of a periodic state increases in arithmetic progression, accumulating
onto a chaotic solution.

Chapter 5. Boundary equilibrium bifurcations in flows. This chapter
collects and reviews various results on the global consequences of an equi-
librium point encountering the boundary between two smooth regions of
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phase space in a piecewise-smooth flow. Cases are treated where the vec-
tor field is continuous across the boundary and where it is not (and indeed
where the boundary may itself be attracting—the Filippov case). In two
dimensions, a more or less complete theory is possible since the most com-
plex attractor is a limit cycle, which may be born in a non-smooth analog
of a Hopf bifurcation. In the Filippov case, so-called pseudo-equilibria that
lie inside the sliding region can be created or destroyed on the boundary,
as they can for impacting systems.

Chapter 6. Limit cycle bifurcations in impacting systems. We re-
turn to the one-degree-of-freedom impact oscillator from the Introduction,
stressing a more geometrical approach to understanding the broad features
of its dynamics. Within this approach, grazing events are thought of as
leading to singularities in the phase space of certain Poincaré maps. These
singularities are shown to organize the shape of strange attractors and also
the basins of attraction of competing attractors. An attempt is made to
generalize such geometrical considerations to general n-dimensional hybrid
systems of a certain class. The narrative then switches to dealing with graz-
ing bifurcations of limit cycles within this general class. The discontinuity
mapping idea is used to derive normal form maps that have a square-root
singularity. The technique is shown to work on several example systems.
The chapter also includes a treatment of chattering (a countably infinite
sequence of impacts in a finite time) and multiple impacts, including a
simple example of a triple collision.

Chapter 7. Limit cycle bifurcations in piecewise-smooth flows. This
chapter treats the general case of non-Filippov flows and two specific kinds
of bifurcation event where a periodic orbit grazes with a discontinuity
surface. In the first kind the periodic orbit becomes tangent to a smooth
surface. In the second kind the periodic orbit passes through a non-smooth
junction between two surfaces. For both kinds, discontinuity mappings are
calculated and normal form mappings derived that can be analyzed using
the techniques of the earlier chapters. Examples of the theory are given
including general bilinear oscillators, a certain stick-slip system and the
DC–DC convertor introduced in Chapter 1.

Chapter 8. Sliding bifurcations in Filippov systems. The technique of
discontinuity mappings is now applied to the situations where flows can
slide along the attracting portion of a discontinuity set in the case where the
vector fields are discontinuous. Four non-generic ways that periodic orbits
can undergo sliding are identified that lead to four bifurcation events. Each
event involves the fundamental orbit involved in the bifurcation gaining
or losing a sliding portion. The mappings derived at these events typically
have the property of being non-invertible due to the loss of initial condition
information inherent in sliding. So a new version of the theory of Chapters
3 and 4 has to be derived, dealing with this added complication. Examples
of relay controllers and friction oscillators introduced in Chapter 1 are
given further treatment in the light of this analysis.
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Chapter 9. Further applications and extensions. This chapter contains
a series of additional case study applications that serve to illustrate further
bifurcations and dynamical features, a detailed analysis of which would
be beyond the scope of this book. Each application arises from trying
to understand or model some experimental or in service engineered or
naturally occurring system. The further issues covered include the notion
of parameter fitting to experimental data, grazing bifurcations of invariant
tori and examples of codimension-two bifurcations.
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1

Introduction

1.1 Why piecewise smooth?

Dynamical systems theory has proved a powerful tool to analyze and un-
derstand the behavior of a diverse range of problems. There is now a well-
developed qualitative, or geometric, approach to dynamical systems that typ-
ically relies on the system evolution being defined by a smooth function of
its arguments. This approach has proved extremely effective in helping to un-
derstand the behavior of many important physical phenomena such as fluid
flows, elastic deformation, nonlinear optical and biological systems. However,
this theory excludes many significant systems that arise in practice. These
are dynamical system containing terms that are non-smooth functions of their
arguments. Problems of this nature arise everywhere! Important examples are
electrical circuits that have switches, mechanical devices in which components
impact with each other (such as gear assemblies) or have freeplay, problems
with friction, sliding or squealing, many control systems (including their im-
plementation via adaptive numerical methods) and models in the social and
financial sciences where continuous change can trigger discrete actions. Such
problems are all characterized by functions that are piecewise-smooth but are
event driven in the sense that smoothness is lost at instantaneous events, for
example, upon application of a switch. They have fascinating dynamics with
significant practical application and a rich underlying mathematical structure.
It a serious omission that their behavior is not easily described in terms of
the modern qualitative theory of dynamical systems.

A commonly expressed reason for this omission is that there is strictly
speaking no such thing as a piecewise-smooth dynamical system and that in
reality all physical systems are smooth (at least at all length scales greater
than the molecular). However, this statement is misleading. The timescales
over which transitions such as an impact or a control-law switch occur in an
engineering system can be remarkably small compared with that of the over-
all dynamics, and thus, the correct global model is certainly discontinuous
on a macroscopic timescale. Furthermore, relatively simple phenomena when
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considered from the point of view of piecewise-smooth systems often turn
out to be natural limits of far more complex scenarios observed in smoother
systems. For example, it is quite natural for a piecewise-smooth system to un-
dergo a sudden jump from strongly stable periodic motion to full scale chaotic
motion under variation of a parameter. In a smooth system, such a scenario
would typically require an infinite sequence of bifurcations to occur, such as
the famous Feigenbaum cascade of period-doubling bifurcations, leading to
chaos.

A second reason for the exclusion of piecewise-smooth systems from the
established literature is that they challenge many of our assumptions about
dynamics. For example, how can we define concepts such as structural stabil-
ity, bifurcation and qualitative measures of chaos in such systems? By making
careful assumptions about the problems we investigate, which are not incon-
sistent with the physical problems leading to them, it will become apparent
that many of the concepts once thought to be the domain of smooth sys-
tems only, naturally extend to piecewise-smooth ones as well. But, and this
is the main thrust of this book, there are also dynamical phenomena that are
unique to piecewise-smooth systems that are, nevertheless, straightforward to
analyze.

The purpose of this introductory chapter is to be a self-contained and non-
technical guide to piecewise-smooth dynamical systems, which will outline the
more detailed treatment given in the later chapters; but can be read indepen-
dently from them. We will establish the basic foundations for discussion of
non-smooth dynamics in an informal, non-technical and applications-oriented
setting, through the description of case study examples arising from physical
models. We will also show how bifurcations in piecewise-smooth flows (sys-
tems of ordinary differential equations) naturally generate piecewise-smooth
mappings, or maps (discrete-time iteration processes), which is a connection
that lies at the heart of this book. The chapter is essentially designed to be
read like an extended essay. Italicized terms are used to introduce mathemat-
ical concepts that will be defined more accurately later on in the book. Also,
the application-oriented nature of the essay is aimed at answering the question
of why piecewise-smooth systems are worth studying.

As a first motivating example of a piecewise-smooth system, consider the
operation of a domestic central heating system that is trying to achieve a
desired temperature θ. If this temperature is exceeded, a thermostat causes
a switch to turn off the power supply to a boiler. The system then evolves
smoothly with the heating off, until the temperature falls below θ. At this
point the system dynamics changes, as the boiler is turned on and a different
set of evolution rules apply. Thus, if we view the switching process as taking an
infinitesimally short time compared with the heating and cooling phases, we
can view the dynamics of the temperature T (t) as being that of a continuous
piecewise-smooth flow. Two different smooth flow regimes describe the off and
on states, with switching occurring when the dynamics crosses the boundary
T (t) = θ between them.
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Let us suspend belief for a moment and imagine an instantly responsive
heating system. The natural dynamics would then be a state known as sliding
in which T (t) is permanently set to the threshold value θ, with the thermo-
stat poised between the on and off positions. As the temperature rises above
threshold, the boiler is switched off, which instantaneously causes the tem-
perature to fall below threshold. Thus, the boiler is reignited, causing the
temperature to rise above threshold, and so on. We shall see shortly that slid-
ing corresponds to a natural state of so-called relay controllers and also to the
stick phase of systems with dry friction that can exhibit stick-slip motion.

Returning to the more realistic situation where changes in temperature lag
behind the turning on or off of the boiler, we can consider the dynamics of this
example as being driven by events. The events are the times t at which T (t) =
θ and switching occurs. The system evolves smoothly between events such that
we can easily define a discrete-time event map that expresses the system state
at one switching as a function of the state at the previous switch. This map,
which may be smooth or non-smooth, effectively has a lower-dimensional state
space since we know that the temperature is at threshold. Suppose now that
the heating system has a timer device that switches on and off the heating at
fixed times each day. In this case we could consider sampling the temperature
at 24-hour intervals, producing a stroboscopic map that expresses the system
state at a fixed time each day as a function of the state at the same time the
previous day. This map is unlikely to be smooth, because the dynamics of a
system that starts with a temperature above θ is likely to be different from
one that starts below.

This simple example demonstrates that any discussion of piecewise-smooth
systems should naturally include both flows and maps. A third naturally aris-
ing kind of piecewise-smooth system is a combination of a flow and a map,
and we shall call these hybrid systems. Such systems arise when the effect of
the flow reaching the switching threshold is to cause an instantaneous jump
in the flow (which in effect becomes discontinuous). In the heating system,
this might occur if the result of the temperature dropping to θ is to instanta-
neously turn on an electric fire that heats the house very much more rapidly
than the boiler, so that (on a 24-hour timescale) we see an effectively instanta-
neous temperature rise. We begin our more detailed discussion of case studies
with a class of hybrid systems that have played a key role in the historical
development of the theory of piecewise-smooth systems.

1.2 Impact oscillators

Consider the motion of an elastic ball bouncing vertically on a rigid surface
such as a table. In unconstrained motion the ball falls smoothly under gravity
between impacts and has an ‘instantaneous’ reversal of its velocity at each
impact. Suppose that a simple Newtonian restitution law applies such that
reversed velocity is a coefficient 0 ≤ r ≤ 1 times the incoming velocity. Typical
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u

Σ1
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u(t)

v
(a) (b)

R

Fig. 1.1. Sketch figure of both (a) the position u(t) of a bouncing ball against time
and in (b), (u, v)-phase space, where v(t) is the velocity of the ball. Here R is the
map that takes v to −rv.

motion of the ball is represented in Fig. 1.1. Note that if r < 1 then a state
where the ball is at rest (stuck) on the table can be reached by simply releasing
the ball. After an infinite number of impacts (an accumulation of a chattering
sequence), but a finite time, the ball comes to rest. If we were to allow the
possibility of an oscillating rigid table (like a tennis player bouncing the ball
on his racket between rallies), then the dynamics can be incredibly rich [124,
Ch. 2], as we are about to see in a related model.

A bouncing ball is just a simple example of what are termed impact os-
cillators, which are low-degree-of-freedom mechanical systems with hard con-
straints that feature impacts (like the bounce of the ball on the table). impact
oscillators have played an important role in the historical development of
piecewise-smooth systems. Their dynamics has been studied in the Czech and
Russian literature since the 1950s (see, e.g., [98, 19] and references therein, es-
pecially [216, 217]), much or which was essentially rediscovered in the Western
literature in the 1980s and 1990s [237, 236, 251, 264, 197, 43, 102, 18, 67].

Impacting behavior is found in a large number of mechanical systems rang-
ing from gear assemblies [146, 149, 229, 249], impact print hammers [128, 256],
walking robots [138], boiler tube dynamics [212, 122], metal cutters [267], car
suspensions [29], vibration absorbers [234], [20], percussive drilling and moling
[269, 163] and many-body particle dynamics [228]; see also Fig. 1.1. The effect
of the rigid collisions is to make these systems highly nonlinear, and chaotic
behavior becomes the rule rather than the exception. Collisions also lead to
associated wear on the components of the system. If these components are,
for example, the tubes in a boiler [122] or gear teeth [146], then it is crucial to
estimate the average wear that might occur in certain operating conditions.

We will not consider the detailed physics of the impacting process in this
book. Such processes can be highly subtle, especially when involving the im-
pact of rough bodies, which may also involve friction. It is well covered in the
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many texts on impact mechanics and tribology; see for example [243, 279].
Instead, like in the bouncing ball example, we shall take simple coefficient of
restitution impact laws, which, despite their simplicity, we will see can give a
close match to experimental observations.

(a) (b)

(c)

(a) (b)

(c)

Fig. 1.2. Some examples of vibro-impact systems taken from [208], (a) a bell,
(b) a gear assembly and (c) an impact print hammer. (Reprinted from [208] with

We shall look at two case study examples of one-degree-of-freedom impact-
ing systems. First, we consider a simple model that contains an instantaneous
impact, where we find analytical, numerical and experimental evidence for
complex dynamics and the period-adding route to chaos. Second, in Sec. 1.2.4
we consider how this dynamics might arise via taking the limit of a sequence
of, possibly more realistic, continuous models that feature compliant impact.
Chapters 4, 6 and 7 will complete these studies by first presenting a general
theory of non-smooth maps, then of hybrid systems of arbitrary dimensions
(which includes impact oscillators as a special case), and finally of continuous
flows. The presentation of these case studies will draw heavily on work by
Peterka [216, 217], Nordmark [197], Whiston [264, 263, 265], Chillingworth
[53], Shaw & Holmes [237, 236], Thompson & Bishop [251, 103, 30, 31, 260],
Budd [171, 42, 43, 44, 45] and their co-workers.

permission from ASME).
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1.2.1 Case study I: A one-degree-of-freedom impact oscillator

Consider the motion of a body in one spatial dimension, which is completely
described by the position u(t) and velocity v(t) = du

dt of its center of mass.
Thus we think of this body as a single particle in space. When in free motion,
we suppose that there is a linear spring and dashpot that attach this particle
to a datum point so that its position satisfies the dimensionless differential
equation

d2u

dt2
+ 2ζ

du

dt
+ u = w(t), if u > σ. (1.1)

Here, the mass and stiffness have been scaled to unity, 2ζ measures the viscous
damping coefficient, and w(t) is an applied external force. We assume that
motion is free to move in the region u > σ, until some time t0 at which u = σ
where there is an impact with a rigid obstacle. Then, at t = t0, we assume that
(u(t0), v(t0)) := (u−, v−) is mapped in zero time to (u+, v+) via an impact
law

u+ = u− and v+ = −rv−, (1.2)

where 0 < r < 1 is Newton’s coefficient of restitution. An idealized mechanical
model of this system is given in Fig. 1.3.

The simplest form of forcing function w(t) can arise from an excitation
of the lower part of the oscillator. An equivalent problem is to set w(t) = 0
in (1.1) but to introduce an excitation on the whole system by moving the
obstacle (so that σ becomes a function of time) and using a collision law that
takes into account the relative velocity between the particle and the moving
obstacle so that

v+ − dσ/dt = −r
(

v− − dσ/dt
)

.

A simple translation in space, setting û(t) = u(t) − σ(t), and v̂(t) = v(t) −
dσ/dt, and dropping the hats recovers (1.1).

u = σ
u(t)

Fig. 1.3. A simple impact oscillator.
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Note that r2 measures the percentage of the kinetic energy that is absorbed
in the impact. The case r = 1 gives an elastic collision [170] (often assumed in
simulations of granular media, for example, [228]) and r = 0 is a completely
dissipative collision [238] (modeling, for example, the behavior of a clapper
inside a church bell [33]). In experiments, e.g. [209], a value of r = 0.95 is
found to be reasonable to model the case of a steel bar impacting with a rigid
point, whereas in [260], a different value of r was found to provide the best fit
for an impacting cantilever beam; see also [91]. This indicates that the value
r depends not only on the material properties of the impacting components,
but also on their geometry. This is because the restitution law represents the
overall effect of a much more rapid process of energy dissipation through the
propagation of shock waves (those of which in the audible range we hear as
the crack or bang associated with impact).

There have been many analytical and experimental investigations of the
forced impact oscillator with different types of forcing function w(t); see [30]
for a survey. In this case study we concentrate on periodic sinusoidal forcing:

w(t) = cos(ωt), with period T = 2π/ω. (1.3)

However, the literature also includes discussions of forcing caused by an ex-
ternal flow such as vortices shed from a boiler tube [57] or from an ocean
wave [172], quasi-periodic forcing [215, 214], stochastic forcing [276, 45] and
problems where w(t) is the solution of another problem, for example, a fur-
ther impact oscillator. The latter case arises quite commonly when energy is
transmitted via impacts in a loosely fitting mechanical structure, of which the
executive toy ‘Newton’s cradle’ is a simple example.

It is difficult, in practice, to realize such a system exactly in an experiment.
There is no such thing as a perfect, instantaneous impact, as the action of
the impact excites higher oscillatory modes in almost any vibrating system.
This difficulty can be reduced (although not entirely eliminated) by using a
highly massive moving object. Such an experimental impact oscillator used
by Popp and co-authors [209, 132] is depicted in Fig. 1.4. Here, a massive
beam is mounted on an almost frictionless air bearing and is allowed to move
freely under the restoring force of two springs that are carefully engineered
to behave elastically. The beam is excited by an electromagnetic field and
repeatedly comes into contact with a rigid stop. The velocity of the beam is
measured at discrete time intervals by using a laser-Doppler device, and this
measurement converted to a position measurement by integration. Results
from this experiment will be referred to several times in what follows and will
be compared with the results of numerical simulation of (1.1)–(1.3).

In the absence of impacts, the system (1.1) is linear and is therefore easy
to analyze. Its solutions comprise exponentially decaying free oscillations con-
verging to driven periodic motions at frequency ω. The form of these periodic
solutions is unique, up to phase, independent of initial conditions, and does
not change a great deal under parameter variation, provided that we avoid
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4

b c

a 1 2 3(a)

(b) (c)

Fig. 1.4. An experimental impact oscillator, after [208]. In this figure (a) shows
(1) the beam (2) the restoring springs and (3) the frictionless air bearing. Panel
(b) shows the electromagnetic excitation and (c) the impact with the rigid obstacle.

natural resonances ω = n for any integer n. This state of affairs changes com-
pletely when impacts occur, introducing a strong nonlinearity into the system.
Then we observe a multitude of different possible recurrent behaviors, which
include periodic motions of both higher and lower frequency than ω, and much
more irregular chaotic motions in which the orbit u(t) is highly irregular and
is acutely sensitive to its initial conditions The number and nature of these
different types of behavior now depend sensitively on the different parameters
in the system.

We can easily look at the dynamics of different types of such orbit by
plotting the solution trajectories of the solution in the phase plane (u, v). Note
that the phase space of this system is actually three-dimensional because for
a complete description of the dynamics we must include the phase variable

s = t mod 2π/ω.

(Reprinted from [208] with permission from ASME).



1.2 Impact oscillators 9

Examples of three qualitatively different solutions of the idealized simple im-
pact oscillator are given in Fig. 1.5 for three differing, nearby input frequen-
cies. Here we see (a) periodic motion with two impacts per period, (b) more
complicated periodic motion and (c) chaotic motion.

v vv

u u u

(a) (b) (c)

It is valuable to compare the solutions of this simple model with those seen
in an experiment. For the experimental set up illustrated above, at the same
parameter values as in the simulation, we have the phase plane plots seen in
Fig. 1.6. The quantitative and qualitative agreement with the simulations is
striking. The main difference between model and experiment is the excita-
tion of a rapidly decaying higher mode of oscillation immediately after the
impact. However, this does not seem to have significant effect upon the global
dynamics. Note that the chaotic motion is entirely the result of the impacting
behavior and is quite different from solutions to a linear differential equation,
even though the motion between impacts is completely described by a linear
model.

v v v

uuu

(a) (b) (c)

Fig. 1.5. Solutions of the idealized impact oscillator (1.1)–(1.3) in which σ = 0,
r = 0.95, ζ = 0 and (a) ω = 3 , (b) ω = 2.76, (c) ω = 2.9. (Reprinted from [208]
with permission from ASME).

Fig. 1.6. The dynamics of the experimental impact oscillator at the corresponding
parameter values to those in Fig. 1.5. (Reprinted from [208] with permission from
ASME).
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Consider now the general motion of an impact oscillator. It is simplest to
start the analysis by assuming that the particle described by the oscillator
starts at the obstacle with an initial velocity of v0 > 0, at a time t0 and
a corresponding phase s0. The motion of the particle is then described by
the linear system (1.1) with initial data u(t0) = σ and v(t0) = v0. Provided
that v0 > 0, this motion will initially lie in the region u > σ, and in general
(certainly if ζ = 0), the trajectory will strike the obstacle at a later time t1
with velocity −v1/r < 0. After the impact, the velocity is v1. Setting v = v1
and t = t1 the motion then continues as above. The overall dynamics is thus
a series of smooth flows, interrupted by discontinuous changes in velocity.

Things are rather different if v0 = 0 at the point of release at t = t0.
If d2u/dt2 = f(t0) − σ < 0, then the particle cannot move and remains
stuck to the obstacle until it has a positive acceleration. (A simple example
of this being the motion of any particle under gravity, which, when placed on
an obstacle with zero velocity will simply stay stuck to that obstacle.) The
region over which sticking occurs is called the sticking region Z = {(u, v, t) =
(σ, 0, t)|w(t) − σ < 0}. If 0 < r < 1, then the particle generically enters a
sticking phase via an infinite sequence of impacts, a chattering sequence. (If
r = 0, a particle impacting with f(t0) − σ < 0 will stick immediately.)

Returning to the case with v0 > 0, let us try to construct solutions ana-
lytically. It is easiest to look at the case of no viscous damping ζ = 0 (which
we shall henceforth assume unless otherwise stated), which is with little loss
of generality if r < 1, because the restitution law provides the largest source
of damping on the system. The differential equation (1.1) is linear and so can
be solved using elementary methods. Taking the initial condition u(0) = s0,
du
dt (0) = v(0) = v0, we get

u(t; v0, s0) = (σ − γC0) cos(t− s0) + (v0 + ωγS0) sin(t− s0) + γC(t), (1.4)

where

γ =
1

1 − ω2
, C(t) = cos(ωt), S(t) = sin(ωt), C0 = C(s0), S0 = S(s0).

(1.5)
Now suppose that the orbit described by the flow (1.4) impacts with the

obstacle at a later time t1 so that

u(t1; v0, s0) = σ, (1.6)

with a velocity −v1/r before impact, and velocity v1 after impact [Fig. 1.7(a)].
Such trajectories implicitly define an impact map PI relating the time (phase)
and velocity of one impact to that of the next,

PI(s0, v0) = (s1, v1). (1.7)

We can continue this analysis further to look at subsequent impacts at times
ti with velocities vi > 0 immediately after impact, so that (ti+1, vi+1) =
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PI(ti, vi). As we are considering a system that is periodically forced with
period T , we can also define an alternative stroboscopic Poincaré map:

PS(u(t), v(t)) = (u(t+ T ), v(t+ T )), (1.8)

which we use a lot in the later analysis of the impacting system. Note that in
computing PS we must determine all impacts in the interval (t, t+ T ). Even
for the simple linear system described in (1.1) the computation of the impact
time t1 from (1.6) using (1.4) involves solving a (nonlinear) transcendental
equation. Hence, even though the system is piecewise-linear, we should regard
the system as fully nonlinear, since its evolution requires knowledge of t1.
Indeed, the general impossibility of solving such equations as (1.6) in closed
form renders the distinction between piecewise-linear and piecewise-smooth
systems essentially meaningless. For both, the grossest nonlinearity is usually
that introduced by interaction with a discontinuity surface. Fortunately, effi-
cient numerical methods exist to compute the smooth flows, to determine the
impact times and to follow these as the solution parameters vary.

A key feature of all the analysis in this book is a study of how solutions
close to certain distinguished trajectories of piecewise-linear systems behave.
Let us consider such analysis in the context of the impact oscillator, for the
case of a trajectory that impacts. To begin with consider the case in Fig. 1.7(a)
where the velocity v1 is not small and the trajectory τ impacts with the
obstacle at times t1, t2, etc. In this case if we look at a trajectory that starts
close to τ (so that it leaves the obstacle at a time close to t0 with an initial
velocity close to v0), then it will remain close to τ at least up to the time t2.

(a) u

t

σ

(b) u

t

σ

Fig. 1.7. (a) An impacting trajectory (solid) with a high-velocity impact and a
nearby trajectory (dashed) projected onto the (t, u)-plane. (b) An impacting tra-
jectory (solid) with a zero velocity impact at t1 and two nearby trajectories, one
(dashed) with no impact close to t1 and one (dot-dashed) with a low velocity im-
pact close to t1.
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In fact, even though the algebraic expression for PI defined above by (1.7)
using (1.5) and (1.6) is not easily written down in closed form, it is possible to
linearize the impact map PI about the point (t0, v0). To avoid interruption to
the flow of the text, we do not give the details here; but see [237] and related
calculations in Sec. 6.3 of Chapter 6. Specifically we find that the linearization
DPI of PI is given by

DPI =

(

r
v1

0
− r2A1

v1
−r

)

(

cos(Λ) sin(Λ)
− sin(Λ) cos(Λ)

)(

−v0 0
−A0 1

)

. (1.9)

Here the time interval Λ and the accelerations Ai at impact are given by

Λ = t1 − t0, A0 = cos(ωt0) − σ and A1 = cos(ωt1) − σ.

The detailed form of DPI is much less important than the fact that it exists
at all. Although the trajectory τ has impacts, the dynamics of the map close
to τ is just the same as a map derived from a smooth system and can be
analyzed in the same way.

The situation changes completely when the impact velocity v1 drops to
zero. This case is illustrated in Fig. 1.7(b) in which the trajectory τ (repre-
sented by a solid line) has impact velocity v1 = 0 and a subsequent higher-
velocity impact at time t2 with velocity v2. This trajectory is compared to
two nearby trajectories τ− (dot-dash) and τ+ (dash) where τ− has a (low ve-
locity) impact close to t1 with a second impact close to t2, where in contrast,
τ+ does not impact close to t1 but does impact at a later time close to t2.

Rather surprisingly the effect of ‘losing’ an impact close to t1 has an enor-
mous effect on the subsequent dynamics. It is possible to explain some of this
by looking again at the linearized map DPI . It follows from (1.9) that the
determinant of the map PI is given by

J = det [DPI ] = r2v0/v1.

This measures the contraction or expansion in phase space caused by the
evolution of the dynamics from a point of time immediately after an impact,
to a point immediately after the next. If |J | > 1, then nearby trajectories
diverge, whereas they become closer together if |J | < 1. If v1 → 0, then
|J | → ∞. This gives a hint that something special occurs to trajectories close
to those with a zero velocity impact when there is a tangential grazing impact
between the particle and the obstacle. The effect of the grazing is a local
(infinite) stretching of phase space, which in turn has a profound destabilizing
effect on the dynamics. Indeed, if the initial velocity of the trajectory τ− is
v−0 and that of τ+ is v+

0 and the velocity of the impacts close to t2 are v−2
and v+

2 respectively, then the analysis presented in Chapter 6 will show that
|v+

2 − v2| is proportional to |v+
0 − v0|. In contrast, |v−2 − v2| is proportional

to |v−0 − v0|1/2, which is asymptotically much more significant. In the rest of
this section, we will present some simple numerical and analytical evidence
for the possible behavior that can arise as a result of such grazing events.
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1.2.2 Periodic motion

The simplest type of motion of the impact oscillator is a periodic orbit, which
we now investigate in detail. However, we do urge caution. It is easy to get
carried away in the study of periodic orbits and miss the much more subtle
chaotic dynamics that is the hallmark of most impacting systems.

A periodic orbit of (1.1)–(1.3) is a trajectory that exactly repeats after
a fixed number m of impacts and a fixed number n of forcing periods T .
We shall call such a periodic orbit an (m,n) orbit. This orbit corresponds
to a fixed point of m iterations of the map PI and of n iterations of the
map PS . The winding number [216] z of such an (m,n) orbit is defined by
z = m/n and is the average number of impacts per period of the forcing.
(This definition can be extended to chaotic orbits for which z may or may
not be a rational number.) The numbers m and n are independent, and each
can take an arbitrary value. Non-impacting orbits have m = 0 and chattering
orbits have finite n but have m = ∞. Similarly, we can find (1, n) orbits
for all values of n. As is common with many nonlinear systems, there are
often several co-existing (stable) periodic orbits. Peterka [216] refers to (1, n)
orbits as beating motions and (m, 1) orbits (where we have several impacts
per forcing period) as the fundamental orbits. In practice, we see all sorts of
orbits existing simultaneously and the (m, 1) orbits are often either unstable or
unphysical. The number of impacts of an orbit gives a convenient classification
of its complexity. The more impacts an orbit has, the more complex are the
equations that need to be solved to study it and the more likely the orbit
is to be unstable, or indeed non-physical, due to the effects of grazing. It is
relatively easy to study single impact orbits analytically, and harder, but not
impossible, to study double impact orbits.

For the special case of a single impact per period, m = 1, we can construct
periodic orbits explicitly and analyze how their existence changes as we vary
a parameter. This exercise is useful and instructive as it allows us to give
explicit examples of various phenomena that will be covered by the more
general theory developed later in this book. Let us start by allowing n to be
any positive integer. Then, a (1, n)-orbit corresponds to a fixed point (sn, vn)
of the map PI with the corresponding trajectory taking time T = 2nπ/ω
between impacts. To find such a fixed point we must find a phase sn and a
velocity vn. That is, if u(t; vn, sn) is the trajectory given by (1.4), then after
an elapsed time T this trajectory intersects the obstacle, so that it has a
position u(T + sn; vn, sn) = σ, and has an impact velocity v = du/dt that is
precisely v = −vn/r. If these conditions are satisfied, then after the impact
the trajectory exactly repeats. The necessary conditions for the existence of
such a fixed point are thus that

u(T + sn; sn, vn) = σ and u̇(T + sn; sn, vn) = −vn

r
.

Using the explicit expression (1.4) for u and v, we can write these conditions
as



14 1 Introduction

(σ − γC)cn + (vn + ωγS)sn + γC = σ, (1.10)

−(σ − γC)sn + (vn + ωγS)cn − ωγS = −vn

r
, (1.11)

where we have used the shorthand

C = cos(ωsn), S = sin(ωsn), Cn = cos(2πn/ω), Sn = sin(2πn/ω).

To find the fixed point, we must solve this nonlinear system for sn and for vn.
To do this we rearrange (1.10),(1.11) in the form

[

γ(1 − Cn) ωγSn

γSn ωγ(Cn − 1)

] [

C
S

]

=
[

σ(1 − Cn) − vnSn

σSn − Snvn − vn/r

]

.

This is a linear equation for each of the terms C and S, which we can solve
immediately to give

S = sin(ωsn) =
β

2γr
vn, β =

1 − r

ω
. (1.12)

Solving similarly for C in terms of vn and σ, and expanding the expression
C2 + S2 = 1, gives the following quadratic equation for vn:

(α2 + β2)
v2

n

r2
− 4ασ

r
vn + 4(σ2 − γ2) = 0, (1.13)

where

α =
Sn(1 + r)
(1 − Cn)

.

Suppose that γ < sigma. If we think of vn as a function of σ, then the set of
points (σ, vn) satisfying (1.13) lie on an ellipse. Because the velocity vn of the
particle immediately after impact is positive, the only part of the ellipse that
makes physical sense are those solutions for which vn ≥ 0.

Equation (1.13) has two solutions v±n given by

v±n = r(2ασ ±Δ)/(α2 + β2) with Δ2 = 4α2σ2 − 4(σ2 − γ2)(α2 + β2).
(1.14)

Substitution of these values for vn into (1.12) enables us to find the phase
sn. However, not all of the values of sn and vn obtained by such a procedure
actually correspond to a (1, n) periodic orbit. They must also satisfy conditions
that guarantee that such an orbit is physically possible. From the previous
discussion, we already know that one such restriction is that

vn ≥ 0. (1.15)

However, there is a more subtle global condition that the trajectory u(t) does
not penetrate the obstacle for any time t between the two impacts, sn < t <
sn + T . Such a condition is satisfied provided that



1.2 Impact oscillators 15

u(t) ≥ σ for sn < t < sn + 2πn/ω. (1.16)

As parameters in the system vary, either (1.15) or (1.16) may be violated at
certain isolated values, giving rise to grazing bifurcation points at which the
qualitative properties of the solution changes, often in a dramatic manner.

Let us now consider an experiment where we allow the clearance σ to vary,
and plot solutions v±n to (1.14) as a function of σ. In such a way we will plot
a bifurcation diagram for the existence of (1, n) periodic orbits in the (σ, vn)-
plane given by the part of the ellipse that has vn > 0; see Fig. 1.8. This ellipse
intersects the line vn = 0 at σ = ±|γ|. The slope of the major axis of the
ellipse is proportional to sn = sin(2πn/ω), and hence it rotates clockwise as
ω is increased.

v+
n

v−
n

v

σγ −γ

fold fold

graze graze

Fig. 1.8. Schematic diagram of the rotated ellipse for different ω, which indicates
the two solution branches v±

n that are destroyed at the saddle-node bifurcations
when σ = σSN (see text for details). In this figure we see a sub-resonant ellipse
on the left and a super-resonant ellipse on the right. Grazing bifurcations occur as
indicated when vn = 0 and |σ| = |γ|.

Consider first the case that ω is just a little bigger than 2n, so that sn > 0
(the so-called super-resonant case). Then the major axis of the ellipse has
positive slope, and there are two solutions v±n (σ) for σ > |γ| up to a σ-value,
σSN , at which v+

n = v−n . There are no solutions for σ > σSN or for σ < −|γ|.
The parameter value σSN is an example of a saddle-node or fold bifurcation
point. It has the property that the number of fixed points changes from two to
none as σ increases through σSN . Typically if σ is close to (and just less than)
σSN , one of the solutions is stable (usually v+

n ) and the other is unstable.
Physically, if we were to slowly increase σ, we would see a dramatic change in
the behavior of the system at this value. saddle-node bifurcations are common
to all dynamical systems, both smooth and non-smooth. If sn < 0 (the sub-
resonant case), a similar pattern occurs. For example, if n < ω < 2n, then the
major axis has a negative slope and σSN is less than −γ, so that there are no
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solutions for σ < σSN or σ > +γ. As σ (or indeed as ω) is varied, the (1, n)
orbits can also lose stability through a period-doubling (or flip) bifurcation and
typically we see a smooth evolution from a (1, n) orbit to a (2, 2n) orbit. The
saddle-node bifurcation occurs when the Jacobian of either of the associated
maps has an eigenvalue +1 and the period-doubling bifurcation when it has
an eigenvalue −1. The locations of such bifurcation points determines part
of the range of parameter values over which the (1, n) orbits are likely to be
observed.

If saddle-node and period-doubling bifurcations were the only ways in
which the periodic orbits of the impact oscillator could change their qualita-
tive behavior as the parameters governing the system vary, then the impact
oscillator would behave in an almost identical manner to a smooth system.
However, there are particular parameter values at which we see changes in
behavior that are quite different from smooth systems. These are the values
for which the periodic orbits have grazing intersections with the obstacle.

Grazing arises where vn = 0, that is, at the foot of the semi-ellipse when
σ = ±|γ|. For a small change in the parameters, it is then possible to have a
(0, n) orbit with no impacts. For example, in the sub-resonant case, the orbit
with no impacts co-exists with the (1, n) periodic orbit if σ is just less than
−|γ|.

Grazing also occurs when, under changes in the parameters, the (1, n) orbit
has an additional zero velocity impact between the existing (non-zero velocity)
impacts. This is a harder condition to verify from analytical calculations as it
involves the global failure of the global condition (1.16). One way of viewing
finding such grazing points is to demand that the impact point of the periodic
orbit should lie on a curve G in the (vn, sn)-plane that leads to a grazing
impact. We shall see in Chapter 6 that the set G and its image under the
dynamics can have a complex geometry. We illustrate the two kinds of grazing
orbits via the solution trajectories in Fig. 1.9.

If grazing occurs at a particular value, say σg, of σ, then various things
may occur as σ varies through σg. We may see a transition from one periodic
orbit to another; for example, in the super-resonant case we see a transition
from a (0, n) orbit to a (1, n) orbit as σ increases through −|γ|. Alternatively
we may see a coalescence of two periodic orbits; for example the co-existence
of the (0, n) and (1, n) orbits for σ < −|γ| in the sub-resonant case. More
dramatically, we may also see the instantaneous creation of an infinite number
of periodic orbits together with a (robust) chaotic attractor, which we will
give examples of presently. We call all such transitions examples of grazing
bifurcations and will study these in depth in Chapters 4 and 6.

As a second experiment, consider what happens as we vary ω for fixed
σ = 0. Thus we consider the points of intersection of the semi-ellipses in
Fig. 1.8 with the σ axis. In general vn is single valued, has a large peak when
ω = 2n and decreases rapidly away from this value. If ω is changed slowly,
we see the series of (1, n) solutions shown in Fig. 1.10(a) for different n, with
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Fig. 1.9. Periodic orbits undergoing grazing bifurcations projected onto the (u, v)-
plane for ζ = 0, r = 0.8 and ω = 2. (a) A periodic orbit with a single grazing impact,
where vn = 0 and ϕn = 0. This orbit occurs when σ = −1/3. (b) A periodic orbit
containing both a high-velocity impact with vn = 0.5932 and ϕn = 1.6265 and a
grazing impact with zero velocity. This orbit occurs when σ = 0.331265.

resonant peaks at ω = 2n, that is, twice the values of the usual resonant
frequencies.

As a contrast, consider the equivalent picture when σ = −5 [Fig. 1.10(b)].
In this case the obstacle is a large distance from the mean position of the
oscillator and the dynamics is more nearly that of a free oscillator without
impact. The regions of existence of the periodic orbits are now much closer to
the resonant values ω = n.
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Fig. 1.10. Resonance curves upon which (1, n) orbits exist, as defined in the text;
(a) close to even values of ω for σ = 0 and (b) close to ω = n when σ = −5.

Although the (1, n) orbits exist for a wide range of parameter values and
are relatively easy to analyze, they are not the only form of periodic behavior
observed. Indeed, we find examples of multiple impact orbits, orbits with
chatter and chaotic orbits. For example, double impact (2, n) periodic orbits
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are fixed points of the second-iterate map P 2
I and can arise at period-doubling

bifurcations of (1, n) orbits or through more complex transitions. It is possible
to derive algebraic equations for such orbits [216], which are considerably
simplified when ω ≈ 3 and can be solved explicitly in that case [45]. Indeed,
when σ = 0 a stable orbit with two low-velocity impacts can be shown to exist.
This result has also been confirmed in experiments, see Fig. 1.13. Indeed, the
double-impact orbit appears from the experimental evidence to exist, and to
be stable, for an appreciable range of excitation frequencies. This conclusion
is potentially useful for anyone planning to operate a system modeled by an
impact oscillator, as the double-impact orbit is a stable, controllable, low-wear
operating state.

In contrast, a high-wear state would be one that involves a large sequence
of impacts per forcing period. In fact, we have already encountered motion
that has an infinite number of impacts, in the example of a bouncing ball. The
ball rebounds with a coefficient of restitution r < 1 and comes to rest after
an infinite number of impacts, but in a finite time. A similar phenomenon
is observed in our simple one-degree-of-freedom impact oscillator if forcing is
slow (ω is small) and an impact occurs during a phase when the forcing acts
in a direction that pushes the particle towards the obstacle. Then after a finite
time, and an infinite sequence of impacts, the particle becomes stuck to the
obstacle, until such time that the forcing reverses its direction and pushes the
particle off. We call this a chattering sequence, a detailed analysis of which is
given in [42, 203]. All orbits with initial conditions that eventually end up in
the stuck phase, do so through a chattering sequence and exit it with the same
values of u, v and s. If the forward trajectory from this exit point itself has a
chattering sequence, then the result is a an (∞, n) periodic orbit with chatter.
Such an orbit arises both experimentally and in simulations when r = 0.87,
ω = 0.3 and σ = 0 as illustrated in Fig. 1.11. Owing to the extreme contraction
of phase space resulting from chattering, periodic chattering orbits are also
always super-stable. That is, small perturbations return to the chattering orbit
exactly after a finite time.

1.2.3 What do we actually see?

When studying any type of dynamical system we are often interested in the
ω-limit sets of the motion, that is, the set of all possible long time behavior
of the motion. Loosely speaking, these are the attractors of the system and
represent what is observed physically after transients have decayed. If we look
at impact oscillators with coefficient of restitution r < 1, then the overall
behavior of trajectories that impact is dissipative; indeed there is an average
contraction of the area of phase space by the factor r2 at each impact. As a
result, the ω-limit sets of the motion are simpler than the general dynamics
and comprise periodic or chaotic motions that occupy only a small fraction
of the total phase space. Such motion, when chaotic, is said to evolve on a
strange attractor whose dimension is strictly less than that of the underlying



1.2 Impact oscillators 19

−10−10

u

uu

vv

t

0

0

0

00 1 2

1010

0.40.4 0.80.8

0.5

(a) (b) (c)

phase space (three in this case). The high stretching associated with grazing
means that chaotic behavior is observed in impact oscillators for wide ranges
of the parameters. Often, the strange attractors associated with grazing events
have a fingered appearance when considered as a sequence of iterations of the
maps PI or PS (see Fig. 1.19 below). Chaos can also arise at other points, with
the chaotic attractors having the usual fractal form associated with smooth
dynamical systems.

Thus, the analytically calculated periodic orbits represent the tip of the
iceberg of the possible dynamical behavior. To extend our understanding we
must carry out experimental investigation of the system, either numerical or
physical experiments:

Numerical simulations. To determine stable behavior, direct numerical
simulation methods can be used, in an event-driven manner. That is, for
a given initial state with u > 0, the linear equation (1.1) is solved either
exactly or via a high-order accurate time-stepping scheme such as the
Runge–Kutta method. The test function u− σ is monitored, and changes
of sign are sought using the bisection method, or an in-built hit-crossing
detector of the time-stepping algorithm. The next impact point is thus
determined accurately. After applying the impact law, this point is then
used as the starting point for the next calculation. Provided that care
is taken with accumulation points, this process can be easily applied to
calculate flows with many impacts. To determine the possible ω−limit sets
for a particular parameter value a random set of initial data is chosen,
and the orbits from each such point are calculated over many, say 1000,
impacts without storing. The flow is then continued for another sequence
of, say, 200 impacts and stored. To see how this limit set changes, a small
parameter adjustment is made and the process is repeated. The solution
data thus obtained can then be plotted in a numerical bifurcation diagram
where some measure of the solution state is plotted against the parameter.
Plots obtained in this way via direct numerical simulation are sometimes

Fig. 1.11. Chattering periodic motion for r = 0.87, ω = 0.3 and σ = 0. Panels
(a) and (b) give an experimental periodic chattering orbit, with (c) containing the
corresponding numerical simulation. (Reprinted from [208] with permission from
ASME).
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referred to as Monte Carlo bifurcation diagrams. Rather than plot the
whole solution over the 200 impacts, it is usual to sample the data, e.g., by
plotting v or s at every impact u = σ, or by plotting x or v at fixed values
of the forcing phase s = s0. This method has the advantage of capturing
most, if not all, of the long time dynamics, but has the disadvantage of not
being able to capture unstable behavior, which requires a path-following
algorithm, see e.g. [233]. More details of numerical methods for piecewise-
smooth problems are given in Chapter 2.

Experimental methods. Experimentally, a similar bifurcation diagram of
the ω-limit sets can be produced by slowly increasing a parameter (typ-
ically the excitation frequency) over a period of several hours, with the
system allowed to reach a stable state for each frequency value. It is nec-
essary in experiments, where data are typically extracted at discretely
sampled times, to plot the ω-limit set of the values of u at sample times
kT (the iterates of the stroboscopic map PS). Hence we adopt this con-
vention for both the numerical and the analytical plots. More details of
experiments on impact oscillators will be given in Chapter 9.

Let us now describe the results of two such experiments: first varying the
forcing frequency ω for fixed clearance σ; and then varying σ for fixed ω.
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For a first investigation, we consider the effect of increasing ω from 0.5 to 4,
taking σ = 0, r = 0.93. The resulting analytical and experimental bifurcation

Fig. 1.12. The bifurcation diagram for increasing ω ∈ (0.5, 2.5) for σ = 0 and
r = 0.93. (a) Analytical and (b) experimental results. (Reprinted from [208] with
permission from ASME).
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diagrams are presented in Figs. 1.12 and 1.13 for two different ranges of values
of the forcing frequency. As one can see, there is close agreement between
the numerically computed and the experimental bifurcation diagrams. As we
would expect, the figures are not identical, but they are surprisingly close given
the simple restitution law model of impact. In a neighborhood of ω = 2, we
observe a (1, 2) periodic orbit in both numerical simulations and experiments.
A similar resonance peak of stable (1, n) periodic orbits is observed near ω =
2n for any integer n, as predicted by the analytical calculations of periodic
orbits above. In contrast, close to the odd integer values of ω, e.g., ω = 1
and ω = 3, we either see stable multiple-impact periodic motions (visible as
having a finite set of points in their ω-limit sets) or chaotic orbits (visible as
bands in the diagram).
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Note that the (1, 1) orbit that is stable for ω ≈ 2 loses stability upon in-
creasing ω via a period-doubling bifurcation (see Fig. 1.13(a) at ω = 2.6528,
where the characteristic pitchfork shape of the period-doubled branch beyond
the bifurcation can be seen). In a smooth system we might then expect to
see a (Feigenbaum) cascade of period-doubling bifurcations to (2k, 2k) or-
bits, for k = 1, 2, . . . ,∞ leading to chaos [62]. Such behavior is not observed,
however, in the impact oscillator, because the resulting orbits tend to lose sta-
bility through grazing bifurcations. Thus, as ω is increased, within the range
(2.5, 3.5) we see a dramatic increase in complexity of the observed dynamics.
We can also find bi-stability between competing attractors for the same ω-
value. For example, in numerical results for the lower value r = 0.8, the (1, 1)
periodic orbit is found to coexist with a (6, 6) orbit when ω is close to 2.6.

Fig. 1.13. Similar to Fig. 1.12, but for ω ∈ (2, 4). (Reprinted from [208] with
permission from ASME).
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The two orbits (1, 1) and (6, 6) orbits for ω = 2.6 have complex domains of
attraction (sets of initial conditions that end up at particular ω-limit sets) in
which the effects of grazing make themselves apparent. Several authors have
considered the question of computing such domains by using cell mapping
and related methods; see e.g. [196, 30]. The domains of attraction in this case
are given in Fig. 1.14(a). As can be seen, the two domains are beautifully
interwoven and lead to acute sensitivity to the initial data.
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Fig. 1.14. (a) Domains of attraction within PS for σ = 0, r = 0.8 and ω = 2.6.
In this figure, the dark regions are attracted to a period-one periodic orbit and the
light regions to a period-six orbit. (b) A strange attractor plotted via PS for the
same parameter values but with ω = 2.8.

For larger values of ω, in particular over an interval containing ω = 2.8,
we see the chaotic orbit that corresponds to the strange attractor plotted
as a set of iterations of the map PS in Fig. 1.14(b). This attractor takes
a familiar fractal form, often encountered in chaotic systems, demonstrating
both stretching and folding in the map PS . If you look at this figure, it seems
to echo some of the structure seen in portions of the domain of attraction
plotted in Fig 1.14(a). This is no coincidence, as both reflect the complicated
geometry of the grazing set G, as we shall see in Chapter 6. For values of
ω close to 3, the (2, 2) orbit created in the period-doubling bifurcation at
ω = 2.6528 restabilizes, leading to a parameter interval (a window) of stable
(2, 2) periodic motion. This is followed by more intervals of chaos and periodic
windows, before, around ω = 3.5, a stable (1, 2) orbit is born.

As a second (this time purely numerical) experiment, consider the effect
of changing σ, with ω fixed close to a resonance value, ω = 2. Specifically we
shall probe the effects of grazing bifurcations. We consider the grazing of a
non-impacting orbit. If σ = −∞, a non-impacting (0, 1) periodic orbit exits.
As σ is increased, there is a first value σg at which this orbit has a grazing
impact with the obstacle. It turns out that this causes a precise coincidence
with the point at which the (1, 1)-periodic orbit has zero impact velocity.
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Close to σg, we see complex behavior that is qualitatively different depending
on whether the forcing is sub-resonant (ω < 2), resonant (ω = 2) or super-
resonant (ω > 2). Fixing r = 0.8, we present the results of one-parameter
sweeps in σ passing through the value σg in Figs. 1.15–1.17 for ω = 1.8, ω = 2
and ω = 2.2, respectively. We also extend the calculation to the case of non-
zero damping, taking ζ = 0.01, 0.5, 1, 2. For general ζ the grazing bifurcation
occurs when

σ = σg :=
−1

√

(ω2 − 1)2 + 4ζ2
.
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Fig. 1.15. Stroboscopic bifurcation diagram for ω = 1.8, r = 0.8 and (a) ζ = 0.01,
(b) ζ = 0.5, (c) ζ = 1 and (d) ζ = 2.

The case of low damping ζ = 0.01 is almost identical to that of ζ = 0. When
ω = 1.8 and σ < σg, the non-impacting orbit exists for σ < σg and co-exists
in this range of values of σ with an unstable (1, 1) orbit that is created when
σ = σg. This orbit restabilizes at the saddle-node bifurcation and continues to
exist for σ > σg. When ω = 2, the non-impacting orbit evolves smoothly into
the impacting one as σ increases, and when ω = 2.2, there is a sudden jump to
chaos. For larger values of ζ, rather different behavior is observed. If ζ = 0.05,
for all values of ω, the non-impacting orbit co-exists with an unstable (1, 2)
orbit, which is also created when σ = σg and which restabilizes at a saddle
node bifurcation.
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Fig. 1.16. Similar to Fig. 1.15 but for ω = 2.
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Fig. 1.17. Similar to Fig. 1.15 but for ω = 2.2.
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If ζ = 1, for all values of ω, the non-impacting orbit evolves smoothly into
an impacting (1, 3) orbit as σ increases through σg. This orbit is replaced
by a (1, 2) orbit for larger values of σ. Finally, if ζ = 2, we see in all cases
the phenomenon of period-adding. Here, as σ is decreased towards σg there is
the creation of a sequence of periodic orbits, the period of which increases in
an arithmetic sequence. The range of values of σ over which periodic orbits
of period n and n + 1 are observed are separated by intervals of chaotic
behavior. This is quite different from the period-doubling cascade associated
with chaotic behavior in smooth dynamical systems. All of these phenomena
will be explained in Chapters 4 and 6.

Let us consider finally the case of grazing of an orbit that is already im-
pacting. Fixing ω = 2, r = 0.8 and ζ = 0, a resonant (1, n) periodic orbit
with high velocity impact exists when σ = 0. As σ is increased, this orbit has
an additional zero velocity impact at σg = 0.331265. Fig. 1.18 shows what

0.32 0.36 0.4
0

0.3

0.6

u

σσg

Fig. 1.18. Stroboscopic bifurcation diagram fixing ω = 2 and varying σ for r = 0.8.

is observed when σ is close to this value. Here we see a further example of
the complex dynamics that may result from a grazing bifurcation. As σ is
increased, the (1, 1) periodic orbit immediately evolves into a robust chaotic
orbit. The corresponding strange attractor is plotted in Fig. 1.19 just after
the grazing bifurcation. Note that this has a very different form than that
in Fig. 1.14. The characteristic fingered shape of this attractor, first reported
in the work of Thompson & Ghaffari [251], arises because the grazing map
stretches phase space strongly in one direction and compresses it in the other.
Returning to Fig. 1.18, note how the amplitude of the attractor increases
rapidly as σ is increased, just after the grazing bifurcation point. As σ is
increased further, the chaotic orbit is interrupted by windows of σ-values at
which there are high-period periodic orbits that have just one low-velocity im-
pact per period. Initially at σ = 0.336 we see a stable 20 impact orbit that, as
σ is increased further, evolves into stable periodic orbits with 19,18,17 16,. . .
impacts per period. These periodic windows are separated by bands of chaotic
behavior.
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Fig. 1.19. The fingered strange attractor arising when ω = 2, σ = 0.3333: (a) time
history and (b) iterations of PS .

We shall return in Chapter 6 to an explanation of the dynamics we have
observed in this case study.

1.2.4 Case study II: A bilinear oscillator

A model for rigid impacts that has an instantaneous jump in velocity is unre-
alistic in practice as it would require an infinite force (even though, as we have
seen, such a model gives good agreement with experiments). A natural gen-
eralization is to replace the rigid impact by a highly stiff, elastic deformation
that takes a short but finite time, over which the velocity changes continuously
by a large amount. The simplest compliant oscillator with sinusoidal forcing
may be written in the bi-linear form

d2u

dt2
+ 2ζ

du

dt
+ k1u = cos(ωt), for u ≥ 0 (1.17)

and
d2u

dt2
+ 2ζ

du

dt
+ k2u = cos(ωt), for u < 0. (1.18)

In this system, we assume that K = k2/k1 is large, so that the oscillator
spends relatively short time intervals with u < 0 before returning to u > 0. It
is natural to impose the conditions that u and du/dt are continuous across the
boundary {u = 0}, from which it follows that d2u/dt2 is then also continuous,
but d3u/dt3 is discontinuous. Such an oscillator was has been used to model
the behavior of a moored ship [252, 253] and other offshore structures. See
those references and [237, 196] for details of the dynamics of such a system.
Other mechanical oscillators with non-smooth stiffness characteristics include
models of rocking blocks [133], and walking robots [221]. In this case study,
we restrict ourselves to showing how when K is large the dynamics closely
resembles that of the impact oscillator. In particular, provided the velocity on
crossing u = 0 is never small, one can derive an approximate restitution law
of an equivalent rigid impact oscillator.
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Suppose the particle moves through u = 0 at time t0 with velocity v0 <
0 that is not too small. Then its behavior for u < 0 closely approximates
that of an unforced, high-frequency harmonic oscillator, with rapidly reversing
velocity. If we suppose that ζ is small and that the time spent with u < 0 is
much smaller than the period 2π/ω of the forcing, then the particle for u < 0
moves to good approximation under the law

d2u

dt2
+ k2u = g, where g ≈ cos(ωt0) < 0.

If the maximum penetration occurs at a later time t = t1 where du/dt = 0,
we have that

u(t) = A cos(
√

k2(t1 − t)) + g/k2, (1.19)

for some A to be determined. As u(t0) = 0 and v(t0) = −v0, it follows that

A cos(
√

k2(t1 − t0)) + g/k2 = 0 and
√

k2A sin(
√

k2(t1 − t0)) = −v0,

so that tan(
√
k2(t1 − t0)) =

√
k2v0/g. Thus, if

k2 � 1 and
√

k2v0 � 1, (1.20)

we have
√
k2(t1 − t0) ≈ π/2, and A ≈ v0/

√
k2. Hence, the total time Δ spent

with u < 0 is given by
Δ = 2(t1 − t0) ≈

π√
k2

,

and in this region, the particle moves as one half-wave of a sinusoid of ampli-
tude v0/

√
k2. Using this approximation, we can make a more precise estimate

of the motion. Suppose that the particle has u < 0 over the interval t ∈ [t0, t2];
then, multiplying (1.18) by du/dt and integrating, we have

[

1
2

(

du

dt

)2
]t2

t0

+ 2ζ
∫ t2

t0

(

du

dt

)2

dt = 0. (1.21)

Differentiation of (1.19) with respect to t and substitution into the second
integrand in (1.21) using t2 = t+Δ, results in the expression

(

du

dt
(t2)

)2

= v2
0

(

1 − ζπ√
k2

)

.

We conclude that, provided (1.20) is satisfied, the period of time spent in
with u < 0 is short. Nevertheless, within this short period of time, the velocity
of the particle is reversed. Indeed, this process can be well approximated by
an instantaneous impact with coefficient of restitution r given by

r2 =
(

1 − ζπ√
k2

)

.
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The second condition (1.20) for the compliant oscillator is equivalent to a
non-grazing condition for the impact oscillator. Things are much more subtle
when the impact velocity is small (i.e., when v0 = O(1/

√
k2)), which we will

consider in detail in Chapter 7 where we show it typically leads to O(3/2)
power-law behavior of the induced Poincaré map.

An elegant series of calculations showing the similarity of the behavior
of the compliant oscillator with the impact oscillator is given by Nordmark
[196], which we repeat in Fig. 1.20. By increasing the value of K = k2/k1

we can how see the complex dynamics of the impact oscillator, leading to a
fingered strange attractor (produced at a grazing bifurcation of the impact
oscillator considered earlier), arises through a series of bifurcations. Motion
which is originally regular, becomes chaotic through a series of period-doubling
bifurcations, the first of which occurs forK = 3.8. The figure shows the period-
two orbit for K = 18, period-four for K = 18.5 and fully developed chaos at
K = 19. As k is further increased, (e.g., for K = 40 and K = 100), the shape
of the strange attractor evolves into the fingered structure characteristic of
the impact oscillator.

1.3 Other examples of piecewise-smooth systems

Note that the above bilinear oscillator has the feature that the dynamics across
the discontinuity set {u = 0} is continuous and differentiable. That is, both
u(t) and du/dt are continuous functions of time. However, there is typically
a jump in d2u/dt2. For such systems, the discontinuity set can never be si-
multaneously attracting from both sides; that is, we cannot have (du/dt) < 0
for u > 0 and du/dt > 0 for u < 0 for the same values of velocity and phase.
We now look at three examples of piecewise-smooth systems that arise in
engineering applications for which the first derivative of the switching state
(effectively du/dt) undergoes a jump as we cross a discontinuity set. In these
so-called Filippov systems, the jump in first derivative can cause the dynamics
to evolve towards the discontinuity set from both sides and hence can cause
the dynamics to evolve within the discontinuity set itself. This kind of evolu-
tion is termed sliding motion in the context of control theory. Such motion is
also common in systems modeling the dynamics of dry friction, where just to
confuse matters, it is the ‘sticking’ phase that corresponds to what we have
called sliding motion, rather the ‘sliding’ or ‘slipping’ phase of free movement
between two surfaces. However, we will continue to use the term sliding in the
control-theory sense. Quite often, complex dynamics in these systems can be
observed when a particular trajectory (such as a periodic orbit) undergoes a
transition that changes its number of sliding segments.

1.3.1 Case study III: Relay control systems

The idea of using a switching action (or relay) has been widely employed in
control engineering since the 1950s. Indeed, relay control is the main idea
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Fig. 1.20. The evolution of a fingered attractor of the bilinear oscillator (1.17),(1.18)
as the stiffness increases. Here ω = 1, ζ = 0.25 and k1 = 1/100 are fixed, whereas
K = k2/k1 is varied in each successive panel.

behind the central heating example with which we started this chapter, and it
has been used, for instance, in pulsed servomechanisms [28], tuning controllers
in the process industry [13]. More generally, relay systems play an important
role in the theory of variable structure controllers [257], of hybrid systems [71].
Although systems with a relay feedback have been studied for a long time (for
example, in the work of Andronov et al. [5] and Flugge-Lotz [101] from the
1950s and 1960s), the dynamics of these systems is not fully understood. It is
well known that relay systems have a tendency to self-oscillate if used outside
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their desired operating regime. To estimate the amplitude and frequency of
such oscillations, specialized methods are typically used; see, for example, the
book by Tsypkin [255]). These methods assume that a simple, non-sliding
limit cycle (isolated periodic orbit) exists; but, as pointed out by Johansson
[144], there is no general proof that these are the only kinds of periodic motion
that can occur, or indeed that a given initial state actually converges to such
a cycle.

It has also been shown that even low-order relay feedback systems can ex-
hibit more complex self-oscillations (either periodic or chaotic), which include
segments of sliding motion [84, 258, 144]. Other complicated solutions in relay
systems include orbits with a multiple number of fast and slow switches per
period, termed higher-order sliding modes [109, 144]. These solutions are akin
to the chattering motion for impact oscillators discussed earlier. Examples of
engineering control systems with relay elements featuring chaotic behavior as
well as quasi-periodic solutions are discussed in [4, 58, 59, 116].

Here we consider a simple class of model problems corresponding to single-
input–single-output, linear, time-invariant relay control systems with unit neg-
ative feedback of the output variable. Such problems can be written in the
general form:

ẋ = Ax+Bu, (1.22)
y = CTx, (1.23)
u = −sgn(y), (1.24)

where the n-dimensional vector x ∈ R
n represents the system state, the scalar

y ∈ R is a measure of the output of the system, and the discrete variable
u ∈ {−1, 1} is the control input. Also, A ∈ R

n×n, B ∈ R
n×1 and CT ∈ R

1×n

are assumed to be constant matrices. The input u and output y of the linear
part are scalar functions, whereas x, the state vector, has n ≥ 1 components.
Furthermore, it is assumed that the system matrices are given in observer
canonical form [48]; i.e.

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−a1 1 0 · · · 0
−a2 0 1 · · · 0

...
. . .

...
−an−1 0 0 0 1
−an 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, B =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

b1
b2
...
b4
b5

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, CT =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1
0
...
0
0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

T

.

In Chapter 8, we shall explore in some detail the dynamics of a system
of the form (1.22)–(1.24), finding several transitions between the number of
sliding segments that a trajectory can undergo. For now, we merely report the
results of numerical computation of trajectories of a simple three-dimensional
relay system; see Fig. 1.21. The solution displayed in panel (a) is an attrac-
tor for all initial conditions of the system at the stated parameter values. It
represents a symmetric (i.e., invariant under x → −x) limit cycle that has a
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Fig. 1.21. Orbits of the three-dimensional relay system (1.22)–(1.24) with b =
(1,−2, 1)T , a31 = −5 and (a) a11 = 1.206, a21 = −99.9372 and (b) a11 = 1.35,
a21 = −99.93. The sliding region is the subset of {y = 0} bounded by the two
horizontal lines.

total of 12 separate pieces of sliding motion (the horizontal orbit segments).
In Chapter 2 we shall explain how to define the dynamics on the switching
set (or switching manifold) {y = 0} in a consistent way as the limit of the
dynamics above and below the set.

Now, panel (b) of Fig. 1.21 shows the attractor of the same system under
a slight adjustment of its parameter values. The fact that this is chaotic at-
tractor can be seen from the ‘thickness’ of the apparent single curve in the
figure, which is in fact many different trajectories almost overlaid. This is not
a transient; as one continues to compute the solution, so the thick region con-
tinues to be filled out. Not also that this attractor is asymmetric, which can
be seen in the way the trajectories enter their final long pieces of sliding at
the thin end of the two horn-like structures. On the right-hand side, there is a
definite piece of non-sliding motion (the upwards blip) between the final piece
of sliding in the horn and the long piece of sliding that causes the transition
to the left-hand horn. At the end of the left-hand horn however, there is no
distinguishable blip separating the two intervals of sliding motion.

One might imagine that a bifurcation happens as one continuously varies
the parameters between those values used in panels (a) and (b) of Fig. 1.21.
The bifurcation in question seems to involve interaction with the two horizon-
tal lines in the figures. These represent the boundaries within the switching
manifold {y = 0} that delineate the region where sliding is possible. This is
an example of a discontinuity-induced bifurcation (DIB), as were the grazing
bifurcations that we encountered in the last section. The analysis of DIBs
associated with sliding forms the subject of Chapter 8. In fact, a detailed ex-
planation of the dynamical transitions involved in the relay system simulated
in Fig. 1.21 forms the entire subject of Sec. 8.2.
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1.3.2 Case study IV: A dry-friction oscillator

Another source of Filippov dynamics occurs in systems exhibiting dry fric-
tion. Friction plays an important role in engineering. It is the source of self-
sustained stick-slip vibrations, which can cause undesired effects such as noisy
machine operation, wear of components, squeaking doors and squealing rail-
way wheels; see, e.g., [5, 70, 225]. Only in recent years, due to the introduction
of new analytical techniques, have these systems been studied from the stand-
point of bifurcation theory. For example, Popp and Stelter [224], introduced
four different models for stick-slip motion, perhaps the simplest of which is
a single degree-of-freedom oscillator with external forcing where chaotic be-
havior characterized by stick-slip was found. Several different routes to chaos
were identified (e.g., period-doubling and intermittency). In later work, Popp
and collaborators [131, 223] verified many of these theoretical results experi-
mentally. Later, Galvanetto [110, 111, 113, 114] studied the yet more complex
dynamics that can occur in a two block stick-slip system first envisaged by
den Hartog [70]. Here a one-dimensional map is introduced for studying the
discontinuity-induced bifurcations in the four-dimensional system that lead to
transitions between pure slip and stick-slip motion. Similar bifurcations were
also detected in a simplified version of the system [112].

Here, though, we shall focus on the forced vibrating system with dry-
friction first studied by Yoshitake and Sueoka [277]. They consider a block
that is free to move in a single horizontal axis, with mass M , and is attached
to a fixed point by a spring of stiffness K. The block is subject to sinusoidal
forcing and rests on a rough drive belt that moves with a constant velocity
V (which without loss of generality can be scaled to be equal to 1) such that
the interaction between the block and the belt is well approximated by a
kinematic dry-friction law. Under non-dimensionalization, the mass, stiffness
and drive-belt velocity can all be scaled to unity and the resulting equations
of motion can then be expressed dimensionless form as

ü+ u = C(1 − u̇) +A cos(νt), (1.25)

where
C(v) = α0sgn(v) − α1v + α2v

3 (1.26)

is the kinematic friction characteristic. Here v = (1−u̇) corresponds to the rel-
ative velocity between the driving belt and the moving block and αi, i = 0, 1, 2
are positive constants that depend on the material characteristics of the block
and belt, which can be fit to a particular set of experimental measurements.
There is a large literature on the derivation of so-called Coulomb friction laws
of the form (1.26) (see, for example, references in [131, 63]), which we shall not
go into here. The parameter α0 here represents the modulus of static friction
times the assumed normal force onto the friction surface, and the motivation
for the next two terms is that the size of dynamic friction (the tangential force
that applies with v �= 0) is typically lower than the static friction, at least for
small relative velocities v.
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The two remaining dimensionless parameters in the model (1.25) are the
amplitude A and frequency ν of the sinusoidal forcing. Following [277] we shall
take the values

α0 = α1 = 1.5, α2 = 0.45, A = 0.1

and allow the frequency ν to be a parameter that varies; that is, the bifurcation
parameter.
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Fig. 1.22. (a) Orbit of (1.25) of period 4T (8π/ν) undergoing grazing-sliding bi-
furcation for ν = 1.7077997. (b) Enlargement of the region where grazing-sliding
occurs; the dot-dashed line corresponds to a stable periodic orbit for ν = 1.7082
that clearly does not reach the switching manifold.

Let us focus in particular on the bifurcation scenario for ν ≈ 1.7078 where
there is a transition from pure slip to stick-slip motion. Figure 1.22(a) shows
an attracting 4T -periodic orbit at precisely the transition (bifurcation) point.
Here the orbit grazes the switching manifold (or discontinuity set) {u̇ = 1}.
The point of tangency occurs at precisely the edge of the region where the
switching manifold becomes attractive (that is the sliding region), which is
indicated in the figure as the region to the left of the short vertical line. Figure
1.22(b) shows a zoom of this trajectory near the tangency and a non-sliding
attracting period-4T trajectory for slightly larger ν-values.

As the parameter ν is decreased, the Monte Carlo bifurcation diagram in
Fig. 1.23(a) shows that the ω-limit set becomes a chaotic attractor. Details of
the chaotic trajectory are shown in Fig. 1.23(b). Here we see that the chaotic
behavior is composed of stick-slip motion; the trajectory repeatedly enters
the stick phase (which corresponds to sliding motion of the equivalent relay
control system) at different points. However, the trajectory always exits from
stick with the same velocity and position, albeit with a different phase each
time. We shall return to this example in Chapter 8, where the DIB in question
is given the name grazing-sliding bifurcation.
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Fig. 1.23. (a) Bifurcation diagram obtained from the direct numerical simulation
of (1.25), (1.26). (b) A portion of a chaotic trajectory zoomed into a neighborhood
of the switching manifold for ν = 1.706.

1.3.3 Case study V: A DC–DC converter

DC–DC converters are circuits that are used to change one DC voltage to an-
other. In the past, this was done by converting the DC voltage to an AC one,
passing this through a transformer, and then transforming the resulting AC
voltage back to a DC one. This procedure results in significant energy loss
and rather bulky devices. To convert between voltages with domestic elec-
tronic devices, such as laptop computers, something more compact and with
less energy loss is needed. The DC–DC converters frequently employed use
electronic switches to convert from one DC voltage to another, with negligible
energy loss. Significantly, such mechanisms can be implemented using small
solid state devices; see, e.g., [150]. The use of switches means that DC–DC
converters represent inherently non-smooth dynamical systems, which when
driven beyond their designed operating limits can give rise to complex dynam-
ics of the form studied in this book. In fact, there is already a rich literature on
the many possible forms of dynamics of DC–DC converters, including rapidly
switching periodic and chaotic motions [104, 68, 82, 278, 75]. Our interest is,
of course, in the special types of dynamics that arise due to the non-smooth
nature of the switching process.

The simple DC–DC converter circuit illustrated in Figs. 1.24 and 1.25
aims to convert a constant input voltage E to a constant higher or lower
voltage γ̂, by switching on and off the part of the circuit containing the input.
If this switching process were governed by whether the output voltage V (t)
is greater or less than the constant desired value γ̂, then we would be in
the situation of the central heating example. So, ignoring time-delays and
latency in the circuit, the motion would slide along the surface V = γ̂. In
practice this would lead to rapid switching, which would lead to undesirable
effects like inefficiency, overheating and the excitation of overtones. Instead, a
standard technique is to use a pulse-width modulated feedback control where
the output V (t) is compared with a reference voltage Vr(t) taking the form
of a low-amplitude periodic ramp function centered around γ̂ (see Fig. 1.25).
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Fig. 1.24. Schematic diagram of a simple DC–DC buck converter circuit.

Thus, the current I(t) and voltage V (t) inside the circuit evolve in a smooth
(in fact, to good approximation, linear) manner between switching events,
which arise when V (t) = Vr(t).
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Fig. 1.25. The pulse-width modulated signal Vr(t) and the normal operating condi-
tion, with one crossing of the ramp and one crossing of the discontinuity per period
T . Here γ = γ̂ − ηT/2.
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Straightforward linear circuit theory (Kirchhoff’s laws) can be used to
describe the dynamics of this circuit, leading to the equations [75]

V̇ = − 1
RC

V +
I

C
, (1.27)

İ = −V

L
+

{

0 for V ≥ Vr(t),
E/L for V < Vr(t)

(1.28)

for the output voltage V (t) and corresponding current I(t). Here C, E, L and
R are positive constants representing the capacitance, battery voltage, induc-
tance and resistance, respectively, of the components depicted in Fig. 1.24.
The reference voltage Vr is a piecewise-linear but discontinuous ‘ramp’ signal

Vr(t) = γ + η(tmod T ), γ, η, T > 0,

represented in Fig.1.25. The parameter values taken in this case study are
those used in the experiments of Deane and Hamill [68];

R = 22Ω, C = 4.7μF, L = 20mH, T = 400μs,
γ = 11.75238V, η = 1309.524Vs−1. (1.29)
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Fig. 1.26. DC–DC converter bifurcation diagram, obtained by direct numerical
simulation. (a) Using a stroboscopic Poincaré map, sampling every time the ramp
signal has its discontinuity; adopting a Monte Carlo approach to show competing
attractors. (b) Using a ‘crossing map’ sampled every time the smooth part of the
ramp is crossed, just showing the fine structure of the fundamental attractor for
E > 32.34.

The Monte Carlo bifurcation diagrams in Fig. 1.26 summarize the dynam-
ics observed upon varying the input voltage E as a bifurcation parameter.
For sufficiently small E, the ω-limit set comprises a single stable periodic
(1, 1) orbit — that is, having one crossing of the ramp function per period
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T . As the input voltage is increased through E = 24.516, this periodic orbit
undergoes a period-doubling cascade [seen more clearly in the ‘crossing map’
in Fig. 1.26(b)]. However, the usual sequence leading to chaos is suddenly
interrupted by an abrupt enlargement of the resulting chaotic attractor for
E ≈ 32.342. Note in addition, that there are ranges of E-values (e.g., around
24.5 and 30) where several periodic and chaotic attractors with small basins
of attractions coexist with the fundamental dynamics (the additional streaks
of points in Fig. 1.26, which are not printing errors!). These attractors are
built around structures that repeat every 3T, 6T or 12T.

Fig. 1.27. Large scale chaotic attractor for E = 35V : (a) using a stroboscopic
Poincaré map; (b) plotting every time the ramp signal is crossed. The dashed line
corresponds to the sliding line corresponding to trajectories that slide along the
ramp V (t) ≡ Vr(t).

The broadband chaos that is observed for E > 32.342 is depicted in
Fig. 1.27(a) in a Poincaré section where points are plotted every time they
cross the ramp discontinuity in Vr (i.e., at fixed time intervals T ). This at-
tractor is built around structures that repeat every 5T. Note that there are
five highly populated, dark regions in Fig. 1.27(a) interspersed by clouds of
rarer points. One of these dark regions forms a spiral centered on (V, I) =
(12.28, 0.62) which appears to have sharp corners when v ≈ 12.28. When the
same attractor is viewed in a Poincaré section defined by each crossing of the
ramp, Fig. 1.27(b), the spiral region corresponds to the fingered structure, not
unlike that observed for the impact oscillator in Fig. 1.19(b). Plotting graphs
of solutions, Fig. 1.28, reveals that this fingering is associated with multiple
switchings occurring in one of the five periods owing to the trajectory being
close to a sliding orbit lying entirely on the switching set {V = Vr}. Further
intricate details of this chaotic attractor are described in [104]. Note that such
chaos has also been observed experimentally, where when output audibly was
described as “a raucous whine, like frying bacon”; see [68].
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Fig. 1.28. Trajectories plotted as graphs of V (t) for E = 34.33998: (a) a chaotic
solution, (b) a (5, 5) periodic orbit, (c) a (10, 5) periodic orbit, and (d) a (near)
sliding periodic trajectory.

Aside from the small-basin-of-attraction 3-, 6- and 12-periodic windows,
the observed dynamics (including period-doubling and chaos) for E < 32.342
is all of type (n, n), that is, with one switching per ramp cycle. The sud-
den enlargement can best be characterized by the point at which the average
number of switchings per period on the observed attractor first goes above 1.
This quantity reaches a peak at around E = 34.34, which coincides with the
parameter value at which we can compute a 5-periodic orbit that appears to
slide, that is, to become tangent to the ramp [see Fig. 1.28(d)]. In a formal
sense, this trajectory resembles a chattering orbit and may be labeled (∞, 5),
and numerically we can find nearby (unstable) (m, 5) orbits for m apparently
arbitrarily large. Figure 1.28 depicts two such periodic solutions. Numerical
calculations and analytical evidence reported in [75] suggest that these five-
periodic orbits lie in an approximate double spiral accumulating on a such a
sliding trajectory. The corners in the bifurcation diagram (and indeed the cor-
responding sharp corners in the spiral structure of Fig. 1.27) can be explained
by the theory that we shall present in Chapter 7.
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1.4 Non-smooth one-dimensional maps

A substantial part of this book will be devoted to a detailed study of non-
smooth discrete-time dynamical systems. That is, iterated maps whose func-
tional form is smooth in separate regions of their domain of definition, but
that may have discontinuities across certain sets. These discontinuities may
be in a derivative of the map, or, more severely, in its value. In Chapters 3 and
4, we will give a detailed account of the theory of piecewise-linear and related
maps. Such maps are often intrinsic models of interest in their own right, or
they may arise as Poincaré maps in the neighborhood of cyclic behavior of a
continuous-time dynamical system. At the heart of this book, in Chapters 6, 7
and 8, is the derivation of approximate non-smooth maps in the neighborhood
of DIB points in continuous-time dynamical systems.

In this introduction we shall introduce the topic by briefly presenting the
dynamics of three case study one-dimensional maps, each with a different kind
of discontinuity. Now, in the history of nonlinear dynamics research, the theory
of one-dimensional maps has played a crucial role. Indeed it was in this context
that period-doubling cascades and chaos were first described; see e.g., [73]. In
the context of describing the chaotic dynamics of such maps, one-dimensional
piecewise-linear maps with a single corner (so-called tent maps) are often
considered as simple explicitly calculable examples. For ease of explanation,
it is often assumed that no iterate of the map passes through the point of
discontinuity. In this book however, we shall focus on the specific consequences
of when a fixed or periodic point of the map passes through the discontinuity
in a so-called border-collision bifurcation [206].

1.4.1 Case study VI: A simple model of irregular heartbeats

We begin with a simple conceptual model that attempts to use mathematical
modeling to describe human physiology; see for example the book [151] for
general background. Irregular heartbeats can have a variety of causes and,
depending on the type, can range from being fatal to just mildly unpleasant.
A particularly dangerous kind of problem occurs when re-entrant waves are set
up that cause the heart tissue to no longer function as a pump [275]. A much
less extreme irregularity occurs due to poor conduction in the atrioventricular
(AV) node, a critical collection of cells on the surface of the heart that transfers
the electrical signal spreading through the atria to the ventricles. Conduction
is slow through the AV node, but then rapidly spreads out along approximately
one-dimensional fibers (the so-called bundle of HIS) into the ventricular heart
tissue. Thus the AV node is crucial in setting up the synchronous contraction
of the ventricles that pumps blood around the body. Failure of the AV node
to ‘fire’ is not in general life-threatening but can be distinctly unpleasant as
it leads to temporal disruption to a regular heart rhythm, such as skipped
beats.
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Keener and Sneyd [151, Sec. 14.3] consider a simple model for such ir-
regular heartbeats. The model supposes that the AV node is a collection of
cells subjected to a periodic signal ϕ(t) arriving from the atria. The cells are
excitable, in that when the input reaches a threshold θ(t), they ‘fire’ electrical
impulses into the ventricles. After firing (at time tn), the threshold increases

θ(t+n ) = θ(t−n ) +Δ = ϕ(tn) +Δ,

by some constant Δ > 0, to allow the cells time to recover. Then, the threshold
slowly relaxes according to a law

θ(t) = θ0 + (θ(t+n ) − θ0)e−γ(t−tn), t > tn,

where γ and θ0 are positive constants representing the decay rate and the
base value of the threshold, respectively. Finally, firing occurs again when
θ(tn+1) = ϕ(tn).
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Fig. 1.29. Construction of the firing time map for the AV-node model according to
the implicit equations (1.30) and (1.31) for the specific case ϕ = sin4(πt), Δ = 1,
γ = 0.55.

Thus, we have a map of firing times tn+1 = G(tn) defined implicitly by

ϕ(tn+1) = θ0 + [ϕ(tn) +Δ− θ0]e−γ(tn+1−tn).

However, this map can be simplified by setting

F (t) = (ϕ(t) − θ0)eγt, (1.30)

to obtain
F (tn+1) = F (tn) +Δeγtn , (1.31)

which must be solved for the smallest tn+1 > tn. Note that this map has a
fundamental discontinuity corresponding to a tn value at which G(tn) has a
local extremum; see Fig. 1.29, which depicts the construction of the sequence
of firing times t1, t2, etc. according to this implicit map.
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Fig. 1.30. The Keener and Sneyd map 1.30, 1.31 in the case (a) γ = 0.55 and (b)
γ = 0.8, depicting the dynamics of the map via cobweb diagrams.

Despite being only implicitly defined, Keener and Sneyd show that the
map can be represented graphically by using a re-scaled firing time variable
τn = tn−knT

T , where kn is the uniquely defined integer that puts τ ∈ [0, 1).
Figure 1.30 depicts the dynamics of the map defined in this way for two
values of the decay rate γ. Here we present the results in the form of a cobweb
diagram. Starting from a value for τ0, we compute ̂G(τ0) and reflect in the
45◦ line to produce a new value τ1 = ̂G(τ0). And so the process repeats. At
the second iterate, we compute ̂G(τ1) and reflect in the 45◦ line to obtain τ2,
and so on. This is a good way of visualizing trajectories of one-dimensional
discrete-time dynamical systems.

If γ is sufficiently small, as in Fig. 1.30(a), we see that the period-one
fixed point is stable. All initial τ -values are eventually attracted to it via the
cobweb process. This fixed point corresponds to a regular heartbeat where
the AV node fires every time it receives a stimulus. However, transient effects
may be important; for example, a large positive perturbation to tn can cause a
failure to fire (an iterate to the right of the discontinuity) for one beat. Systems
that display this kind of dynamics, where small positive perturbations from a
stable state can lead to large excursions, are often referred to as excitable, and
examples abound in bio-medical systems and temperature-sensitive chemical
reactions (see, e.g., [151, 231]). For γ = 0.8 [Fig. 1.30(b)], the simple fixed
point has disappeared through interaction with the discontinuity. Instead we
now see a pattern of iterates that involves several firings in a row interspersed
by a skipped beat.

The theory of discontinuous maps in Chapter 4 indicates that the precise
pattern of skipped beats is likely to be highly sensitive to changes in γ but
will in general be periodic (with possibly very high period) for almost all
γ-values. Changes to the pattern occur whenever one point on the attractor
passes through the discontinuity point.
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1.4.2 Case study VII: A square-root map

Piecewise square-root maps are continuous but have an unbounded slope on
one side of a discontinuity boundary. Consider the simple continuous square-
root map illustrated in Fig. 1.31 [197, 171, 198]:

x �→ f(x), where f(x) =
{√

σ − x+ λσ, if x < σ,
λx, if x ≥ σ.

(1.32)

(a)

xn+1

−0.1 xn

0.2

0.2

0

(b)

xn+1

xn 0.2

0.2

0.1

0.1

Fig. 1.31. Dynamics of the one-dimensional square root map (1.32) (a) for σ = −0.1
and (b) for σ = 0.1, depicting the dynamics of the map via cobweb diagram.

This map is designed to give insight into the dynamics observed in
Figs. 1.15–1.17 close to a grazing bifurcation in an impact oscillator, as il-
lustrated in Fig. 1.18. This connection is made more precise in Chapter 6. For
example, for the single degree-of-freedom impact oscillator, the fixed point set
of the associated Poincaré mapunder variation of σ, Fig. 1.15(a) has exactly
the form of a linear piece and a piece with a square-root singularity. This
is no accident. Although for such a system the true stroboscopic or impact
map will be two-dimensional, we can understand a lot about the behavior of
impacting systems by looking at a much simpler one-dimensional map with a
square-root singularity. Consider

Here we take σ as the primary bifurcation parameter, which plays the role
of the obstacle position in the impact oscillator. If σ < 0, then the map has a
single, stable fixed point at x = 0. A border-collision of this fixed point then
occurs as σ passes through zero. For σ > 0 we see more complicated behavior.
The behavior at the grazing bifurcation depends crucially on λ, which is like
e−ζ , where ζ is the damping coefficient of the impact oscillator.

Three different cases can be identified:

Low damping, 2/3 < λ < 1: As σ passes through zero, there is an immedi-
ate creation of an intermittent chaotic motion characterized by a regular
sequence of iterates on the linear side x > σ interspersed by a single it-
erate on the square-root side x < σ. There is an interval 0 < σ < σ′ for
which this motion is the only stable behavior. The x-interval spanned by
the chaotic motion has size proportional to

√
σ.
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Fig. 1.32. Bifurcation diagram of the one-dimensional square-root map (1.32) in
the cases (a) λ = 0.8 (fully chaotic), (b) λ = 0.6 (period-adding with alternating
chaos) and (c) λ = 0.15 (period-adding).

Intermediate damping, 1/4 < λ < 2/3: Here there is an infinite sequence
of windows of stable periodic motion alternating with bands of chaos. Each
periodic window contains a unique stable period-n orbit (repeats after n
iterates of the map) with all but one iterate lying on the linear side.
The windows are arranged in a period-adding cascade so that a window
containing an n-periodic orbit is preceded (upon increasing σ) by an (n−
1)-periodic window. The width and the location of the windows decrease
geometrically as σ → 0.

High damping, 0 < λ < 1/4: In this case no chaotic motion occurs, but the
period-adding windows continue to exist. The windows overlap, for small
intervals of σ, thus giving rise to multiple periodic attractors at the same
parameter values.

Figure 1.32 plots the ω-limit sets of the iterations of the map F as functions
of σ for the cases of λ = 0.8, λ = 0.6 and λ = 0.15. The figure illustrates each
of the three cases above: chaotic, period-adding with chaos and pure period-
adding behavior. Note from each figure that there is clear evidence of scaling
laws governing both the size of the orbits and the width of the windows. An
explanation of how the these scalings arise will be given in Chapter 4, along
with a discussion of the dynamics of multi-dimensional square-root maps.
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That maps of this form arise naturally from grazing bifurcations in impact
oscillators will be the main subject of Chapter 6.

1.4.3 Case study VIII: A continuous piecewise-linear map

Even simpler than square-root maps are those that are completely linear in
each of two halves of their domain and yet are continuous across the region
where these two domains join. As we shall see in Chapters 7 and 8, maps of
this form can be used to explain the dynamics observed in the friction os-
cillator and DC–DC converter case studies. Partly owing to the relative ease
of analyzing such systems, there is already a considerable literature on the
border-collision bifurcations of piecewise-linear maps; e.g., [204, 21, 80, 99].
However, care should be taken in interpreting these results as having meaning
for understanding the dynamics of piecewise-smooth flows. For example, in
Chapter 7 we shall see that a grazing in a piecewise-smooth ordinary differen-
tial equation does not lead to a locally piecewise-linear Poincaré map. Chapter
3 is devoted to a detailed analysis of border-collisions in general continuous
locally piecewise-smooth maps.

μ

x

−0.1 0.10

0

−1

(a) (b)

μ

x

−0.1 0.1

0

0
−2

Fig. 1.33. Monte Carlo bifurcation diagrams of the piecewise-linear map (1.33) for
α = 0.4 and (a) β = −12, (b) β = −20.

Let us focus here on the particular case of one-dimensional maps that,
without loss of generality, can be written in the form

x �→ f(x), i = 1, 2 where f =
{

F1 = αx+ μ, if x ≤ 0,
F2 = βx+ μ, if x > 0, (1.33)

depending on three real parameters μ, α and β. The most interesting dynamics
occurs for α > 0 and β < 0. Note that by introducing the rescaling x̃ = x/|μ|,
we can assume without loss of generality that μ = ±1. However, our primary
interest is the border-collision bifurcation that occurs as μ varies through zero,
for which parameter value there is a trivial fixed point at x = 0. Thus, treating
μ as the bifurcation parameter, we see that the dynamics is scale invariant;
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Fig. 1.34. Monte Carlo bifurcation diagram of (1.33) for μ = 1, α = 0.4 and
β ∈ (−80, 0).

that is, all dynamics for μ of a certain sign can be mapped trivially into the
dynamics for |μ| = 1.

Suppose, for example, that 0 < α < 1. Then for μ < 0 it is easy to see
that there is a unique stable fixed point at x = μ/(1 − α) > 0. Figure 1.33
shows what can happen for μ > 0. Depending on the values of α and β, the
fixed point can spontaneously bifurcate into either a higher period orbit or to
a chaotic attractor. It is perhaps more interesting to see what happens as we
vary α or β for μ < 1. Figure 1.34 shows results for variation of β for fixed
α. Note that we see a period-adding cascade very much like for the square-
root map in the previous case study. However, the scaling of the size of the
periodic windows are rather different, and the limit of a period-∞ orbit is
reached as β → −∞ rather than σ → 0 as it was for the square-root map.
An explanation of this scaling, in fact precise values for the boundaries of
the periodic windows, will be given in Chapter 3. In between the periodic
windows one sees chaotic motion. Here we see perhaps the simplest example
of a system that generates chaos. Moreover the chaos is robust [23] in that
inside one of these chaotic parameter intervals there is no small adjustment
one can make to the parameters of the system that collapses the system onto
a periodic rather than a chaotic attractor. For this reason, this simple chaotic
map would be a good candidate for a chaotic signal generator, for example,
for use in chaotic communications [139]

One way of motivating the rest of this book is as a means of completing
an analysis of the above case study examples, and indeed we shall return to
each of them again. Before we do so, to enable us to generalize such analyses
to other example system, we will need to set up a mathematical framework
with which to describe different classes of piecewise-smooth systems and their
discontinuity-induced bifurcations. That is the purpose of the next chapter.



2

Qualitative theory of non-smooth dynamical
systems

In this chapter, we give an overview of the basic theory of both smooth and
non-smooth dynamical systems, to be expanded upon in later chapters. In
particular we shall define what we meant by each of the italicized terms en-
countered in Chapter 1. We start with the definition of a dynamical system and
review the essential concepts from the theory of smooth dynamical systems
that can also apply to non-smooth systems. This material is available in the
now many textbooks on nonlinear dynamics and chaos, and so only the briefest
of details are given, with appropriate references. Next, in Sec. 2.2, we define
carefully what we mean by the different classes of piecewise-smooth dynamical
systems that we treat. In Sec. 2.3, we point out the relation to some of the
other mathematical formalisms that exist for defining non-smooth systems.
Section 2.4 considers notions of stability and bifurcation in non-smooth sys-
tems and introduces the key concept of the book, that of discontinuity-induced
bifurcation (DIB), where an invariant set changes its topology with respect to
the set of discontinuity surfaces. This is naturally followed by Sec. 2.5, which
explains the idea of a discontinuity mapping (DM) which is the main analyti-
cal tool to be used in Chapters 6–8. The chapter ends with a brief discussion
in Sec. 2.6 of numerical methods for simulation, parameter continuation and
bifurcation detection in non-smooth systems.

2.1 Smooth dynamical systems

The qualitative theory of differential equations [7, 124, 273, 168] begins with a
quite general definition of a dynamical system. This is written in terms of an
n-dimensional state space (or phase space) X ⊂ R

n (with the usual topology)
and an evolution operator φ that takes elements x0 of the phase space and
evolves them through a ‘time’ t to a state xt

φt : X → X, xt = φt(x0).
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The time t takes values in an index set T , which we usually consider to be
either discrete (the integers Z) or continuous (the real numbers R). Note that φ
may not be uniquely defined for all t ∈ T . For example, so called noninvertible
dynamical systems may not be defined for t < 0; or in certain systems, some
initial states x0 may diverge to infinity in a finite time. Formally, in these
cases we need to define a space-dependent subset T ∗(X) ⊂ T such that φt(x)
is uniquely defined for x ∈ X provided t ∈ T ∗(X). We shall, however, ignore
such technicalities, other than to state that only positive time should be taken
for noninvertible systems.

Definition 2.1. A state space X, index set T and evolution operator φt are
said to define a dynamical system if

φ0(x) = x, for all x ∈ X, (2.1)
φt+s(x) = φs(φt(x)) for all x ∈ X, t, s ∈ T. (2.2)

The set of all points φt(x) for all t ∈ T is called the trajectory or orbit
through the point x.

The phase potrait of the dynamical system is the partitioning of the state
space into orbits.

Remarks

1. Properties (2.1) and (2.2) define φt to be a semi-group.
2. When the dynamical system is invertible (uniquely defined for t < 0 as well

as for t > 0), then we have the additional property that is a consequence
of (2.1) and (2.2)

φtφ−t = id.

Definition 2.2. A dynamical system satisfying (2.1) and (2.2) is said to be
smooth of index r, or Cr, if the first r derivatives of φ with respect to x
exist and are continuous at every point x ∈ X.

We shall often be interested in dynamics that is, in some sense, recur-
rent or repeatable. Specifically, we will gain an understanding of the phase
space structure by from specific sets that remain invariant under the system
dynamics.

Definition 2.3. An invariant set of a dynamical system (2.1), (2.2) is a
subset Λ ⊂ X such that x0 ∈ Λ implies φt(x0) ∈ Λ for all t ∈ T . An invari-
ant set that is closed (contains its own boundary) and bounded is called an
attractor if

1. for any sufficiently small neighborhood U ⊂ X of Λ, there exists a neigh-
borhood V of Λ such that φt(x) ∈ U for all x ∈ V and all t > 0, and

2. for all x ∈ U , φt(x) → Λ as t→ ∞.
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The set of all attractors of a given system typically describes the long-term
observable dynamics. A given dynamical system may have many competing
attractors, with their relative importance being indicated by the size of the
set of initial conditions that they attract; that is, their domain of attraction

Definition 2.4. The domain of attraction (also known as the basin of at-
traction) of an attractor Λ is the maximal set U for which x ∈ U implies
φt(x) → Λ as t→ ∞.

We already saw in Fig. 1.14(a) that domains of attraction in non-smooth
systems can have remarkably complicated structures, which can be true in
smooth systems too.

Another useful notion is to define points in phase space that are eventually
approached infinitely often in the future, or were approached infinitely often
in the past.

Definition 2.5. A point p is an ω-limit point of a trajectory φt(x0) if there
exists a sequence of times t1 < t2 < . . . with ti → ∞ as i → ∞ such that
φti(x0) → p as ti → ∞. If instead there exists a sequence of times with
t1 > t2 > . . . and ti → −∞ and φti(x0) → p, then we say that p is an α-limit
point of x0. The ω- (α-) limit set of x0 is the set of all possible ω- (α-) limit
points. The set of all such ω-limit points (or α-limit points) for all x0 ∈ X is
called the ω-limit set (or α-limit set) of the system. This set is closed and
invariant.

An ω-limit point is sometimes called a recurrent point of the dynamical system.
There is only so much that can be gained from this abstract definition of

a dynamical system. Its usefulness is that it defines properties like attractors,
and domains of attraction for quite general classes of system such as partial
differential equations, systems with time delays and discrete-valued systems.
However, when dealing with smooth systems, we shall largely only be inter-
ested in cases where the state space X is (possibly some subset of) Euclidean
space R

n and the evolution is either described by a discrete-time map or a
continuous-time flow. We now take each in turn.

2.1.1 Ordinary differential equations (flows)

Given a system of ordinary differential equations (ODEs)

ẋ = f(x), x ∈ D ⊂ R
n, (2.3)

where D is a domain, then {X,T, φt} defines a dynamical system if we set
X = D and T = R and let φt(x) := Φ(x, t) be the solution operator or flow
that takes initial conditions x up to their solution at time t:

∂

∂t
Φ(x, t) = f(Φ(x, t)), Φ(x, 0) = x . (2.4)
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Remarks

1. If we suppose the vector field f is Cr−1 for some r > 2, then (2.4) implies
the flow Φ(x, t) is one index smoother; that is, the dynamical system is
Cr, since f is a derivative of Φ.

2. Note that we have not included in the above the possibility that the
vector field f depends explicitly on time t. However such systems can be
treated within the general framework by allowing time to be an additional
dynamical state. For example, taking the (n+1)st state xn+1 = t, implies
ẋn+1 = 1 so that the (n+1)st component of f is unity. In many examples
time appears periodically, and then it can be helpful to consider the phase
space to be cylindrical:

Example 2.1 (A periodically forced system). Consider the forced system

ü+ 2ζu̇+ ku = a cos(ωt). (2.5)

If we set X = R
2 × S1 ⊂ R

3, with x3 = t mod(2π/ω), we obtain

ẋ1 = x2,

ẋ2 = −kx1 − 2ζx2 + ax3,

ẋ3 = 1,

with corresponding phase potrait depicted in Fig. 2.1.

0

identify

x1

x2

x3

2π
ω

x1

x2

x3

Fig. 2.1. Schematic description of the cylindrical phase space associated with the
periodically forced system (2.5).

We shall be concerned with systems that depend on parameters. So we
shall often write
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ẋ = f(x, μ),

where μ ∈ R
p is a set of parameters. If we say that f is smooth, we mean that

the dependence on μ is as smooth as it is on x. Unless it is crucial, we shall
often drop the explicit parameter dependence of f and return to the more
compact notation f(x).

Systems of ODEs can exhibit the following kinds of invariant sets, see
Fig. 2.2.

Equilibria. The simplest form of an invariant set of an ODE is an equilibrium
solution x∗ which satisfies f(x∗) = 0. These are also sometimes called
stationary points of the flow since Φ(x∗, t) = Φ(x∗, 0) for all t.

limit cycles. The next most complex kind of invariant set would be a periodic
orbit, which is determined by an initial condition xp and a period T . Here
T is defined as the smallest time T > 0 for which Φ(xp, T ) = xp. periodic
orbits form closed curves in phase space (topologically they are circular).
A periodic orbit that is isolated (does not have any other periodic orbits
in its neighborhood) is termed a limit cycle.

(a) (b) (c)

(d)

(e)

(f)

Fig. 2.2. Phase potrait representation of invariant sets of smooth flows: (a) equilib-
rium, (b) limit cycle, (c) invariant torus, (d) homoclinic orbit, (e) heteroclinic orbit,
(f) chaotic attractor.

Invariant tori. Invariant tori are the nonlinear equivalent of two-frequency
motion (see Fig. 2.3). Flow on a torus may be genuinely quasi-periodic in
that it contains no periodic orbits, or it may be phase locked into containing
a stable and an unstable periodic orbit, which wind a given number of times
around the torus.
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Fig. 2.3. Possible motion on an invariant torus, (a) phase locked, and (b) quasi-
periodic.

Homoclinic and heteroclinic orbits. Another important class of invari-
ant sets are connecting orbits, which tend to other invariant sets as time
asymptotes to +∞ and to −∞. Consider, for example, orbits that connect
equilibria. A homoclinic orbit is a trajectory x(t) that connects an equi-
librium x∗ to itself; x(t) → x∗ as t → ±∞. A heteroclinic orbit connects
two different equilibria x∗1 and x∗2; x(t) → x∗1 as t → −∞ and x(t) → x∗2
as t → +∞. Homoclinic and heteroclinic orbits play an important role in
separating the basins of attraction of other invariant sets.

Other invariant sets. It is quite possible for dynamical systems to contain
certain simple geometric subsets of phase space where trajectories must
remain for all time once they enter. For example, an ODE system written
in the form

ẋ1 = f1(x1, x2, x3)
ẋ2 = x1f2(x1, x2, x3)
ẋ3 = x1f3(x1, x2, x3)

for smooth functions fi, i = 1, . . . , 3 has as an invariant set the plane
{(x1, x2, x3) ∈ R

3 : x1 = 0}. The dynamics on this invariant plane could
contain equilibria, periodic orbits and other attractors. Similarly, in addi-
tion to invariant tori, flows can contain invariant spheres, cylinders, etc.
invariant sets that are everywhere locally smoothly described by an m-
dimensional set of co-ordinates are called invariant manifolds, important
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examples of which are stable and unstable manifolds of saddle points, which
we shall encounter shortly.

Chaos. More complex invariant sets are chaotic, a term that might be defined
in a number of different ways, but we suppose:

Definition 2.6. A closed and bounded invariant set Λ is called chaotic
if it satisfies the two additional conditions:
1. It has sensitive dependence on initial conditions; i.e.:

There exists an ε > 0 such that, for any x ∈ Λ, and any neighborhood
U ⊂ Λ of x, there exists y ∈ U and t > 0 such that |φt(x)−φt(y)| > ε

2. There exists a dense trajectory that eventually visits arbitrarily
close to every point of the attractor, i.e.:
There exists an x ∈ Ω such that for each point y ∈ Ω and each ε > 0
there exists a time t (which may be positive or negative) such that
|φt(x) − y| < ε.

The first property says that initial conditions in the invariant set diverge
from each other locally. The second property says that there is at least
one trajectory in the invariant set such that not only eventually comes
back arbitrarily close to itself, but to every point of the invariant set.
This property ensures that we are talking about an attractor composed
of a single piece, not two separate ones. This property is also known as
topological transitivity.
We saw several examples of chaotic attractors of non-smooth systems in
Chapter 1. For flows (smooth or non-smooth), it can be shown that the
dimension of phase space must be at least three in order for a flow to
exhibit chaos. Various techniques for analyzing and quantifying chaotic
motion exist, such as Lyapunov exponents, time series analysis, invariant
measures, fractal dimension, etc. For a more thorough treatment of the
statistical properties of chaos see for example the book by Sprott [242].
Some of these notions have counterparts in non-smooth systems, see for
example the work of Kunze [165].

Flows naturally lead to maps through the process of taking a (Poincaré)
section through the flow and considering the map of that section to itself
induced by the flow; see Fig. 2.5. We will make this important concept precise
in Sec. 2.1.5 below.

2.1.2 Iterated maps

Given a map defined by the rule

x �→ f(x), x ∈ D ⊂ R
n, (2.6)

then T = Z; that is, ‘time’ is integer-valued, and the operator φ is just f .
Evolving through time m > 0 involves taking the mth iterate of the map;
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φm(x0) = xm = f(xm−1) = f(f(xm−2)) = . . . := f (m)(x0),

where a superscript (m) means m-fold composition

f (m)(x0) =

m times
︷ ︸︸ ︷

f ◦ f ◦ . . . ◦ f(x0) .

Again we shall write f(x, μ) for systems that depend on parameters μ ∈ R
p.

A useful way of studying one-dimensional maps is via cobweb diagrams
that plot xn+1 against xn by reflecting in the main diagonal

Example 2.2 (logistic map). An example of a cobweb diagram for the logistic
map given by

x→ μx(1 − x), x ∈ [0, 1], 0 < μ ≤ 4 (2.7)

is given in Fig. 2.4.

xn

xn+1

1

1

0

(a)

xn

xn+1

1

1

0

(b)

xn

xn+1

1

1

0

(c)

xn

xn+1

1

1

0

(d)

Fig. 2.4. Cobweb diagrams for the logistic map (2.7) starting with x0 = 0.8 showing:
(a) convergence to a stable fixed point for μ = 1.5; (b) convergence to a period-two
attractor for μ = 3.1; (c) period-four attractor (note that here the initial condition
is set to x = 0.5), and (d) chaotic behavior for μ = 4.

Definition 2.7. A mapping (2.6) is said to be invertible for x ∈ D ⊂ R
n if

given any x1 ∈ D there is a unique x0 ∈ D such that x1 = f(x0). In such a
case we define the inverse mapping f (−1) by x0 = f (−1)(x1) for all points x1

in f(D).

Note that the smoothness of the dynamical system in the case of maps is
given simply by the smoothness of the function f . Smooth (that is, at least
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C1) invertible maps, with smooth inverses are referred to as diffeomorphisms.
We will now list some important types of invariant sets of maps.

fixed points. The simplest kind of invariant set of a map is a fixed point,
which is a point x∗ such that f(x∗) = x∗. fixed points of maps have a close
connection to periodic orbits of flows, through the induced (Poincaré) map;
see Fig. 2.5

periodic points. Next in order of complexity come periodic points, which
satisfy f (m)(x∗) = x∗ for some (least value of) m > 0. We refer to such
a point as a period-m point of the map and its orbit as a period-m orbit.
Clearly each point f (i)(x∗), i ≤ m− 1 of a period-m orbit is also a period-
m point. These again are the close analogs of periodic orbits of flows (of
a higher period), implying more intersections with a Poincaré section; see
Fig. 2.5(b).

Π Π

Π

(a)
(b)

(c)

Fig. 2.5. Depicting the relation between maps and flows obtained by taking a
Poincaré section Π through the phase space of the flow and considering the induced
map from Π → Π. (a) The correspondence between fixed points and period-T limit
cycles; (b) between period-m points and higher-period limit cycles (m = 3 in this
case); and (c) between invariant circles and invariant tori.

Invariant circles. Analogous to invariant tori of flows are invariant closed
curves of a map, which again may be defined by taking a Poincaré sec-
tion of a torus; see Fig. 2.5(c). Such closed curves are topologically circles,
and we can reduce the dynamics on an invariant closed curve to that of a
map of the unit circle to itself, a so-called circle map. The dynamics off or
transverse to an invariant closed curve can also be complex. Typically, as
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parameters vary, such curves lose their smoothness and eventually fail to
exist as continuous invariant sets; see for example [9, 168, 8] for the kind
of dynamics one expects under such bifurcation sequences for smooth sys-
tems. Recently Zhusubaliyev & Mosekilde [281, 282, 280] and Dankowicz,
Piiroinen & Nordmark [65] found yet more complex bifurcation sequences
can occur near an invariant circle of certain piecewise-smooth systems; we
shall return to non-smooth circle maps in Chapter 4 and non-smooth torus
bifurcations in Chapter 9.4.3. For comparison with the non-smooth case,
we will recall here just a few standard results for the dynamics on smooth
invariant circles. For more details, see for example the book by Arrowsmith
and Place [9].
Consider a map f : S(1) → S(1), where S(1) is the unit circle.

Example 2.3 (Arnol’d circle map). A canonical example of a circle map is
the Arnol’d circle map (or standard map)

θ → f(θ) = θ + α+ ε sin(θ) (mod 2π), (2.8)

where 0 ≤ ε < 1. When ε = 0, clearly the map describes a rigid rotation
through an angle α. If α = p/q is rational, then all points are periodic
with period q. If α is irrational, then motion never repeats and all initial
conditions θ0 are quasi-periodic and ∪∞

n=1f
(n)(θ0) fills out the entire cir-

cle. However, the dynamics is not chaotic since nearby initial conditions
remain close.

For ε > 0, then one can use the notion of rotation number to define the
equivalent of these two behaviors.

Definition 2.8. Consider a circle map f : S(1) → S(1), which can be
written in functional form as f(θ mod 2π) mod 2π, where f : R → R is
called a lift of f . We define the rotation number ρ of a point x ∈ [0, 2π)
by

ρ(f, x) =
(

lim
n→∞

f (n)(x) − x

n

)

(mod 2π). (2.9)

Now, we have the standard result; see for example [73, 151]:

Theorem 2.1. Suppose a circle map f is continuous and has a continuous
inverse; then the rotation number is independent of initial condition x;
that is, ρ(f, x) = ρ(f).

If the rotation number is irrational, it can be shown that (under the addi-
tional assumption that both the map f and its inverse are differentiable)
the dynamics is topological equivalent to a rigid rotation through angle
ρ; thus, the dynamics is non-chaotic and the forward iterate of any initial
condition eventually fills the whole circle. In contrast, if ρ = p/q is ratio-
nal, then the dynamics is said to be mode locked and there is at least one
orbit of period q. Typically there will be two such orbits, with one stable
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and one unstable. Given a family of circle maps parameterized by α, then
the rotation number will generically be rational over intervals of α-values.
Both irrational and rational rotation numbers occur for sets of α-values
that have positive measure. We will return to the study of circle maps in
Chapter 4, where we show that they are closely linked to maps that are
discontinuous on an interval.

Chaos. Definition 2.6 of chaotic invariant sets also applies to maps. In con-
trast to flows where the phase space must be at least three-dimensional,
in the noninvertible case, maps of dimension one can exhibit chaos. We
have already seen this for the square-root map in case study VII in Chap-
ter 1. Smooth one-dimensional maps can be chaotic too, as the following
well-known example shows:

Example 2.4 (logistic map continued). Consider again the logistic map
(2.7). For μ > 1, there are two fixed points at x = 0 and x = (μ − 1)/μ.
For 1 < μ < 3, the non-trivial one is the unique attractor of the system.
For μ > 3, there are also two period-two points

x =
1 + μ±

√

μ2 − 2μ− 3
2μ

.

As μ is further increased, a chaotic attractor is born via a so-called period-
doubling cascade; see Fig. 2.6. Note that in the ‘chaotic’ range of μ-values,
the attractor actually alternates between parameter intervals of chaos and
intervals of periodic orbits (so-called periodic windows) appearing in the
bifurcation diagram.

0.1

1

2.4 4μ

x

Fig. 2.6. The bifurcation diagram of the logistic map (2.7) showing the period-
doubling cascade to chaos as the parameter μ is increased and the presence of peri-
odic windows within the chaos.
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For invertible maps, at least two dimensions are required in order for there
to be chaotic invariant sets.

2.1.3 Asymptotic stability

When considering dynamical systems with physical application, we are usually
only interested in stable behavior. Important notions of stability in dynamical
systems include that of either Lyapunov or asymptotic stability of an invariant
set. In general, the former means stability in the weak sense that trajectories
starting nearby to the invariant set remain nearby for all time, whereas the
latter is more or less synonymous with the concept of an attractor (Definition
2.3). Both refer to stability of invariant sets with respect to perturbations of
initial conditions, at fixed parameter values. There are other less restrictive
versions of this kind of stability, such as input–output stability, orbital stabil-
ity, and controllability of arbitrary trajectories (not just invariant sets), but
these will not concern us. For simplicity we shall define stability only of equi-
libria of flows. Similar definitions can be given for fixed points of discrete-time
systems, or for other invariant sets of either continuous-time or discrete-time
systems.

To formally define Lyapunov stability, consider a generic nonlinear system
of the form (2.3) and assume that it has an equilibrium point that, without
loss of generality, is at the origin; that is, f(0) = 0:

Definition 2.9. The equilibrium state at the origin is said to be (Lyapunov)
stable if for any ε > 0, there exists a δ > 0 such that

‖x0‖ < δ ⇒ ‖Φ(x0, t)‖ < ε,∀t > 0.

Definition 2.10. The equilibrium state at the origin is said to be asymptot-
ically stable (in the sense of Lyapunov) if

1. it is stable;
2. limt→∞Φ(x0, t) = 0.

We will say that an equilibrium is unstable if it is not stable according to
Definition 2.9.

Thus, stability refers to the ultimate state of the dynamics not being al-
tered under small changes to the initial conditions. For equilibria, the notion
of stability is closely linked to the eigenvalues of the corresponding linearized
ODEs, with a sufficient condition for stability being that all eigenvalues lie in
the left half of the complex plane. Similar sufficient conditions for asymptotic
stability exist for other invariant sets. For example, for fixed points of maps,
stability is guaranteed if all eigenvalues (often called multipliers) of the lin-
earization of the map lie inside the unit circle. Proving stability can be more
tricky in the case that eigenvalues lie on the imaginary axis. One technique
is to construct so-called Lyapunov functions that act like the energy of a per-
turbation from the invariant set in question, and then prove that this energy
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decreases with time as one follows the dynamics. As we shall see in Sec. 2.4,
for non-smooth systems, proving asymptotic stability even in the case of equi-
libria whose eigenvalues in the left half-plane can be highly tricky. There, the
Lyapunov function technique can be extremely useful.

We next deal with a quite different notion of stability, that of invariance
of the dynamics under perturbation to the system itself rather than to initial
conditions.

2.1.4 Structural stability

Dynamical systems theory aims to classify dynamics qualitatively. structurally
stable systems are ones for which all ‘nearby’ systems have qualitatively
‘equivalent’ dynamics. Thus we need a precise notion of nearby and also of
equivalence.

‘Nearby’ refers to any possible perturbation of the system itself [the func-
tion f(x)], including variation of the system’s parameters. We want to call two
systems ‘equivalent’ if their phase spaces have the same dimension and there
phase potraits contain the same number and type of invariant sets, which in
the same general position with respect to each other. To achieve such a defi-
nition, we use topology, which is the mathematics of ‘rubber sheet geometry.’
Mathematically we want to say that two phase potraits are the same if there
is a smooth transformation that stretches, squashes, rotates, but not folds
one phase potrait into the other. Such transformations are called homeomor-
phisms, which are continuous functions defined over the entire phase space
whose inverses are also continuous.

Definition 2.11. Two dynamical systems {X,T, φt} and {X,T, ψt} are topo-
logical equivalent if there is a homeomorphism h that maps the orbits of the
first system onto orbits of the second one, preserving the direction of time.

For discrete time systems, two topological equivalent maps f and g that
satisfy

f(x) = h−1(g(h(x))), implying h(f(x)) = g(h(x)),

for some homeomorphism h, are said to be topologically conjugate, and we
can write more simply

f = h−1 ◦ g ◦ h. (2.10)

For ODEs, the homeomorphism should apply at the level of the flow.

Definition 2.12. Two flows Φ(x, t) and Ψ(h(x), t)) that correspond, respec-
tively, to ODEs ẋ = f(x) and ẏ = g(y) are said to be topologically conju-
gate if there exists a homeomorphism h such that

Φ(x, t) = h−1(Ψ(h(x), t)). (2.11)
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Actually, for topological equivalence of flows, the conjugacy does not need to
apply at each time t. Rather, we require the weaker condition that there is an
invertible, continuous mapping of time t �→ s(t) so that we can write

Φ(x, t) = h−1(Ψ(h(x), s(t))) . (2.12)

Note, though, that conditions (2.11) and (2.12) are hard to check in practice,
because one must solve the ODE exactly in order to construct an explicit
expression for the flow operator Φ. A more restrictive condition, which is easier
to check in practice, is that two ODEs be smoothly topologically conjugate; that
is, the homeomorphism h in (2.11) is differentiable, with differentiable inverse
(a diffeomorphism). Then we can write

f(x) =
(

dh(x)
dx

)−1

f(h(x)).

Having defined what we mean by topological equivalence, we can now
define structural stability.

Definition 2.13. A flow (or discrete-time map) is structurally stable if
there is an ε > 0 such that all C1 perturbations of maximum size ε to the
vector field (map) f lead to topological equivalent phase potraits.

One key application of topological equivalence is to show that ‘normally’
dynamical systems in the neighborhood of an invariant set are topological
equivalent to the linearization of the system about that set. We consider this
in the two specific contexts of equilibria of flows and fixed points of maps. As
we shall see in the next subsection, the result for maps implies an analogous
result for periodic orbits of flows.

Consider first an equilibrium x∗ of ẋ = f(x). Now, for small y = x − x∗,
we can expand f as a Taylor series about x∗ to write

ẏ = fx(x∗)y +O(y2),

and drop the O(y2)-term. (Here fx(x∗) given by (fx)i,j = ∂fi/∂xj is the
Jacobian derivative of the vector field evaluated at x∗.) The general solution
to the linear system is

y(t) = exp(fx(x∗)t)y(0).

Usually this can be expressed in terms of the eigenvalues and eigenvectors of
fx(x∗). For example, in the case that Jacobian has a full set of n independent
eigenvalues {λi : i = 1, 2, . . . n}, then we can write

y(t) = V −1diag{e−λ1t, e−λ2t, . . . e−λnt}V y(0),

where the ith column of V contains the eigenvectors of fx corresponding to
eigenvalue λi. (Here diag{·} means the diagonal matrix whose entries on the
main diagonal are those stated.) So if the spectrum (set of eigenvalues) of
fx(x∗) is in the left half-plane, then the solution of the linear system tends to
zero as t→ ∞ and the equilibrium of the linear system is stable.
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Definition 2.14. We shall refer to the eigenvalues of an equilibrium x∗ of
an ODE ẋ = f(x) to mean the eigenvalues of the associated Jacobian matrix
fx(x∗). An equilibrium is said to be hyperbolic if none of its eigenvalues lie
on the imaginary axis.

It can be proved [168, Ch. 2] that the flow local to any two hyperbolic equi-
libria of n-dimensional systems that have the same number of eigenvalues with
negative real part are topologically equivalent to each other. In particular, we
have

Theorem 2.2 (Hartman–Grobman). The dynamics close to a hyperbolic
equilibrium point are topologically equivalent to that of the system linearized
about that point.

An equilibrium x∗ with ns > 0 eigenvalues of negative real part and nu > 0
eigenvalues of positive real part is called a saddle point. Close to x∗ we can
define the stable [unstable] manifold W s(x∗) [Wu(x∗)], which is an invariant
manifold of the flow that is composed of all trajectories that tend to x∗ as
t → ∞ (t → −∞). W s(x∗) is of dimension ns and is tangent at x∗ to the
stable eigenspace of fx(x∗); similarly W s(x∗) is of dimension nu and is tangent
at x∗ to the unstable eigenspace of fx(x∗). See Fig. 2.7.

λ1λ2λ3

v1

v2

v3

W u
1

W u
2

W s

λ1

λ2

λ3

v1

v2

v3

W u
1

W u
2

W s

Fig. 2.7. Stable and unstable manifolds near 3 dimensional saddle equilibria with
(a) purely real eigenvalues and (b) complex stable eigenvalues (a saddle focus). The
vectors vk are the eigenvectors corresponding to the eigenvalues λk.
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Similarly, consider a fixed point x∗ of a map x �→ f(x) (period-m points
can be treated as well, since they are fixed points of f (m)). Linearizing about
this fixed point, we get

y �→ fx(x∗)y, with solution yn = [fx(x∗)]ny0.

Hence yi → 0 as i→ ∞, satisfying the second of the conditions for asymptotic
stability of the linearized system, if all eigenvalues μi of fx(x∗) lie inside the
unit circle.

Definition 2.15. We shall refer to the multipliers λi of a fixed point x∗ of a
map x→ f(x) to mean the eigenvalues of the associated linearization fx(x∗).
A fixed point is said to be hyperbolic if none of the multipliers lie on the
unit circle.

For a general map in n-dimensions, one can define the orientability of the
map close to a fixed point as the sign of the product of all its multipliers
∏n

i=1 λi. If this product is positive, the map is locally orientable; if negative,
the map is non-orientable. If the product is zero, then the map is noninvertible.
Note that any map that arises as the Poincaré mapof a smooth flow must be
orientable [271]. Figure 2.8 shows the two possible types of orientable saddle
point in two-dimensional maps. That with negative multipliers [Fig. 2.8(b)] is
sometimes referred to as a flip saddle. One can also define stable and unstable
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Fig. 2.8. The dynamics near a saddle fixed point of a map in the cases of (a) two
positive multipliers, and (b) two negative multipliers. Numbers denote subsequent
iterations of the map starting from the point labeled ‘1’.

manifolds at saddle points analogously as for equilibria of flows. Note, though,
a distinction with the case of flows. In a flow, a one-dimensional manifold is
composed of a single trajectory. In a map, a one-dimensional manifold contains
many orbits; see Fig. 2.9. Hence stable and unstable manifolds in maps can
intersect transversally (at a non-zero angle), whereas if a stable and unstable
manifold intersect in a flow, they must do so along a line; that is, they must
share a common trajectory.
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W s
W u

(a)

W s
W u

(b)

Fig. 2.9. (a) The stable and unstable manifolds close to a saddle fixed point in
two dimensions with positive multipliers. (b) Similar figure in the case of negative
multipliers, where, for clarity, only the dynamics along the unstable manifold is
depicted. Similar behavior is observed on the stable manifold with the difference
that the direction of ‘hoppings’ is reversed.

There are similar notions of hyperbolicity for other invariant sets. Loosely
speaking, an invariant set is hyperbolic (sometimes called normally hyperbolic)
if the dynamics in directions transverse to the set is exponentially attracting
or repelling at rates that are faster than the dynamics in the invariant set. See,
for example, [272]. Generally speaking, hyperbolic dynamics are structurally
stable.

Many dynamical systems that arise in applications are not structurally
stable. For example, systems can have persistent non-hyperbolic equilibria
(center points) if they preserve a first integral such as energy. An important
such class is that of Hamiltonian systems, which have very different dynamics
than the systems in question here; see, for example, the reprint collection by
Miess and MacKay [184]. Alternatively, the system may be invariant under
the action of a symmetry, which again leads to certain structurally unstable
things happening generically. The dynamics of systems with symmetry is a
large subject in its own right, and one that we do not deal with here; see, for
example, the book by Golubitsky, Schaeffer & Stewart [120]. Largely speaking,
we shall avoid Hamiltonian or symmetric systems in what follows.

2.1.5 Periodic orbits and Poincaré maps

We have already hinted at the important connection between flows and maps.
We now make this connection more precise. One of the main building blocks
of the dynamics of a set of ODEs are its periodic solutions, and these provide
a natural way to transform between flows and maps. Consider a limit cycle
solution x(t) = p(t) to (2.3) of period T > 0; that is, p(t+T ) = p(t). To study
the dynamics near a such a cycle, we construct a Poincaré section, which is
an (n−1)-dimensional surface Π that contains a point xp = p(t∗) on the limit
cycle and which is transverse to the flow at xp. Let us introduce a notation
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πx
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P (x)

Π

xp

x

p(t)

Fig. 2.10. The construction of a Poincaré mapclose to a periodic orbit p(t).

that
Π = {x ∈ R

n : π(x) = 0}, (2.13)

for some smooth scalar function π. Then the transversality condition is that
the normal vector πx(xp) to Π at xp has a non-zero component in the direction
of the Φt(xp, 0) = f(xp). (Here a subscript x or t means differentiation with
respect to that variable). That is, we require

πx(xp)f(xp) �= 0. (2.14)

where a subscript x or t means partial differentiation with respect to that
variable, so that πx(xp) is the normal vector to Π at x = xp.

Now, we can use the flow Φ to define a map P from Π to Π, called the
Poincaré map, which is defined for x sufficiently close to xp via

P (x) = Φ(x, τ(x)),

where τ(x) is defined implicitly as the time closest to T for which

π(Φ(x, τ(x))) = 0. (2.15)

By the Implicit Function Theorem (see Theorem 2.4 below), the transversality
(2.14) guarantees that there is a locally unique solution for τ(x). Note that
we can then define the Poincaré mapas a smooth projection S of the time-T
map Φ(·, T ) for x ∈ Π

P (x) = S(Φ(x, T ), x), where S(y, x) = Φ(y, τ(x) − T ); (2.16)

see Fig. 2.11. Thus, xp becomes a fixed point of the map P .
We can study the stability (and possible bifurcations of) the periodic so-

lution by studying the linearization Px of the Poincaré map at xp. It will be
important for us to be able to compute this linearization when we consider
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grazing bifurcations of periodic orbits in Chapters 6–8. Computing the total
derivative with respect to x, we have

Px(xp) = Φx(xp, T ) + Φt(xp, T )τx(xp),

and, from implicit differentiation of (2.15),

τx(xp) = −πx(xp)Φx(xp, T )
πx(xp)Φt(xp, T )

.

Hence

Px(xp) =
(

I − Φt(xp, T )πx(xp)
πx(xp)Φt(xp, T )

)

Φx(xp, T )

=
(

I − f(xp)πx(xp)
πx(xp)f(xp)

)

Φx(xp, T ). (2.17)

Note that (2.17) is a rank-one update of the time-T map Φx(xp, T ) around p(t)
(the multiplying factor is the linearization of S defined in (2.16)). The n× n
matrix Φx(xp, T ) is referred to as the Monodromy matrix and corresponds
to the fundamental solution matrix up to time T of the linear variational
equations

ẏ = fx(p(t))y, (2.18)

around the periodic orbit p(t). The direction of the flow Φt(xp, t) = f(xp)
can easily be shown to solve (2.18) and, hence, f(xp) is an eigenvector of
Φx(xp, T ) corresponding to the multiplier 1. Letting the expression (2.17) act
on f(xp), we see that this corresponds to an eigenvalue 1 of the linearized
Poincaré mapPx. However, since this eigenvector does not lie in the linear
approximation to Π we will never see its effect when computing the Poincaré
maptaking only points x ∈ Π.

Other than this trivial eigenvalue, the eigenvalues of the Monodromy ma-
trix are precisely the multipliers λi of the Poincaré map. This can be argued as
follows (see for example [168, Thm. 1.6] for a more careful proof). The non-
trivial eigenvectors of the Monodromy matrix form an (n − 1)-dimensional
invariant subspace Π̃, say, that does not contain the direction f(xp). Hence
Π̃ can be chosen to be a Poincaré section, as it satisfies the transversality con-
dition (2.14). Now all we need to show is that the multipliers of two Poincaré
maps P and P̃ defined via two different sections Π and Π̃ are the same. Let Π
be given by (2.13), (2.15), and let Π̃ := {x : π̃(x, τ̃(x)) = 0}. The equivalence
of these two maps arises because we can write

P̃ = S̃−1 ◦ P ◦ S̃, where S̃(x) = Φ(x, τ(x) − τ̃(x)), (2.19)

where S̃ is the smooth mapping that takes points in Π̃ to Π using the flow;
see Fig. 2.11(b). Linearizing (2.19) we obtain that

P̃x = S̃−1
x PxS̃x.
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Fig. 2.11. (a) Illustrating a Poincaré mapdefined by the first intersection with a
surface Π : {π(x) = 0} in the direction of increasing π(x). (b) A representation in
two dimensions of the smooth projection Sm along the flow lines between Poincaré
sections Π and Π̃.

Hence P̃x and Px are similar matrices that must have the same eigenvalues.
In fact, the expression (2.19) applies for any two Poincaré sections along the
orbit p(t). It also shows that the two Poincaré maps satisfy the condition
(2.10) to be topological equivalent. Summarizing, we have

Theorem 2.3. All Poincaré maps defined with respect to any Poincaré sec-
tion that is transverse to the flow around a periodic orbit p(t) of a smooth ODE
(2.3) are locally topological equivalent. Moreover, they have the same non-zero
multipliers λ1, . . . λn−1. The linearization of the corresponding time-T map
around p(t) is related by the formula (2.17) and has eigenvalues 1, λ1, . . . λn−1.

Now, we say that a hyperbolic periodic orbit p(t) is one whose Poincaré
maphas multipliers λi, i = 1, . . . n − 1 that are all off the unit circle. The
Hartman–Grobman theorem for maps then tells us that flow around the orbit
is locally topologically equivalent to the linearization. An obvious consequence
of this is that hyperbolic periodic orbits are necessarily isolated in phase space.

Poincaré maps do not necessarily require a periodic orbit in order to be
defined. A Poincaré section Π can be taken anywhere in the phase space,
provided the flow is everywhere transverse to it, as for example in Fig. 2.5(c)
where Π is chosen transverse to the flow on an invariant torus. For transver-
sality, we require that a condition equivalent to (2.14) applies throughout Π.
So if we define Π as before to be the zero-set of a smooth function (2.13),
then we are only interested in defining a Poincaré mapfor points x for which

π(x) = 0 and πx(x)f(x) �= 0.

The map is defined by the first intersection with Π in the same sense. That is,
P (x) = Φ(x, τ(x)), where τ(x) is the first time t > 0 such that π(Φ(x, t)) = 0
and πxf(Φ(x, 0)) · πxf(Φ(x, t)) > 0; see Fig. 2.11(a). Note that the map P
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may not be defined for the whole Poincaré section, since not all points need
to return.

One of the benefits of studying Poincaré maps rather than flows is that
they drop by one the dimension of the sets we need to consider. Thus, limit
cycles of flows correspond to isolated fixed points of Poincaré maps; invariant
tori correspond to closed curves of the map; and chaotic invariant sets decrease
their fractal dimension by one.

2.1.6 Bifurcations of smooth systems

Broadly speaking, there two notions of ‘bifurcation’, one analytical and the
other topological. From the first point of view, bifurcations are branch-
ing points of parameterized sets of solutions x(μ) to nonlinear operators
G(x, μ) = 0. Simply put, a ‘bifurcation’ is a point at which the Implicit
Function Theorem fails; see, for example, [141, 55, 47, 119]).

Theorem 2.4 (Implicit Function Theorem). Suppose that for some μ =
μ0 there exists a solution x = x0 to a smooth nonlinear equation G(x, μ) = 0,
where G : R

n × R → R
n; then, provided Gx(x0, μ0) is nonsingular, a smooth

path of solutions x(μ) can be continued locally, with x(μ0) = x0.

This analytic point of view does not adapt naturally to the study of non-
smooth systems, and so the notion adopted in this book is that a bifurcation
is a change in the topology of the phase portraits of a dynamical system as a
parameter is varied. Of particular importance are changes to the number and
nature of the attractors of the system. A rich theory now exists for smooth
systems, which we shall briefly review here. Many more details can be found
in the books by Guckenheimer & Holmes [124], Kuznetsov [168] and Wiggins
[273]; hence, we give only a quick introduction to bifurcation theory applied
to parameterized systems either in the form of a smooth vector field or map

ẋ = f(x, μ), or x �→ f(x, μ) (2.20)

for x ∈ R
n, μ ∈ R

p.
We define a bifurcation simply in terms of loss of structural stability upon

varying a parameter.

Definition 2.16. A bifurcation occurs at a parameter value μ0 if the dy-
namical system {X,T, φt} is not structurally stable.

An unfolding (or versal unfolding) of a bifurcation is a simplified system
that for small μ − μ0 contains all possible structurally stable phase potraits
that arise under small perturbations of the system at the bifurcation point.

The codimension of a bifurcation is the dimension of parameter space
required to unfold the bifurcation.

A bifurcation diagram is a plot of (some measure of) the invariant
sets of a dynamical system against a single bifurcation parameter μ, which
indicates stability.
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We can distinguish between two kinds of bifurcation:

Definition 2.17. A local bifurcation arises due to the loss of hyperbolicity
of an invariant set upon varying a parameter. All other bifurcations are called
global bifurcations.

Many kinds of local bifurcations of smooth systems have been studied and
classified; see for example Kuznetsov [165, Chs. 2–5]. Figure 2.12 summa-
rizes the main types of codimension-one local bifurcations of smooth vector
fields and an associated representative bifurcation diagram. In each case, un-
der appropriate defining and non-degeneracy conditions, one can calculate an
appropriate normal form that can be obtained by smooth co-ordinate trans-
formations from any system that undergoes the bifurcation in question.

fold

x

μ

e.g., ẋ = μ − x2

x

μ

transcritical

e.g., ẋ = μx − x2

x

μ

pitchfork

e.g., ẋ = μx − x3

x

μ

Hopf (flow)

e.g.,

(

ẋ1

ẋ2

)

=

(

μ −ω
ω μ

)(

x1

x2

)

−
(

x1

x2

)

(x2
1 + x2

2)

x

μ

period-doubling (map)

Period-2

Period-1

e.g., x �→ (1 + μ)x − x3

Fig. 2.12. Main codimension-one local bifurcations in smooth dynamical systems.

Note that steady bifurcations of equilibria of flows— fold (or saddle-node)
bifurcations and the associated pitchfork or transcritical bifurcations for sys-
tems with symmetry or invariance— have a direct analogy for limit cycle
bifurcations; that is, bifurcations of fixed points of maps. The defining con-
dition for the former is that there is an eigenvalue at zero and for the latter
that there is a multiplier at 1. The case of the Hopf bifurcation is more sub-
tle. The direct analog for maps is when a complex pair of eigenvalues crosses
the unit circle. This torus or Neimark–Sacker bifurcation causes the birth of
invariant circles of the map, with all inherent complications associated with
the dynamics of circle maps that we outlined earlier. There are also special
cases when the multipliers concerned are low-order roots of unity. Finally, for
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maps there is the case of the period-doubling or flip bifurcation, which has no
analog in equilibrium bifurcations. Many of these bifurcations come in super-
or subcritical subcases, depending on whether a stable nontrivial invariant set
is created as the trivial equilibrium (or fixed point) becomes unstable, or vice
versa.

In contrast, global bifurcations typically occur because of a change in the
topology of stable and unstable manifolds of invariant sets (see, for example,
[168, Chs. 6 and 7]). A typical example is a homoclinic bifurcation when the
stable and unstable manifold of the same invariant set form an intersection
or tangency at a fixed parameter value. See Fig. 2.13 for two examples. Also,
stable and unstable manifolds of other invariant sets can form an intersec-
tion in a heteroclinic connection that can cause the sudden appearance or
disappearance of a chaotic attractor in a boundary crisis bifurcation [168].

(a)
μ < 0 μ = 0

μ > 0

(b)
μ < 0 μ = 0

μ > 0

tangency

tangency

W u

W s

Fig. 2.13. Two global bifurcations. (a) A homoclinic bifurcation to a saddle equi-
librium creating a single stable limit cycle. (b) A homoclinic tangency to a saddle
point in a two-dimensional map creating a homoclinic tangle, which implies the ex-
istence of a chaotic invariant set through the Smale-Birkhoff homoclinic theorem
[124, Thm. 5.3.5].

An interesting feature of smooth dynamical systems is that they can ex-
hibit a cascade of local bifurcations under parameter variation. A well-known
example is the period-doubling cascade. Here, a supercritical period-doubling
at a parameter value μ1 creates a stable period-2 orbit, followed by a further
period-doubling of the period-2 orbit at μ = μ2, creating a stable period-4
orbit, and so on, as we saw in Fig. 2.6. Remarkably, we observe a universal
scaling law, established by Feigenbaum [97], that
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lim
k→∞

μk − μk−1

μk+1 − μi
= δ = 4.6692 . . . . (2.21)

That is, the period-doubling sequence converges to a finite μ-value, and in the
limit, the rate of convergence is the same for ‘all’ systems! For more precise de-
tails see, for example, [56, 73]. This universality of the period-doubling cascade
has only been shown for a certain class of one-dimensional maps that have ‘a
single hump’ like the logistic map, but it also applies to many ODEs because
of the folded structure of their Poincaré maps. For one-dimensional maps, one
can say much more, and we find cascades of periodic orbits described by the
following theorem

Theorem 2.5 (Sharkovskii [235]). Consider the following ordering of all
positive integers:

1 < 2 < 4 < . . . 2k < 2k + 1 < . . .

. . .

< 2k+1 · (2l + 1) < 2k+1 · (2l − 1) < . . . < 2k+1 · 5 < 2k+1 · 3 <
. . . < 2k · (2l + 1) < 2k · (2l − 1) < . . . < 2k · 5 < 2k · 3 <
. . .

. . . < 2 · (2l + 1) < 2 · (2l − 1) < . . . < 2 · 5 < 2 · 3 <

. . . < (2l + 1) < (2l − 1) < . . . < 5 < 3.

If f is a continuous map of the interval [−1, 1] to itself with a periodic point of
period p, then, for any q < p (where the inequality sign refers to the ordering
above), f has a periodic point of period q.

Remarks

1. This result contains the statement ‘period 3 implies chaos’ that was the
title of the paper by Li & Yorke [178] from which the word chaos was first
used to describe bounded non-repeating motion.

2. Often in applications a period-q (q �= 2k) orbit first appears by a fold bifur-
cation upon increasing a parameter beyond the end of a period-doubling
cascade. This leads to a periodic window of parameter values within which
this orbit is stable, with the windows separated by chaotic regions. Thus
the Sharkovskii ordering often gives the ordering of stable periodic win-
dows that are observed in simulations of bifurcation diagrams ‘inside’ the
chaotic regime after the end of period-doubling cascade (see, for example,
Fig. 2.6).

Sharkovskii’s Theorem relies heavily on the smoothness assumption for the
map. An important feature of this book, and especially the results in Chapters
3 and 4, will be the identification of other types of cascades of stable periodic
orbits close to a bifurcation point. We shall see that these cascades do not
generally follow the Sharkovskii ordering, in that either the chaos is robust
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(i.e., has no periodic windows), or if windows exist they obey period-adding
type orderings for which we see intervals of periodic motions of period n
obeying the simple ordering n < n+ 1 < n+ 2 < . . .. Indeed, as we shall see,
period-adding is one of the unifying features of the behavior of non-smooth
systems.

2.2 Piecewise-smooth dynamical systems

We now move onto the main theme of this chapter where we set the scene for
a systematic study of the dynamics of non-smooth systems. Motivated by the
case studies in Chapter 1, we shall introduce three classes of piecewise-smooth
system: maps, flows and hybrid systems. Note that a complete existence and
uniqueness theory does not exist, as far as we are aware, for these quite broad
classes of system. Instead, in Sec. 2.3 below, we shall show the relation of these
classes to other more precise formulations for the description of non-smooth
dynamics for which such theory does exist. Nevertheless, our rather loose
classification, while perhaps lacking mathematical rigor, shall prove highly
useful in explaining the dynamics observed in example systems.

2.2.1 Piecewise-smooth maps

Definition 2.18. A piecewise-smooth map is described by a finite set of
smooth maps

x �→ Fi(x, μ), for x ∈ Si, (2.22)

where ∪iSi = D ⊂ R
n and each Si has a non-empty interior. The intersection

Σij between the closure (set plus its boundary) of the sets Si and Sj (that
is, Σij := S̄i ∩ S̄j) is either an R

(n−1)-dimensional manifold included in the
boundaries ∂Sj and ∂Si, or is the empty set. Each function Fi is smooth in
both the state x and the parameter μ for any open subset U of Si.

(a) (b) (c)

Fig. 2.14. Examples of piecewise-smooth one-dimensional maps: (a) piecewise-
linear continuous map; (b) piecewise-linear discontinuous map; (c) square-root piece-
wise smooth map. In each case S1 = {x < 0}, S2 = {x > 0} and Σ12 = {x = 0}.
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A set Σij for a piecewise-smooth map is usually termed a border or dis-
continuity boundary that separates regions of phase space where different
smooth maps apply. Examples of piecewise-smooth one-dimensional maps are
given in Fig. 2.14. Note that in the above definition we allow the possibility
that one of the component maps Fi may itself be non-smooth (in the sense of
having infinite or ill-defined derivatives) at the boundary Σij . For example,
the square-root map in Fig. 2.14(a) is such that the first derivative of F2(x)
tends to ∞ as x→ 0. We also include the case that Fi �= Fj along Σij , so that
the map has a jump in state as in Fig. 2.14(b). Such maps are discontinuous
piecewise-smooth maps. In this case, there are a number of choices that one
can make about the value of the map for points in Σij : for example, taking
the average of Fi and Fj there; or allowing the map to be set valued at this
point, taking all possible convex combinations {Fi + λ(Fj − Fi) : 0 ≤ λ ≤ 1}.
In practice, such choices make little practical difference to the dynamics of
the map, since they describe what happens to a set of points of zero measure.

Definition 2.19. The order of singularity of a point x̂ ∈ Σij of a continu-
ous piecewise-smooth map is the order of the first non-zero term in the formal
power-series expansion of F1(x) − F2(x) about x = x̂.

Remarks

1. This order is −1 times the usual definition of the order of a singularity
in complex variable theory. That is, a complex f(z) is said to have a pole
with singularity of O(n) if its Laurant series expansion starts with a term
of order z−n. Here we are saying that the map has singularity of order n
if the Taylor series expansion of F1(x)−F2(x) starts with a term of order
xn.

2. Note that we allow this order to be non-integer:

Example 2.5 (square-root map). Consider the square-root map described
in case study VII. According to the functional form (1.32), we have

S1 = {x < σ}, S2 = {x > σ}, Σ12 = {x = σ},

F1 =
√
σ − x+ rσ, F2 = rx,

and hence
[F1 − F2](σ + ε) = ε1/2 +O(ε).

In this case we say that this map has an O(1/2) singularity.

Maps that are locally piecewise-linear and continuous such as Fig. 2.14(a)
and case study VIII are said to have anO(1) singularity. Clearly differentiation
of these one-dimensional maps with respect to x leads to maps with singulari-
ties of one order lower. For this reason we shall say that a point of discontinuity
of a map with a jump, as in Fig. 2.14(b) and the heart attack map, case study
VI, has an O(0) singularity at a point x ∈ Σij if 0 < ‖F1(x) − F2(x)‖ <∞.
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(a) (b)

S1 S2

Σ12

Si Sj

Σij

Fig. 2.15. Illustrating schematically trajectories of (a) a piecewise-smooth flow, and
(b) a piecewise-smooth map.

2.2.2 Piecewise-smooth ODEs

Definition 2.20. A piecewise-smooth flow is given by a finite set of ODEs

ẋ = Fi(x, μ), for x ∈ Si, (2.23)

where ∪iSi = D ⊂ R
n and each Si has a non-empty interior. The intersec-

tion Σij := S̄i ∩ S̄j is either an R
(n−1)-dimensional manifold included in the

boundaries ∂Sj and ∂Si, or is the empty set. Each vector field Fi is smooth
in both the state x and the parameter μ, and defines a smooth flow Φi(x, t)
within any open set U ⊃ Si. In particular, each flow Φi is well defined on both
sides of the boundary ∂Sj.

A non-empty border between two regions Σij will be called a discontinu-
ity set, discontinuity boundary or, sometimes, a switching manifold.
We suppose that each piece of Σij is of codimension-one, i.e., is an (n − 1)-
dimensional smooth manifold (something locally diffeomorphic to R

n) embed-
ded within the n-dimensional phase space. Moreover, we shall demand that
each such Σij is itself piecewise-smooth. That is, it is composed of finitely
many pieces that are as smooth as the flow. See Fig. 2.15(a).

Note that Definition 2.20 does not uniquely specify a rule for the evolution
of the dynamics within a discontinuity set. One possibility is to assign each
Σij as belonging to a single region S̄i only. That is, Fi rather than Fj applies
on Σij . In fact, such notions make little difference except in the case where
the flow becomes confined to the boundary (Filippov trajectories). Before we
get to that case, let us first consider what might happen to the flow of the
piecewise-smooth ODE as we cross a discontinuity boundary Σij .

Definition 2.21. The degree of smoothness at a point x0 in a switching
set Σij of a piecewise-smooth ODE is the highest order r such the Taylor
series expansions of Φi(x0, t) and Φj(x0, t) with respect to t, evaluated at t = 0,
agree up to terms of O(tr−1). That is, the first non-zero partial derivative with
respect to t of the difference [Φi(x0, t) − Φj(x0, t)]|t=0 is of order r.
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Remarks

• This definition almost accords with the usual definition of smooth func-
tions, thinking of the flow at a point as being a function of t. Thus, if
we say that a piecewise-smooth flow has degree of smoothness r across a
discontinuity boundary, then it is Cr−1 but not Cr. The vector field is
one degree less smooth (because it is by definition the time derivative of
the flow). Thus for a flow with degree of smoothness r according to the
definition, the vector field will be Cr−2 but not Cr−1.

• Note the subtle distinction between this definition and the corresponding
Definition 2.19 for the singularity of a map. Here we do not allow the
possibility for the degree of smoothness to be non-integer. [Although there
is a growing literature on differential equations with fractional order right-
hand sides (see, for example, [155]) we shall not treat them here.]

Now, consider an ODE local to a single discontinuity set Σ12 that can be
written

ẋ =
{

F1(x, μ), if x ∈ S1

F2(x, μ), if x ∈ S2
,

where F1 generates a flow Φ1, F2 a flow Φ2. We have

∂Φi(x, t)
∂t

∣

∣

∣

∣

t=0

= Fi(x),

∂2Φi(x, t)
∂t2

∣

∣

∣

∣

t=0

=
∂Fi

∂t
=
∂Fi

∂Φi

∂Φi

∂t
= Fi,xFi(x),

where a second subscript x means partial differentiation with respect to x.
Similarly

∂3Φi(x, t)
∂t3

∣

∣

∣

∣

t=0

= Fi,xxF
2
i + F 2

i,xFi,

etc. So, if F1 and F2 differ in an mth partial derivative with respect to the
state x, we find that the flows Φ1 and Φ2 differ in their (m + 1)st partial
derivative with respect to t.

Therefore, if F1(x) �= F2(x) at a point x ∈ Σ12, then we have degree of
smoothness one there. Systems with degree one are said to be of Filippov type.
Examples of Filippov systems from Chapter 1 include case studies III, IV and
V; the relay controller, friction oscillator and DC–DC converter examples.

Alternatively if F1(x) = F2(x) but there is a difference in the Jacobian
derivatives F1,x �= F2,x at x, then the degree of smoothness is said to be 2. A
difference in the second-derivative tensor F1,xx �= F2,xx gives smoothness of
degree three, etc. Systems with smoothness of degree two or higher may be
called piecewise-smooth continuous systems, typified by the next example

Example 2.6 (bi-linear oscillator). The bi-linear oscillator, case study II, can
be written as the first-order system by setting u = x1,v = x2 and t = x3 so
that
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ẋ1 = x2 (2.24)
ẋ2 = −2ζx2 − kix1 + cos(x3) (2.25)
ẋ3 = 1. (2.26)

where the value of ki depends on region Si, with S1 = {x1 < 0}, S2 =
{x1 > 0}. Clearly the flow here has degree of smoothness two at all points in
Σ = {x1 = 0}. If instead k1 = k2 and the coefficient ζ in (2.24)–(2.26) had
been allowed to vary across Σ, then the degree of smoothness would be one,
at all points in Σ except where x2 = 0; in which case, the degree would be
two. Thus we have cases where the degree of smoothness is the same at all
points in Σ and cases where it is not. This distinction shall become crucial
when we consider grazing bifurcations in Chapters 6 and 7.

Definition 2.22. A discontinuity boundary Σij is said to be uniformly
discontinuous in some domain D if the degree of smoothness of the sys-
tem is the same for all points x ∈ Σij ∩ D. We say that the discontinuity is
uniform with degree m if the first non-zero partial derivative of Fi − Fj

evaluated on Σij is of order m− 1. Furthermore, the degree of smoothness is
one if Fi(x) − Fj(x) �= 0 for x ∈ Σij ∩ D.

In fact, the assumption of uniform discontinuity imposes a great restric-
tion on the form that Fi − Fj can take. Consider a general piecewise-smooth
continuous system with a single boundary Σ that can be written as the zero
set of a smooth function H

ẋ =
{

F1(x), H(x) > 0,
F2(x), H(x) < 0, (2.27)

where F1(x) = F2(x) if H(x) = 0. Suppose that the flow is uniformly
discontinuous with degree m as in Definition 2.22. Then local to H = 0 we
must be able to write

F2(x) = F1(x) + J(x)H(x)m−1, (2.28)

for some smooth function J(x) ∈ R
n. To see this, note that H may locally be

chosen as one of the co-ordinates close to the boundary and that a non-zero
coefficient of H(x)k in the Taylor series expansion of F2 − F1, for k < m− 1,
means that the kth derivative of F2 −F1 does not vanish on Σ. Hence Hm−1

must be a factor of F2 − F1. For example, for the bi-linear oscillator (2.24)–
(2.26), which has m = 2, we have H(x) = x1 and J(x) = (0,−k2 + k1, 0)T .

2.2.3 Filippov systems

The case of systems a with uniform degree of smoothness one must be treated
with great care since we have to allow the possibility of sliding motion. In order
to define sliding, it is useful to think of a system (2.27) local to a discontinuity
boundary between two regions defined by the zero set of a smooth function
H(x) = 0; see Fig. 2.16.
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Definition 2.23. The sliding region of the discontinuity set of a system of
the form (2.27) with uniform degree of smoothness one is given by that portion
of the boundary of H(x) for which

(HxF1) · (HxF2) < 0.

That is, HxF1 (the component of F1 normal to H) has the opposite sign to
HxF2. Thus, the boundary is simultaneously attracting (or repelling) from both
sides.

(a) (b)

Fig. 2.16. A typical discontinuity boundary of a two-dimensional Filippov system
showing the behavior of the vector fields on both sides. Bold and dashed regions
represent (a) attracting and (b) repelling sliding motion, respectively. Dotted lines
indicate three individual trajectory segments.

Note that the case of most interest is when the sliding region is attracting
since, as is clear from Fig. 2.16, repelling sliding motion cannot be reached
by following the system flow forward in time. However, attracting sliding mo-
tion can be reached in finite time. Henceforth, sliding will always be taken to
mean ‘attracting sliding’ unless otherwise stated. Such motion leads to loss
of information on initial conditions. Compare for example the two trajecto-
ries A and B of the two-dimensional flow represented in Fig: 2.16; they enter
the sliding region at different points, but leave at the same point. Thus while
they came from different initial conditions in the past, their future evolution
is identical (the trajectory segment C). Thus, there is an infinite rate of at-
traction in forward time and the flow is not uniquely defined in reverse time.
Another simple example of non-inevitability in mechanics is that of plastic
impacts (e.g., imagine dropping a mature tomato on the floor!). Whatever
the pre-impact velocity, the post-impact velocity is always zero.

As a consequence, any Poincaré mapassociated with trajectories that in-
volve sliding motion will be noninvertible and have a multiplier that is zero
(corresponding to the infinite rate of attraction). Now, the formalism of
piecewise-smooth systems itself does not say how to define the evolution of
the system as it undergoes sliding. One has to do something extra.

Two approaches exist in the literature for formulating the equations for
flows that slide when written in the general form (2.27). These are Utkin’s



2.2 Piecewise-smooth dynamical systems 77

equivalent control method [257] and Filippov’s convex method [100]. In Utkin’s
method one supposes that the system flows according to the sliding vector
field F12, which is the average of the two vector fields F1 (in region S1) and
F2 (in region S2) plus a control β(x) ∈ [−1, 1] in the direction of the difference
between the vector fields:

F12 =
F1 + F2

2
+
F2 − F1

2
β(x). (2.29)

Specifically the equivalent control is

β(x) = −HxF1 +HxF2

HxF2 −HxF1
.

Filippov’s method, by contrast, takes a simple convex combination of the two
vector fields

F12 = (1 − α)F1 + αF2 (2.30)

with 0 ≤ α ≤ 1, where

α(x) =
HxF1

Hx(F1 − F2)
. (2.31)

Sometimes, where there is no ambiguity, we shall write

Fij := Fs

to represent the sliding vector field
Now it is a simple exercise to show that the above two methods are alge-

braically equivalent with β = 2α−1. (Note though that as shown in [257] there
are some special cases where the two methodologies lead to subtly different
results.) In both cases it is straightforward to show that the vector field Fs

lies orthogonal to the direction Hx and so lies tangent to Σ. Utkin’s method
has the interpretation that β is precisely the control power that is needed to
pull the flow back to being in a direction that is tangent to Σ; see Fig. 2.17(a).
Another interpretation, from Filippov’s method, is that just the right convex
combination of the vector fields needs to be taken for the resulting field Fs

to lie in Σ; see Fig. 2.17(b). A final interpretation is obtainable by separat-
ing the boundary to regions S1 and S2 slightly, within a hysteresis loop; see
Fig. 2.17(c). That is, an initial condition in S1 is allowed to evolve under flow
F1 until penetrating a small distance ε into S2, then evolves under F2 until
passing back through Σ to a distance ε on the other side. (Thinking of the
central heating example introduced in the Introduction, this would be where
the temperature threshold for switching on the boiler is slighter greater than
that for switching it off.) Then we can consider α to be proportion of time
that a trajectory spends in the region S1, in the limit ε→ 0.

Returning to the perfect sliding case, if the control β(x) = −1 (equivalently
α = 0), then the flow must be governed by F1 alone, which must by definition
be tangent to Σ at such a point. Similarly, β = 1 (α = 1) represents a tangency
of the flow F2 with Σ. Hence we can define the sliding region as
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(a) (b) S1F2

ΣFs

α

S2(1 − α)

F1

S1

F2

ΣFs

b

a μ

F1

S2

a = (F1 + F2)/2

time

t2

t1
α = t1/t2

(c)

b = (F2 − F1)/2

u

ε

−ε

Fig. 2.17. The equivalent definitions of the sliding flow Fs, as defined in the text,
illustrated in the two-dimensional case. In (c) the variable u is in the direction Hx

orthogonal to Σ.

̂Σ := {x ∈ Σ : −1 ≤ β ≤ 1},

and the boundaries of the sliding region as

∂ ̂Σ± := {x ∈ Σ : β = ±1},

with tangency of one vector field or other occurring at the two different types
of boundary.

2.2.4 Hybrid dynamical systems

Hybrid dynamical systems are combinations of maps and flows, giving rise to
discontinuous, piecewise-smooth flows. They can arise both as models of im-
pacting systems or in the context of the interaction between digital and analog
systems. The notion of a hybrid dynamical system is a broad concept that en-
compasses a number of different formalisms in the literature. For example,
hybrid automata [71, 183] are defined as dynamical systems with a discrete
and a continuous part. The discrete dynamics can be represented as a graph
whose vertices are the discrete states (or modes) and whose edges are transi-
tions. The continuous states take values in R

n and evolve along trajectories,
typically governed by ODEs or differential algebraic equations. The interac-
tion between the discrete and the continuous dynamics takes place through
invariants and transition relations. Each mode has an invariant associated
with it, the violation of which as the system evolves says that a transition
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must take place. The transition relations describe conditions on the contin-
uous state that enable the transition to occur and also the effect (or reset)
that the transition will have on the continuous state. This formalism is really
quite broad and covers a wide variety of possible systems both physical and
virtual, and in fact all the other formulations we describe in this chapter can
be seen as just a special case. The drawback with such a general description
is that it does not necessarily allow much general information to be gleaned,
which applies to all systems of this class. For more details, see the book by
Van der Schaft and Schumacher [71].

In this book we shall reserve the name ‘hybrid’ for a specific kind of
piecewise-smooth system that comprises a collection of different smooth flows
and maps; see Fig. 2.18

Definition 2.24. A piecewise-smooth hybrid system comprises a set of
ODEs

ẋ = Fi(x, μ), if x ∈ Si, (2.32)

plus a set of reset maps

x �→ Rij(x, μ), if x ∈ Σij := S̄i ∩ S̄j . (2.33)

Here ∪iSi = D ⊂ R
n and each Si has a non-empty interior. Each Σij is either

an R
(n−1)-dimensional manifold included in the boundary ∂Sj and ∂Si, or is

the empty set. Each Fi and Rij are assumed to be smooth and well defined in
open neighborhoods around Si and Σij, respectively.

S1 S2

Σ Σ

R

R

x−

x+

(a) (b)

S+ S−

Fig. 2.18. (a) A hybrid system and (b) the impacting class of hybrid system.

In this book we will mostly study a special type of hybrid systems mo-
tivated by the impact oscillator example described in case study I. For such
systems we generally consider surfaces Σij that act as hard constraints, so
that the reset Rij maps the set Σij back to itself.

Definition 2.25. An impacting hybrid system is a piecewise-smooth hy-
brid system for which Rij : Σij → Σij, and the flow is constrained locally to
lie on one side of the boundary; this is, in Si = Si ∪Σij.
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We shall often refer to the reset map Rij in this context as being the
impact law or impact rule. The discontinuity boundaries Σij will be referred
to as impact surfaces and the event of a trajectory intersecting Σij as an
impacting event or just an impact.

Throughout this book, we shall often consider a restrictive class of impact-
ing hybrid systems that contain just one impact surface Σ. Suppose that such
a surface Σ can be defined by the zero set of a smooth function H(x),

Σ = {x : H(x) = 0}, and let S+ = {x : H(x) > 0}, (2.34)

with the dynamics constrained to the region S+; see Fig. 2.19. Such systems
can be thought of as describing the dynamics local to any impact surface in a
general, multiple region system. Locally the dynamics may be written in the
form

ẋ = F (x) if H(x) > 0, (2.35)

x �→ R(x) if H(x) = 0, (2.36)

for a smooth vector field F (which is well defined in a full neighborhood
of Σ including for H < 0) and reset map R. Suppose an impact occurs at
time t0. Let x− and x+ represent the intersection of the flow with Σ both
immediately before and immediately after the impact, so that x− = limt→t−0

,
x+ = limt→t+0

. Hence we can write the impact surface as

x+ = R(x−). (2.37)

x

psi

Σ

S+

RRR

Fig. 2.19. The surface Σ and a multiple impacting trajectory for an impacting
hybrid system with a single discontinuity boundary.

In order to be definite, we shall also assume a restrictive class of impact law
that depends on the normal velocity v(x) at which the trajectory approaches
the impact manifold, given by

v(x) ≡ dH/dt = HxF. (2.38)

Specifically, we suppose that
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R(x) = x+W (x)HxF = x+W (x)v(x) (2.39)

for a some smooth functionW (x) ∈ R
n. To motivate why (2.39) is a reasonable

form to take, note that we would like an impact law that takes a grazing
trajectory (one for which v(x) = 0) to itself and that is a smooth function of
v(x) otherwise. More complex forms of reset maps than (2.39) are required
to deal with impacting mechanical systems with friction. For example, the
so-called Painlevé paradox deals with mechanical systems that can both slide
and impact; see, for example, [243, 174].

Given an impact rule of the form (2.39), the surface Σ can therefore be
divided into three separate regions, Σ−, Σ+ and Σ0 according to whether the
normal velocity is, respectively, negative, positive or zero:

Σ− = {x ∈ Σ : v(x) < 0}, Σ+ = {x ∈ Σ : v(x) > 0},
Σ0 = {x ∈ Σ : v(x) = 0}.

In general, if we write the impact law in the form (2.37), then we have x− ∈ Σ−

and x+ ∈ Σ+. In this case a flow in S+ intersects Σ−, is mapped to Σ+ and
then continues in S+. The set Σ0 is called the grazing set, and impacts close
to it lead to subtle dynamics that we will analyze in detail in Chapter 6.

Example 2.7 (impact oscillator). Let us show that the impact oscillator with
the simple coefficient of restitution law for impact, studied in case study I, fits
into this framework. We can write the equations of motion (1.1) in the form

(

ẋ1

ẋ2

)

=
(

0 1
−1 −2ζ

)(

x1

x2

)

+
(

0
cos(ωt)

)

, (2.40)

together with the impact rule
(

x1(t+j )
x2(t+j )

)

=
(

1 0
0 −1 − r

)(

x1(t−j )
x2(t−j )

)

, (2.41)

which applies at times tj for which x1 = σ. Letting x3 = t, we see that this fits
into the above framework with x = (x1, x2, x3)T , H = x1 − σ, HxF (x) = x2,
and W (x) = −(0, 1 + r, 0)T .

Many more examples of hybrid systems of this form will be given in Chap-
ter 6, in which the detailed dynamics of hybrid systems and their bifurcations
will be analyzed.

Let us now consider the basic flow of the simple impacting system (2.35)–
(2.39). Starting from an initial condition x(0) = x0 in S+, the ODE (2.35)
generates a smooth flow Φ(x0, t) up until the flow strikes Σ, at time t0, say.
Suppose that this impact is transversal, so that the normal velocity v(x(t0)) <
0. Hence x− = x(t0) ∈ Σ−. This point is then mapped instantaneously under
the action of the reset map to the point x+ = R(x−). If v(x+) > 0, so
that x+ ∈ Σ+, then the flow moves away from Σ back into the set S+ and is
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described by the flow Φ(x+, t). In principle, this scenario can repeat arbitrarily
often, as illustrated in Figure 2.19.

However, this is not the only possible dynamics of the system. Consider
a grazing point for which v(x−) = 0, where the impact map becomes the
identity. In order to understand what happens, it is useful to define the normal
acceleration of the flow with respect to the boundary:

a(x) = d2H/dt2 = (HxF )xF = HxxFF +HxFxF. (2.42)

Now, in the case where a(x−) > 0 at a grazing point, the curvature of the
flow will cause the trajectory to immediately leave Σ. However, if a(x) < 0,
then the flow will become stuck to the boundary, rather akin to the sliding
flow of a Filippov system. Thus the sticking subset of the grazing set Σ0 is
determined by the conditions

Σ0
− ≡ {x : H(x) = 0, v(x) = 0, a(x) < 0}.

The sticking motion evolves under the action of the vector field F , con-
strained to lie on the surface Σ. If we define the impact law according to
(2.39), then it is possible to express the sticking vector field as

ẋ = Fs(x) = F (x) − λ(x)W (x), (2.43)

where

λ(x) =
a(x)

(HxF )xW
. (2.44)

To see that this corresponds to a sticking flow, note that in order to stick
we require H(x(t)) = v(x(t)) ≡ 0. Differentiating the conditions H(x) = 0
and v(x) = 0 with respect to time, we have Hxẋ = 0 and vxẋ = 0. The first
of these conditions is satisfied identically when HxW = 0, and the second
condition if

0 = (HxF )xF − λ(HxF )xW = a(x) − λ(HxF )xW, (2.45)

which defines λ according to (2.44). Note that (2.43)–(2.44) define a smooth
flow Φs(x, t), which is also defined within a neighborhood of Σ, but for which
the set Σ{x : H(x) = 0} is invariant. For the hybrid system, the sticking flow
ceases to apply when the trajectory leaves Σ0

−. At such a point a(x) = 0, but
da(x)

dt := ax(x)ẋ > 0 and hence the system moves into S+ where the original
flow Φ applies. The condition that the vector field remains in the sticking
region is λ(x) > 0. The formalism of complementarity systems described in
the next section helps us understand the role played by this extra variable λ.

Typically, unlike the sliding motion in Filippov systems, impacting systems
do not enter a sticking region directly, but via a chattering sequence (also
known in control theory as a Zeno phenomenon [145]). Such a sequence begins
if an impact occurs within Σ−, close to the set Σ0 with v(x+) � 1 and
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R

sticking region

Fig. 2.20. A chattering sequence followed by sticking and release.

a(x+) < 0; see Fig. 2.20. There follows an infinite sequence of impacts, of
successively reduced velocity, which converges in finite time, onto a point in
the sticking set [42, 203]. After the accumulation of such a sequence, the
motion will evolve in the sticking set in the manner described above. We shall
return to an analysis of chattering in Chapter 6. Chattering sequences are a
commonly observed feature of hybrid systems and require special care when
computing the flow numerically.

Hybrid systems, then, generally have state jumps. This should be con-
trasted with Filippov systems that have jumps in the vector field (time deriva-
tive of the flow) and piecewise-smooth continuous systems that have jumps
in the second or higher derivative of the flow. Thus we can extend the notion
of degree of smoothness in Definition 2.21 to say:

Definition 2.26. A hybrid dynamical system that undergoes a jump in the
system state Φ(x, t) �→ Rij(Φ(x, t)) on a discontinuity boundary Σij is said to
have degree of smoothness zero.

2.3 Other formalisms for non-smooth systems

The choice of formalism we choose in this book is essentially to deal with
piecewise-smooth maps or with piecewise-smooth systems that have integer
degree of smoothness across each of its boundaries Σij . However, there is no
guarantee that such a formulation leads to existence or uniqueness of solutions
in all circumstances. Let us therefore briefly present several other formalisms
for which more mature analytic theory is available.

2.3.1 Complementarity systems

Complementarity dynamical systems formalize the notion of a mechanical
system with unilateral constraints. Such systems can be written most simply
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in the form of a differential algebraic equation plus inequality constraints (see
for example the reviews by Brogliato and co-workers [38, 127] and references
therein):

ẋ = f(x, λ), (2.46)
g(x,w, λ) = 0, (2.47)
0 ≤ w⊥λ ≥ 0, (2.48)
re-initialization rule R for state x. (2.49)

Here x ∈ R
n is the system state, g ∈ R

m are a set of side relations, λ ∈ R
l

is a so-called slack variable and w ∈ R
l is the corresponding signal or system

output. The expression w⊥λ means that the vector w is orthogonal to λ,
whereas λ,w ≥ 0 means that all components of λ and w are non-negative.
Hence, if a component wi is positive then the corresponding λi must be zero,
and vice versa.

Let us consider the dynamics of a system written in the form (2.46)–
(2.47). The set of m relations (2.47) implicitly defines the signal w in terms
of the states and slack variables (often the relations can be written explicitly
as w = g̃(x, λ)). The most important part of the system is the orthogonality
(or ‘complementarity’) relation (2.48). This should be understood component-
wise. That is, for each i, either λi is zero and wi is non-negative or λi is positive
and wi is zero. At transition points, that is at times tj for which λi(tj) and
wi(tj) are both zero for some i ≤ m, then one in general has to apply a rule
(2.49) to reset the state x(t+j ) = R(x(t−j ), w, λ). Complementarity systems
may be seen as a special case of hybrid automata, where the discrete states
are the λi, the particular set of wi that are non-zero describe the invariants,
and the state re-initialization rule (and choice of new set of non-zero wi) gives
the transition relations.

Example 2.8 (impact oscillator). We illustrate the complementarity frame-
work with the impact oscillator, case study I, which can be written in the
complementarity form

(

ẋ1

ẋ2

)

=
(

0 1
−1 −2ζ

)(

x1

x2

)

+
(

0
cos(ωt) + λ

)

,

w = x1 − σ,

0 ≤ w⊥λ ≥ 0,
(

x1(t+j )
x2(t+j )

)

=
(

1 0
0 −1 − r

)(

x1(t−j )
x2(t−j )

)

. (2.50)

For this example, there are two kinds of motion (active modes): free motion of
the oscillator where λ = 0 and w > 0, which implies that x1 > σ; and sticking
motion where λ > 0 and w = 0; hence, x1 = σ. Here, the slack variable λ
should be interpreted as a Lagrange multiplier, namely the force being exerted
by the obstacle on the particle to stop it from penetrating. Clearly if this force
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became negative, then the particle would be pulled into the obstacle; hence
the requirement that λ ≥ 0. In fact, it is possible to calculate explicitly the
value that λ must take. Suppose that the particle is instantaneously in contact
with the obstacle at some time τ . Then x1(τ) = σ. If it is to remain in contact,
then we require that x1(t) ≡ σ for some time interval t ∈ (τ, τ + ε). Hence
ẋ1(τ) = 0 and ẍ1(τ) = 0 also. The first of these conditions gives x2(τ) = 0,
and the second gives

λ = σ − cos(ωt). (2.51)

Hence, sticking motion can only occur for t-values such that cos(ωt) < σ.
In order to describe the motion completely we need to consider the tran-

sition times tj when both λ and w are zero. Suppose first that the system is
in free motion at t−j and reaches the constraint x1 = σ. Then w = 0. Here,
we apply the reset rule (2.50), which is just Newton’s restitution law. Now,
exceptions arise when the velocity x2 = 0 at the impact point, so that grazing
occurs. Then we have to look at the sign of ẋ2 = cos(ωt−j ) − σ. If this is
positive, then we have a grazing trajectory, which immediately passes back
into free motion again, since the reset rule gives ẋ1(t+j ) = x2(t+j ) = 0 but
ẍ1(t+j ) = ẋ2(t+j ) > 0 and so x1 > σ for t = tj + ε for some ε < 0. However,
if ẋ2 < 0, then a sticking motion ensues with a non-zero value of λ. As we
have described above, the sticking region can only be entered after an infinite
sequence of impacts (a chattering sequence). In contrast, the exit boundary
from the sticking region is given by a zero of λ defined by (2.51). Hence, at
this point we have that the first three time derivatives of x1 are zero, but
d3

dt3x1(t) = −ω sin(ωt), which if negative implies that we are once again in the
regime of free motion for small subsequent times. (In practice, this quantity
will always be negative since the particle enters the sticking region at some
time t such that cos(ωt) < σ and leaves it at the first later time at which
cos(ωt) = σ. Hence the angle ωt must be in the third or fourth quadrant,
depending on whether σ > 0 or σ < 0. Hence sin(ωt) must be positive.)

We can generalize this example by putting any piecewise-smooth ODE
system into complementarity form, at least local to a single discontinuity
boundary. For piecewise-smooth continuous systems in a neighborhood of a
single uniformly discontinuous boundary, where F1(x, μ) − F2(x, μ) is of the
form (2.28), a corresponding complementarity formulation of (2.27) is

{

ẋ = F1(x, μ) + λm−1J(x, μ), w = −H(x, μ) + λ,
0 ≤ w ⊥ λ ≥ 0, (2.52)

for which there is no need for a reset rule. Table 2.1 shows the possible active
modes of motion of the system.

In the Filippov case, i.e., for systems with degree of smoothness one, a
different form of complementarity formulation is required. For example, given
a two-zone system (2.27) with a single discontinuity boundary, we have
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Table 2.1. The different possible active modes for the dynamics of the piecewise-
smooth continuous ODE (2.52).

w and λ dynamical system

w = 0, λ > 0 ẋ = F2 = F1(x, μ) + H(x, μ)m−1J(x, μ)

w > 0, λ = 0 ẋ = F1(x, μ)

w = 0, λ = 0 ẋ = F1(x, μ) and H(x, μ) = 0

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ẋ = F1(x, μ) + λ1(F2(x, μ) − F1(x, μ)),
w1 = −H(x, μ) + λ2,
w2 = 1 − λ1,
0 ≤ w1 ⊥ λ1 ≥ 0,
0 ≤ w2 ⊥ λ2 ≥ 0.

(2.53)

Table 2.2 gives the different possible dynamical regimes of such systems.

Table 2.2. The different possible active modes for the dynamics of the Filippov
system (2.53).

C1 C2 dynamical system

w1 = 0, λ1 = 1 w2 = 0, λ2 ≥ 0 ẋ = F2(x, μ)

w1 ≥ 0, λ1 = 0 w2 = 1, λ2 = 0 ẋ = F1(x, μ)

w1 = 0, 0 ≤ λ1 ≤ 1 0 ≤ w2 ≤ 1, λ2 = 0 ẋ = F1(x, μ) + λ1(F2(x, μ) − F1(x, μ))
H(x, μ) = 0

Notice that the concept of the sliding vector field is embedded in the
complementarity description of the system of interest. In fact, in the third
case in Table 2.2, the dynamical system is a convex combination of the two
original vector fields. The parameter λ1 can be calculated directly from the
requirement that H(x, μ) ≡ 0 along such solutions. Hence

dH

dt
(x, μ) := Hx(x, μ) [F1(x, μ) + λ1(F2(x, μ) − F1(x, μ))] = 0. (2.54)

Thus
λ1 =

HxF1

HxF1 −HxF2
,

which is the parameter α in Filippov’s convex method introduced in (2.30).
There thus seems an advantage of the complementarity framework over the
piecewise-smooth one in this case. Checking the slack variables will automat-
ically detect when sliding is occurring and when the sliding region is exited.
That we had to differentiate the constraint once to obtain λ1 means that
the constraint and the differential equation have relative degree one. Equiv-
alently the sliding mode of the complementarity system is an index 1 differ-
ential algebraic equation (DAE). Note, in contrast, that the complementarity
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formulation for piecewise-smooth continuous systems (2.52) does not require
differentiation of the constraint, since λ is given explicitly. Thus the constraint
has relative degree zero, and the mode when w = 0 is a DAE with index 0,
which is equivalent to just an ODE.

Finally, consider a hybrid system with a single impact boundary for which
the reset map is written in the form (2.39). This can be written as the com-
plementarity system

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ẋ = F (x, μ) − λW (x, μ),
w = H(x, μ),
0 ≤ w ⊥ λ ≥ 0,
x(t+) = x(t−) +W (x(t−), μ)HxF (x(t−), μ),

(2.55)

which is a generalization of the complementarity framework for the impact
oscillator (2.50). Note that this has relative degree two in the sticking mode,
since the value for λ is obtained by differentiating the constraint H(x) = 0
twice with respect to t.

The complementarity framework is not just restricted to problems with
single discontinuity boundaries. In principle each of the above kinds of con-
straints and corresponding slack variables can be concatenated to take account
of multiple boundaries.

Σ1

̂Σ1

Σ2

̂Σ2

Fig. 2.21. Higher-order sliding occurring when two sliding regions ̂Σ1 and ̂Σ2 in-
tersect.

For example, suppose a piecewise-smooth system is written in the form

ẋ =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

F1(x), if H1(x) > 0, H2(x) > 0,
F2(x), if H1(x) > 0, H2(x) < 0,
F3(x), if H1(x) < 0, H2(x) > 0,
F4(x), if H1(x) < 0, H2(x) < 0;
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see Fig. 2.21. This can be rewritten as the following complementarity system:

ẋ = λ1λ2F1(x) + λ1(1− λ2)F2(x) + (1− λ1)λ2F3(x) + (1− λ1)(1− λ2)F4(x),
(2.56)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

w1 = −H1(x, μ) + λ3, w2 = −H2(x, μ) + λ4,
w3 = 1 − λ1, w4 = 1 − λ2,
0 ≤ w1 ⊥ λ1 ≥ 0, 0 ≤ w2 ⊥ λ2 ≥ 0,
0 ≤ w3 ⊥ λ3 ≥ 0, 0 ≤ w4 ⊥ λ4 ≥ 0.

(2.57)

The most interesting case is when both w1 and w2 are zero, whereas w3 and w4

are both positive. Then, according to (2.57), we have 0 < λ1 < 1 and 0 < λ2 <
1 and the motion is constrained to a codimension-two set {H1(x) = H2(x) =
0}. The flow on this set we refer to as higher-order sliding, which we shall
return to in Chapter 8, and is given by (2.56), where λ1 and λ2 are obtained
from the pair of simultaneous equations that arise from differentiation of the
constraints

H1x [λ1λ2F1 + λ1(1 − λ2)F2 + (1 − λ1)λ2F3 + (1 − λ1)(1 − λ2)F4] = 0,
H2x [λ1λ2F1 + λ1(1 − λ2)F2 + (1 − λ1)λ2F3 + (1 − λ1)(1 − λ2)F4] = 0.

Once the problem has been formulated in the complementarity framework,
it is possible to study its well-posedness using the analytic tools developed for
unilaterally constrained optimization; see, for example, [40] for an extensive
review. For example, any complementarity systems for which we can write

w = G(x) +Dλ

for a smooth function G and invertible matrix D, is equivalent to a set of
ODEs with degree of smoothness at least 1. If the matrix D is a so-called
P -matrix (i.e., a matrix with positive principal minors), then it can be shown
that the corresponding complementarity problem has a unique solution. This
means that systems such as (2.52) where D = 1 and G = H(x, μ) have a
unique solution for all parameter values μ.

Complementarity systems are also useful because they provide a general
framework for describing systems with more than one (perhaps many thou-
sands) of constraints. They come armed with a set of numerical solution tech-
niques, that do not require the precise detection of the events tj , where λi

and wi are both zero; see [41] for a review.

2.3.2 Differential inclusions

Another way of putting piecewise-smooth systems on a rigorous footing is to
use a variational formulation. We shall not go into details, but the key notion
is that of a differential inclusion. Here we allow the right-hand side of an
ordinary differential equation ẋ = f(x) to be not strictly a function (that is,
returning a single value f(x) for each x), but to be set-valued. For example,



2.3 Other formalisms for non-smooth systems 89

such set-valued functions arise in Coulomb dry friction laws encountered in
mechanics. Specifically, Coulomb friction models objects in contact that slip
over each other with velocity v only if their tangential contact force ft exceeds
some critical value. The function

ft = C(v) = α0sgn(v) − α1(v) + α2(v)3 (2.58)

occurring in case study IV is an example of such a law, see Fig. 2.22(a). The
problem with (2.58) is that it does not specify what value ft should take at
v = 0. Using the notion of a differential inclusion, we rewrite ft as a set-valued
function

ft(v) =
{

{[−α0, α0]}, if v = 0,
α0sgn(v) − α1v + α2v

3, otherwise.

So now, instead of ÿ + y = ft(1 − ẏ) + a cos(νt), we write

ÿ + y − a cos(νt) ∈ ft(1 − ẏ),

because at ẏ = 1, ft can take on a range of values. In [69], Deimling explains
that to obtain a well-posed problem, one has to ‘fill in’ the gap between
[−α0, α0] at v = 0 (i.e., perform a so-called convexification of the problem).

v v

ftft(a) (b)

−μ0

μ0

−μ1

μ1

Fig. 2.22. Two idealized Coulomb friction characteristics showing the tangential
force ft as a function of velocity v.

In general, any Filippov system can be written as a differential inclusion.
For example, a two-zone system can be written as

ẋ ∈ f(x), where f =

⎧

⎨

⎩

{F1(x)}, if H(x) > 0,
{F2(x)}, if H(x) < 0,

{F1(x) + α(F2 − F1)|0 ≤ α ≤ 1}, if H(x) = 0.

The concept of the inclusion is especially useful when we take more general
Coulomb friction laws like the one in Fig. 2.22(b), where the static coefficient
of friction is different from the dynamic one:

ft(v) =
{

[−μ0, μ0], if v = 0,
{μ1sgn(v)}, otherwise.
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In cases where the right-hand side f(x) of an inclusion ẋ ∈ f(x) satisfies
some quite general properties (f is upper semi-continuous, non-empty, convex
and compact for all x, and is bounded by an affine function of x), then there
is a general theory that gives the existence of absolutely continuous solutions
[69]. Unfortunately, many non-smooth systems when put into an inclusion
form do not satisfy these hypotheses.

Example 2.9 (Lagrangian systems). Another way of writing a general impact-
ing mechanical system in differential inclusion form is to use a Lagrangian ap-
proach. This leads to a second-order ODE system for generalized co-ordinates
q ∈ R

n. Consider such a system with mass matrix M(q) and generalized non-
contact forces F (q, q̇, t), in the absence of damping, that is constrained to the
region of configuration space S = {h(q) ≥ 0}. Its dynamics may be written as

M(q)q̈ + F (q̇, q, t) ∈ ∂ψS(q), if t �= tk, (2.59)
q̇(t+k ) = R(q̇(t−k )), if t = tk, (2.60)

where the {tk, k = 1, 2, 3 . . .} are the a priori unknown set of impact times
where q ∈ Σ = {h = 0}, and R is a reset rule. Here ∂φ(q) represents the
sub-differential (the set of all possible one-sided limits limt→0

φ(q+tv)−φ(q)
t for

any vector v) and ψS1 is the indicator function of the set S1, which is 0 for all
points inside S1 and infinite outside. Thus ∂ψS1 is the empty set for all points
outside S1, is equal to the normal cone NK(x) = {z|z · (x − z) = 0, for all
z ∈ S1} inside the boundary Σ = ∂S, and is 0 for points in the interior of S.
This set is not compact, and so the general existence theory does not apply. A
particular form of reset map R (corresponding to coefficient of restitution 0)
is the so-called Moreau collision mapping that the velocity q̇(t+k ) is in the so-
called polar cone V (q) for q ∈ Σ. Here V (x) = {z|z ·x ≤ 0, for all x ∈ NK(x)},
with the additional constraint that the jump in kinetic energy is minimized.

A way of dealing more generally with systems that have state jumps is
via the formalism of measure differential inclusions introduced by Schatzman
[230] and Moreau [192]. This is motivated by the idea that one would like a
framework that allows the velocity jumps at impacts to be included explicitly
in the differential equation.

Example 2.10 (impact oscillator without damping).

ü = −u+ f(t), u > σ, plus the impact law.

It is tempting to integrate, and write formally
∫

du̇ =
∫

(−u+ f(t))dt+
∫

dR(u),

where dR is a measure that is zero at all times other than tk and gives the
value of the jump in u̇ at impact. This leads to a general formulation where
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one defines a measure dμ = dt+Σk≥0δ(tk), where δ(x) is the Dirac δ function,
and we write

du̇
dμ

+ (u− f(t))
dt
dμ

∈ F (u, t),

where

F (u, t) =
{

{0}, if t �= tk,
[0,∞], if t = tk.

Here we have introduced an example of a measure differential inclusion,
which more generally can be written in the form

dx
dμ

+ g(x(t+), t+)
dt
dμ

∈ F (x(t+), t+),

where μ is a positive measure on the time axis, and the set-valued function
F (x, t) satisfies the properties of being a cone for all x and t. The more general
multi-degree-of-freedom mechanical system (2.59), (2.60) with impacts can
also be put in this framework, upon writing

−M(q(t))
dq̇
dμ

− F (q(t), v(t))
dṫ
dμ

∈ ∂ψV (q(t))(q̇(t+) ⊆ ∂ΨS (g(t)) ,

which is an example of a so-called Moreau sweeping process; see [166].
Many things can be proved about the dynamics of each of many subtly

different classes of differential inclusions (either in measure form or not). They
also have use in that they suggest natural ways to define numerical algorithms
that preserve the properties of the inclusion that can be proved theoretically.
However, we shall ignore such mathematical technicalities in this book and
stick to a more pragmatic approach.

2.3.3 Control systems

Many concepts in non-smooth dynamical systems have a counterpart (often
with different notation) in control theory. There, the goal is often to prove sta-
bility of some target state (such as an equilibrium point), or to design control
laws in order to achieve such stability. See for example [240, 179, 255]. This
book takes a rather different emphasis, which is to gain a qualitative under-
standing of complex dynamics via the (discontinuity-induced) transitions that
can occur upon varying a parameter. It is nevertheless useful to spell out links
with some of the ideas that arise in the control theory literature. For simplic-
ity, we stick to the case of single-input single-output (SISO) systems. Here,
the concept of relative degree is important; with the term having a rather dif-
ferent meaning to its use in complementarity systems, but nevertheless having
a close link to our concept of degree of smoothness.

Consider a SISO linear system [240] given by
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ẋ = Ax+Bu,
y = CTx+Du.

(2.61)

Here x(t) ∈ R
n is the state vector, u(t) ∈ R the control input and y(t) ∈ R

the output of the system.

Definition 2.27. The relative degree of the SISO linear control system
(2.61) can be defined in terms of Markov parameters

(M0,M1,M2,M3, . . .) := (D,CTB,CTAB,CTA2B, . . .)

as the first index i for which Mi is nonzero.

Now it is easy to see how this concept is closely related to the degree of
smoothness introduced in Definition 2.21. Take a relay control system, case
study III, as a representative example. The system can be written as

ẋ = Ax+Bu,
y = CTx+Du,
u = −sgn(CTx).

(2.62)

Then, according to Definition 2.27, this system has relative degree 0 provided
D �= 0. In this case the discontinuity of the input u is translated into a
discontinuity of the output y. Thus the relative degree is equal to one less
than the degree of smoothness defined by Definition 2.21.

If instead D = 0 but CTB �= 0 in (2.62), then the relative degree is 1 and
the output y is continuous but

ẏ = CT ẋ = CTAx+ CTBu

is discontinuous. Again the relative degree is one less than the degree of
smoothness, which is 2 since the first derivative is the lowest differential of the
state y having discontinuity. Similarly, if D = 0, CTB = 0 but CTAB �= 0,
then (2.62) has relative degree two because y and ẏ are continuous, but

ÿ = CT ẍ = CTA2x+ CTABu

is discontinuous. That is, the second derivative of the output is now discon-
tinuous and the degree of smoothness is thus three.

These concepts extend to nonlinear control systems too. A general single-
input single-output nonlinear system can be written as

ẋ = f(x) + g(x)u,
y = h(x). (2.63)

The system (2.63) is said to have relative degree r at a point x∗ if

1. LgLk
fh(x) = 0 for all x in a neighborhood of x∗ and all k < r − 1;

2. LgLr−1
f h(x∗) �= 0.
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Here we have introduced the following useful notation

Definition 2.28. The Lie derivative Lf is the total time derivative along
the direction of the flow governed by vector field f . Specifically, if f(x) and
g(x) are smooth vector fields and h(x) is a smooth scalar function, then we
have

Lfh(x) :=
∂h

∂x
f(x),

LgLfh(x) :=
∂(Lfh)
∂x

g(x),

LgLk
fh(x) :=

∂(Lk−1
f h)
∂x

g(x),

L0
fh(x) := h(x).

Consider, for example, a case where the relative degree is two at a point
x∗. Here r = 2 and k < 1, which gives

LgL0
fh(x) = ∂(L0

f h)

∂x g(x) = hxg(x) = 0,

LgL1
fh(x∗) = ∂(L1

f h)

∂x g(x∗) = ∂(hxf
∂x g(x∗) = (hxxf + hxfx)g(x∗) �= 0;

or, showing the link to the linear SISO system (2.61)

LgL0
fh(x) = hxg(x) = AB = 0,

LgL1
fh(x∗) = (hxxf + hxfx)g(x∗) = (0Ax∗ + CTA)B = CTAB �= 0,

where Ax = f(x), B = g(x) and CTx = h(x).
The Lie derivative will prove useful in Chapters 6, 7 and 8 for analyzing

the flow near to grazing intersections. At various points in the book, we will
borrow other concepts from control theory, where it is useful, such as observer
canonical form, controllability and relay control.

2.4 Stability and bifurcation of non-smooth systems

The extension of well-established concepts for smooth systems to the case
of non-smooth systems is still an open research area. We shall hence try to
establish a pragmatic approach for studying the asymptotic and structural
stability of our chosen classes of piecewise-smooth maps, flows and hybrid
systems (Definitions 2.18, 2.20 and 2.24). Our aim is to come up with a util-
itarian definition of a discontinuity-induced bifurcation (DIB) that allows us
to explain the dynamical transitions that were observed in the case study ex-
amples introduced in Chapter 1. First we need to assess the notion of stability.
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2.4.1 Asymptotic stability

It is a particularly cumbersome task to provide necessary and sufficient condi-
tions that guarantee the asymptotic stability of an invariant set of a piecewise-
smooth systems if that set straddles the boundary between two regions Si

and Sj ; see, for example, [179] for a review. Even the problem of assessing the
asymptotic stability of an equilibrium that rests on a discontinuity boundary
is an open problem in general [36]. Let us focus on the problem for the special
case of piecewise-linear systems, which will be of relevance to the material in
Chapter 5.

Consider the piecewise-linear system

ẋ =
{

A−x if CT x ≤ 0
A+x if CT x ≥ 0

, (2.64)

where A± ∈ R
n×n and c ∈ R

n. We assume that the overall vector field is
continuous across the hyperplane {x : CT x = 0}, but the degree of smoothness
is uniformly one. This means that

A− − A+ = ECT ,

for some E ∈ R
n. For the planar case, i.e., n = 2, a complete theory is

possible and it can be shown that the equilibrium point x = 0 of (2.64)
is asymptotically stable under certain strict conditions, provided the system
obeys the property of observability often used in control theory.

Definition 2.29. Two matrices A ∈ R
n×n and CT ∈ R

p×n are said to be
observable if the observability matrix, O, defined as

O =

⎛

⎜

⎜

⎝

CT

CT A
...

CT An−1

⎞

⎟

⎟

⎠

has full rank. Equivalently, for single-output systems, where V ∈ R
1×n,

observability implies det(O) �= 0.

Theorem 2.6 ([49]). Consider the system (2.64) with n = 2. Assume that
the pair (CT , A−) is observable. Then

1. The origin is asymptotically stable if and only if
a) neither A− nor A+ has a real non-negative eigenvalue, and
b) if both A− and A+ have non-real eigenvalues, then σ−/ω−+σ+/ω+ <

0, where σ± ± iω± (ω± > 0) are the eigenvalues of A±.
2. The system (2.64) has a non-constant periodic solution if and only if both

A− and A+ have non-real eigenvalues and σ−/ω− + σ+/ω+ = 0, where
σ± ± iω± (ω± > 0) are the eigenvalues of A±. Moreover, if there is one
periodic solution, then all other solutions are also periodic. Moreover any
such periodic solution has period equal to π/ω− + π/ω+.
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1

0

0 0
−1

−1

−1

x1

x2 x3

Fig. 2.23. A trajectory of the piecewise-linear system (2.64)–(2.66).

In higher dimensions, the problem becomes considerably more difficult. A
seemingly paradoxical situation can occur whereby the origin of the individual
systems ẋ = A−x and ẋ = A+x is asymptotically stable, but is unstable for
the combined system (2.64):

Example 2.11 (Unstable piecewise-linear system [51]). Consider the system
(2.64) with

A− =

⎛

⎝

−1 −1 0
1.28 0 −1

−0.624 0 0

⎞

⎠ , A+ =

⎛

⎝

−3.2 −1 0
25.61 0 −1
−75.03 0 0

⎞

⎠ (2.65)

and

c =

⎛

⎝

1
0
0

⎞

⎠ . (2.66)

Now, the eigenvalues of A− are −0.2 ± i and −0.6, whereas the eigenvalues
of A+ are −0.1 ± 0.5i and −3. Both sets are strictly in the left half-plane
which would imply stability of the origin of each linear systems individually.
Yet the combined piecewise-linear system has trajectories that tend to ∞; see
Fig. 2.23.

In essence, the paradox is caused by the geometric relationship between
the eigenvectors of the matrices A− and A+. Clearly if the eigenvectors of the
two matrices were perfectly aligned, then stability of the matrices A− and A+

would be sufficient to establish stability of the piecewise-linear system. In fact,
in certain other special cases, it is possible to establish conditions for stability
for systems of the form (2.64) in three dimensions. For example, using the
theory of invariant cones, Carmona et al. [51] have established the following
result.

Theorem 2.7 ([51]). Consider the system (2.64) with n = 3. Assume that
the pair (CT , A−) is observable. Let A± and c be given by
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A± =

⎛

⎝

t± −1 0
m± 0 −1
d± 0 0

⎞

⎠ , C =

⎛

⎝

1
0
0

⎞

⎠

(so-called observer canonical form). Suppose that the eigenvalues of the ma-
trices A± are λ± ∈ R and σ± ± iω±, where ω± > 0. Also, suppose that

(σ− − λ−)(σ+ − λ+) < 0 and (t+ − t−)(σ+ − λ+) ≤ 0,

then the origin is an asymptotically stable equilibrium point if, and only if, λ±

are both negative.

In the control theory literature, a more general tool has been proposed for
the stability analysis of piecewise-smooth dynamical systems. Take, for ex-
ample, the problem of establishing whether an equilibrium point in a discon-
tinuity boundary of a piecewise-smooth dynamical system is asymptotically
stable. One technique for proving such stability is to find a common Lya-
punov function, that is, a function V (x) that is Lyapunov (positive definite
and decreasing along trajectories) for each of the vector fields defining the
system dynamics in each of the phase space regions [179]. However, finding
such functions in practice is at best difficult.

General progress toward understanding and classifying the dynamics of
piecewise-smooth systems using such methods would appear hopeless. Draw-
ing lessons from smooth dynamical systems theory, we advocate in this book
a rather different approach. Instead of focusing on asymptotic stability of
individual states or invariant sets, we focus instead on structural stability
and bifurcation. Since proving stability from first principles can be hard, one
should instead attempt to classify all the mechanisms that can lead to in-
stability as a parameter is varied. Along with the classification should come
techniques, both analytical and numerical, for identifying which case occurs
in a particular example system and for understanding the nearby dynamics.

2.4.2 Structural stability and bifurcation

Consider a general invariant set of a piecewise-smooth dynamical system as
defined in Definitions 2.18, 2.20 or 2.25. Bifurcations that involve invariant
sets contained within a single region Si for all parameter values of interest can
be studied using smooth bifurcation theory. Also, it may be that the invariant
set of a flow crosses several discontinuity boundaries, but nevertheless the
Poincaré map associated with that invariant set is smooth. For example, in
Sec. 2.5 below, we shall show that the Poincaré map associated with a periodic
orbit that crosses all discontinuity sets Σij transversally is smooth. Thus, all
the bifurcations discussed in Sec. 2.1.6 can also occur in piecewise-smooth
systems. However, other bifurcations are unique to piecewise-smooth systems.
These typically involve non-generic interactions of an invariant set with a
discontinuity boundary.
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For piecewise-smooth systems such as (2.23) and (2.22) or (2.32) and
(2.33), which define a dynamical system (this excludes the possibility of re-
gions of phase space where there is repelling sliding or repelling sticking motion
since this leads to no uniqueness in forward time), one can adopt the same
notion of bifurcation as in Definition 2.16, applied to the entire system. How-
ever, we may wish to highlight other events that might not be a bifurcation
of the entire system in this classical sense. In control systems for example,
it may be important to identify whether a certain switch is activated. Or, in
a mechanical system, we may need to know whether an attractor contains
trajectories that impact or go beyond a certain threshold at which a bi-linear
spring moves into its stiffer region. The transition that causes such an event
will typically represent an invariant set forming a new crossing of a disconti-
nuity boundary, as a parameter is varied. For example, at a parameter value
μ = μ0, a limit cycle of a piecewise-linear flow may become tangent to a dis-
continuity boundary Σij at a grazing point. Alternatively, an equilibrium of
a flow, or fixed point of a map, may approach a discontinuity boundary as
μ → μ0. Now, if the degree of smoothness is sufficiently high, this will not
affect the stability of these invariant sets and there will be no bifurcation in
the sense of Definition 2.16. In the Russian literature, (e.g., [95, 98]), the term
C-bifurcation has been adopted for such transitions that involve an invari-
ant set doing something structurally unstable with respect to a discontinuity
boundary. (The Russian character C, pronounced “S”, stands for sewing, as
one sews together two different trajectory segments on either side of the dis-
continuity boundary.) When the invariant set is the fixed point of a map,
these have also been termed border-collision bifurcations [205].

Here we shall introduce the broader concept of a discontinuity-induced
bifurcation [64, 79]. By this term we will identify qualitative changes to the
topology of invariant sets with respect to the discontinuity boundaries. Specifi-
cally, we wish to single out parameter values at which the invariant set changes
its event sequence; that is, the order and sense of interaction with the discon-
tinuity boundaries. Such changes are typically brought about (or induced)
through non-transversal interaction with a discontinuity boundary. However,
in keeping with the qualitative theory of dynamical systems, we should like
a definition of a discontinuity-induced bifurcation that is purely topological
and does not refer to individual trajectories or invariant set. In order to come
up with such a notion, we will need new definitions of structural stability and
topological equivalence that call two dynamical systems non-equivalent if key
invariant sets in the dynamics change their event sequence. We shall state
this new definition of equivalence in the case of a hybrid dynamical system;
corresponding definitions for piecewise-smooth maps and flows follow in an
obvious manner.

Definition 2.30. Let {T,Rn, φt} and {T,Rn, φ̃t} be two hybrid piecewise-
smooth dynamical systems (2.32), (2.33) defined by countably many differ-
ent smooth flows φi(x, t) and φ̃i(x, t) in finitely many phase space regions Si
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and S̃i, respectively, i = 1 . . . N , with smooth resets Rij and R̃ij applying,
respectively, at each non-empty discontinuity boundaries Σij and Σ̃ij.

Two such piecewise-smooth systems are called piecewise-topological
equivalent if:

1. They are topological equivalent; that is, there is a homeomorphism h that
maps the orbits of the first system onto orbits of the second one, preserving
the direction of time so that φt(x) = h−1(φ̃s(h(x))) where the map t→ s(t)
is continuous and invertible.

2. The homeomorphism h can be chosen so as to preserves each of the dis-
continuity boundaries. That is, for each i and j, h(Σij) = Σ̃ij.

(a) (b)
S1

S1

S2S2

S3

S3

S4
S4

Fig. 2.24. Two phase potraits that are topological equivalent but not piecewise
topological equivalent according to Definition 2.30. Note that the portrait in each
separate region Si, i = 1, . . . , 4 is topological equivalent between (a) and (b); yet in
(a) there is a limit cycle that does not enter all four phase space regions, whereas in
(b) the corresponding limit cycle does not visit region S1. If a parameter is varied
between these two cases, a DIB must occur, in this case, a grazing bifurcation of the
limit cycle with the boundary Σ12.

To motivate the second part of this definition, we want to call the two phase
potraits illustrated in Fig. 2.24 non-equivalent, because in panel (a) there is
a limit cycle that visits all four phase space regions, whereas in (b) the limit
cycle visits only three of them. To see that this example fails the definition
of equivalence, note that to transform from one phase portrait to another the
limit cycle must be ‘pulled through’ the boundary Σ12. Such a transformation
cannot be achieved in a continuous way. In other words, the limit cycle and
Σ12 are not in the same general position with respect to each other. This then
leads us to our topological definition of a discontinuity-induced bifurcation
(DIB) for parameterized piecewise-smooth dynamical systems. For example,
we shall want to say that a discontinuity-induced bifurcation must occur if
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we continuously vary parameters between those used to obtain the two phase
potraits in Fig. 2.24.

The definition of DIB proceeds as for the definition of smooth bifurcations.
We start by saying what we mean by structural stability:

Definition 2.31. A piecewise-smooth system is piecewise-structurally sta-
ble if there is an ε > 0 such that all C1 perturbations of maximum size ε of
the vector field (map) f , that leave the number and degree of smoothness prop-
erties of each of the boundaries Σij unchanged, lead to piecewise-topological
equivalent phase potraits.

Definition 2.32. A discontinuity-induced bifurcation (DIB) occurs at
a parameter value at which a piecewise-smooth system is not piecewise-
structurally stable. That is, there exists an arbitrarily small perturbation that
leads to a system that is not piecewise-topological equivalent.

Remarks

1. Note that we have been somewhat imprecise about what kind of perturba-
tions are allowed in Definitions 2.31 and 2.32. One wants only to consider
perturbed systems for which the partitioning of phase space into regions Si

remains topologically the same and that the degree of smoothness across
each boundary does not change. We also want that the resets Rij map
boundaries Σij to the equivalent parts of phase space. In fact, it remains
an open problem to show that Definitions 2.30 and 2.32 are well defined
mathematically. Strictly speaking, we need to define a topological space
for each class of piecewise-smooth system in order to define topological
equivalence correctly. The rigorous theory of DIBs is still in its infancy,
and we shall not pursue this further here. Rather we shall treat Definition
2.32 as a working definition.

2. The concepts of codimension and unfolding can also be constructed, as in
Definition 2.16 for bifurcations in smooth systems, but here one has to be
even more careful to state what kinds of perturbation are allowed. Again
we adopt a working definition of codimension that it is the ‘degree of
unlikeliness’ of the discontinuity-induced bifurcation. That is, how many
parameters would one expect to have to vary in order to correctly unfold
the bifurcation?

3. Under Definition 2.32 classical bifurcations are also DIBs. However, our
main focus in this book is the particular class of discontinuity-induced bi-
furcations that are caused by something structurally unstable happening
with respect to a discontinuity set Σij . Bifurcations that have nothing to
do with discontinuity sets we shall refer to as smooth bifurcations. Most of
the rest of this book will be about cataloging the various non-smooth tran-
sitions (particularly those of codimension-one) that can occur in piecewise-
smooth systems. We shall also provide unfoldings of the ensuing dynamics
and ways of calculating these unfoldings in examples. Moreover we shall
seek to show how these DIBs explain the observed dynamics.
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4. In the special case of Filippov systems in R
3 there is now a rigorous

structural stability theory; see the work by Filippov [100], Teixera [248],
Simic & Johansson [239] and references therein.

2.4.3 Types of discontinuity-induced bifurcations

The main aim of rest of this book is devoted to a classification and analysis
of the most commonly occurring types of DIBs. As we shall see, these lie
at the heart of explaining what was observed in the case study examples
introduced in Chapter 1. Let us list some of the most commonly occurring
types of codimension-one DIBs (see Fig. 2.25):

Border collisions of maps. These are conceptually the simplest kind of DIB
and occur when, at a critical parameter value, a fixed point of a piecewise-
smooth map lies precisely on a discontinuity boundary Σ. For maps with
singularity of order one (i.e., locally piecewise-linear continuous), there is
now a mature theory for describing the bifurcation that may result upon
varying a parameter through such an event. Remarkably, the unfolding
may be quite complex. Even in one dimension, we saw in case study VIII
that a period-1 attractor can jump to a period-n attractor for any arbi-
trary n, or to robust chaos without any periodic windows. In one and two
dimensions, more or less everything is known. But in general n-dimensional
maps, bifurcation information on only the simplest kinds of periodic points
is known. This material is presented in Chapter 3. Chapter 4 then goes on
to study border collision bifurcations in maps with other degrees of singu-
larity, including the discontinuous and square-root cases from case studies
VI and VII.

Boundary equilibrium bifurcations. The simplest kind of DIB for flows
occurs when an equilibrium point lies precisely on a discontinuity boundary
Σ. In Filippov systems and hybrid systems with sticking regions, there is
also the possibility of pseudo-equilibria, which are equilibria of the sliding or
sticking flow but are not equilibria of any of the vector fields of the original
system. There are thus possibilities where the equilibrium lies precisely on
the boundary between a sliding or sticking region and a pseudo-equilibrium
turns into a regular equilibrium (either under direct parameter variation or
in a fold-like transition where both exist for the same sign of the perturbing
parameter). There is also the possibility that a limit cycle may be spawned
under parameter perturbation of the boundary equilibrium, in a Hopf-like
transition. This material is treated in Chapter 5.

Grazing bifurcations of limit cycles. One of the most commonly found
DIBs in applications is caused by a limit cycle of a flow becoming tangent to
(i.e., grazing) with a discontinuity boundary. One might naively think that
this can be completely understood (upon taking an appropriate Poincaré
section that contains the grazing point) as a border collision. However, as
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μ < 0 μ = 0 μ > 0

S1S1S1
S2S2S2

(a)

μ < 0 μ = 0 μ > 0

(b)

μ < 0 μ = 0
μ > 0

(c)

μ < 0 μ = 0 μ > 0

(d)

μ < 0 μ = 0 μ > 0

(e)

Fig. 2.25. Examples of DIBs: (a) a border collision in a map; (b) a boundary equi-
librium bifurcation; (c) a grazing bifurcation of a limit cycle; (d) a sliding bifurcation
in a Filippov system; (e) a boundary intersection crossing.
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we shall see in Chapter 6 for hybrid systems and Chapter 7 for piecewise-
smooth ODEs this is not necessarily the case. Instead one has to analyze
carefully what happens to the flow in the neighborhood of the grazing point.
In fact, one can derive an associated map (the, so-called, discontinuity
map). But, the link between the singularity of the map and the degree of
smoothness of the flow is a subtle one that also depends on whether the
flow is uniformly discontinuous at the grazing point. This analysis explains
what is observed at the grazing bifurcations in the impact and bi-linear
oscillators, case studies I and II.

Sliding and sticking bifurcations. There are several ways that an invariant
set such as a limit cycle can do something structurally unstable with respect
to the boundary of a sliding region in a Filippov system. Chapter 8 is
devoted to a careful unfolding of each of these. The Poincaré maps so
derived have the property of typically being noninvertible in at least one
region of phase space, owing to the loss of information backward in time
inherent in sliding motion. This analysis helps to explain the dynamics
observed in the relay control and dry friction examples described in case
studies III and IV. In addition, in impacting systems, sticking regions can
be approached by infinite chattering sequences of impacts, which we have
seen already in case study I. Further details of such events will be given in
Chapter 6 in the context of the single degree-of-freedom impact oscillator.

Boundary intersection crossing/corner collision. Another possibility
for a codimension-one event in a flow is where an invariant set (e.g., a limit
cycle) passes through the (n−2)-dimensional set formed by the intersection
of two different discontinuity manifolds Σ1 and Σ2. In Chapter 7 we shall
consider such intersection crossing in Filippov systems in the case where
there is no sliding. We also consider there the special case where the jumps
in vector field across Σ1 and Σ2 are such that their intersection can be
considered as a ‘corner’ in a single discontinuity surface. This can explain
the dynamics observed in the DC–DC converter, case study V.

Some possible global bifurcations. One example, which we shall mention
in Chapter 5, involves a connection between the stable and the unstable
manifolds of pseudo-equilibria, which are equilibria of a sliding flow but not
of the individual flows either side of a discontinuity boundary.

Chapter 9 briefly treats extensions to the theory of DIBs, which are in
each case motivated by a further case study example of practical significance,
for which a detailed treatment is beyond the scope of the book. Topics include
parameter and noise sensitivity; bifurcations that involve invariant tori graz-
ing with a discontinuity surface; the similarity between grazing in piecewise-
smooth flows and hybrid systems in the limit of large discontinuities; and
codimension-two bifurcations.
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2.5 Discontinuity mappings

The analysis of discontinuity-induced bifurcation in maps is relatively straight-
forward; one merely has to consider the fate of iterates that land either side
of the discontinuity. DIBs in piecewise-smooth flows or hybrid systems are far
harder to analyze, because one must establish the fate of topologically distinct
trajectories close to the structurally unstable event that determines the bifur-
cation. In this section we introduce a key analytical tool that enables the study
of DIBs involving limit cycles and other invariant sets that are more complex
than mere equilibria. The concept is that of a discontinuity map (DM), a term
first introduced by Nordmark [197]. This is a synthesized Poincaré mapthat
is defined locally near the point at which a trajectory interacts with a discon-
tinuity boundary. When composed with a global Poincaré map(for example
around the limit cycle) ignoring the presence of the discontinuity boundary,
one can then derive a (typically non-smooth) map whose orbits completely
describe the dynamics in question.

To illustrate why discontinuity maps are both necessary and useful, con-
sider the piecewise-smooth flow illustrated in Fig. 2.26(a),(b), for which there
is a Poincaré surface Π lying in one of the regions Si, which is intersected
transversally at the point xp by a periodic orbit p(t) of period T .

Fig. 2.26. (a) Simple periodic orbit p(t) in piecewise smooth ODE that does not
intersect any discontinuity surfaces. (b) Simple periodic orbit that intersects a single
surface twice. (c) Equivalent to (b) but for an impacting hybrid system. (d) A grazing
periodic orbit.

(a) Π xp

Σ

(d) Π xp

Σ

Π

Σ
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(b)
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For points x̂ ∈ Π close to xp, we may define a Poincaré map P : Π → Π.
It is natural to ask what form P takes when ‖x− xp‖ is small. The answer to
this question takes three forms, and depends crucially upon the nature of the
orbit p(t).

If p(t) lies wholly inside Si, as in Fig. 2.26(a) then nearby orbits will also
lie inside Si. In this case the time-T map starting from x will be the smooth
flow map P (x) = Φi(x, t), which has a well-defined Taylor series,

P (x) = N(x− xp) +O
(

|x− xp‖2
)

, (2.67)

where N = Φi,x(xp, T ) is the Jacobian derivative with respect to x of the flow
Φi around the periodic orbit, evaluated at x = xp. More interesting things
happen if the periodic orbit p(t) intersects discontinuity surfaces Σij .

Consider next the case illustrated in Fig. 2.26(b), where p(t) has two trans-
verse intersections with a discontinuity set Σ. In this case it is tempting
to write that the linearization of the Poincaré maptakes the form P (x) =
N1N2N3(x− xp), where N1, N2 and N3 are linearizations of the flows Φ1, Φ2

and Φ1, respectively, for the appropriate times for the trajectory starting at xp

to, respectively, reach Σ for the first time, to pass between the first and second
intersections of Σ, and to pass from Σ back to Π. However, this is not the
case because, as we shall see in Sec. 2.5.2, each time Σ is crossed transversally,
one must apply a correction to the Poincaré map. This correction is necessary
because the time taken for trajectories at points x close to xp to reach the
discontinuity boundary Σ will in general vary, and so a small error will be
made in assuming that the linearization required is that of Φ1 for a constant
time. The correction to this error is the discontinuity map in this case. The
effect of the DM on the matrix N1 is to multiply it by a so-called saltation
matrix [2, 194, 173] whose derivation we give below. A similar correction must
be applied to the matrix N2. Not introducing these corrections will in general
result in wrong conclusions being made about the Floquet multipliers of the
periodic orbit p(t). Note in this case, provided the form of the jump in the
vector fields upon crossing Σ is described by a smooth function, then the dis-
continuity mapping and the associated global Poincaré maparound p(t) will
both be smooth. Similar considerations apply to impacting hybrid systems
where a periodic orbit p(t) has a single impact with a discontinuity surface as
in Fig. 2.26(c).

Now consider for a moment the special case where the velocity normal to
Σ is zero, so that the periodic orbit grazes the discontinuity surface, as in
Fig. 2.26(d). Note that the trajectories from some initial conditions x ∈ Π
near xp do not intersect Σ at all, whereas others intersect Σ with a low normal
velocity. The discontinuity mapping in this case is the identity for orbits that
do not cross Σ, but is defined as the local correction that must be applied to
initial conditions that do cross Σ, so that a Poincaré mapcan be applied as if
Σ were not there. As we shall motivate briefly in Sec. 2.5.3 below, the effect
of applying the DM to the map in (2.67) in this case is to introduce additional
terms proportional to fractional powers of ‖x − xp‖, such as ‖x − xp‖1/2 or
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‖x− xp‖3/2. An analysis of the behavior of maps with fractional powers will
be given in Chapter 4. Detailed derivations of DMs close to different kinds
of DIBs, along with analyzing their dynamical consequences, form the main
subject Chapters 6, 7 and 8.

In the case that trajectories intersect discontinuity boundaries transver-
sally, then typically one still has to compute a discontinuity mapping in order
to derive a globally correct Poincaré map. This is because even though the
trajectory itself may be continuous (or in the case of a hybrid system, the
trajectory’s evolution would be defined by a continuous reset map), there is
a correction that must be to the first and higher derivatives of the flow. This
correction arises because the discontinuity boundary acts like a new Poincaré
section that is distinct from the fixed time-t section that is implicitly defined
flow.

2.5.1 Transversal intersections; a motivating calculation

Before deriving the general form of the transverse discontinuity mapping for an
arbitrary piecewise-smooth or hybrid system, let us start with the motivating
case of a simple impacting hybrid system of the form (2.35) and (2.36). Here we
assume a smooth reset map R applies whenever the smooth flow Φ, governed
by vector field F , impacts the discontinuity surface Σ := {x : H(x) = 0}
transversally; see Fig. 2.27. We shall analyze the dynamics of a trajectory
with initial condition x̂ that is close to a reference trajectory xp that impacts
Σ := {x : H(x) = 0} at a point x∗. It is perhaps most useful to think of xp as
belonging to a periodic orbit p(t), for which x∗ is the unique point of impact;
although the analysis that follows shall be entirely local to a neighborhood
of x∗. Let us define t1 to be the time for which Φ(xp, t1) = x∗ and let x0

be the point reached by flowing for the same time from initial condition x̂,
so that Φ(x̂, t1) = x0. Note that, in general, x0 will not lie in Σ. Instead, we
must continue the flow for a small additional time δ (which may be positive or
negative) until the trajectory intersects Σ. From this intersection point, the
map R is applied to reach the point x3 in Fig. 2.27. Now, the discontinuity
map Q is defined to be the mapping that takes x0 to x4, which is the point
obtained by flowing from x3 through a time −δ. That is,

Q(x0) = Φ(x3,−δ) = Φ(R(Φ(x0, δ)),−δ).

Thus, Q maps x0 to the appropriate point on the trajectory of the true hybrid
flow which, without resetting the time variable, can be evolved forward under
Φ as if the impact had occurred at time t1. In the case that x0 ∈ Σ, then
note that by definition δ = 0 and Q reduces to the reset map R. However, for
general points x0 close to x∗, Q contains an additional correction. We shall
now proceed to derive an expression for the leading-order correction.

For a general flow described by the differential equation ẋ = F (x), the so-
lution for small subsequent times δ starting from the point x0 can be expressed
as a Taylor series in δ:
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Fig. 2.27. (a) An impacting periodic orbit. (b) A blow-up near x∗ defining the
transverse discontinuity mapping Q(x).

x(t) = Φ(x0, δ) = x0 + δF (x0) +O(δ2).

Setting x0 = x∗ +Δx , we obtain

x(t) = x∗ +Δx+ δF (x∗) +O(δ2, δΔx, (Δx)2).

We wish to find the time δ for which H(x(δ)) = 0. Thus we require

H (x∗ +Δx+ δF (x∗) +O(2)) = 0. (2.68)

where O(2) refers to general quadratic terms in the small variables δ and Δx.
Now, because H(x∗) = 0, we find for x close to x∗

H = Hx(x∗)(x− x∗) +O(‖x− x∗‖2).

Hence, from (2.68) we seek a solution δ to the equation

0 = Hx(x∗) [Δx+ δF (x∗)] +O(2)

Thus, we find

δ = − Hx(x∗)Δx
Hx(x∗)F (x∗)

+O(2). (2.69)

Note that this expression is only valid provided Hx(x∗)F (x∗) �= 0, which is
precisely the condition that the flow crosses Σ transversally, i.e., with non-zero
velocity. Applying the reset map to the point Φ(x0, δ) gives for x3:

x3 = R[x∗ +Δx+ δF (x∗)] +O(2).

To obtain the discontinuity map we must find an expression for x4 in the form

x4 = Φ(x3,−δ)
= x3 − δF (x3) +O(2)
= R[x∗ +Δx+ δF (x∗)] − δF (R[x∗ +Δx+ δF (x∗)]) +O(2).
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Now, both R and F can be expanded as Taylor series about x∗. Hence, we
obtain

x4 = R(x∗) +Rx(x∗)[Δx+ δF (x∗)] − δF (Rx(x∗)) +O(2).

Using the expression (2.69) for δ, we finally obtain

x4 = R(x∗) +
Rx(x∗) + [F (R(x∗)) −Rx(x∗)F (x∗)]Hx(x∗)

Hx(x∗)F (x∗)
Δx+O(2).

Recalling that Δx := x0 − x∗, note that R(x∗) + Rx(x∗)Δx + O(2) is just
the first the first two terms in the Taylor expansion of R(x0). Hence, the
transverse discontinuity mapping is given, to leading order, by

x0 → Q(x0) = R(x0) +
[F (R(x∗)) −Rx(x∗)F (x∗)]Hx(x∗)

Hx(x∗)F (x∗)
(x0 − x∗). (2.70)

The second term in (2.70) is the leading-order correction to the reset map
R(x0); note that this term is linear in (x0 − x∗). Hence, failure to apply this
mapping when computing periodic orbits with impacts will in general lead to
incorrect linearizations (Monodromy matrices), hence incorrect Floquet mul-
tipliers and (potentially) incorrect conclusions about stability of the periodic
orbit.

2.5.2 Transversal intersections; the general case

Consider now a general hybrid system (2.32), (2.33) in R
n, which we assume

to have two phase space regions S1 and S2 as illustrated in Fig. 2.28, with
corresponding flows Φ1 and Φ2, and a single reset map R applying on the
boundary Σ between the two regions. Note that this covers both the case of
a piecewise-smooth flow (2.23) and an impacting hybrid system (as in the
previous calculation). In the case of a piecewise-smooth flow, the reset map R
is the identity mapping. For the impacting hybrid system,RmapsΣ → Σ, and
the flow Φ1 applies after the impact, so that the flow Φ2 becomes identically
Φ1 in what follows.

Suppose that a periodic orbit p(t) crosses the discontinuity set Σ transver-
sally at the two points x = x∗ and x∗∗ as illustrated in Fig. 2.28. The key
observation is that all nearby trajectories must then cross Σ transversally.
Then, since R, Φ1 and Φ2 are smooth, the Poincaré map associated with this
periodic orbit is smooth and has non-singular Jacobian. To compute this Ja-
cobian, and indeed the entire Poincaré map, consider the flow map for the
specific sequence of events that ensue from an initial condition x close to xp

in a Poincaré section Π.
Let us choose an origin of time such that the periodic orbit intersects the

Poincaré section Π at xp ∈ S1 when t = 0 and intersects Σ at the two times
t2 > t1 > 0. Trajectories close to the point x∗ and the time t1 are depicted in
Fig. 2.28(b).
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Fig. 2.28. (a) Defining the event sequence for a simple periodic orbit that generalizes
the two cases in Fig. 2.26. (b) Construction of the transverse discontinuity mapping
Q : x0 �→ x4.

Taking a nearby initial condition x to xp and evolving the flow forward
leads to a trajectory that intersects Σ at the point x2 close to x∗, at time
t1 + δ. If, in contrast, we evolve the flow from x for a fixed time t1, we reach
the point x0 = Φ1(x, t1) in the figure. Applying the map R and then the
flow Φ2 to the point x0 for t > t1 gives an error as we have applied R at
x0 and t = t1 rather than at x2 and at t = t1 + δ. To correct this we can
find the point x4 such that the action of Φ2 on the point x4 for future times
t > t1 coincides with the action of Φ2 on the point x3 = R(x2) for t > t1 + δ.
The correction x4 = Q(x0) is indicated in the figure and is the discontinuity
mapping in this case. This correction is applied to the point x0 and can be
defined theoretically by the expression

Q(x0) = Φ2(R(Φ1(x0, δ)),−δ) = Φ2(x3,−δ). (2.71)

The points x0, x2, x3 and x4 are all indicated in Fig. 2.28(b). Note that the
total elapsed time of the flow combination described by the discontinuity map
is δ − δ = 0.

A similar map can be applied to the subsequent intersection with Σ at the
point x∗∗. Then, the time-T map for the evolution of the overall piecewise-
smooth flow around p(t) becomes

P (x, T ) = Φ1[Q(Φ2[Q(Φ1[xp, t1]), t2 − t1]), T − t2],

which has Jacobian derivative

Px(x, T ) = Φ1,x[R(x∗∗), T − t0]Qx(x∗∗)Φ2,x[R(x∗), t0 − t0]Qx(x∗), Φ1,x(xp, t0)
(2.72)

where Qx is the linearization of (2.71).
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Definition 2.33. The transverse discontinuity map Q for the transverse
crossing of a discontinuity set Σij in a piecewise-smooth flow (or hybrid sys-
tem) is the extra mapping that the flow maps Φi and Φj must be composed
with in order to get a description of the piecewise-smooth (hybrid) flow. Thus,
if Σ is crossed in the sense of passing from region Si to Sj, the correct flow
map is Φ2 ◦Q ◦ Φ1. The Jacobian derivative Qx of Q is called the saltation
matrix.

We shall now extend the earlier calculation to derive an explicit expression
for the discontinuity mapping Q, and its derivative, the saltation matrix Qx.
In order to do so, suppose that the discontinuity set can be written locally as

Σ = {x ∈ R
n : H(x) = 0}

for some smooth function H. Consider again the local piece of the trajectory
in Fig. 2.27 with initial condition x in a neighborhood of xp. Evolving through
a time t1 we reach the point x0 = Φ1(x, t1), which is in a small neighborhood
of the point x∗ = Φ1(xp, t1). We suppose that x0 = x∗ + Δx, where ‖Δx‖ is
small and develop a Taylor series for Φ1(x0, δ), for small times δ.

For a flow described by the differential equation ẋ = F1(x), the solution
for subsequent times δ starting from the point x0 is given by

Φ(x0, δ) = x0 + δF1(x0) +
δ2

2
F1,x(x0)F1(x0) +O(δ3).

If we now set x0 = x∗ +Δx this expression takes the form

x(t) = x∗+Δx+δF1(x∗)+δΔxF1,x(x∗)+
δ2

2
+F1,x(x0)F1(x0)+O(3). (2.73)

Here O(3) refers to cubic terms in δ and Δx. The transversality of the inter-
section of p(t) with Σ allows us to assume that these are of the same order.

The first step to computing Q(x0) is to find the time δ and the point x2

at which H(x2) = H(Φ1(x0, δ)) = 0. Thus

H
[

x∗ +Δx+ δF1(x∗) + δΔxF1,x(x∗) + F1,x(x∗)F1(x∗)δ2/2 +O(3)
]

= 0.
(2.74)

Now, as H(x∗) = 0, the function H can also be expanded in x about x∗ as

H(x) = Hx(x∗)(x− x∗) +
1
2
(x− x∗)THxx(x∗)(x− x∗) +O(3).

So (2.74) can also be expressed as a Taylor series and solved term by term for
δ, under the assumption that the leading-order term

Hx(x∗)F1(x∗) �= 0. (2.75)

As before, this is precisely the condition that p(t) crosses Σ transversally.
Specifically we obtain



110 2 Qualitative theory of non-smooth dynamical systems

δ = − Hx(x∗)Δx
Hx(x∗)F1(x∗)

+O(2), x2 = x∗ +Δx+ δF1(x∗) +O(2),

The quadratic and all higher terms in these expressions can also be evaluated
if higher-order expressions for the discontinuity mapping are required. In fact,
the assumption (2.75) guarantees that the discontinuity map Q is an analytic
function provided F1, F2 and R are also analytic.

According to (2.71), we now compute Q by applying the flow Φ2 to the
point

x3 := R(x2) = R [x∗ +Δx+ δF1(x∗)] +O(2).

for a time −δ. Now, Φ2 can be expanded about the point R(x∗) in the same
way as Φ1 was expanded about x∗; see (2.73). This gives

Q(x0) = x4 = Φ2(x3,−δ)
= R(x2) − F2(R(x2))δ +O(2)
= R(x0 + δF1(x∗)) − F2(R(x0 + δF1(x∗)))δ +O(2).

Furthermore, we will assume that the map R can be expanded about the point
x∗, so that

R(x0) = R(x∗) +Rx(x∗)Δx+
1
2
ΔxTRxx(x∗)Δx+O(3).

Using this expression we have

Q(x0) = R(x∗) +Rx(x∗)Δx+Rx(x∗)F1(x∗)δΔx− F2(R(x∗))δΔx+O(2)

= R(x∗) +
[

Rx +
Hx(x∗)

Hx(x∗)F1(x∗)
[F2(R(x∗)) −Rx(x∗)F1(x∗)]

]

(x0 − x∗)

+O(‖x0 − x∗‖2). (2.76)

Thus, the saltation matrix Qx in this general case is given by

Qx(x∗) = Rx(x∗) +
[F2(R(x∗)) −Rx(x∗)F1(x∗)]Hx(x∗)

Hx(x∗)F1(x∗)
.

We now consider examples where we can calculate the saltation matrix
explicitly.

Example 2.12 (A two-zone Filippov system without sliding). For Filippov sys-
tems in which R(x) = x and F1 �= F2 the saltation matrix is given by the
expression

Qx = I +
(F2 − F1)Hx

HxF1
, (2.77)

where I is the identity matrix. This expression was first derived in [2].
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Example 2.13 (Impacting systems). For impacting systems with a single im-
pact boundary written in the form (2.35), (2.36). the vector field F2 should be
identified with F1, since the R maps Σ− to Σ+. Upon letting F1 = F2 := F ,
we find that

Qx(x∗) = Rx(x∗) +
[F (R(x∗)) −Rx(x∗)F (x∗)]Hx(x∗)

Hx(x∗)F (x∗)
, (2.78)

which is precisely the linearization of (2.70) derived earlier.
As a specific application, consider the one-dimensional impact type hybrid

system considered in case study I, in which x = (x1, x2, x3), H(x) = x1 − σ,
R(x) = (x1,−rx2, x3) and F (x) = (x2, a, 1), with a = cos(ωt)) − x1 − 2ζx2

being the acceleration. (Note that the subscripts here refer to vector indices
rather than to the points in the Fig. 2.27.) We therefore have

Rx =

⎛

⎝

1 0 0
0 −r 0
0 0 1

⎞

⎠ , Hx = (1, 0, 0).

If we set v = Hx(x∗)F (x∗) to be the normal velocity immediately before
impact and a− and a+ to be the normal accelerations immediately before and
immediately after the impact, we obtain

Qx =

⎛

⎝

1 0 0
0 −r 0
0 0 1

⎞

⎠ +
1
v

⎡

⎣

⎛

⎝

−rv
a+

1

⎞

⎠−

⎛

⎝

1 0 0
0 −r 0
0 0 1

⎞

⎠

⎛

⎝

v
a−

1

⎞

⎠

⎤

⎦ (1, 0, 0)

=

⎛

⎝

−r 0 0
a++ra−

v −r 0
0 0 1

⎞

⎠ =

⎛

⎝

−r 0 0
1+r
x2

(cosωt− σ) −r 0
0 0 1

⎞

⎠ , (2.79)

which is a result first derived by Fredriksson and Nordmark [107].

Example 2.14 (Onset of sliding in Filippov systems). Saltation matrices also
apply for trajectories of Filippov systems that undergo a transition into slid-
ing, as depicted in Fig. 2.29. Proceeding as above it is straightforward to
derive that the saltation matrix for this case is

Qx = I +
(F12 − F1)Hx

HxF1
,

where F12 is the sliding flow defined by (2.80).

2.5.3 Non-transversal (grazing) intersections

The above discontinuity mapping (2.76) was derived under the transversality
condition (2.75). So-called grazing occurs when a trajectory becomes tangent
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Fig. 2.29. Defining the saltation matrix for the onset of sliding.

to a discontinuity surface Σ. This occurs precisely when (2.75) is violated;
that is, when v := Hx(x∗)F1(x∗) = 0. Notice, from the expression (2.76) that
the saltation matrix contains terms which are proportional to 1/v as v → 0.
Specifically, the coefficient of 1/v is F2 − F1, which would be zero in the
case of flow with degree of smoothness two or higher. However, evaluation of
subsequent terms in the Taylor expansion of the discontinuity map show that
the factor 1/v enters at all orders, such that discontinuity with smoothness
degree n− 2 implies a singularity (proportional to 1/v) of the nth derivative
of the discontinuity map. Thus, the map is no longer analytic in the case of a
grazing impact. In fact, detailed calculations which will be given in Chapters 6,
7 and 8 show that we should expect terms like

√
Δx to occur in the expressions

for the resulting discontinuity maps in this case. However, first we have to
explain what we mean by a discontinuity map in the case of a grazing impact.

We illustrate the situation close to a grazing for an impacting hybrid sys-
tem in Fig. 2.30. In this figure, which is analogous to Fig. 2.27, we show a
distinguished trajectory locally lying entirely S1. This trajectory we assume
to graze with the discontinuity boundary Σ at the point x∗ at time t0.

To construct the discontinuity mapping, we need to know the fate of two
different types of trajectory with initial conditions close to x∗. Some trajecto-
ries do not cross Σ locally; for these, the discontinuity mapping is the identity.
In contrast, the discontinuity mapping will be non-trivial for the trajectory
illustrated in Fig. 2.30 that passes through the point x0 close to Σ at time t1,
hits Σ at the point x2 at time t0 + δ, is mapped to the point x3 by the map
Φ2(R(x2), t2 − t1) and continues in S1 from this point. Note that we allow
here for both the impacting hybrid system case, in which Φ2 is the identity, or
the piecewise-smooth flow case, where R is in the identity. In the latter case,
t2 − t1 is the time of flight of the trajectory until its second impact with Σ.

We shall describe two different ways of defining the non-trivial part of the
discontinuity map. These are constructed either, like the DM for transversal
trajectories defined above, such that the total elapsed time is zero—a so-
called zero-time discontinuity mapping (ZDM)—or are defined with respect
to a local Poincaré section—a Poincaré-section discontinuity mapping (PDM).
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Fig. 2.30. A local illustration of the ZDM and PDM close to a grazing in an
impacting hybrid system. In this figure the solid line represents the actual flow of
the hybrid system, and the dashed line the extended flow. The ZDM is the map
x0 �→ x4 and the PDM is the map x1 → x5.

Our treatment is inspired by the analysis of n-dimensional impacting systems
by [106], which extends earlier results in [236, 264, 197, 142].

To explain the difference between the ZDM and the PDM, consider in
more detail the trajectory in Fig. 6.7 that passes through x0. It intersects the
Σ at x2 and is mapped to x3, where it subsequently evolves to the point x6.
By extending the smooth flow field F1(x) defined in the region H(x) > 0 (so
that it lies above Σ in S1) to the region H(x) < 0 (so that it now lies below
Σ), we may continue the trajectory forward from x2 under the action of the
flow map Φ1, or equally backward from x3. As the point x0 is close to xg,
then the smooth trajectory carried forward from x2 under the action of Φ1

will intersect the Poincaré surface

ΠN = {x : v = Hx(x)F1(x) = 0}

at a point x1 close to xg = 0. Similarly, the backward continuation of the flow
from x3 will intersect the set ΠN at the point x5. The mapping which takes
x1 to x5 is the PDM.

Definition 2.34. The Poincaré-section discontinuity mapping (PDM)
near a grazing orbit is the discontinuity mapping defined on a suitable surface
ΠN transverse to the flow, which contains the grazing set and intersects Σ
transversally, that takes initial conditions on ΠN back to themselves. There
is no requirement that this map take zero time.

The same trajectory starting from x3 can also be continued backward
under the action of Φ1 for a time −δ so that it passes through the point x4 at
the time t0. We then define the ZDM as the map from x0 to x4.
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Definition 2.35. The zero-time discontinuity mapping (ZDM) near a
grazing orbit is the discontinuity mapping in a neighborhood of the grazing
point x0 that takes zero time. That is, when this map is composed with the
flow map of the non-impacting system in order to define a trajectory of the
full system, the time taken is the same as for the flow map alone.

In order to analyze grazing bifurcations of periodic orbits, we suppose that
the trajectory passing through x∗ is part of a limit cycle p(t). Then, in order
to unfold the dynamics, we need to combine a grazing discontinuity mapping
(PDM or ZDM) with a Poincaré map defined around the limit cycle ignoring
the grazing point. For example, zero time condition allows the ZDM to be
incorporated in a natural way into the calculation of a fixed time-T Poincaré
map PS , sometimes called a stroboscopic map. For instance, for a grazing
periodic orbit that is contained entirely within region S1, the stroboscopic
map can be written as

PS = P2 ◦ ZDM ◦ P1,

where P1 describes the evolution with flow Φ1 through time t1 and P2 describes
the Φ1 through time T−t1. The PDM may be preferable to use as an analytical
tool for studying bifurcations of grazing limit cycles. It is also natural to apply
the PDM for autonomous systems and the ZDM for time-periodically forced
ones. The leading order terms of the ZDM and PDM generically have the
same power, but the PDM correction takes non-zero time.

We do not give here the general forms of these maps. Unlike the case
for transverse discontinuity mappings, there is no simple general expression
valid for all cases of hybrid and piecewise-smooth systems. Indeed the detail
evaluation of these mappings is rather lengthy in some cases; and forms the
main thrust of Chapters 6, 7 and 8 in the cases of impacting hybrid systems,
and piecewise-smooth systems with and without sliding, respectively. We shall
also show in more detail how to combine the ZDM or PDM with the full flow of
the system to produce an overall Poincaré mapand hence unfold the dynamics
near a grazing limit cycle and other related DIBs.

2.6 Numerical methods

Many examples presented in this book rely on computations of orbits of
piecewise-smooth and/or hybrid flows. For smooth flows, there are broadly
speaking two classes of numerical methods for investigating the possible dy-
namics for a range of parameter values, namely: direct numerical simulation,
and numerical continuation (also known as path-following). This classification
also applies to piecewise-smooth systems. The rigorous numerical analysis of
non-smooth dynamical systems remains a theory that is far from complete.
Therefore, we shall take a practical approach in this book, since our goal is
to use numerics to illustrate theory, rather than to analyze or derive optimal
numerical algorithms.
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2.6.1 Direct numerical simulation

When computing solutions to piecewise-smooth systems it is usually not pos-
sible to use general-purpose software packages directly, as most black-box
numerical integration routines assume a high degree of smoothness of the so-
lution. Accurate numerical computations must make special allowance for the
non-smooth events that occur when a discontinuity boundary Σij is crossed.
Simulation methods for non-smooth systems fall broadly into two categories;
time-stepping or event-driven. The former is most often used in many-particle
rigid body dynamics written in complementarity form for which there can be
perhaps millions of constraints and corresponding slack variables (Lagrange
multipliers). For such problems, to accurately solve for events when one of the
multipliers or constraint functions becomes zero within each time-step and
to subsequently re-initiate the dynamics would be prohibitively computation-
ally expensive. In contrast, the basic idea of time-stepping is to only check
constraints at fixed times at intervals Δt. There are adaptations to standard
methods for integrating ODEs and DAEs that are specifically designed for
complementarity systems, some of which are based on linear complementar-
ity problem solvers that have been developed in optimization theory. Clearly,
errors are introduced by not accurately detecting the transition times, and
therefore time-stepping schemes are often of low-order accuracy (i.e., with er-
ror estimates that ∼ O(Δt)q for a low q) and can completely miss grazing
events associated with low-velocity collisions. Several commercially available
implementations of time-stepping algorithms are available, especially for the
specific case of rigid body mechanics. These often have a variational formu-
lation and are able to deal with the difficult problem of the collision of two
rough bodies that may not have unique solutions. See the review by Brogliato
and co-workers [41] and the Chapter by Abadie in [39, Ch. 2] for more details.

In this book we are largely concerned with low-dimensional systems with
a small number of discontinuity boundaries (no more than say 10 of each). In
that context, explicit event-driven schemes are feasible, fast and accurate. In
these methods, trajectories within regions Si are solved using standard numer-
ical integration algorithms for smooth dynamical systems (e.g., Runge-Kutta,
implicit solvers, etc.). Using these methods, the times at which a discontinu-
ity boundary is hit are accurately solved for, and the problem is re-initialized
there. Here we include the possibility of sliding or sticking flow by allowing
portions Σ̃ij of discontinuity sets that are attracting to have the same status
as open regions Si, and to let the sliding vector field Fij apply there. We then
treat the boundary ∂Σ̃ as another discontinuity set. Similarly, in sticking re-
gions for impact-hybrid systems, we can compute the explicit sticking flow
that satisfies (2.43). Alternatively, one can use a DAE formulation, so that
the Lagrange multipliers α or λ remain as part of the problem and a con-
straint Hij = 0 is added which defines the discontinuity surface Σij . There
are now many reliable solvers for systems of differential algebraic equations,
for example, DDASSL [218].
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A key requirement for an event-driven method is the ability to define each
discontinuity boundary as the zero set of a smooth function Hij = 0. Also
we have to carefully define a set of transition rules at each boundary that
applies, if necessary, a reset rule Rij and switches to the integration of a new
dynamical system on the far side of the boundary. Thus, the time-integration
of a trajectory of the dynamical system is reduced to the finding of a set of
event times tk and events H(k)

ij such that

H
(k)
ij (x(tk)) = 0.

To achieve this we set up a series of monitor functions, the values of which are
computed during each step of the time-integration. If one of these functions
changes sign during a time step, then one needs to use a root finding method
to accurately find where Hij = 0. These ideas have been implemented in
Matlab by Piiroinen & Kuznetsov [222].

Special care has to be taken to allow for the possibility of a sequence of
event times converging onto a limit (for example, in a chattering sequence)
followed by sticking or sliding. Clearly it is not appropriate to calculate all of
the event times. To overcome this, it is typical to keep a record of the last few
events. If it appears that the event times are converging to a limit, then this
limit can be determined asymptotically, and then the procedure for a sliding
or slicking solution applied; see [203] for details.

Let us now see how the event-driven method works specifically in the case
of a two-zone Filippov system with sliding:

ẋ =
{

F1(x), if H(x) > 0,
F2(x), if H(x) < 0.

Note that the sliding vector field

Fs = (1 − α)F1(x) + αF2(x), where α =
HxF1

HxF1 −HxF2
(2.80)

is defined in a full neighborhood of Σ = {H = 0}. The flow is such that
Hx ≡ 0, so that it is confined to level sets H = const. So, a small error in
initial condition H(x(tj)) = ε will not in theory lead to flow precisely on Σ
but on another manifold a small distance away from it. In fact, as is well
known from constrained time-integration [10], a numerical approximation to
such flows will cause H(x(t)) to slowly drift away from this manifold. One
resolution to this [222] is to replace the sliding vector field with a regularized
version

̂Fs(x) = Fs − CHx(x)H(x),

where C is a positive constant. Note that ̂F12 = F12 on Σ, but away from the
switching manifold, we have exponential attraction in the direction Hx onto
it. See Fig. 2.31.
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(a) (b)Fij ̂Fij

̂Σ̂Σ

Fig. 2.31. (a) The sliding vector field Fij and (b) the regularized version ̂Fij near
a discontinuity boundary Σ. Dashed lines indicate qualitatively what might happen
to a numerical approximation to the flow.

One of the main uses of direct numerical simulation is to compute the
bifurcation diagrams of the set of attracting solutions directly. In this pro-
cess, for a fixed parameter value, a set of initial points is chosen and the flow
from each point is determined. The flow is computed for a sufficiently long
time for transients to decay and for the ensuing dynamics to be deemed to
have converged onto an attractor. This dynamics is then recorded, perhaps in
a suitable Poincaré section. The parameter is then changed slightly and the
same process is repeated. Of course, one has to build up experience about the
system in order to determine how long is a ‘sufficiently long time’. However,
an even more crucial question is to determine what set of initial conditions
to take in order to converge to the various possible attractors. One approach
here, which may minimize transient times, is to choose an initial condition
for the new parameter value to be a point on the attractor at the previous
parameter value. However, such an approach will necessarily miss the possibil-
ity of competing attractors present in the system. For example, consider the
bifurcation diagram Fig. 1.26 for the DC–DC converter example, case study
V, one sees several short intervals of the input voltage E for which in addition
to the main bifurcation branch there are competing attractors (for example,
a period-3 attractor around E = 24).

Thus, in general one should start from a range of different points within
a suitably defined subset D of the phase space from which one has a priori
knowledge that the attractors of the system must lie. But how to choose such
points within this set? The number of points should of course be chosen to
be as large as possible for the computational time available. One could start
with a regular grid of points, but there are advantages in choosing the initial
points at random. That is, at each fixed parameter value, use a random number
generator to choose initial conditions in D uniformly. This way, the situation
where attractors with small basins of attraction are missed consistently at
each parameter value are likely to be avoided. We will refer to this method for
computing bifurcation diagrams as a Monte Carlo method. Indeed, most of
the bifurcation diagrams presented in this book were computed this way. The
direct simulation method has many advantages in giving a quick and realistic
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picture of the bifurcation diagram of a system without assuming any a priori
structure about the number or form of the attractors.

2.6.2 Path-following

While having the merits described above, direct simulation suffers from the
two disadvantages that it does not accurately pinpoint bifurcation points, and
it only computes stable invariant sets (attractors). In order to accurately lo-
cate bifurcations it is sometimes necessary to compute unstable invariant sets.
For example, the collision of a limit cycle with an unstable equilibrium can
cause the sudden disappearance of that limit cycle; or, one might want to
detect the presence of an unstable limit cycle that at some subsequent pa-
rameter value may re-stabilize at a fold. Hence there is a complimentary need
for direct methods for computing specific invariant sets of dynamical systems.
These typically comprise methods for numerical path-following of these solu-
tions as a parameter varies, for detecting codimension-one bifurcations, and
possibly continuation of these bifurcation points in two or more parameters.
These bifurcations might be regular bifurcations that can also occur in smooth
systems, or they might be DIBs associated with the changing of the event se-
quence of the orbit. For smooth systems, there is a large literature on such
methods; see, for example, [168, Ch. 10] or [232] for general explanations, and
for example the software AUTO [88] and MatCont [74].

Let us illustrate the key ideas applied to the continuation, as a single pa-
rameter μ varies, of fixed points of maps x→ f(x, μ). This will be equivalent,
via the numerical construction of Poincaré maps, to the problem of finding
periodic orbits of non-smooth systems that have a given event sequence. It
is also entirely equivalent to computing equilibrium solutions of a piecewise-
smooth system ẋ = f(x, μ) within some fixed region Si. Once we can do this,
then we can use event detection to find parameter values where the event
sequence of the periodic orbit changes, or where a fixed point or equilibrium
hits a switching set Σij . Hence we naturally have a method for the detection
of DIBs.

The general setting is to find paths in the parameter space of smooth
parameterized systems of n equations in n unknowns that take the form

G(x, μ) = 0, G : R
n × R

1 → R
n, (2.81)

given some initial solution x = x0 at μ = μ0. For example, when computing
fixed points of maps, we take

G(x, μ) = x− f(x, μ).

The key idea behind numerical continuation is based on an appeal to the
Implicit Function Theorem to compute sequences of points at small intervals
along the solution curve x(μ) ≈ {(xi, μi), i = 0 . . . N}.
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The most commonly used method for solving systems of nonlinear equa-
tions is Newton’s method, but it is well known that this requires a sufficiently
good initial guess in order to converge [153]. There are many modifications
to the above method and implementation details. Its strength is the local
quadratic convergence guaranteed by Newton’s method. Its drawback is the
requirement to know the Jacobian matrix Gx. This is particular problematical
in the case of periodic orbits.

When computing a periodic orbit of a non-smooth system that involves
the crossing of a discontinuity boundary, one essentially needs a method to
compute the Poincaré mapP (x, μ) from some section Π := {x : π(x) = 0}
to itself, see Fig. 2.26. This can be done via a shooting method. (For alterna-
tive ways of computing periodic orbits in Filippov systems via concatenating
different boundary-value problems for each trajectory segment, see [72]). The
shooting approach takes an initial condition in Π and solves the flow, through
the various regions Si back to Π again, taking a total time τ(x). This defines
the point P (x), and the function to which we apply the continuation algorithm
is thus

G = x− P (x, μ),

a zero of which represents the existence of a periodic orbit. Therefore the
Jacobian we need is Gx = I − Px, so we therefore need an expression for
the linearized Poincaré mapPx. Here it is useful to apply the discontinuity
mappingQ described in the previous section. Indeed, for the case of transversal
intersections, the saltation matrix correction has been used successfully for
path-following [66] and for the detection of limit cycles [1].

So, now that we have the notation, definitions and methods (both analyt-
ical and numerical) at our disposal; we are ready to embark on a tour of dif-
ferent discontinuity-induced bifurcations. We start, in the next two chapters,
with the case of maps.



3

Border-collision in piecewise-linear continuous
maps

This chapter concerns the analysis and classification of non-smooth bifur-
cations of fixed and periodic points of n-dimensional maps that are locally
piecewise-linear and continuous. The majority of the chapter deals with maps
composed of precisely two linear pieces. For such maps, a simple discontinuity-
induced bifurcation occurs when a fixed point of one piece of the map reaches
the discontinuity boundary, a so-called border-collision bifurcation. Tech-
niques are described to classify the simplest resulting scenarios—namely per-
sistence, non-smooth fold and non-smooth period-doubling—based on prop-
erties of the two component linear maps. In addition, bifurcation diagrams of
remarkable complexity are found, including sudden transition from a stable
fixed point to a fully developed robust (i.e., without periodic windows) chaotic
attractor.

A complete classification of the behavior of the simplest orbits is given
for one- and two-dimensional maps. Special attention is placed on the case of
piecewise-linear maps that are nonintertible in one region, due to the presence
of a zero eigenvalue. Such maps will be of importance to the grazing-sliding
bifurcation studied in Chapter 8. Here we are able to prove the existence of
robust chaos in a certain region of parameter space. Finally, we discuss briefly
possible effects of nonlinear terms.

3.1 Locally piecewise-linear continuous maps

Throughout we focus attention on a local region D ⊂ R
n of phase space that

contains just one discontinuity boundary. That is, by an appropriate choice
of local co-ordinates, the map under investigation can be described as

x �→ f(x, μ) =
{

F1(x, μ), if H(x, μ) < 0,
F2(x, μ), if H(x, μ) > 0, (3.1)

where Fi : R
n × R �→ R

n, i = 1, 2 and H : R
n �→ R are sufficiently smooth

and differentiable scalar functions of x ∈ R
n. The surface described implicitly
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by the condition H(x, μ) = 0 defines a smooth boundary

Σ := {x ∈ D : H(x, μ) = 0}, (3.2)

which separates D into two regions

S1 := {x ∈ D : H(x, μ) < 0}, (3.3)
S2 := {x ∈ D : H(x, μ) > 0}. (3.4)

We assume that the map is continuous across the boundary; i.e., F1(x, μ) =
F2(x, μ) for all x ∈ Σ, in the sense that we must be able to write

F2(x, μ) = F1(x, μ) + E(x, μ)H(x, μ) (3.5)

for some smooth function E(x, μ). [Indeed, for a point x̂ ∈ Σ, we have
H(x̂, μ) = 0 and so, from (3.5), F1(x̂, μ) = F2(x̂, μ).]

In this chapter, we assume that functions F1 and F2 have well-defined
linearizations along Σ. Then, intuitively, by choosing a small enough neigh-
borhood of D, the overall map (3.1) can be well approximated by a locally
piecewise-linear map. More precisely, we will assume that the Jacobians F1,x

and F2,x are well defined and non-singular throughout D, but that F1,x �= F2,x

for x ∈ Σ. The next chapter shall deal with maps that are not locally
piecewise-linear; specifically maps with a jump (i.e., such that F1 �= F2 on
Σ); maps with infinite derivatives for which Fi,x is undefined along Σ for
i = 1 or 2; or maps with higher order discontinuity for which F1,x = F2,x

when H(x, μ) = 0. Later in this chapter (Sec. 3.7) we shall also look at the
case of locally piecewise-linear continuous maps that are noninvertible on one
side, i.e., for which F1,x or F2,x is singular along Σ.

The aim is to derive a set of simple conditions on F1 and F2 to allow a clas-
sification to be made of the various types of discontinuity-induced bifurcations
that a fixed point (or periodic point) x̂ of (3.1) can undergo as it approaches
Σ under parameter variation. In what follows we shall assume without loss
of generality that a simple fixed point within S1 exists for parameter values
μ < 0 and that this approaches Σ as μ → 0−. The goal is then to classify
the dynamics that ensues for μ > 0. The classification strategy will consist of
three basic steps:

1. Linearize F1 and F2 about the bifurcation point, and where possible define
a global co-ordinate transformation that places F1 and F2 in their simplest
canonical forms.

2. Check if the linearized map satisfies a set of conditions identifying the
existence and stability of certain periodic orbits.

3. Combine the conditions identified under step 2, and describe a bifurcation
scenario of the simplest possible periodic orbits. Where no simple orbit
is found to be stable, check conditions for the existence of more complex
invariant sets such as robust chaotic attractors or invariant tori.
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Fig. 3.1. Examples of Monte Carlo bifurcation diagrams of border collision bifur-
cations of a simple piecewise linear continuous maps. In each case, the attractor for
μ < 0 is a stable fixed point within region S1, whereas for μ > 0, a number of dif-
ferent attractors may be observed. For the specific details of the map, see Eq. 3.44.
The parameter values taken are (a) ν1 = −0.8, ν2 = 1.2, (b) ν1 = 0.4, ν2 = −0.5,
(c) ν1 = 0.4, ν2 = −12, and (d) ν1 = 0.4, ν2 = −20.

The classification of simple fixed points, steps 1 and 2, can be carried out
in n-dimensional generality. This leads to the main theoretical result of this
Chapter, Theorem 3.1 below. However, there would seem to be no general clas-
sification strategy for showing the existence of invariant circles, chaos, or more
complex invariant sets in n-dimensional piecewise-smooth maps. So, for step
3, we restrict attention here to one- and two-dimensional maps (in Secs. 3.4
and 3.5, respectively), and even then are only able to give partial results.
The advantage though of piecewise-linear maps is that they are remarkably
easy to simulate, and, using a Monte Carlo approach, it is often possible to
gain the correct qualitative information on the dynamics just by looking at
pictures. For example, Figure 3.1 shows four such numerically obtained bifur-
cation diagrams of piecewise-linear maps, whose dynamics can be explained
by the theory presented in this chapter, but for which the correct qualita-
tive conclusion can be drawn by looking at these graphical outputs from an
almost trivial computer code. Nevertheless theory, where available, provides
much more information such as the identification of parameter regimes where
certain behavior can or cannot occur. To begin, we start with some definitions.
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3.1.1 Definitions

Definition 3.1. We say that a point x = x∗ is an admissible fixed point of
(3.1) if, for i = 1 or i = 2, x∗ = Fi(x∗, μ) and x∗ ∈ Sj with j = i. We say
instead that x = x̃ is a virtual fixed point of (3.1) if x̃ = Fi(x̃, μ) and x̃ ∈ Sj

with i �= j.

Definition 3.2. A fixed point x = x∗ is a boundary fixed point x ∈ Σ;
i.e., F1(x∗, μ) = F2(x∗, μ) and H(x∗, μ) = 0.

Now, suppose x∗(μ) is a branch of fixed points of the map x �→ Fi(x, μ)
that depends continuously on the parameter μ ∈ (−ε, ε). Suppose that x∗

becomes a boundary fixed point for the piecewise-smooth map (3.1) when
μ = 0. That is, H(x∗(0)) = 0. Then, if the approach to Σ is transversal, the
Implicit Function Theorem implies that x∗(μ) is an admissible fixed point of
(3.1) for one sign of μ only. Without loss of generality, let us suppose that
this sign is negative. Following [205], we then make the following definition:

Definition 3.3. Such a fixed point x∗ is a called a border-crossing fixed
point if the branch x∗(μ) crosses Σ transversally as μ passes through zero.
In so doing, the fixed point will be admissible for one and only one sign of μ,
without loss of generality μ < 0. Specifically, we require that (for either i = 1
or i = 2):

1. x∗ = Fi(x∗, μ) ∈ Si for −ε < μ < 0;
2. x∗ ∈ Σ for μ = 0;
3. x∗ = Fi(x∗, μ) :=∈ Sj, where j �= i for 0 < μ < ε;
4. HxFi,μ �= 0 when μ = 0.

Note that condition 3 implies x∗ changes continuously into a virtual fixed
point of (3.1) for μ > 0, whereas condition 4 ensures that the crossing of Σ is
transversal.

Definition 3.4. We say that a fixed point x∗ undergoes a border-collision
bifurcation for μ = 0 if x∗(μ) is a border-crossing fixed point and linearizing
the map about x∗(0) in S1 and S2 yields

∂F1

∂x
(x∗, μ)

∣

∣

∣

∣

μ=0

�= ∂F2

∂x
(x∗, μ)

∣

∣

∣

∣

μ=0

, (3.6)

or equivalently, using condition (3.5)

E(x∗, μ)
∂H

∂x
(x∗)

∣

∣

∣

∣

μ=0

�= 0.

Note that condition (3.6) ensures that the Jacobian of the map (3.1) about
the fixed point is discontinuous at the border-collision point.
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Note that the above definitions can be easily extended to define admissible,
virtual and boundary period-n points of a PWS map of interest [205] and their
border-collision. This is because, the nth-iterate map of (3.1) when linearized
within S1 and S2 separately about a period-n point lying within Σ will under
appropriate non-degeneracy conditions, take exactly the same form as (3.1)
for different functions F1 and F2. For example, we can give the following
definition.

Definition 3.5. A period-two point (x∗1(μ), x∗2(μ)) of (3.1) characterized by
F1(x∗1) = x2 and F2(x∗2) is termed admissible if and only if H(x∗1, μ) < 0 and
H(x∗2, μ) > 0. The point would be called a boundary period-two point if
at least one of these conditions is replaced with equality and, otherwise, would
be termed a virtual period-two point.

3.1.2 Possible dynamical scenarios

At a border-collision, many different dynamical scenarios can be observed
under parameter variation. For example, depending on the precise forms of
F1 and F2 (admissible or virtual) fixed, period-two and more general period-n
points may branch off the boundary fixed point for either sign of μ.

The three basic possible scenarios involving fixed and period-two points
for general n-dimensional maps of the form (3.1) are as follows.

x∗

x̃

y∗

ΣS1 S2

CT x

ỹ

Fig. 3.2. Schematic planar phase space diagram of a border-collision leading to
the persistence of the border-crossing fixed point. As the parameter μ is varied past
the bifurcation point, the fixed point x∗ ∈ S1 crosses the boundary transversally
changing continuously into the (admissible) fixed point y∗ ∈ S2.

Persistence: An admissible fixed point x∗ ∈ S1 and a virtual fixed point
ỹ ∈ S1 hit the boundary at the border-collision point, turning into a virtual
fixed point x̃ ∈ S2 and an admissible fixed point y∗ ∈ S1 respectively past
the bifurcation point (see Fig. 3.2).

Non-smooth fold: Two coexisting admissible border-crossing fixed points,
x∗ ∈ S1 and y∗ ∈ S2, hit the boundary and change continuously into two
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x∗

x̃

y∗

ΣS1 S2

CT x

ỹ

Fig. 3.3. Schematic planar phase space diagram of a border-collision leading to
a non-smooth fold. As the parameter μ is varied past the bifurcation point, the
two coexisting (admissible) fixed points x∗ ∈ S1 and y∗ ∈ S2 hit the boundary
transversally changing continuously into two (virtual) fixed points. Thus, past the
bifurcation point, the map has no admissible fixed point.

x∗

x+

x−

ΣS1 S2

CT x

Fig. 3.4. Schematic planar phase space diagram of a border-collision leading to a
non-smooth period-doubling. As the parameter μ is varied past the bifurcation point,
the fixed point x∗ ∈ S1 crosses the boundary transversally. A period-two solution
characterised by one iterate x− in S1 and the other x+ in S2 is involved in the
bifurcation scenario.

virtual fixed points x̃ ∈ S2 and ỹ ∈ S1. Hence, no admissible fixed point
exists past the bifurcation point (see Fig. 3.3).

Non-smooth period-doubling: A period-two orbit (x∗1, x
∗
2) characterized

by having one iteration on each side of the boundary (e.g., x1 ∈ S1,
x2 ∈ S2) branches off the boundary fixed point at the border-collision
(see Fig. 3.4).

In fact, non-smooth period-doubling is just the simplest example of

Non-smooth period-multiplying: A period-m point for m > 1 branches
off from the boundary fixed point. Typically, in order to be admissible,
such orbits have one iterate on one side of the boundary, and n− 1 on the
other (e.g. x1 = F2(xn) ∈ S1, x2 = F1(x2) ∈ S2 and xj = F2(xj−1) ∈ S2,
for j = 3 . . . n).

In each of these simple scenarios, the fixed and period-m points could be stable
or unstable, or exist for μ > 0 or μ < 0 depending on the precise form of F1
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and F2. In what follows we shall find precise conditions for deciding which of
these scenarios exist. For simplicity, we shall exclude detailed analysis of the
period-multiplying bifurcation except for the period-doubling case m = 2.

3.1.3 Border-collision normal form map

As shown originally by Feigin [95, 96, 97, 98, 99] and later in a slightly different
context by Nusse & Yorke [205, 206, 207] (see also [21]), a classification as
intimated in the previous section is most simply carried out by studying an
appropriate normal form map valid in a neighborhood of the border-collision
bifurcation point. Under certain other non-degeneracy conditions [50], this
map takes the form of a piecewise-linear map.

Suppose that a border-collision occurs for μ = μ∗ at x = x∗ ∈ Σ. To
derive an appropriate local normal form mapping, consider a sufficiently small
neighborhood of the border-collision point in both state and parameter space.

First, we introduce a change of co-ordinates x̃ = x∗ − x, μ̃ = μ∗ − μ (and
drop the tildes in what follows), so that the border-collision occurs at the
point x = 0, when μ = 0. Next, we expand the map (3.1), expressed in the
new variables, about the bifurcation point (x, μ) = (0, 0), to obtain

x �→
{

N1x+M1μ+O(‖x‖2, ‖x‖μ, μ2), if CTx+Dμ < 0,
N2x+M2μ+O(‖x‖2, ‖x‖μ, μ2), CTx+Dμ > 0,

(3.7)

where

N1 =
∂F1

∂x
, N2 =

∂F2

∂x
,

M1 =
∂F1

∂μ
M2 =

∂F2

∂μ
,

CT =
∂H

∂x
, D =

∂H

∂μ
,

all evaluated at x = 0, μ = 0.
Now, since the error terms are nonlinear, it is reasonable to assume that

the dynamics local to the bifurcation point can be described by the piecewise-
linear map obtained by neglecting higher-order terms in (3.7). Such a state-
ment can be made rigorous using the terminology of topological equivalence
introduced in Chapter 2, but we do not go into the details here. Clearly, from
this point of view, the Implicit Function Theorem can be used in order to
describe the behavior of simple period-m points correctly, provided each of
the matrices (I −Ni) are non-singular and that Mi is non-zero for i = 1, 2.

In what follows, for the sake of clarity, we will also assume that the bound-
ary is independent of μ; that is, we assume

D = 0
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in (3.7). Again, an appeal to the Implicit Function Theorem shows that such
an assumption can be justified by a further co-ordinate transformation, pro-
vided certain extra non-degeneracy conditions are satisfied. Moreover, the as-
sumption that H is smooth means that, close to the bifurcation point, we can
always choose a suitable change of co-ordinates, which moves the boundary
to the surface {x1 = 0} (see [205, 50, 21] for further details). Moreover, from
the assumption of continuity across Σ for μ = 0, it follows that the matrices
N1 and N2 must then satisfy the condition

N2 −N1 = ECT (3.8)

for some constant vector E. That is, N1 and N2 differ by at most a ma-
trix of rank 1. Specifically, given our choice of co-ordinate so that CT =
( 1 0 . . . 0 ), this means that N1 and N2 differ only in their first column.
Moreover, continuity for non-zero μ implies that the vectors M1 and M2 in
(3.7) must be the same. Thus, we set M := M1 = M2. Finally then we arrive
at the piecewise-linear map

x �→
{

N1x+Mμ, if CTx < 0,
N2x+Mμ, if CTx > 0,

(3.9)

where N1,2 satisfy (3.8).

3.2 Bifurcation of the simplest orbits

For smooth bifurcations, particular unfoldings of the dynamics are associated
with a set of non-degeneracy hypothesis and simple sign conditions on normal
form coefficients. For example, there are two kinds codimension-one possibil-
ities for Hopf bifurcation; either super- or sub-critical depending on the sign
of the key cubic term in the normal form (the so-called Lyapunov coefficient),
see Chapter 2 and [168, Chapter 2] for more details. For border-collisions,
however, such a general classification of all possible unfoldings does not seem
possible. Indeed, as we shall shortly see, (an infinite number of) different pos-
sible unfoldings can arise from the same normal form map (3.9), depending
on the coefficients of the matrices N1 and N2.

In what follows, we present a strategy for the classification of only one as-
pect of the dynamics of this normal form map, namely the bifurcation behavior
of period-one and two points. That is, we provide a method for distinguish-
ing among the three simplest scenarios introduced in the previous section, as
represented Figs. 3.2–3.4. This methodology is based on the original work of
Feigin [98] and its later extensions [80].

3.2.1 A general classification theorem

Section 3.3 is devoted to a proof of the following fundamental result:
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Theorem 3.1 ([95, 96]). Let p1(λ) be the characteristic polynomial of matrix
N1 and p2(λ) the characteristic polynomial of N2 in (3.9). Moreover, define

σ+
1 := number of real eigenvalues of N1 (αi) greater than 1;
σ+

2 := number of real eigenvalues of N2 (βi) greater than 1;
σ−

1 := number of real eigenvalues of N1 less than −1;
σ−

2 := number of real eigenvalues of N2 less than −1.

Assume that the following non-degeneracy conditions are satisfied:

det(I −N1) �= 0,
det(I +N1) �= 0,

CT (I −N2)−1M �= 0,
1 − CT (I −N1)−1E �= 0,
1 − CT (I +N1)−1E �= 0.

Then, at a border-collision, we have the following scenarios:

Persistence if either
1 − CT (I −N1)−1E > 0; (3.10)

or, equivalently
p1(1)p2(1) > 0; (3.11)

or
σ+

1 + σ+
2 is even. (3.12)

non-smooth fold if
1 − CT (I −N1)−1E < 0; (3.13)

or equivalently
p1(1)p2(1) < 0; (3.14)

or
σ+

1 + σ+
2 is odd. (3.15)

non-smooth period-doubling if

1 + CT (I +N1)−1E < 0; (3.16)

or equivalently
p1(−1)p2(−1) < 0; (3.17)

or
σ−

1 + σ−
2 is odd. (3.18)

Remarks
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1. The conditions in this theorem can in principle be used to classify various
different bifurcation scenarios as in Fig. 3.5. Note that there are three
equivalent sets of conditions for each scenario, the proof of the equiva-
lence of which forms the subject of the next section. Take, for example,
the persistence case; then we have condition (3.10) based on matrices,
or (3.11) based on characteristic polynomials, or (3.12) based on eigen-
values. Note that, whereas the latter two sets of conditions, were original
derived by Feigin in the early 1970s [95], the matrix-based conditions are
presented here for the first time (see also [79]). Despite the equivalence,
in practice using eigenvalues for classification is probably most intuitive,
since computations of the eigenvalues are required in order to assess the
stability of the branching solutions. If, instead, it is important to assess
the effects of an additional parameter (not μ) on the possible types of
bifurcation scenarios observed at a border-collision, it might be easier to
use the characteristic polynomials or the matrices directly.

2. As we are about to see, typically a combination of these conditions need to
be used to derive specific bifurcation scenarios associated with a border-
collision. For instance, condition (3.16) could be satisfied at the same time
as either (3.10) or (3.13). Also, (3.16) does not say for which sign of μ the
admissible period-two point exists. For instance, if for a non-smooth fold
condition (3.16) additionally holds, then in principle the period-two point
could exist for same sign of μ as the two period-one points, or for the
other sign μ. Which of these occurs requires further analysis, which leads
to cumbersome expressions in the general n-dimensional case. Later in
this chapter we deal with detailed enumeration of all the various subcases
only in the cases n = 1 or 2.

3. Similar conditions to those given by Theorem 3.1 can be given to charac-
terize the fate of fixed points of higher-iterates of the map that interact
with Σ at the border-collision. For example, suppose there is a period-
two point that visits S1 at least once (otherwise swap the labeling of S1

and S2). Then by looking at the eigenvalues of the matrices N1N2 and
N1N1, we can use the above classification method to determine whether
such period-two points persist, undergo a non-smooth fold or indeed gen-
erate a period-four orbit. For example, let σ+

11σ
+
12 be the number of real

eigenvalues of the matrices N1N1 and N1N2, respectively, which exceed
1. Then, the period-two point persists or folds depending on whether the
quantity σ+

11 + σ+
12 is even or odd, respectively.

4. We have made generic assumptions on the form on the matrices involved,
in particular that (I −N1) and (I −N2) are both non-singular. If either
of these matrices were singular this would mean that the boundary fixed
point would be non-hyperbolic ‘from one side’, that is the maps F1 or F2

would have a multiplier at unity. This would generically correspond to a
fold bifurcation occurring at precisely the boundary equilibrium point, and
its unfolding should be treated as a codimension-two border-collision/fold
bifurcation. Some discussion of codimension-two discontinuity-induced bi-
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furcations occurs in Chapter 9, but is beyond the scope of the current
chapter. In Sec. 3.6 below, we shall also look at another special case that
will be of relevance to the unfolding of sliding bifurcations in Chapter 8,
in which either N1 or N2 is itself singular. Note that such a case does not
violate any of the conditions of the above.

3.2.2 Notation for bifurcation classification

The proof of Theorem 3.1 forms the subject of Sec. 3.3. First let us explore
some of its further consequences. Specifically, by combining the three elemen-
tary conditions in the Theorem, one can delineate all possible behaviors of
period-one and two orbits; see Fig. 3.5. There, we indicate a stable admissible
fixed point in region S1 by the letter A, an unstable admissible fixed point in
S1 by a, a stable admissible fixed point in S2 by B and an unstable admissible
fixed point in S2 by b. A stable period-two point, such as the one depicted in
Fig. 3.4, is denoted by AB if it is stable and ab otherwise. Also, we use ↔ to
indicate the occurrence of a border-collision as μ passes through zero. Using
this notation, a non-smooth fold, for instance, will be described by A, b ↔ ∅.
Note that the ↔ symbol does not necessarily imply that the indicated transi-
tion happens as μ increases, since the direction of bifurcation depends on the
sign of CTM . Finally note that we use the notation /, for example, A/a, to
indicate fixed points whose stability is at present unknown and would require
checking whether the map multipliers (eigenvalues of N1 or N2) are inside or
outside the unit circle.

Let us look in more detail at some of the branches of the tree in Fig. 3.5.
Suppose for example that

σ−
1 + σ−

2 is even (no period doubling)

then we can conclude that no period-doubling occurs at the border-collision
and the following cases are possible according to the specific sets of eigenvalues
of N1 and N2:

1. If σ+
1 + σ+

2 is even then we have persistence of the fixed point at the
border-collision; i.e.,

A/a↔ B/b.

2. If σ+
1 + σ+

2 is odd then we have a non-smooth fold; i.e.,

A/a, b/B ↔ ∅.

The stability of the fixed points involved in the bifurcation scenario can
be determined by looking at whether the eigenvalues of N1 and N2 are inside
or outside the unit circle. For example, if σ+

1 = σ+
2 = 1 in the first case, we

must have a→ b since a real eigenvalue greater than unity implies instability
of the fixed point. In contrast, in the second scenario above, we have that
the number of eigenvalues inside the unit circle must change as we cross the
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Fig. 3.5. Border-collision bifurcation tree generated by the application of the three
elementary conditions (3.12), (3.15) and (3.17)

border-collision point. For example, if σ+
1 = 0 and σ+

2 = 1, we have a direct
analog of the fold; that is, A, b ↔ ∅. However, note that there is no eigenvalue
of N1 that approaches unity as it would for a smooth fold bifurcation.

These represent the simplest possibilities, which might occur in locally
piecewise-linear maps. In higher dimensions, other possibilities can occur.
From the first case we could have σ+

1 − σ+
2 = 2 so that two eigenvalues of

the map jump across the unit circle at the bifurcation point, or in the second
scenario that σ+

1 − σ+
2 = 3 so that three eigenvalues jump. In addition, any

number of complex pairs can jump without this affecting the signs of σ+
1,2.

This illustrates that classifying the possible scenarios in terms of the “jump-
ing” of eigenvalues at a border-collision point is not the most helpful way
of classifying this discontinuity-induced bifurcation in general n-dimensional
maps.

Consider now another branch of the bifurcation tree in Fig. 3.5:

σ−
1 + σ−

2 is odd (period-doubling occurs)

then there is period-doubling and a new stable (AB) or unstable (ab) period-
two orbit will be involved in the border-collision in a way that can be
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determined by looking at the quantity σ+
11 + σ+

12. Specifically we have the
following possibilities:

1. If σ+
1 + σ+

2 is even (persistence of the border-crossing fixed point) then
(a) If σ+

11 + σ+
12 is even (continuous transition to a fixed point and a

coexisting period-two orbit) which gives one of the following scenarios:

A ↔ b, AB,

A ↔ b, ab,

a ↔ B, ab,

a ↔ b, AB,

a ↔ b, ab.

To determine which scenario happens for a particular map, the specific
eigenvalues of N1, N2 and N1N2 must be computed to check for the
stability of the fixed and period-two points involved.

(b) If σ+
11 + σ+

12 is odd (the period-two orbit disappears)

A, ab ↔ b,

A, ab ↔ B,

a,AB ↔ b,

a,AB ↔ B.

2. If σ+
1 +σ+

2 is odd (non-smooth fold of the border-crossing fixed point), then
(a) if σ+

11 + σ+
12 is even (continuous transition to a period-two orbit) we

would get one of the following possible scenarios:

A, b ↔ AB,

A, b ↔ ab,

a, b ↔ AB,

a, b ↔ ab,

Note that these scenarios are not possible for one- or two-dimensional
maps, and it is conjectured in [95, 96] that this is true also in arbi-
trary dimensions, although we are aware of no immediate proof for
n-dimensional maps.

(b) if σ+
11 + σ+

12 is odd (period-two orbit disappears) we get one of the
following cases:

A, b, ab ↔ ∅,

a, b, ab ↔ ∅,

a, b, AB ↔ ∅.
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Example 3.1 (border-collision classification in a two-dimensional map). To
better illustrate the classification strategy described so far, consider a gen-
eral two-dimensional map of the form (3.24) where

N1 =
(

d11 1
d21 0

)

, N2 =
(

d12 1
d22 0

)

, M =
(

1
0

)

. (3.19)

We shall take two different representative cases characterized by different val-
ues of the coefficients of the matrices N1 and N2.

Case 1. Assume d11 = 1.45, d21 = −0.5, d12 = −1.7 and d22 = −0.5 in
(3.19). With this choice of parameters, the eigenvalues of matrix N1 are
λ11 = 0.89, λ12 = 0.56 whereas those of matrix N2 are λ21 = −1.32, λ22 =
−0.38. Thus, using the notation introduced above, we have

σ−
1 + σ−

2 = 1 (odd), σ+
1 + σ+

2 = 0 (even).

Hence, according to the classification tree presented in Fig. 3.5, a non-
smooth period-doubling will occur at the border-collision. In order to iden-
tify the right scenario, we need then to look at the eigenvalues of N1N1 and
N1N2. In particular, we have σ+

11 + σ+
12 is even. Therefore the period-two

orbit coexists with the A/a orbit and we have one of the scenarios:

A, ab↔ b, A, ab↔ B, a,AB ↔ b, a,AB ↔ B.

As the eigenvalues of N1 are inside the unit circle and those of N2 and
N1N2 are not, we have that the fixed point A is stable, whereas b and the
period-two point ab are not:

A, ab↔ b.

Note that this is one of those cases where, because of its general n-
dimensional nature, the classification strategy is able to predict only that
after the border-collision there will not exist any stable fixed or period-two
point. We need therefore to use other tools to establish what attractor,
if any, is indeed observed after the bifurcation event. In two dimensions,
further classification is possible; see Sec. 3.5 for details. A numerical sim-
ulation of the bifurcation diagram in this case is shown in Fig. 3.6(a) in
which we see the transition from a stable fixed point A to what appears
to be a chaotic attractor.

Case 2. Keeping all the parameters as in the previous case, we now vary just
the element d12 of N2 in (3.19) from −1.7 to the value −1.45. In this case,
the eigenvalues of matrix N1 are λ11 = 0.89, λ12 = 0.56, whereas those
of matrix N2 are λ21 = −0.89, λ22 = −0.56. Thus, using the notation
introduced above, we have:

σ−
1 + σ−

2 = 0 (even), σ+
1 + σ+

2 = 0 (even).
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Hence, according to the classification method, no period-doubling will oc-
cur at the border-collision. As σ+

1 + σ+
2 is even, we can have one of the

following scenarios:
A↔ B, A↔ b, a↔ b.

Now, since N1 and N2 have all eigenvalues inside the unit circle, the sce-
nario we predict using Feigin’s strategy is:

A↔ B.

That is, at the border-collision, the admissible border-crossing fixed point
A ∈ S1 will move to the other side, changing continuously into the admissi-
ble stable fixed point B ∈ S2. The numerical bifurcation diagram is shown
in Fig. 3.6(b), which confirms this but illustrates the dramatic change in
slope of the locus of fixed points versus parameter.

a

−0.1
−2

−1

0

0

x∗
1

μ 0.1

b

−0.1
−2

−1

0

0

x∗
1

μ 0.1

Fig. 3.6. Monte Carlo bifurcation diagrams for (a) case 1 and (b) case 2 of Example
3.1.

Example 3.2 (A three-dimensional example). To further illustrate the simplic-
ity of using Theorem 3.1 for classification purposes, we move now to the case
of a higher-dimensional map. Assume that the local mapping associated with
a border-collision in a system of interest is derived to be

x �→
{

N1x+Bμ, if CTx < 0,
N2x+Bμ, if CTx > 0,

(3.20)

where

N1 =

⎛

⎝

0.6 0 1
0 −0.2 0.8

0.5 −0.8 −0.2

⎞

⎠ , N2 =

⎛

⎝

−1 0 1
1.25ρ −0.2 0.8
0.5 −0.8 −0.2

⎞

⎠ ,

with ρ being a tunable parameter and
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B =

⎛

⎝

1
0
0

⎞

⎠ , CT = ( 1 0 0 ) .

Theorem 3.1 can now be used to determine the fixed and period-two points
branching off the boundary fixed point at the border-collision. For example,
using the characteristic polynomials for classification purposes, we have that
in this case:

p1(λ) = λ3 − 0.2λ2 − 0.06λ− 0.508,
p2(λ) = λ3 + 1.4λ2 + 0.58λ+ 0.58 + ρ.

Then, we have

p1(1)p2(1) = 0.826 + 0.232ρ,
p1(−1)p2(−1) = −0.6592 − 1.648ρ,

and, by varying ρ, we can expect to see different bifurcation scenarios at the
border-collision. Specifically, we look at the following cases.

Case 1: ρ = 0. Here, condition (3.11) is satisfied, and therefore, the bifur-
cating fixed point will persist at the border-collision. As condition (3.17)
is also satisfied, a period-two point will also branch off. The eigenvalues of
the matrices N1, N2, determine the stability of the fixed points on either
sides of the boundary, whereas the eigenvalues of N1N2 will determine the
stability of the period-two point. In this case, we find that N1 and N1N2

have all eigenvalues inside the unit circle, whereas N2 is unstable. From
such calculations we find the transition from a stable fixed point in region
S1 to an unstable one lying in region S2 coexisting with a stable period-two
point. This confirms the numerical observations in Fig. 3.1(a).

Case 2: ρ = 4. In this case, conditions (3.11) and (3.17) are still satisfied
but now one of the eigenvalues of N1N2 is outside the unit circle, thus we
expect the transition from a stable fixed point to an unstable period-two
point coexisting with an unstable fixed point. Thus, other stable attractors
might exist past the bifurcation point. Indeed, as shown in Fig. 3.1(b),
we observe the sudden transition from a fixed point to a stable chaotic
attractor. (Conditions for the existence of chaos branching off the border-
collision point will be given in Secs. 3.4 and 3.5 below.)

Case 3: ρ = −0.8. Now condition (3.17) is no longer satisfied; hence, we have
the persistence scenario. As the eigenvalues of both N1 and N2 are now
within the unit circle, the transition is from a stable fixed point in region
S1 to a stable fixed point in region S2 as depicted in Fig. 3.1(c).

Case 4: ρ = −3.57. In this case condition (3.14) holds, whereas (3.17) is no
longer satisfied. Hence we have a non-smooth fold at the border-collision.
The eigenvalues of N1 are within the unit circle, whereas the eigenvalues of
N2 are outside. Hence, we observe the transition from a stable admissible
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fixed point in region S1 coexisting with an unstable fixed point in region
S2 to no admissible fixed or period-two point past the bifurcation point,
as depicted in Fig. 3.1(d).

3.3 Equivalence of border-collision classification methods

This section provides a proof of Theorem 3.1, in particular focusing on the
equivalence of the three alternative sets of conditions in the theorem state-
ment. We start by showing that the normal form map (3.9) can be recast
in a canonical form through an appropriate similarity transformation, which
makes the analysis simpler.

3.3.1 Observer canonical form

Using a classical result from linear algebra, commonly exploited in control
theory [240], it is possible to perform a further similarity transformation that
puts the matrices N1 and N2 in a form that is more amenable for the classifica-
tion of border-collision bifurcations. Note that the characteristic polynomials,
and hence the eigenvalues, of all the matrices involved are invariant under
such transformations.

Specifically, we suppose that the matrices (I − Ni), i = 1, 2, are non-
singular and the associated observability matrices defined as

Oi := (CT CTNi . . . CTNn−1
i )T (3.21)

have full rank. Under these non-degeneracy conditions, we can perform a
further co-ordinate transformation

x̃ = Wx, with W = TiOi, i = 1 or 2, (3.22)

where Oi is the observability matrix given by (3.21) and Ti is the matrix

Ti =

⎛

⎜

⎜

⎝

1 0 . . . 0
di1 1 . . . 0
...

... . . .
...

di(n−1) di(n−2) . . . 1

⎞

⎟

⎟

⎠

,

with dij being the coefficients of the characteristic polynomials of Ni given
by:

pi(λ) = λn + di1λ
n−1 + . . .+ di(n−1)λ+ din. (3.23)

Under such a transformation, (3.7) can be put in the so-called observer
canonical form

x �→
{

Ñ1x+ M̃μ, if CTx < 0,
Ñ2x+ M̃μ, if CTx > 0,

(3.24)
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where Ñi = WNiW
−1, M̃ = WM have the form:

Ñi =

⎛

⎜

⎜

⎜

⎜

⎝

−di1 1 0 · · · 0
−di2 0 1 · · · 0

...
...

... · · ·
...

−di(n−1) 0 0 · · · 1
−din 0 0 · · · 0

⎞

⎟

⎟

⎟

⎟

⎠

, i = 1, 2, (3.25)

M̃ = (m1 m2 . . . mn )T
, CT = ( 1 0 · · · 0 ) .

The peculiarity of the co-ordinate transformation W is that, because ma-
trices N1 and N2 satisfy (3.8) and CT = ( 1 0 . . . 0 ), the transformation
takes the same form for CTx > 0 and CTx < 0. That is we use the same
transformation in regions S1 and S2. Henceforth in this section we shall drop
the tildes on Ni, M when it is clear that the system is already in observer
canonical form.

Remarks

1. The co-ordinate change described above is a generalization to n-dimensions
of the one proposed by Nusse & Yorke [205] for the two-dimensional case.
In two-dimensional it is possible to choose an appropriate co-ordinate
transformation so that the choice of axis is independent of the parameter.
In so doing, (3.7) becomes the normal form

Ñ1 =
(

τ1 1
δ1 0

)

, Ñ2 =
(

τ2 1
δ2 0

)

and

B̃ =
(

0
1

)

, CT = ( 1 0 ) . (3.26)

Here the parameters τi and δi, i = 1, 2 have the convenient interpretation
as the traces and determinants, respectively, of the matrices Ni.

2. The normal form map given by (3.24) is particularly amenable for carrying
out the classification according to Theorem 3.1 because the characteristic
polynomials evaluated at +1 and −1, respectively, can easily read off from
the first columns of N1 and N2 in (3.24). Specifically, the characteristic
polynomials of these matrices are given by

pi(λ) = λn − di1λ
n−1 + . . .− di(n−1)λ− din,

where the di1, di2, . . . , din are just the elements of the first columns of the
transformed matricesNi. Thus, the quantities involved in the classification
of border-collision in higher-dimensional maps required by Theorem 3.1
can be read off directly:

pi(+1) = 1 −
n

∑

k=1

dik, (3.27)
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and

pi(−1) = (−1)n −
n

∑

k=1

(−1)n−kdik. (3.28)

For example, map (3.20) can be recast in the canonical form (3.24) by
considering the change of variables (3.22) with

W =

⎛

⎝

1 0 0
0.4 0 1
0.68 −0.8 0.2

⎞

⎠ .

¡ This gives the transformed matrices of the normal form map:

Ñ1 = WN1W
−1 =

⎛

⎝

0.2 1 0
0.06 0 1
0.508 0 0

⎞

⎠ ,

Ñ2 = WN2W
−1 =

⎛

⎝

−1.4 1 0
−0.58 0 1

−0.58 − ρ 0 0

⎞

⎠ .

The characteristic polynomials of the two matrices can then be read off
directly from their first columns.

Recall from linear algebra the definition of the adjoint of an n× n matrix
A. Written adj(A), the adjoint is defined to be the transpose of the matrix
of co-factors, where the co-factor of an element aij is (−1)i+1(−1)j+1 times
the determinant of the (n− 1)× (n− 1) matrix obtained from A by removing
the ith row and the jth column. The structure of the dynamical matrices N1

and N2 given by (3.25) together with the continuity condition (3.8) yield the
following useful expressions involving the adjoint of (I ±Ni), where i = 1, 2.

Lemma 3.1. Suppose E = ( e1 e2 . . . en )T is a generic vector such that
N2 = N1 +ECT then; we have

CT adj(I −N1)E = CT adj(I −N2)E =
n

∑

i=1

ei := η (3.29)

and

CT adj(I +N1)E = CT adj(I +N2)E =
n

∑

i=1

(−1)i−1ei := θ. (3.30)

Moreover, the characteristic polynomials, p1(λ), p2(λ) of N1 and N2 verify the
properties:

p2(λ) = p1(λ) − λn−1e1 − λn−2e2 + . . .− en, (3.31)
p2(1) = p1(1) − η, (3.32)

p2(−1) = p1(−1) − θ. (3.33)
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Proof. Expressions (3.29) and (3.30) can be obtained immediately by observ-
ing that

I ±Ni =

⎛

⎜

⎜

⎜

⎜

⎝

1 ∓ di1 ±1 0 · · · 0
∓di2 1 ±1 · · · 0

...
...

... · · ·
...

∓di(n−1) 0 0 · · · ±1
din 0 0 · · · 1

⎞

⎟

⎟

⎟

⎟

⎠

Thus, the first row of the adjoint of the matrix (I±Ni), given by CT adj(I±Ni),
is simply the vector ( 1 ∓1 1 ∓1 . . . ) obtained by considering the cofactors
of (I ±Ni), computed neglecting the first column. As this is the only column
that differs between matrix N1 and N2, it also follows that CT adj(I ±N1) =
CT adj(I ±N2) as stated.

Moreover, we have

N2 =

⎛

⎜

⎜

⎜

⎜

⎝

−d11 + e1 1 0 · · · 0
−d12 + e2 0 1 · · · 0

...
...

... · · ·
...

−d1(n−1) + en 0 0 · · · 1
d1n 0 0 · · · 0

⎞

⎟

⎟

⎟

⎟

⎠

.

Using (3.23) we find the characteristic polynomial to be

p2(λ) = λn + (d11 − e1)λn−1 + . . .+ (d1n − en).

Hence, (3.32) and (3.33) immediately follow.

3.3.2 Proof of Theorem 3.1

Without loss of generality, we adopt the observer canonical form (3.24) since
the similarity transformation (3.22) from a general form (3.9) preserves char-
acteristic polynomials.

We begin by considering conditions (3.10) and (3.13), the persistence and
non-smooth fold scenarios, respectively. Let x∗1 and x∗2 be fixed points of the
sub-mappings Π1 := N1x+Mμ and Π2 := N2x+Mμ, respectively. That is,

x∗1 = N1x
∗
1 +Mμ, CTx∗1 < 0, (3.34)

x∗2 = N2x
∗
2 +Mμ, CTx∗2 > 0. (3.35)

Assuming N1 − I and N2 − I to be invertible, from (3.34) we find

x∗1 = (I −N1)−1Mμ. (3.36)

Moreover, using (3.8), from (3.35), we get

x∗2 = N1x
∗
2 +Mμ+ ECTx∗2,
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or equivalently

x∗2 = (I −N1)−1Mμ+ (I −N1)−1ECTx∗2. (3.37)

Substituting (3.36) into (3.37), we then have

x∗1 =
[

I − (I −N1)−1ECT
]

x∗2. (3.38)

Now, let δ1 = CTx∗1 and δ2 = CTx∗2. From (3.38) we obtain

δ1 =
[

1 − CT (I −N1)−1E
]

δ2. (3.39)

For each fixed point to be admissible, we then require δ1 < 0 and δ2 > 0. Thus,
the two solutions will be admissible for opposite signs of μ (persistence) if

[

1 − CT (I −N1)−1E
]

> 0.

In contrast, the fixed points will be both of the same type—admissible or
virtual—for one sign of μ (a non-smooth fold) if

[

1 − CT (I −N1)−1E
]

< 0,

as claimed by (3.10) and (3.13), respectively.
Using Lemma 3.1, it is simple to show the equivalence of these conditions

to (3.11) and (3.14) given in terms of the characteristic polynomials of the
matrices N1 and N2. In particular, we observe that

(I −N1)−1 =
adj(I −N1)
det(I −N1)

=
adj(I −N1)

pi(1)

and
det(I −N1) = p1(1).

Hence, we have

[

1 − CT (I −N1)−1E
]

= 1 − CT adj(I −N1)E
p1(1)

,

=
p1(1) − η

p1(1)
.

Now, using Lemma 3.1, we obtain

[

1 − CT (I −N1)−1E
]

=
p2(1)
p1(1)

.

Thus, checking the sign of
[

1 − CT (I −N1)−1E
]

yields the same result as
checking the sign of p2(1)/p1(1) or equivalently p1(1)p2(1).

We now move onto condition (3.16). Suppose that a period-two point
branches off the boundary equilibrium at the border-collision. The period-
two solution involved in the bifurcation is characterized by two fixed points
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x∗1, x
∗
2 of the second iterate map f (2). Specifically f(x∗1) = x∗2 and f(x∗2) = x∗1.

For such a period-two point to be admissible, we require that x∗1 and x∗2 be in
opposite half-planes S1 and S2, respectively. Hence, we require

x∗2 = N1x
∗
1 +Mμ, (3.40)

x∗1 = N2x
∗
2 +Mμ. (3.41)

Using (3.8), from (3.41), we have

x∗1 = N1x
∗
2 +Mμ+ ECTx∗2.

Moreover, from (3.40) we find

x∗2 −N1x
∗
1 = Mμ.

From simple algebraic manipulations, we thus obtain

x∗1 =
[

I + (I +N1)−1ECT
]

x∗2. (3.42)

Now, letting δ1 = CTx∗1 and δ2 = CTx∗2, from (3.42) we have

δ1 =
[

1 + CT (I +N1)−1E
]

δ2. (3.43)

Thus, the period-two point will be admissible if δ1 and δ2 have opposite signs
for the same value of μ; i.e.,

[

1 + CT (I +N1)−1E
]

< 0.

As before, we can recast this condition in terms of the characteristic poly-
nomials of the matrices N1 and N2 as follows. Namely, simple linear algebra
shows that

(I +N1)−1 = −adj(I +N1)
p1(−1)

.

Thus, we get

1 + CT (I +N1)−1E = 1 − CT adj(I +N1)E
p1(−1)

.

Hence, using Lemma 3.1, we finally have

1 + CT (I +N1)−1E =
p2(−1)
p1(−1)

.

Therefore we find that checking the sign of 1+CT (I+N1)−1E is equivalent to
checking the sign of p1(−1)p2(−1). Hence we have established the condition
(3.17).

Finally, note that the three elementary conditions (3.11), (3.14) and (3.17)
are written in terms of products of the characteristic polynomials of the ma-
trices Ni evaluated at ±1. We now show that it is possible to recast the
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same conditions in terms of the signs of eigenvalues of the matrices and hence
prove conditions (3.12), (3.15) and (3.18). Specifically, let {αi}i=1,2,...,n and
{βi}i=1,2,...,n be the eigenspectra of N1 and N2, respectively; then, by defini-
tion,

p1(λ) = (λ− α1)(λ− α2)...(λ− αn),
p2(λ) = (λ− β1)(λ− β2)...(λ− βn).

Consider now the sign of p1(1). The first thing to note is that pairs of
complex conjugate eigenvalues, η ± jγ will always generate quadratic factors
in p1(1) of the form (1 − η)2 + γ2 that have a positive sign. Therefore, the
overall signs of p1(1) [and, of course, p2(1)] will depend solely on the number
of real eigenvalues αi (respectively, βi) greater than 1.

In fact, a similar argument to that above shows that any complex roots
contribute a positive factor of pi(λ) for any real λ. Therefore, the signs of
p1(−1) and p2(−1) similarly depend on the number of real eigenvalues less
than −1.

The three conditions (3.11), (3.14), and (3.17) then imply

1. p1(1)p2(1) > 0 ⇔ σ+
1 + σ+

2 is even (persistence);
2. p1(1)p2(1) < 0 ⇔ σ+

1 + σ+
2 is odd (non-smooth fold);

3. p1(−1)p2(−1) < 0 ⇔ σ−
1 + σ−

2 is odd (non-smooth period-doubling).

3.4 One-dimensional piecewise-linear maps

The border-collision bifurcation scenarios we have seen so far involve fixed
points and period-two points of n-dimensional PWS maps. In general, higher
periodic attractors or chaos might also branch off a boundary fixed point
at a border-collision. For example, some of the scenarios listed in Sec. 3.2.2
(e.g., A ↔ b and A, b ↔ ∅) predict the absence of any attracting fixed point
after the bifurcation. In this case, we need to investigate if other types of
attractors (e.g., higher-period periodic points or chaos) can be born at the
border-collision. To address this issue, the next stage in Feigin’s method is
to investigate possible period-two orbits AB or ab. In principle this could be
continued up to period-N points for arbitrary N . Unfortunately, given the
n-dimensional nature of the strategy, it is algebraic cumbersome to go beyond
period-two points. A more complete classification can instead be given in the
case of one- and two-dimensional maps. We start with the case of a simple
one-dimensional piecewise-linear map. The results presented here summarize
and extend those presented in [205, 206, 207, 21, 80, 16, 115, 204, 90].

We study a simple normal form for one-dimensional piecewise-linear maps,
depending on three real parameters. We show how the simple classification
strategy presented above can be extended to reveal a complete understanding
of the bifurcation structure in the parameter plane, including the behavior of
all possible periodic orbits. New effects include the instantaneous generation
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Fig. 3.7. Cobweb diagrams depicting iterates of the map (3.44) for (a) μ = −0.25,
ν1 = 0.5, nu2 = 1.5; (b) μ = 0.25, ν1 = 0.5, ν2 = 0.75; (c) μ = 0.25, ν1 = 0.5,
ν2 = −1.5; and (d) μ = 0.25 ν1 = −1.5, ν2 = 0.5.

of an arbitrary number of orbits of increasing period from a single stable
solution, and a mechanism for the sudden jump to a robust chaotic attractor
that has often been associated with piecewise-smooth systems, such as the
case study examples introduced in Chapter 1.

Consider a mapping from R to R, depending on three real parameters μ,
ν1, ν2:

x �→
{

ν1x+ μ, if x ≤ 0,
ν2x+ μ, if x > 0, (3.44)

which is such that, as μ passes through zero, the fixed point x = 0 undergoes
a border-collision. Note that this map is written in the most general form
(3.9) in one dimension. A simple rescaling x → |μ|x, shows that without loss
of generality we may assume μ = ±1 if μ is non-zero. However, since we
are interested in the passage of μ through zero, we shall not apply such a
transformation explicitly, but remember that any dynamics for a particular
sign of μ will be topologically the same no matter what is the magnitude of μ.
Figure 3.7 depicts the dynamics of the map for negative μ for different values
of ν1 and ν2. Note from panels (a) and (b) that, if ν1 and ν2 have the same
sign, then the dynamics must remain somewhat trivial. That is, the only form
of allowed attractor is a stable fixed point. In particular no period-m points
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can exist for m > 1. Hence in what follows we shall focus exclusively on the
case that ν1 and ν2 have opposite signs. Now, there is a further transformation
under which the map (3.44) is invariant:

x→ −x, μ→ −μ, S1 ↔ S2.

In fact, Fig. 3.7(c),(d) depicts the dynamics of the map for two cases that
are mapped into each other under this transformation. Thus, we can assume
without loss of generality that

ν1 > 0, ν2 < 0.

3.4.1 Periodic orbits of the map

We start our analysis by seeking the domains of existence and stability of
fixed and periodic points. For convenience, we define the two submappings

Π1 : x �→ ν1x+ μ, if x ≤ 0, (3.45)
Π2 : x �→ ν2x+ μ, if x > 0. (3.46)

Consider first simple fixed points of the map. Clearly the map Π1 has fixed
point

x∗1 =
μ

1 − ν1
,

which to be admissible must satisfy x∗1 < 0. So an unstable a mode exists for
μ > 0 if ν1 > 1, and a stable A for μ < 0 if ν1 < 1. Similarly, the map Π2 has
the simple fixed point given by

x∗2 =
μ

1 − ν2
,

which must be positive to be admissible. So the B/b mode exists only for
μ > 0. In addition, the B/b mode has eigenvalue ν2 and hence is stable (B)
for ν2 > −1 and unstable (b) for ν2 < −1. From these calculations, it is
easy to see that (in the notation of the previous section) that if ν1 > 1, then
σ+

1 + σ+
2 = 1, so A/a and B/b undergo a non-smooth fold. Alternatively, if

ν1 < 1, then σ+
1 + σ+

1 = 0, and so there is persistence; i.e., a continuous
transition from A/a to B/b. In addition, for ν1 < 1 and ν2 < −1, we find
σ−

1 +σ−
2 = 1, which implies that a period-doubled mode AB/ab branches off at

μ = 0. In contrast, for ν2 > −1 there is no period doubling, since σ−
1 +σ−

2 = 0.
So, for ν2 > −1, the simplest border-collision bifurcation scenarios are

ν1 < 1, ν2 > −1 ⇒ A↔ B,

ν1 > 1, ν2 > −1 ⇒ ∅ ↔ a,B.

Now consider a general periodic orbit. Such an orbits can be of numerous
different types, which are characterized by different numbers of iterations lying
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in regions S1 and S2, respectively. Extending the notation from the previous
section, we will label such a periodic point by a concatenation of arbitrary
strings of symbols of A and B (or a and b if unstable), e.g., AABBA or
aabba, which means a particular period-five orbit with x ∈ S1, f(x) ∈ S1,
f (2)(x) ∈ S2, f (3)(x) ∈ S2, f (4)(x) ∈ S1 and f (5)(x) = x. We shall in what
follows keep track of all possible periodic orbits of the form AiB (or aib for an
unstable orbit) with i iterates in region S1 followed by just one in S2 before
repeating periodically. We shall show shortly that only orbits of this type may
ever be stable, given our assumption on the signs of ν1 and ν2. We will show
that there exist ν1,2-values that give existence of border-collision bifurcation
scenarios such as

A ↔ b, ab, . . . , ak−2b, Ak−1B,

A ↔ b, ab, . . . , ak−2b, ak−1b,

∅ ↔ a, b, ab, . . . , ak−1b,

for any k � 2. Specifically we have

Theorem 3.2 ([80]). The Ak−1B/ak−1b mode exists for μ > 0 if and only if

ν2 <
1 − νk−1

1

νk−1
1 − νk−2

1

:= ψk(ν1). (3.47)

Moreover, Ak−1B/ak−1b is stable if and only if

ν2 > − 1
νk−1
1

=: φk(ν1). (3.48)

Proof. Clearly the Ak−1B/ak−1b mode exists if and only if there is a periodic
sequence

x�
1 � 0, x�

2 � 0, . . . , x�
k � 0

of the map (3.45),(3.46), where

x�
2 = ν2x

�
1 + μ, (3.49)

x�
j = ν1x

�
j−1 + μ, for all 3 � j � k, (3.50)

x�
1 = ν1x

�
k + μ. (3.51)

Suppose that x�
k � 0; then we have

x�
k−1 =

x�
k − μ

ν1
< 0,

since x�
k is negative and μ and ν1 are both positive. Thus, by induction x�

j < 0
for all 2 � j � k. In addition

x�
1 =

x�
2 − μ

ν2
> 0
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as x�
2 < 0, μ > 0 and ν2 < 0.
We may find x�

k by backwards and forward substitution of (3.49), (3.50)
and (3.51). First we obtain an expression for x�

1:

x�
1 =

1 + ν1 + . . .+ νk−1
1

1 − νk−1
1 ν2

μ,

and then an expression for x�
k:

x�
k =

1 + ν1 + . . .+ νk−2
1 + νk−2

1 ν2

1 − νk−1
1 ν2

μ. (3.52)

So, since μ > 0 and 1 − νk−1
1 ν2 > 0, we have x�

k < 0 if and only if the
numerator of equation (3.52) is negative; that is,

ν2 < −
(

1 +
1
ν1

+
1
ν2
1

+ . . .
1

νk−2
1

)

.

Note that, on summing the geometric progression, we have

−
(

1 +
1
ν1

+
1
ν2
1

+ . . .
1

νk−2
1

)

= −1 + ν1−k
1

1 − ν−1
1

=
−νk−1

1 + 1
νk−1
1 − νk−2

1

= ψk(ν1).

Hence we obtain (3.47).
The eigenvalue of the Ak−1B/ak−1b orbit is

νk−1
1 ν2

and so Ak−1B/ak−1b is stable if and only if

ν2 > − 1
νk−1
1

=: φk(ν1)

3.4.2 Bifurcations between higher modes

Let us consider the two conditions (3.47) and (3.48) for the existence and
stability of the Ak−1B/ak−1b mode. We shall be interested only in ν2 < −1,
since there is no period doubling for ν2 > −1. Recall that Ak−1B/ak−1b:

exists for μ > 0 if and only if ν2 < ψk(ν1);
is stable for μ > 0 if and only if ν2 > φk(ν1).
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The existence of the Ak−1B/ak−1b mode implies that all of ajb for 1 � j �
k − 2 exist and are unstable, since, for all 1 � j � k − 1

ν2 < ψk(ν1) < ψj(ν1) ⇒ AjB/ajb exists for μ > 0,
ν2 < ψk(ν1) < φj(ν1) ⇒ aj−1b is unstable.

Therefore, we can classify the following border-collision scenarios in the
(ν1, ν2)-plane as depicted in Fig. 3.8:

Case 1 ν1 > 1 and ν2 < −1. In this case all modes are unstable. Modes a
and b both exist for μ > 0. If ψk(ν1) > ν2 > ψk+1(ν1), ak−1b exists for
μ > 0, and is the highest such mode to exist, and so the simplest possible
bifurcation structure is

∅ ↔ a, b, ab, . . . , ak−1b.

Thus, as ν2 decreases for fixed ν1, we see a sequence of increasingly complex
border-collision scenarios such as:

∅ ↔ a, b, ab,

∅ ↔ a, b, ab, a2b,

∅ ↔ a, b, ab, a2b, a3b,

...

Case 2 ν1 < 1 and ν2 < −1 Here A/a exists for μ < 0 and is stable,
and B/b is unstable and exists for μ > 0 together with higher periodic
modes. The highest periodic mode in any region may be either stable
or unstable, depending on whether condition (3.48) is verified. To better
understand this condition, consider the function φk(ν1)−ψk(ν1), which is
monotone increasing and equal to −∞ at ν1 = 0 and k−2 at ν1 = 1. Thus
φk(ν1) − ψk(ν1) has a unique zero ν1k ∈ (0, 1). In addition, ψk+1(ν1) <
φk(ν1). Hence, as ν2 is decreased from −1, for 0 < ν1 < ν1k, the (stable)
Ak−1B mode is produced (ν2 = ψk(ν1) > φk(ν1)), then becomes unstable
(ν2 = φk(ν1) > ψk+1(ν1)), followed by the generation of the AkB/akb
mode (ν2 = ψk+1(ν1)). Alternatively, if ν1k < ν1 < 1, the unstable ak−1b
mode is produced without the prior existence of the stable mode. Thus, as
ν2 is decreased, we see bifurcation structures such as

A ↔ b, AB,

A ↔ b, ab,

A ↔ b, ab,A2B,

A ↔ b, ab, a2b,

A ↔ b, ab,A3B,

A ↔ b, ab, a3b,

...
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Fig. 3.8. Simplest possible bifurcation structure of the map (3.44) in each region
of parameter space. Solid lines denote ψk (existence boundaries, which are called fk

in the figure) and dashed lines denote φk (stability boundaries). Regions in which
the highest periodic mode is stable are shaded.

The question remains as to what happens between the regions where sta-
ble periodic orbits exist. Figure 3.9 shows bifurcation diagrams of the map
at different parameter values, showing different bifurcation scenarios associ-
ated with the border-collision occurring at μ = 0. We observe that when the
classification strategy predicts the absence of any stable attractor past the bi-
furcation point, the sudden transition to a stable chaotic attractor is observed
as shown in Fig. 3.9(d). The existence of such an attractor can be proved, and
its features can be further characterized in the case of one-dimensional maps
as is shown in the next section.

The subtle changes in the attractor for μ > 0 as ν1 and ν2 vary are better
illustrated by the bifurcation diagram in Fig. 3.10 obtained by fixing ν1 = 0.4
and decreasing ν2 for μ > 0. As expected, we can observe orbits of increasing
periodicity interleaved with regions of chaotic motion.

3.4.3 Robust chaos

Let us focus on the case 0 < ν1 < 1, ν2 < −1. Under these conditions, we ex-
pect the scenario A↔ b, AB/ab at the border-collision. Figure 3.8 shows that
upon decreasing ν2, we observe bifurcation scenarios of increasing complexity
associated with the generation of stable higher-periodic points. In particular,
the shaded regions in Fig. 3.8 denote areas of parameter space where stable
AjB solutions with j = 1, 2, 3, . . . , n exist. Between these shaded regions we
numerically observe chaotic dynamics for μ > 0.
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Fig. 3.9. Monte Carlo bifurcation diagrams of the piecewise-linear map for ν1 = 0.4
and (a) ν2 = −0.5; (b) ν2 = −1.5; (c) ν2 = −12; (d) ν2 = −20 showing the
occurrence of border-collisions leading to the formation of orbits of type Ak−1B and
chaos. In particular, we observe the following scenarios: (a) A ↔ B; (b) A ↔ b, AB;
(c) A ↔ b, ab, a2b, A3B; (d) A ↔ b, ab, a2b, a3b, . . ..
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0

0

Fig. 3.10. Monte Carlo bifurcation diagram of (1.33) for μ = 1, ν1 = 0.4 and
ν2 ∈ (−80, 0).

The following theorem for the simplifying case of one-dimensional maps
has an elementary proof.

Theorem 3.3 (robust chaos in one-dimensional piecewise-smooth
maps). Consider the map (3.44) for 0 < ν1 < 1, ν2 < −1. Suppose that

ψk+1(ν1) < ν2 < ψk(ν1) and ν2 > φk(ν1), (3.53)

for some k > 2, where ψk and φk were defined in (3.47) and (3.48). Then
there exists a chaotic attractor for all μ > 0. Moreover the attractor is robust
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in the sense that there exist no stable periodic orbits for any μ > 0 or any ν1

and ν2 values satisfying the bounds (3.53).

Proof. We shall explain the existence of chaos for μ > 0 by proceeding in
two stages. First, we show that there must exist an attractor. Then, we argue
that such an attractor cannot be a stable periodic orbit so that a chaotic
attractor is the only possibility. This argument applies uniformly throughout
the parameter region (3.53); hence, we have the stated robustness. Note that
robustness with respect to μ is trivial because the dynamics is scale invariant;
that is, invariant under a rescaling x → x/μ replacing μ by 1 in the map
(3.44). Hence all dynamics for μ > 0 can be trivially related to that for μ = 1.
Without loss of generality, we then suppose μ = 1 in what follows.

−1

−1

1

1

0

0

xn

xn+1

Fig. 3.11. Cobweb diagram showing the iterates of the map (3.44) for μ = 1,
ν1 = 0.8 and ν2 = −2, which parameters satisfy the hypothesis of Theorem 3.3, and
the existence of the trapping region.

To show existence of an attractor, consider the dynamics of (3.44) for
μ > 0; see Fig. 3.11. Suppose x is large and positive (x > 1). Clearly, as
ν2 < −1, such an initial condition gets mapped in one iteration to a point
x1 < (1 + ν2) in region S1. The condition that ν2 < ψk(ν1) implies that such
a point gets mapped under Π1 to a further point in S1, and since 0 < ν1 < 1,
further iterations of x then decrease under the action of Π1. Therefore, finitely
many further iterates of map Π1 keep x inside S1 until an iterate gets mapped
into a point within the range 1/ν1 < x ≤ 0. In the next iterate, such a point
gets mapped into S2 at a point x2 that is bounded below by 1.

Now, either (with probability zero) x2 corresponds with the fixed point b,
i.e., x2 = 1/(1 − ν2)—in which case, all further iterates remain there for all
time—or we reach a point with −1/ν2 < x < 1 (possibly after finitely many
further iterates inside S2). This point now gets mapped into S1 again with
x > (1 + ν2). Further application of the above arguments show that we now
have that (1 + ν2) ≤ x ≤ 1 for all further iterates of the map.

Similar arguments apply to any initial condition with x < (1+ν2). There-
fore we have shown that the interval I := {x : (1 + ν2) ≤ x ≤ 1} is a trapping
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region, which all initial conditions must eventually enter and remain for all
time. Namely, successive iterations of the map generate a bounded sequence,
{fn(x)}∞n=1, and therefore there must be an attractor. That is, there must be
points in I that are accumulation points of this sequence.

To show existence of chaos, we can appeal to the fact that the only
attractors that can exist in one-dimensional maps are stable periodic orbits or
chaotic attractors. Other possibilities, such as quasi-periodic motion (invariant
circles) require at least two dimensions (or the state space to be a circle). So, if
we can show that there cannot be a stable periodic orbit, we have proved that
there must be a chaotic attractor. Let us consider possible stable periodic
sequences. Now since the map is linear in S1 we have that the multiplier
associated with an iterate in this region is always ν1. Similarly the multiplier
associated with an iterate in S2 is ν2. So if we have a periodic sequence
composed of a finite number of symbols 1 and 2 (e.g., a period-five orbit
11122), we can immediately calculate its multiplier as νk1

1 νk2
2 , where k1 is the

number of iterates within S1 and k2 the number within S2 (e.g. ν3
1ν

2
2 for the

above period-five orbit). Now, the inequality, ν2 < φk(ν1) = −ν−k+1
1 , implies

we must have
k1 > (k − 1)k2 (3.54)

for the multiplier to be inside the unit circle and hence for the periodic orbit
to be stable. We shall now show that any such periodic orbit cannot exist
given the inequality ψk+1(ν1) < ν2.

To show this, consider a possible periodic sequence that starts at a point x2

within I ∩S2/b. That is, −1 < x2 < 0. This is without loss of generality since
any periodic orbit must visit region S2. Supposing that x2 �= 1/(1 − ν2), the
fixed point b, we have that either immediately or after finitely many further
iterates within S2 such a point is mapped to S1. Clearly, the maximum number
of iterates that can now be spent within S2 is determined by the image of the
point x2 = −1. After k−1 iterates, we have fk−1(−1) = (1+ν1(1+ν1(. . . ν1(1+
ν2)))) where ν1 appears k − 2 times. The inequality ν2 < ψk(ν1) implies that
fk−1(−1) < 0. However, the inequality ν2 > ψk+1(ν1) similarly implies that
fk(−1) > 0. Hence (k − 1) is the maximum number of iterates that can be
spent inside S2. Thus we have shown that for any periodic sequence for each
iterate in S2 we can have at most (k−1) iterates in S1. That is, k1 ≤ (k−1)k2.
Thus we have shown that (3.54) cannot hold for any periodic orbit, and hence
there cannot be any stable periodic orbit.

Remarks

1. A casual glance at Fig. 3.10 suggests a contradiction to this theorem. It
seems that upon reducing ν2, chaotic attractors are destroyed, although
some kind of sudden crisis as the stable period-k orbit is created (upon
crossing curves ψk). However, further reduction of ψk results in the loss of
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stability of this orbit, upon crossing φk, in what appears to be a period-
doubling type bifurcation. This would suggest a bifurcation on varying
ν2 of Ak−1B → ak−1b, Ak−1BAk−1B, where the latter stable sequence is
a period-2k orbit. However, this would contradict the above theorem. In
fact, such a period-k orbit cannot exist, let alone be stable. This is because
the map, when confined to orbit sequences that are repetitions of 1k−12
(using the notation of the proof), is completely linear. Hence there cannot
exist any period-2k solution with this sequence.
Even if such an orbit did exist, it must be unstable owing to the inequal-
ity ν2 < ψk. However, note that as ν2 approaches ψk from above, the
multiplier of the Ak−1B orbit approaches −1. Hence we should expect
long transients of a flip-flop nature (like a period-doubled motion around
the orbit). These transients get longer and longer as ν2 approaches ψk.
For ν2 just greater than ψk, the orbit becomes weakly unstable, with the
transients causing slow growth towards the chaotic attractor. This is what
we are seeing in the Monte Carlo bifurcation diagram in Fig. 3.10. The
‘ghost’ of the period-doubling is due to the finite length of the transient
data that is thrown away before the points are plotted. In contrast, the
periodic orbits born at the ends of the chaotic regions in the plot are born
in border-collision type events, and so when they occur they have a mul-
tiplier that is bounded away from ±1. Hence, in this case, we do not see
the effects brought about by transients.

2. bifurcation diagrams showing border-collision bifurcations leading to the
sudden onset of chaos in parameter regions described by the theorem
are depicted in Fig. 3.12. We first consider the scenario depicted in
Fig. 3.12(a),(c). Here ν1 = 0.5. Then, to obey the inequalities in the above
theorem for k = 3, from (3.47) and (3.48), we get ψ3 = −3 and φ3 = −2.
Thus, to be in the chaotic region, we choose −3 < ν2 < −2. The bifurca-
tion diagram shown in Fig. 3.12 (c) was obtained for ν2 = −2.2 and in (a)
for ν2 = −2.8. Note that for the lower-ν2 value the attractor appears to be
arranged around 2(k−1) pieces. In this case 4. For higher ν2 values within
the band, the four pieces have merged into a connected chaotic attractor.
For further increase of μ within this chaotic region, this becomes a six-
piece chaotic attractor, as we get the pseudo period-doubling cascade as
mentioned in remark 1, above. Similarly in Fig. 3.12(b) and (d) we depict
one- and six-piece chaotic attractors obtained within the band of chaos
for k = 4. More details of the transitions to chaos due to border-collision
bifurcations in one-dimensional piecewise-smooth maps can be found in
[246, 247].
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Fig. 3.12. Bifurcation diagrams for ν1 = 0.5 representing border-collisions to
chaotic attractors that (a,b) have a single connected component, or (c,d) are or-
ganised in four or six separate pieces. Values of ν2 are, respectively, −2.8, −6, −2.2
and −4.2

3.5 Two-dimensional piecewise-linear normal form maps

We consider now border-collision bifurcations of hyperbolic fixed points in
planar piecewise-linear maps. Here there is the possibility of yet more intricate
behavior emerging from a border-collision point; see [21, 205, 22, 80].

As mentioned in Sec. 3.1.3, under appropriate non-degeneracy assump-
tions, any locally piecewise-linear continuous map can be transformed using
linear changes of co-ordinates into normal form (3.24). In the planar case, this
normal form can be written as

(

x1

x2

)

�→

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

τ1 1
−δ1 0

)(

x1

x2

)

+
(

m1

m2

)

μ, if x1 ≤ 0,
(

τ2 1
−δ2 0

)(

x1

x2

)

+
(

m1

m2

)

μ, if x1 > 0,
(3.55)

where we have changed notation to emphasize that τi is the trace (sum of the
diagonal terms) of the matrix Ni, and δi is its determinant. Moreover, it is
possible to make a further change of co-ordinates to normalize the coefficients
m1 and m2. In particular, setting x̃1 = x1, x̃2 = x2−m2μ and μ̃ = μ(m1+m2),
dropping the tildes we obtain
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(

x1

x2

)

�→

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

τ1 1
−δ1 0

)(

x1

x2

)

+
(

1
0

)

μ, if x1 ≤ 0,
(

τ2 1
−δ2 0

)(

x1

x2

)

+
(

1
0

)

μ, if x1 > 0.
(3.56)

Note that, because traces and determinants are invariant under the co-
ordinate transformation, it is enough to calculate these quantities for the map
of interest without putting it into observer-canonical form and then apply the
classification of border-collisions that we present below.

In what follows, as is often the case in applications, we restrict attention to
dissipative systems, for which δ1 and δ2 are both positive and less than unity.
A similar analysis can be carried out to classify the possible border-collision
scenarios if this is not the case (see, for example, [21] for the case of negative
δ1 and δ2).

3.5.1 Border-collision scenarios

We start with the classification of the simplest bifurcation scenarios; those
involving fixed and period-two points. The fixed points of the map (3.56) are

A/a =
[

μ

1 − τ1 + δ1
, − δ1μ

1 − τ1 + δ1

]

and

B/b =
[

μ

1 − τ2 + δ2
, − δ2μ

1 − τ2 + δ2

]

for
μ

1 − τ2 + δ2
> 0.

In the notation of Theorem 3.1, we have p1(λ) = λ2−τ1λ+δ1 and p2(λ) =
λ2 − τ2λ+ δ2. Thus,

p1(1)p2(1) = (1 − τ1 + δ1)(1 − τ2 + δ2), (3.57)
p1(−1)p2(−1) = (1 + τ1 + δ1)(1 + τ2 + δ2), (3.58)

and therefore, according to conditions (3.11), (3.14) and (3.17), we have the
following possible scenarios:

persistence if either

τ1 > 1 + δ1 and τ2 > 1 + δ2,

or
τ1 < 1 + δ1 and τ2 < 1 + δ2.

non-smooth fold if either

τ1 > 1 + δ1 and τ2 < 1 + δ2,

or
τ1 < 1 + δ1 and τ2 > 1 + δ2.
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non-smooth period-doubling if either

τ1 > −(1 + δ1) and τ2 < −(1 + δ2),

or
τ1 < −(1 + δ1) and τ2 > −(1 + δ2).

To complete the classification, we need to assess the stability of the fixed
and period-two points branching off at the border-collision. Note that, as the
map is linear on both sides of the discontinuity boundary, any period-two
point must be characterized by one iteration in region S1 and one in S2.

The eigenvalues of matrix N1 can be written as

λ11,12 =
1
2
(τ1 ±

√

τ2
1 − 4δ1),

and those of N2 as

λ21,22 =
1
2
(τ2 ±

√

τ2
2 − 4δ2),

from which we can easily work out parameter regions where A and B are
stable. More specifically, we have:

Case 1: τ2 − 4δ < 0. The eigenvalues of the fixed points wi, i = 1 or 2 are
complex conjugate; i.e.,

λi1,i2 =
1
2
(τi ± j

√

4δi − τ2
i ),

and we have |λi1,i2| =
√
δi, which is less than unity. Hence, both fixed

points are stable.
Case 2: τ2 − 4δ > 0. In this case, the eigenvalues are real. In particular,

|λi1| =
1
2
(τi −

√

τ2
i − 4δi),

|λi2| =
1
2
(τi +

√

τ2
i − 4δi),

and we find that each equilibrium wi is stable if |τi| < 1+δi, and unstable
if |τi| > 1 + δi.

So, both equilibria A and B are stable when

−1 − δi < τi < 1 + δi. (3.59)

Period-two points are characterized by one iteration in S1 and one in S2;
hence their stability is determined by the eigenvalues of the matrix N1N2.
Thus, we find the eigenvalues of the period-two point to be

1
2

[

τ1τ2 − δ1 − δ2 ±
√

(τ1τ2 − δ1 − δ2)2 − 4δ1δ2
]

.
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Hence, if (τ1τ2−δ1−δ2)2−4δ1δ2 < 0, such eigenvalues are complex conjugate
and it is easy to show that they must lie inside the unit circle if δ1δ2 < 1,
which is always the case in the parameter region being considered here. If,
instead, (τ1τ2 − δ1 − δ2)2 − 4δ1δ2 > 0, then the eigenvalues are real and are
within the unit circle if:

1 + δ1 + δ2 + δ1δ2 − τ1τ2 < 0,
1 − δ1 − δ2 + δ1δ2 + τ1τ2 > 0.

3.5.2 Complex bifurcation sequences

In general, higher-periodic orbits and chaotic attractors can also branch off
the boundary fixed point at a border-collision. Figure 3.13 shows a selection of
different possible cases, which are computed by Monte Carlo simulation of the
map. This selection shows that transitions from fixed or higher-periodic points
to chaos are possible, as well as transitions between different types of periodic
orbits or transitions to no attractor. A key feature of the two-dimensional
piecewise-affine maps, which was not seen in the one-dimensional piecewise-
affine maps, is the coexistence of different attractors. It should be mentioned
here that the mechanism leading to border-collisions involving multiple at-
tractors has not been studied as yet in the literature and that its explanation
remains an open question.

As the map is planar, it is possible to use geometric arguments to give
conditions for the existence of chaotic attractors and/or higher-periodic points
involved in the border-collision scenario of interest. For example, conditions
for the existence and the stability of higher periodic points can be given by
following the same strategy as the one followed for period-two points in the
previous section.

One thing to note about the two-dimensional map (3.56) is that in the
limit δ1, δ2 → 0 we recover the one-dimensional normal form (3.44) with
ν1 = τ1 and ν2 = τ2. Hence, for small δ1 and δ2, the region τ2 < −(1 + δ2),
0 < τ1 < (1 + δ1) is likely to contain all the complex dynamics highlighted in
the previous section. That is, we expect to see regions where there exist sta-
ble high-period periodic orbits interspersed with parameter regimes of robust
chaos. However, the proof of the robustness of the chaos does not necessarily
apply here. This is because the argument no longer applies that no periodic
orbit can ever be stable if Ak−1B is not stable (where (k − 1) is the highest
number of iterates allowed within S1). The stability of possible longer periodic
chains (e.g., Ak−2BAk−1B) requires more careful treatment since, it does not
necessarily follow that if C and D are matrices with all eigenvalues less than
1 in modulus, then this must also be true of their product CD.

For the two-dimensional map, another parameter region that has attracted
interest is a region where a transition from no attractor for μ < 0 to a robust
chaotic attractor for μ > 0 occurs. It is clear from the plausible argument in
[21, 24] that additional (possibly generic) conditions must be true in order to
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Fig. 3.13. Monte Carlo bifurcation diagrams illustrating different cases of border-
collision bifurcations in the planar map (3.56) (after [21]). (a) From no attractor
to chaos, parameter values are set to τ1 = 1.5, δ1 = 0.3, τ2 = −1.6, and δ2 = 0.4;
(b) from a fixed point attractor to chaos; parameter values are set to τ1 = −1.6,
δ1 = 0.4, τ2 = 1.2, and δ2 = 0.3 (c) from a fixed point attractor to a fixed point
attractor, parameter values are set to τ1 = 0.4, δ1 = 0.3, τ2 = −0.5, and δ2 = 0.3;
and (d) from period-two attractor to period-three attractor, parameter values are
set to τ1 = −1.2, δ1 = −0.3, τ2 = −1.2, and δ2 = 1.6

guarantee that such a scenario definitely occurs, and the precise enumeration
of the parameter region in which a chaotic attractor occurs remains an open
problem. In the next section, we shall deal with a special case when one of the
δi is zero, where it is possible to provide precise information on the existence
of robust chaos in (3.56).

Under other conditions, it is possible that the two-dimensional piecewise-
linear continuous map (3.56) generates quasi-periodic motion corresponding
to the existence of stable invariant circles [280, 282, 27]. Again, we are un-
aware of a general classification of where in the four-dimensional (δi, τi, δi, τi)-
parameter space such behavior should be observed.

In higher dimensions, more or less any dynamical behavior may be ob-
served in piecewise-linear continuous maps (see, e.g., [241, 21, 148, 189, 90,
99, 152]), and a general classification, such as we attempted for the one-
dimensional case would appear impossible.
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3.6 Maps that are noninvertible on one side

In this section, we consider piecewise-linear continuous maps of the form stud-
ied in this chapter, that are invertible only in one of their two linear pieces.
More precisely, we assume that in one region, say S2, the matrix representing
the dynamics has co-rank one; that is, it has a single zero eigenvalue. The
importance of the study presented here will become clear in Chapter 8, where
it will be shown that locally noninvertible normal form maps arise from the
local analysis of grazing-sliding bifurcations in Filippov flows. noninvertible
piecewise-linear maps have been studied in a number of papers in the litera-
ture (see for example [187, 188, 190, 191, 158]).

Specifically, consider a map of the form (3.24) and assume now that, al-
though N1 is non-singular, N2 is such that N1B = 0 for some non-zero matrix
B ∈ R

1×R
n with CTB = 0. Hence N2 has corank 1; that is, det(N2) = 0 and

N2 has a single zero eigenvalue with right eigenvector B. The dynamics of such
a family of mappings is trivial if n = 1, so we focus here on the two-dimensional
case (as would arise from Poincaré maps of three-dimensional flows) [158]. In
two-dimensions, after co-ordinate transformations as introduced earlier in the
chapter, we arrive at a normal form map of the form:

(

x1

x2

)

�→

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(

τ1 1
−δ1 0

)(

x1

x2

)

+
(

1
0

)

μ, if x1 ≤ 0,

(

τ2 1
0 0

)(

x1

x2

)

+
(

1
0

)

μ, if x1 ≥ 0.

(3.60)

The bifurcation scenario that results from a border-collision is explained
using the same classification approach for two-dimensional maps in Sec. 3.5.
Specifically, note that the main requirement of Theorem 3.1 is that (I −N1)
and (I − N2) be non-singular. Hence the fact that N2 itself is singular does
not invalidate that theorem. Existence of higher-periodic orbits and chaos
can proven in the planar case we are treating by means of simple geometric
arguments (see [158] for an exhaustive list of possible cases). Here, though,
we restrict attention to the existence of robust chaotic attractors.

3.6.1 Robust chaos

We focus on the chaotic attractor created for the map (3.60) in the parameter
region where

τ1 > −1 − δ1, τ2 < −1, |τ1| < 2.

Under these conditions, period-two points branch off the border-collision bi-
furcation point. Note that in our current case a fixed point A and (or its
virtual counterpart) Ã can lie either above or below the x1-axis, whereas the
fixed point b (or b̃) must lie on the axis; see Fig. 3.14
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Fig. 3.14. Schematic representation of the fixed points of (3.60) before (a) and
after (b) the border-collision bifurcation from an admissible stable fixed point to
an admissible saddle. Lines with arrows schematically depict eigendirections of both
fixed points.

Consider first the situation when μ < 0, Fig. 3.14(a). Note that A is an
attracting fixed point for both regions S1 and S2. Consider an initial condition
in S2. After one iterate, it is mapped onto the x-axis and, after at most one
further iteration, into S1. For μ = 0, the fixed point A moves to the origin
where it remains an attractor.

Consider next what happens for μ > 0; see Fig. 3.14(b). The stable admis-
sible fixed point A becomes a virtual fixed point Ã and the unstable virtual
saddle b̃ becomes the unstable admissible fixed point b. By continuity, for
μ > 0, Ã will attract points from S1, so all initial conditions in S1 will even-
tually be mapped into S2. The eigenstructure of the fixed point b of S2 will
govern subsequent behavior. Simple calculations reveal that b is a flip sad-
dle (that is, it has a negative multiplier). Therefore all points in S2 will be
mapped immediately onto a segment of the x1-axis and eventually, after a
finite number of iterations, onto the part of the axis with x1 < 0. Hence, a
trapping region is formed which consists of part of the x1-axis and the for-
ward iterates of this part. The immediate question arises as to what type of
attractors can exist within this trapping region. We break the classification
into the two cases as follows.

Theorem 3.4 (Two-piece chaotic attractor). If the border-collision bi-
furcation from an admissible fixed point attractor to an admissible flip-saddle
is exhibited by map (3.60) under the variation of μ and in addition conditions

τ1 < − 1
1 + τ2

, (3.61)

τ1(τ2 + 1) − δ1(1 +
1
τ2

) < 0, (3.62)

τ1(τ2 + 1) − δ1(1 +
1
τ2

) + 1 > 0, (3.63)
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Fig. 3.15. An example of a limit set of (3.60) after the border-collision bifurcations
from a stable fixed point to a flip saddle.

hold, then there exists an attractor for μ > 0 that lies within the piecewise-
linear continuous invariant segment KLC, where K = [(τ2 + 1)μ, 0], L =
[μ, 0] and C = [(τ1τ2 + τ1 + 1)μ, −δ1(τ2 + 1)μ] (see Fig. 3.15).

If, in addition,
|τ1τ2 − δ| > 1, (3.64)

then this attractor is chaotic and robust.

Proof. Let us focus on Fig. 3.15. As mentioned, for μ > 0, points from both
regions S1, S2 are eventually mapped onto a portion of the negative x1-axis.
Let us denote this segment KO (see Fig. 3.15) and consider what happens to
this segment under forward iteration. The origin O is mapped to the point
L : (μ, 0), and by continuity, the image of KO joins the x1-axis at this point,
but as it cannot lie on the axis itself, the image of the entire x1-axis must
exhibit a non-differentiable corner here. The image of KO is denoted LC in
Fig. 3.15.

If (3.61) holds LC does not cross the x2-axis. Suppose this situation to be
the case, and consider the image of LC under the map. L is then mapped to
the point ((τ2 + 1)μ, 0), which is how we define the point K. Let us suppose
that C is mapped into the interior of the segment KL. This holds under the
inequality constraints (3.62), (3.63). Hence K is a pre-image of C and so the
piecewise-linear continuous invariant segment KLC is an invariant set that
must contain all the long-term dynamics. Let us denote this invariant set by
Ξ; see Fig. 3.15.

Because of the geometry of the set Ξ, one of the period-two points must
lie on KO and the other on LC, thus, we observe switchings between S1

and S2. The period-two points can be either stable or unstable depending on
whether the quantity τ1τ2 − δ1 lies within the unit circle. Assuming it does,
the period-two point is the global attractor of the system.
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A more intriguing scenario can be observed if the period-two point is un-
stable, i.e., when τ1τ2 − δ1 lies outside of the unit circle. In this case, we shall
first show that there are no other stable periodic points within Ξ. We can
analyze the dynamics on Ξ by considering a map that maps KL back onto
itself. Such a map will be discontinuous and consist of two linear pieces. If
the absolute values of both slopes of the map are greater than unity, then no
stable periodic point can live on Ξ. To obtain the functional form of such a
one-dimensional map, consider the first two forward iterates of L, O and K.
After straightforward calculation [158], we obtain the map

π(x;μ) =
{

−1(τ2τ1 − δ1)x+ ((τ2τ1 − δ1) + 1)(τ2 + 1)μ, for x ≤ 0,
τ2x+ μ, for x ≥ 0,

(3.65)
from which we can see that the slope is strictly greater than unity in absolute
value everywhere. Thus there can be no stable periodic orbits.

To show that the dynamics on Ξ (or on a subset of) must be chaotic, we
appeal to the Smale–Birkhoff homoclinic theory and show that there exists a
transverse homoclinic intersection between the stable and the unstable man-
ifolds of b. These sets form locally straight lines in R

2, joined by continuous,
but non-differentiable corners. The unstable manifold of b is formed by the set
Ξ itself. The stable manifold of b, up to the first intersection with the x-axis,
is formed by the set of points that in one iteration are mapped onto b. In S2,
its functional form can be given by

Sb : x2 = −τ2x1 +
τ2

1 − τ2
μ.

We now seek to find whether Sb intersects LC. The intersection point, say
XCr, is given by

XCr =
(

τ2τ1 + τ2δ1 − δ1
1 − τ2

, − τ2
2 δ1

(1 − τ2)(τ2τ1 − δ1
)
)T

μ.

It can be then checked that indeed, in the parameter range of interest, XCr

belongs to LC.
Finally, note that the chaotic attractor must be robust, since within the

open parameter region stated in the Theorem, the invariant set Ξ persists,
there are no stable periodic orbits on Ξ and the homoclinic intersection re-
mains transverse.

Remark. We should note here that we have not proved that the chaotic
attractor covers the whole of the set Ξ. In simulations we find the chaotic
dynamics is typically organized around the unstable period-two points and
depending on precise parameter values, can form a four, two, or one-piece
chaotic attractor.
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Fig. 3.16. An example of a limit set of (3.60) after the border-collision bifurcations
from a stable fixed point to a flip saddle.

Theorem 3.5 (Three-piece chaotic attractor). If the border-collision bi-
furcation from an admissible fixed point attractor to an admissible flip-saddle
is exhibited by map (3.60) under the variation of μ and in addition conditions

τ1 > − 1
1 + τ2

, (3.66)

τ3
1 (τ2 + 1) + τ1 + 1 − δ1(1 +

2
τ2

) > 0, (3.67)

τ3
1 (τ2 + 1) + τ2

1 (1 + τ2δ1) − δ1τ1(1 +
1
τ2

) − δ1
τ2

+ 1 > 0, (3.68)

hold then there exists an attractor born in the border-collision bifurcation that
must necessarily lie within a piecewise-linear continuous invariant set built
from segments GEI and LH.

Proof. Under the hypotheses of this theorem, the image ofKO now crosses the
x2-axis; see Fig. 3.16. The image of KO, denoted by LD, contains a segment
CD, which requires one additional iteration to get mapped into S2. Segment
LC is mapped in one iteration onto the x1-axis. By continuity, the image of
CD, denoted EF , must join the image of LC. Note that the point E must
lie outside of the segment KL but in region S2 and that the maximum value
of x1 at E is greater than the maximum value of x1 of the pre-image of KO,
from the hypothesis of the theorem.

From (3.66) it also follows that τ1 > 0. Then, if (3.67) holds in forward
iteration, the piecewise-linear segment OEF is mapped within some segment,
say GE. [Condition (3.67) ensures that the value of x1 of the image of F is
less than that of x1 at E; see Fig. 3.16.] Now we need to consider forward
iterations of GO only (OE is mapped onto GO). The image of GO will cross
the x2-axis and is denoted in the figure by LH. Finally, the image of LH will
form a piecewise-linear continuous segment KEI lying partly on the x1-axis
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(the part KE) where at point E it is joined by segment EI (see Fig. 3.16). Our
main concern is to determine the image of EI. If condition (3.68) is satisfied,
then the image of EI lies within GE and we have obtained a bounded set,
say Ξ, which must contain the ω-limit set. The set Ξ will be formed by three
linear segments, GE, EI and LH.

Remarks

1. The possible ω-limit sets on Ξ are higher-periodic points or a chaotic
attractor. Similarly to the previous case, these different scenarios can be
distinguished by determining the stability properties of higher-periodic
points. By obtaining a one-dimensional map that maps GE back onto
itself, it can be shown that, provided the period-three point is unstable,
there are no other possible stable periodic points on Ξ. A homoclinic
intersection between the stable and the unstable manifolds of b can be
shown. Hence a chaotic attractor is born on Ξ. Similarly as in the two-
piece case, robustness can be also shown. Because of the structure of Ξ,
we might observe the onset of a six-, three- or one-piece chaotic behavior.

2. In principle, we could also consider the possibility of the existence of a
Ξ set formed by a higher number of piecewise-linear segments, four, five
and so on. For example if EI (see Fig. 3.16) is not mapped within GE
(violation of (3.68)) or if the maximum value of x of the image of OEF is
greater than at E (violation of (3.67)), then, if there exists a bounded set,
it must necessarily contain a higher number of piecewise-linear segments
than three. The dynamics on such sets can be analyzed in a likewise
manner.

3.6.2 Numerical examples

Example 3.3 (Two-piece chaotic attractor).
Consider the map derived in [86] at which a grazing sliding bifurcation

was found to lead to the onset of chaos. The map in question falls into the
class (3.60) with

N1 =
(

0.8540 1
−0.009 0

)

, N2 =
(

τ2 1
0 0

)

. (3.69)

We will vary the parameter τ2 and show that for different values of this pa-
rameter we can observe a border-collision as μ increases that creates a stable
period two point, then a four-piece chaotic attractor, that merges into a two-
piece attractor and finally a one-piece chaotic attractor.

For τ2 < −1 the map is characterized by a stable fixed point, say A/Ã and
a saddle point b/b̃ given by
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A/Ã =
( μ

0.1550
, 0.0581μ

)T

, and b/b̃ =
(

μ

1 − τ2
, 0]

)

.

The eigenvalues of A/Ã are 0.8433 and 0.0107, and those of b/b̃ are τ2 and
0. For these values, a period-two point is born in the border-collision. To see
a transition to a stable period two point we need the eigenvalues of N1N2 to
lie within the unit circle. In our case the eigenvalues of N1N2 are λ1 = 0,
λ2 = 0.854τ2 − 0.009. So, for τ2 = −1.1, for example, we find a stable period-
two point after the bifurcation; see Fig. 3.17(a).
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Fig. 3.17. Bifurcation diagrams showing birth of attractors lying on a two-piece
invariant set Ξ after a border-collision bifurcation for (3.69) with (a) τ2 = −1.1, (b)
τ2 = −1.3, (c) τ2 = −1.5 and (d) τ2 = −1.85.

Under further reduction of τ2, the period-two points become unstable.
For example, for τ2 = −1.3 [Fig. 3.17(b)] it can be easily shown that all the
inequality conditions in the statement of Theorem 3.4 are satisfied and that
we get a chaotic attractor lying on a two-piece invariant set Ξ. In this case,
since the period-two points are only weakly unstable, the chaotic attractor
is organized near the these periodic points (flipping on either side of each
one) and so has four pieces. With yet further decrease of τ2, the limit set
covers a bigger part of Ξ, with first pairs of pieces of the attractor merging
[Fig. 3.17(c) and eventually, for τ = −1.85, forming a single piece chaotic
attractor (Fig. 3.17(d)]. Figure 3.18 shows the corresponding invariant sets,
confirming that in each case the attractor lies on a two-piece invariant set Ξ.
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Fig. 3.18. Invariant sets corresponding to each panel in Fig. 3.17 for μ = 0.1

Example 3.4 (Three-piece attractor).
Similarly to the previous example, consider a piecewise-linear map of the

form (3.60), but with

N1 =
(

0.5 1
−0.06 0

)

, N2 =
(

τ2 1
0 0

)

. (3.70)

We will vary τ2 starting from τ2 = −3.5 and show different cases of border-
collision bifurcation scenarios under the variation of the bifurcation parameter
μ, all linked with the existence of the three-piece piecewise-linear continuous
set Ξ (see Fig. 3.16). It is straightforward to check that for τ2 = −3.5, (3.70)
satisfies all the conditions of Theorem 3.5. Moreover, we find that for this τ2
value, the eigenvalues of N1N1N2 lie within the unit circle. Thus, under the
variation of the bifurcation parameter μ, we should expect border-collision
bifurcations from a fixed point to a period-three attractor; see Fig. 3.19(a).

If we decrease τ2, the period-three point will become unstable (at τ2 =
−5.105), but the set Ξ will retain its properties. Thus we see the onset of
a robust chaotic attractor with, at first six pieces [Fig. 3.19(b)] then three
[Fig. 3.19(c)], and finally a single piece for τ2 = −6.5 [Fig. 3.19(d)]. The
corresponding ω-limit sets are depicted in Fig. 3.20, from which we see that
they all lie on a three-piece invariant set Ξ.

We now provide an example of a border-collision bifurcation from two vir-
tual saddles to two admissible saddles. This leads to the spontaneous creation
of a chaotic attractor from no local attractor before the bifurcation. A similar
proof of robust chaos may be constructed in this case as in Theorems 3.4
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Fig. 3.19. Bifurcation diagram depicting the border collision bifurcation for (3.70)
with τ2 = (a) −3.5, (b) −5.25, (c) −5.5, and (d) −6.5
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and 3.5 for the flip-saddle case. For brevity, though, we omit the details and
restrict attention to an example system only.

Example 3.5 (Sudden onset of chaos in saddle case). We now consider the
case where

N1 =
(

1.2448 1
0 0

)

, N2 =
(

−4.5502 1
−0.0698 0

)

, (3.71)

for which it is straightforward to calculate that for μ < 0 we have two virtual
fixed points, which become admissible for μ > 0 in a non-smooth fold type
border-collision. For μ ≤ 0 there is no attractor, as all initial conditions other
than the fixed points eventually get mapped towards −∞ along the negative
x1-axis. For μ > 0 we observe the birth of admissible fixed points a and b
which are unstable. Other periodic points can be born also. These, however,
must also be unstable. More information on the dynamics can be inferred if
we consider the geometry of the stable and unstable manifolds of a and b (see
Fig. 3.21). First, we find the slopes of the unstable eigenvector of a (labeled Ua

in Fig. 3.21 ) are such that the two manifolds form a homoclinic tangle via the
point of intersection xd = (μ, 0)T in the figure. We next note that the stable
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Fig. 3.21. (a) Fixed points of affine map (3.71) for μ > 0. (b) Bifurcation diagram
of the map under variation of μ.

manifold of b (labeled Sb in Fig. 3.21)), forms a seperatrix for points with
x1 < 0. That is, all points with x1 < 0 to the left of the stable manifold Sb are
mapped towards −∞, whereas points to the right are eventually mapped into
the half-plane x1 > 0. We also find that the right-hand branch of Ub does not
intersect Sb; therefore, we can consider the triangle formed by the points b, the
point xd, and xc, where Sb intersects the x2-axis. It is straightforward then to
show that this triangle is a trapping region which must contain an attractor,
which must be chaotic since no periodic point is stable. This is confirmed by
numerical iteration of the map (3.71) in Fig. 3.21(b).
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Fig. 3.22. Monte Carlo bifurcation diagram representing sudden jump to chaos
followed by a further sequence of bifurcations for the nonlinear map (3.72).

3.7 Effects of nonlinear perturbations

As discussed in the previous two sections, one of the most striking features of
border-collision bifurcations in piecewise-linear maps is the possible transition
to a robust chaotic attractor. As we have said, robust chaos is characterized by
the fact that no periodic windows can be found within the parameter regime
where a piecewise-linear map exhibits chaotic dynamics. In this sense, the
attractor is robust to parameter variations. However, all our analysis so far
has been for exactly piecewise-linear maps. In most applications, for example,
when derived as Poincaré maps of flows, such maps arise only as leading-order
approximations to a full map that contains nonlinear terms also. Therefore it
is relevant to assess whether the chaotic attractors we have constructed are
also robust to nonlinear perturbations.

Currently, there is no general theory to account for this case, so to illustrate
this issue we have merely computed numerically the bifurcation diagram of
the following map:

x �→
{

0.5x+ x2 + μ, if x ≤ 0,
−6x+ x2 + μ, if x > 0,

(3.72)

which is a perturbed version of map (3.44) for ν1 = 0.5, ν2 = −6. For these
parameters, close to the origin, we therefore have to leading order a piecewise-
linear continuous map that we know undergoes a border-collision bifurcation
from a stable fixed point attractor to a robust chaotic attractor. We expect
that this bifurcation scenario will be preserved in the neighborhood of μ ≈ 0
also for (3.72). However, for sufficiently large μ > 0, the quadratic term might
break the robustness of the chaotic attractor.

The bifurcation diagram of (3.72) is depicted in Fig. 3.22, which confirms
these predictions. We indeed observe a sudden transition to chaos from a fixed
point under increase of μ through 0. However, unlike the case where the map
is purely piecewise-linear (see Fig. 3.12), we observe periodic windows embed-
ded within the attractor, for example the period-three periodic window for
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μ ≈ 0.04 in Fig. 3.22. Although a detailed analysis of the effects of nonlinear
perturbations is beyond the scope of this book, it would seem reasonable that
chaotic attractor is robust for small μ > 0, since the construction of chaos
relies on transverse intersections between certain manifolds that are likely to
be preserved under small nonlinear perturbations.



4

Bifurcations in general piecewise-smooth maps

The previous chapter considered the nature of discontinuity-induced bifurca-
tions that arise at the border collisions of fixed and periodic points of maps
that are both piecewise-linear and continuous. However, the range of systems
described by such maps does not cover the wide variety of cases that we shall
derive in subsequent chapters from Poincaré maps of non-smooth flows, or
other mappings that arise directly from applications such as the heart attack
map in case study VI. Accordingly, we now extend the range of maps con-
sidered to include those that are piecewise-smooth, but are not necessarily
continuous across a discontinuity boundary, and those that are not locally
linearizable on either side. Again we will see a rich bifurcation behavior, but
with subtle distinctions from the locally piecewise-linear continuous case.

4.1 Types of piecewise-smooth maps

Recall from Chapter 2, the Definition 2.18 of a piecewise-smooth map. Clearly,
the set of all possible such maps is vast, so to give our discussion some struc-
ture, we will restrict our attention to maps with a single discontinuity surface.
That is, we assume that there is a set D ⊂ R

n and a codimension one sub-
set Σ ⊂ R

n−1 of D. In general, Σ will be assumed to be a smooth manifold
defined by a smooth function H(x) so that

Σ = {x ∈ D : H(x) = 0}. (4.1)

We identify two open subsets S1 and S2 of D so that H(x) takes opposite
signs in each of these two regions. We then consider a map f : D → D, which
is defined for all of D but takes different functional forms in S1 and S2:

f(x) =
{

F1(x), if x ∈ S1,
F2(x), if x ∈ S2.

(4.2)

Although, formally, f may not be uniquely defined for points in Σ. We will
assume that each function F1,2 is smooth over its domain of definition, but that
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the overall function f(x) is not. The lack of smoothness may arise in many
ways, for example through a lack of continuity of f as x varies through Σ or
a lack of continuity of a first or higher derivative. In this chapter, we shall
extend the analysis of border-collisions in piecewise-linear continuous maps
presented in the previous chapter to more general piecewise-smooth maps. To
be concrete, we will only consider three cases, of successively increasing order
of singularity (see Def. 2.19) of the map at Σ.

Discontinuous maps. An important class of maps that arise in many ap-
plications, for example the heart attack model that we introduced as case
study VI in Chapter 1, are discontinuous in the system state. That is,
F1 and F2 are functions with a bounded derivative as x → Σ (so that
they are well approximated by linear maps close to Σ), but the map F is
discontinuous as x passes through Σ. That is, if x ∈ Σ, x+

n ∈ S2 → x and
x−n ∈ S1 → x, then

limF2(x+
n ) �= limF1(x−n ). (4.3)

In Sec. 4.2 we will show that even an analysis of one-dimensional dicontin-
uous maps, under the simplification that F1 and F2 are completely linear
leads to a rich complexity of dynamics.

Square-root maps. In this case we let f be continuous but allow F1 or F2

to have a square-root form as x approaches Σ, so that f is proportional to
√

|H(x)| for small H(x) of one sign. These maps arise naturally as local
approximations to the Poincaré maps associated with grazing bifurcations
in impacting systems, as we have already seen in case studies I and VII in
Chapter 1 and will be further elaborated in Chapter 6. The key aspect of
these maps is that the square-root form leads to infinite local stretching on
at least one side of Σ. This can cause an infinite sequence of transitions in
the dynamics arbitrarily close to the border collision point, and as we shall
show in Sec. 4.3, the creation of a large number of high period periodic
orbits.

Higher-order maps. In Sec. 4.4 we then consider maps for which the nth
derivative is continuous at Σ but the (n+ 1)st is not. As an example, we
can suppose that f and its first derivative be continuous but allow F2 and
or F1 to behave as |H(x)|3/2 as x approaches Σ. The second derivative
of the map therefore becomes unbounded in this limit. Maps of this type
will be shown to arise in various kinds of grazing and sliding bifurcations
of piecewise-smooth flows in Chapters 7 and 8. One thing to note about
such maps is that, as they are continuous across the boundary, then a
border-collision will not change the existence or stability of a fixed point
crossing the boundary. That is, the Implicit Function Theorem applies
locally and there is no immediate change in the dynamics at the border-
collision point. Thus, any consequent change in the dynamics must be
delayed until after the discontinuity-induced bifurcation.

The rest of this chapter provides a detailed description of the dynamics
that occurs when a simple fixed point undergoes a border collision in each
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of these three classes of map. Many technicalities are specific to each case;
nevertheless, we will see many of the characteristic features of the bifurca-
tions associated with piecewise-linear continuous maps that were observed in
the last chapter, including persistence and non-smooth folds, period-adding,
robust chaos, and so on. To see why this is so, at least for one-dimensional
continuous maps, recall the 2-parameter plot in Fig. 3.8 from Chapter 3 which
represents different outcomes for the one-dimensional piecewise-linear contin-
uous map when the main bifurcation parameter μ is varied. Recall that the
co-ordinate axes in this plot, ν1 and ν2 represent the slopes of the two linear
pieces of the map.

Now, consider instead a continuous map that is not locally piecewise-linear,
specifically one composed of two pieces, one of which is linear, the other of
which is O(xγ) for γ �= 1; e.g.,

x �→
{

ν1|x|γ + μ1, if x ≤ 0,
if ν2x+ μ2 x > 0. (4.4)

If μ1 = μ2 = μ, then this map is continuous. Let x∗(μ) be the fixed point
of this map in the region where the map is nonlinear. Then, under variations
of the parameter μ, x∗(μ) travels up the nonlinear piece of the map and the
local slope of the map will be given by ν̃1 = −ν1γ|x|γ−1. So, effectively, μ-
variation also leads to variation of the slope parameter ν̃1 in Fig. 3.8. Thus,
we might expect to see a cascade of bifurcations under variations of μ that
only occurs for the piecewise-linear map if we allow the slopes ν1 and ν2 to
vary. Hence, period-adding cascades (either interspersed with chaos or not)
arise naturally out of the maps we study, because μ-variation causes the map
solutions to move across the parameter space boundaries identified in Fig. 3.8
where the attractor transforms from being of period n to n + 1. Clearly, the
detailed scaling of the period-adding cascades (the size of periodic ‘windows’
in parameter space, extent of the attractor in phase space, etc.) will be specific
to the value of the exponent γ in simple maps such as (4.4).

Assuming γ to be positive, important distinctions occur between the cases
γ < 1 and γ > 1. We deal only with the indicative cases γ = 1/2 (‘square-root
maps’) in Sec. 4.3 below and γ = 3/2 or 2 (‘higher-order maps’) in Sec. 4.4.
These choices are motivated by the forms of discontinuity maps that arise at
discontinuity-induced bifurcations in flows, as will be derived in Chapters 6,
7 and 8. Even considering just maps that have a single discontinuity and are
linearizable on one side of it, the presentation that follows will be far from
exhaustive. In the case of square-root maps, there is an almost complete theory
known in n dimensions and because of its relevance to grazing bifurcations in
impacting systems, we shall dwell on this case in some detail. Most of the rest
of the material will concern one-dimensional maps only. Moreover, as in the
previous chapter, we restrict attention to a local region where the map can
be approximated by its leading term only on each side of the discontinuity.

First, though, we present results for piecewise-smooth discontinuous maps
(maps with a gap), which we can think of as the case γ → 0 in (4.4). There, we
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will see an additional phenomena, that of a Devil’s staircase of periodic points
of the map that have a Farey tree structure where between the parameter
values at which there is a period-m orbit and that at which there is a period-n
there is a period-(n+m) orbit. This structure is well known in quasi-periodic
systems described by circle maps (see e.g.,[9]), as will be observed in what
follows.

4.2 Piecewise-smooth discontinuous maps

In this section we will look at maps that are smooth and have a well-defined
derivative up to the discontinuity boundary, but they are discontinuous across
the boundary itself. piecewise-smooth discontinuous maps of the form (4.1)–
(4.2) satisfying (4.3) arise naturally in their own right, for example, in the
heart attack problem described in the introduction (case study VI in Chap-
ter 1) and other models for the general behavior of excitable media [118].
Also, discontinuous maps have been used in descriptions of various switch-
ing phenomena in electrical circuits [143] and in simple models of the firing
of neurons [37]. In addition, such maps will arise as Poincaré maps associ-
ated with systems of impact oscillators with multiple impacts (see Chapter
6). In general, little work has been reported on the analysis of discontinuous
maps, which are becoming the subject of increasing scientific interest. Recent
work include [180], [157], [164], [46] where such systems were shown to pos-
sess period-adding bifurcations, [226] where the presence of multiple devil’s
staircases was demonstrated and [227] where so-called type V intermittency
was found. A quadratic map with a gap defined on the interval was stud-
ied in [15, 16]. More recently, extensions of Feigin’s classification strategy to
piecewise-linear discontinuous maps were presented in [137].

The simplest type of piecewise-smooth discontinuous maps are those that
are locally piecewise-linear. We will focus our discussion on this type of maps.
We first look at fixed and period-two points of piecewise-linear maps in general
dimensions, and we will then look at the periodic and chaotic orbits of such
maps in one-dimension, identifying period-adding behavior.

4.2.1 The general case

We start with the discontinuous version of the piecewise-linear map stud-
ied in Chapter 3 and look at conditions for the existence and bifurcation of
fixed points and period-two points. Here, we extend the classification strategy
presented in Chapter 3 to the discontinuous case in the manner presented
in [137]. All through this chapter, we use the same notation for bifurcation
classification presented in Sec. 3.2.2.

Consider a discontinuous piecewise-linear map of the form

x �→
{

N1x+Mμ, if CTx < 0,
N2x+M(μ+ l), if CTx > 0,

(4.5)
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where μ, l ∈ R, N1 and N2 are real n×n matrices, M ∈ R
n×1 and C ∈ R

n×1.
We assume that the map is smooth for CTx �= 0, and so we suppose that
the matrices N1 and N2 still satisfy condition (3.8). To motivate this choice
of system, note that not all discontinuous maps can be put into this kind of
normal form, for example period-adding of a more general class of maps is
studied in [46]. Nevertheless, there is a strong connection with the form (3.7)
from the previous chapter, except that there is a finite gap lM between the
value of the map on either side of the discontinuity surface H(x) = CTx = 0.

This map has potentially two fixed points given by

x∗1 = (I −N1)−1Mμ, if CTx∗1 < 0,

x∗2 = (I −N2)−1M(μ+ l), if CTx∗2 > 0.

A border-collision occurs if either of these two fixed points passes through the
plane CTx = 0, which will occur at two values of μ, namely μ = 0 and μ = −l.
In this spirit we can adapt the notation A↔ B and so on, for the continuous
map to describe the fate of the fixed points under the pair of transitions. For
example, we will use the notation A ↔ A,B ↔ B to indicate that at the
border-collision the transition is observed from one fixed point to two fixed
points and then to the other fixed point. (Here we use ↔ to give the indication
that μ may actually increase or decrease in any realization of each scenario.)
To this end, it is possible to rework the derivation presented in Chapter 3, in
order to extend to this case the classification theory on the behavior of the
simplest orbits in a border-collision. In particular, we have:

Theorem 4.1 ([137]). Let p1(λ) be the characteristic polynomial of matrix
N1 and p2(λ) the characteristic polynomial of N2 in (4.5). Moreover, define

σ+
1 := number of real eigenvalues of N1 (αi) greater than 1
σ+

2 := number of real eigenvalues of N2 (βi) greater than 1

Assume that the matrices (I−N1) and (I−N2) are invertible, then at a border-
collision, according to the value of l �= 0, we can have one of the following
scenarios:

Case 1. If

p1(1)p2(1) < 0; or, equivalently σ+
1 + σ+

2 is odd,

then as μ varies we have the possibility that either

no fixed point ↔ one fixed point ↔ two fixed points

(e.g., ∅ ↔ B ↔ a,B), or

two fixed points ↔ one fixed point ↔ no fixed points.



176 4 Bifurcations in general piecewise-smooth maps

Case 2. If

p1(1)p2(1) > 0, or, equivalently σ+
1 + σ+

2 is even,

then we have either

one fixed point ↔ two fixed points ↔ other fixed point

(e.g., A↔ A,B ↔ B), or

one fixed point ↔ no fixed point ↔ other fixed points.

Remarks

1. Note that when l = 0 these two cases reduce to non-smooth fold and
persistence scenarios, respectively. For l �= 0, the major difference is the
intermediate stage where one, two or no fixed points can exist.

2. It is possible to refine the above conditions to say more about which
specific bifurcation scenarios can occur, including stability of the various
orbits, under conditions on the signs of l and μ and on the eigenvalues
of various matrix products (see [137]). We omit the details here. Instead,
we focus for the remainder of this section on the more illustrative one-
dimensional case.

4.2.2 One-dimensional discontinuous maps

Consider the one-dimensional version of (4.5) given by

x �→
{

ν1x+ μ, if x ≤ 0,
ν2x+ (μ+ l), if x > 0. (4.6)

Note that one-dimensional discontinuous maps of this form have formed a key
role in the historical development of chaotic dynamics. For example, if we set
ν1 = ν2 = 1 then under a simple rescaling, (4.6) becomes the well studied
rotation (or twist) map [129], and it is closely related to the Bernoulli shift
map [89]. As will be shown later, in general the case ν1 = ν2 = ν is simpler
to analyze and yet exhibits very different behavior from that observed in
piecewise-linear continuous maps when l �= 0. Without loss of generality, we
will assume that, by an appropriate rescaling, l = −1, l = 1 or l = 0.

For convenience, we define the two submappings

Π1 : x �→ ν1x+ μ xif ≤ 0 (4.7)
Π2 : x �→ ν2x+ (μ+ l) if x > 0, (4.8)

and start our analysis by seeking the domains of existence and stability of
fixed and periodic points.

The map Π1 has one fixed point x∗1 given by
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x∗1 =
μ

1 − ν1

which is admissible if x∗1 ≤ 0 and stable for |ν1| < 1, whereas the map Π2 has
the fixed point

x∗2 =
μ+ l

1 − ν2
,

which must be positive to be admissible and is stable for |ν2| < 1.
For l = +1, if 0 < ν1 < 1, ν2 < 1 then x∗1 is the only admissible stable fixed

point (A) when μ < 0; x∗1 and x∗2 are both stable and admissible (A,B) when
0 < μ < 1 and x∗2 is the only stable admissible fixed (B) point when μ > 1.
Thus, at the border-collision we have the scenario A ↔ A,B ↔ B predicted
by Theorem 4.1. The resulting bifurcation diagram has the form illustrated
in Fig. 4.1.

−1 μ−0.5

0

0 0.5
−4

4

x∗

Fig. 4.1. The bifurcation diagram of the discontinuous map (4.6) for l = 1, ν1 =
ν2 = 0.7 showing the scenario A → A, B → B with the two coexisting fixed points
in the gap region.

The case of l = −1 generally gives rise to much more complicated dynam-
ics. The fixed point x∗1 is exactly as before, but the other fixed point exists
only for μ > 1. So for −1 < ν2 < 0, the simplest bifurcation scenarios are

A↔ ∅ ↔ B, if 0 < ν1 < 1;
∅ ↔ a↔ a,B, if 0 < ν1 < 1;

and for ν2 < −1,

A↔ ∅ ↔ b, if 0 < ν1 < 1;
∅ ↔ a↔ a, b, if 0 < ν1 < 1.

For example, the scenario A↔ ∅ ↔ B is shown in Fig. 4.2.
Using the same approach presented in Chapter 3, it is possible to study

next the existence and stability of period-two solutions by looking at the
second-iterate of map (4.5). Also, by a simple extension of the arguments
used in Chapter 3, it is straightforward to show [137] that, for l = 0,±1,
an Ak−1B, ak−1b solution exists for μ > 0 if and only if the following two
conditions are satisfied:
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Fig. 4.2. The piecewise-linear discontinuous map (4.6) with l = −1 and (from left
to right) μ < −1, −1 < μ < 0 and μ > 0.

0 <
(

1 +
l

μ
+

1
ν1

+
1
ν2
1

+ . . .+
1

νk−1
1

)

=
1
μ

+
1 − νk

νk − νk−1
, (4.9)

ν2 <

(

1 +
l

μ
+

1
ν1

+
1
ν2
1

+ . . .+
1

νk−2
1

)

=
l

μ
+

1 − νk−1

νk−1 − νk−2
. (4.10)

Moreover, it is clear that for all l the eigenvalue of the linearization of the
map about the Ak−1B, ak−1b solution is νk−1

1 ν2, and so it is stable if and only
if

ν2 > − 1
νk−1
1

. (4.11)

As in the case of piecewise-linear continuous maps, using conditions (4.9)–
(4.11), it is possible to plot existence and stability curves of higher-periodic
solutions in the (ν1, ν2) parameter space. Then, the possible border collision
scenarios observed under variations of the parameter μ can be classified. Two
representative diagrams for l = +1 and l = −1 are shown in Fig. 4.3.

A more extensive investigation for a map of this form can be found, for
example, in the works of Jain & Banerjee [143], Hogan et al. [137] and Budd
& Piiroinen [46]. The main results are summarized in Table 4.1. A complete
study of all the cases is lengthy. The bare bones can be obtained by following
the same steps used in Chapter 3 for the case of a piecewise-linear continuous
map. In addition, Jain & Banerjee [143] compute a series of numerical bifur-
cation diagrams, indicating what dynamics is possible beyond simple periodic
points. We mention also the extensive computations by Avrutin & Schantz
[14, 17] for a closely related family of maps. The work of Keener [152] on non-
smooth circle maps is also relevant for understanding the global dynamics.
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Fig. 4.3. The two-parameter bifurcation diagrams of the discontinuous map when
l = 1, μ = 3

2
and l = −1, μ = 5

3
showing the existence and stability boundaries

of higher-periodic orbits. (Reprinted from [137] with permission from the Royal
Society).

In what follows, we shall analyze more details of the global dynamics aris-
ing in the more interesting case l = −1. We note that an important distinction
occurs in the consequent dynamics depending on whether the origin lies inside
the discontinuity interval I = [μ−1, μ]. In the case 0 < ν1, ν2 < 1 and l = −1,
then the set [μ − 1, μ] is invariant under the action of the map if 0 < μ < 1
and no fixed point exists. The map is one-to-one but not onto (an injection
but not a subjection) on this set. As we shall see in Sec. 4.2.3 which follows,
in this case, we find that only periodic orbits occur for all but a possible set
of μ-values of zero measure.
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In contrast, if we have 1 < ν1, ν2 < 2, l = −1, then the set [μ − 1, μ] is
invariant only if 1 − 1/ν1 < μ < 1/ν2. (Indeed, if μ > 1/ν2, then orbits can
escape to infinity.) The map is onto in this case but not one-to-one and chaotic
behavior is observed. Finally, if 0 < ν1 < 1 < ν2, then we see both periodic
and chaotic behavior. We treat these cases in Sec. 4.2.4.

Table 4.1. Summarizing the dynamics of (4.6) in the case l = −1.

Case Ranges of ν1,2 μ < 0 0 < μ < l μ > −l

1 0 < ν1 < 1,
0 < ν2 < 1

fixed point Many periodic or-
bits (Farey Tree)

fixed point

2 0 < ν1 < 1,
ν2 > 1

fixed point Many periodic or-
bits, 2-cycle and
chaos

No attractor

3 0 < ν1 < 1,
−1 < ν2 < 0

fixed point Many periodic
orbits (period-
adding)

Coexisting fixed
point and 2-cycle.

4 0 < ν1 < 1,
ν2 < −1,

fixed point High periodic or-
bits and chaos

2-cycle or chaos

5 ν1 > 1,
0 < ν2 < 1,

No attractor Chaos, 2-cycle
and many peri-
odic orbits

fixed point

6 ν1 > 1,
ν2 > 1

No attractor Chaos No attractor

7 ν1 > 1,
−1 < ν2 < 0

No attractor Chaos or many
periodic orbits

fixed point

8 ν1 > 1,
ν2 < −1

No attractor Chaos Chaos

9 −1 < ν1 < 0
0 < ν2 < 1

Coexisting peri-
ods one and two

many periodic or-
bits

No attractor

10 −1 < ν1 < 0
ν2 > 1

Periods-1 and
2/period-1

High periodic or-
bit/chaos

No attractor

4.2.3 Periodic behavior: l = −1, ν1 > 0, ν2 < 1

This case is relatively easy to analyze. Note first that, as shown earlier, there
is a stable fixed point x∗1, which is admissible if μ < 0. Similarly, if μ > 1 then
x∗2 is an admissible fixed point that may or may not be stable. A bifurcation
diagram for this case is presented in Fig. 4.4(a), which shows that for 0 <
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Fig. 4.4. (a) The bifurcation diagram of (4.6) for l = −1 and ν1 = ν2 = 0.7. (b)
Zoom showing the transition from a period-3 to a period-4 orbit separated by an
interval in which there are period-7 and other more complex orbits. (c) The limiting
homoclinic orbit as μ → 0+. (d) A periodic orbit with symbol sequence A2BA3B.

μ < 1 purely periodic behavior is observed, but there is a rich variety of such
behavior.

Indeed, for small μ > 0 there is a sequence of high periodic orbits with
symbol sequence Ak−1B with k → ∞ as μ decreases to zero, in which limit
a where a homoclinic orbit is observed [see Fig. 4.4(c)]. Similar behavior is
observed as μ is increased to 1, where the sequence is of the form ABk−1.

A careful analysis of this intricate structure reveals an interesting relation-
ship between nearby periodic orbits within the cascade.In particular, between
each period-k and period-(k + 1) window, we see more complicated periodic
motions with symbol sequences that involve a concatenation of those of the
neighboring orbits, e.g., an orbit of type A2k−1B2 ≡ Ak−1BAkB between a so-
lution of type Ak−1B and one of type AkB. These are illustrated in Fig. 4.4(b)
in which we see a period-7 orbit between period-3 and period-4 orbits as well
as more complex orbits (of period 10 and 11, respectively) between the period-
7 orbit and the period-3, and between the period-7 orbit and the period-4.
This concatenation of the symbol sequences leading to an orbit of period equal
to the sum of the periods of the two neighboring orbits shows a striking re-
semblance with the well-known series in number theory proposed by Farey in
1816 [94]. Therefore, this phenomenon is referred to as Farey arithmetic and
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the complete family of orbits as a Farey tree. We now proceed to give a brief
analysis of this behavior.

The Farey tree; devil’s staircases and period-adding

Under our assumptions, if μ = 0+, then there is a fixed point at x = 0.
This coexists with a (noninvertible) homoclinic orbit of the form A∞B. This
orbit, illustrated in Fig. 4.4(c), is the limit of the orbits of the form Ak−1B
as μ → 0 and k → ∞ and its existence can be explained as follows. Suppose
x1 = −1 ∈ S1; then for μ = 0, we have a sequence xn = −νn−1

1 ∈ S1, which
converges to 0 in S1 as we have assumed that 0 < ν1 < 1. Considering now 0 as
a point in S2, this point is then mapped back in a single iterate to x = l = −1,
leading to the orbit illustrated in Fig. 4.4(c).

More generally, for 0 < μ < 1, we consider a sequence of iterates {xn}
of type A ∈ S1 and B ∈ S2. Clearly, if xn−1 ∈ S1, the maximum value of
xn = f(xn−1) is given by μ ∈ S2. Then, provided that μ < 1/(1 + ν2), we
have f(xn) < μ − 1 + ν2μ < 0 so that xn+1 ∈ S1. Thus, if μ < 1/(1 + ν2),
the sequence must comprise strings Ak−1 separated by single iterates B. The
simplest possible sequence of this type is the (maximal) periodic orbit Ak−1B.

To calculate such an orbit and obtain conditions for its existence, we set
x̄n = xn − μ/(1 − ν1). If xn ∈ S1, so that x̄n < −μ/(1 − ν1), we then have

x̄n+1 = ν1x̄n = νn−1
1 x̄1.

Similarly, if xn ∈ S2 so that x̄n > −μ/(1 − ν1), we have (after rescaling)

x̄n+1 = ν2x̄n − 1 + μ
(ν2 − ν1)
(1 − ν1)

.

Now assume that k is such that

x̄k−1 = νk−2
1 x̄1 < − μ

1 − ν1
< νk−1

1 x̄1 = x̄k. (4.12)

We then have a periodic orbit of period k provided that

x̄1 = f(x̄k) = ν2x̄k − 1 + μ
(ν2 − ν1)
(1 − ν1)

= ν2ν
k−1
1 x̄1 − 1 + μ

(ν2 − ν1)
(1 − ν1)

. (4.13)

Similarly, rearranging (4.13), we must have

x̄1 =
−1 + μ(ν2 − ν1)/(1 − ν1)

(1 − ν2ν
k−1
1 )

(4.14)

or equivalently,

x1 =
μ

(1 − ν1)
+

−1 + μ(ν2 − ν1)/(1 − ν1)
(1 − ν2ν

k−1
1 )

. (4.15)
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Equation (4.15) determines the form of the orbit, and condition (4.12)
determines whether it exits. The same sequence is repeated as μ → 1 if we
make the transformation μ → 1 − μ and swap A and B, S1 and S2 in the
above expressions.

Note that the above expressions simplify considerably in the special case
(and exemplifies the special role played by the map discontinuity (or gap)
since, as shown in Chapter 3, the dynamics of piecewise-linear continuous
maps with ν1 = ν2 is trivial)

ν1 = ν2 := ν (4.16)

as the term involving μ in (4.14) vanishes and

x̄1 = − 1
1 − νk

.

This orbit then satisfies the existence condition provided that, from (4.15),
we have

νk−1(1 − ν)
1 − νk

< μ <
νk−2(1 − ν)

1 − νk
. (4.17)

Continuing with the assumption (4.16), note that for ν < 1 the orbit (when
it exists) is necessarily stable. Hence, as k → ∞, we have approximately that
the orbit exists and is stable for

νk−1(1 − ν) < μ < νk−2(1 − ν),

so that the window width scales geometrically. Note further that, from (4.17),
the maximum value of μ in the period-k window is νk−2(1 − ν)/(1 − νk) and
the minimum value in the period k−1 window is νk−2(1−ν)/(1−νk−1) so the
windows do not intersect. In the gap between the period k and k − 1 orbits,
that is for

νk−2(1 − ν)
(1 − νk)

< μ <
νk−2(1 − ν)
(1 − νk−1)

,

more complex behavior is observed. In terms of the symbol sequence the period
k and k−1 orbits have the form Ak−1B and Ak−2B, respectively. The simplest
orbit in the gap is the one generated by concatenating their symbol sequences;
i.e., the orbit of type A2k−3B2 ≡ Ak−2BAk−1B, for which

x̄1 = νk(νk−1x̄1 − 1) − 1;

so that

x1 =
−(1 + νk)
(1 − ν2k−1)

,

with associated consistency conditions. This is the origin of the period-7 orbit
between the period-3 and 4 orbits in Fig. 4.4(d). In fact, such a procedure of
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concatenating symbol sequences can be applied recursively so that we get or-
bits of arbitrarily long symbol sequences between any two finite length orbits,
thus revealing some of the subtlety of the Farey tree.

Another way of describing these orbits, is via the rotation number ρ of
a periodic orbit. A period-k orbit with r iterates in S2 (and k − r in S1)
is defined to have rotation number ρ = r/k. For example, an orbit of type
AnB has rotation number ρ = 1/(n+ 1). As μ increases, spanning the Farey
tree, the value of ρ increases monotonically from 0 to 1 in the manner of
a Cantor function, with intervals of values of μ over which it is constant
and takes rational values. These intervals correspond precisely to periodic
motions. There is an uncountable Cantor set of measure zero over which ρ
takes irrational values. On this set the iterates of the map lie on a non-periodic
invariant set. A typical example of the form of ρ as a function of μ is given in
Fig. 4.5(a), which is known as devil’s staircase diagram.
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Fig. 4.5. Representation of the global dynamics of the map (4.6) in the case l = −1
and ν1 = ν2 = ν. (a) The rotation number ρ for ν = 0.75. (b) The (μ, ν) existence
regions for the (simple) period-m orbits in the case.

A simple analysis shows that the interval of μ-values over which we see
period-k orbits of the form Ak−1B or ABk−1 is given by

μ ∈
[

1
k
− k − 1

2k
ε+ O(ε2),

1
k
− k − 3

2k
ε+ O(ε2)

]

,

where ε = 1−ν, with a similar pattern for 1−μ. This gives the (μ, ν) existence
regions presented in Fig. 4.5(b). Note that these regions shrink to isolated
points at x = {1/k} as ν → 1. [These existence regions closely resemble
Arnold tongues of smooth circle maps [89] (which arise when ν = 1), but here
the widths of all regions exhibit linear growth as ν → 1.]

Finally, if we relax the assumption (4.16) and allow ν1 �= ν2, then the anal-
ysis is more difficult as additional terms involving μ appear in the formulation.
This can lead to a less clear separation of the windows. A nice example arises
when ν2 = 0 so that we have the map x → ν1x+ μ, x < 0, x → μ− 1, x > 0.
The first iterate in S1 is then always μ − 1, and hence, a period-k orbit is
observed if



4.2 Piecewise-smooth discontinuous maps 185

μ

1 − ν1
+ νk−1

1

(

μ− 1 − μ

1 − ν1

)

< 0 <
μ

1 − ν1
+ νk

1

(

μ− 1 − μ

1 − ν1

)

,

leading to the bifurcation diagram illustrated in Fig. 4.6(a). Note that, upon
summing the geometric series, we see that this expression is precisely equiva-
lent to (4.9)–(4.10) derived earlier for the case l = −1. Here, we see a different
phenomenon, namely, period-adding. This differs from the Farey tree scenario
highlighted earlier, because we no longer observe complex transitions between
one solution and the other but simply the overlapping of their regions of exis-
tence. A detailed investigation of period-adding scenarios in one-dimensional
maps with a gap can be found in [14, 17].

−0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1

1

x
(a)

0

0

−1
μ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

μ

X

x

(b)

0

μ

−0.6

0.2

0.6

0.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

μ

w

1 (c)

0 μ0.2 0.6

ρ

−0.4 −0.2 0 0.2 0.4 0.6 0.8
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

11

x

(d)

0

0

−1
μ 0.8

Fig. 4.6. Bifurcation diagrams of the map (4.6) for l = −1. We detect (a) period-
adding when ν1 = 0.7, ν2 = 0, and (b) chaotic behavior when ν1 = ν2 = 1.2; (c) the
rotation number ρ is plotted against μ; and (d) Farey tree and chaos when ν1 = 0.7,
ν2 = 1.2.

4.2.4 Chaotic behavior: l = −1, ν1 > 0, 1 < ν2 < 2

Consider first the case where 1 < ν1, ν2 < 2. For this range of parameters,
any fixed point or periodic cycle that exists must necessarily be unstable.
The interval [μ− 1, μ] is invariant under the action of the map provided that
1 − 1/ν1 < μ < 1/ν2. Hence the map is onto (i.e., surjective) when restricted
to this interval.

If μ > 1/ν2, then the iterations of the map become unbounded. An ex-
ample of this case is given in Fig. 4.6(b). Figure 4.6(c) shows the plot of the
corresponding rotation number ρ over a range of different initial conditions



186 4 Bifurcations in general piecewise-smooth maps

x for each value of μ. Here we see that, in contrast to the previous case, in
general ρ depends on x and so is not a uniquely defined function of μ.

Next, suppose that 0 < ν1 < 1, but 1 < ν2 < 2. Then, for μ < 0 the
fixed points x∗1 and x∗2 both exist, although only x∗1 is stable. As μ increases
through zero, then initially we see a period-adding cascade similar to the case
where both ν1,2 < 1. Orbits of the form AnB/anb will be stable if and only if
νn
1 ν2 < 1. As the value of μ is increased, we therefore reach a threshold value
μ1 such that all periodic sequences for μ > μ1 become unstable, and we see
instead chaotic behavior. The point of transition is precisely when the map
changes from being one-to-one to being onto. A simple calculation shows that
this arises when

μ1 = (1 − ν1)/(ν2 − ν1).

If μ > μ2 = 1/ν2m then the chaotic attractor becomes unstable and high-
periodic orbits cease to exist. All trajectories then go monotonically to ∞.
A representative bifurcation diagram in this case is given in Fig. 4.6(d) for
ν1 = 0.7 ν2 = 1.2; hence μ1 = 0.6 and μ2 = 5/6.

Remark. Note that the dynamics of the one-dimensional discontinuous
map presented above can be embedded in a more general setting without
assuming that the map is locally piecewise-linear (but that it does have a well-
defined derivative on either side of the discontinuity boundary). In particular,
under certain assumptions, such maps can be considered as discontinuous
maps of the unit circle to itself, which were analyzed by Keener in [152].
These mappings take the form

xn+1 = F (xn) mod 1, xn ∈ [0, 1]

with discontinuity at xn = θ such that

lim
xn→θ+

F (xn) = 1, lim
xn→θ−

F (xn) = 0.

When viewed on the unit circle, F is actually continuous at θ, the true dis-
continuity being at x = 0 provided F (0) �= F (1).

In [152], it is shown that there are two fundamental cases to be considered
depending on the sign of the quantity Δ := F (1) − F (0). If Δ is positive,
the map is said to be non-overlapping. That is, the map of the unit circle is
one-to-one but not onto. However, if Δ < 0 the map is said to be overlapping
since the image of the unit circle covers the entire circle, but is not one-to-one,
because there is a region of the circle that has two pre-images. It is possible
to show that overlapping dynamics produces chaotic dynamics, whereas non-
overlapping dynamics produces only periodic motion (see [152] for further
details). This was precisely the distinction observed in our simple piecewise-
linear map with a gap.

To further illustrate the relationship between discontinuous piecewise-
linear maps and circle maps we look now at a representative example.
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Example 4.1 (A simple neuron model). Bressloff and Stark [37] proposed a
discontinuous circle map to model the dynamics of a single neuron within
a network. The model is inspired by the physiology of true brain cells and
yet leads to possibilities for new kinds of artificial neural networks that take
on real rather than discrete values and whose dynamics can be described by
coupled discontinuous circle maps. This idea was later extended in [60] where
the dynamics are studied of coupled circle maps, modeling a simple network
of such neurons.

The neuron is modeled by a single scalar quantity, the value of its action
potential (a measure of the internal voltage and hence the excitation level of
the neuron). For simplicity it is supposed that the neuron can only fire at a
set of discrete times tn = tn−1 + td for some fixed td that is related to the
recovery time of the neuron. Let xn be the value of action potential of the
neuron at time tn relative to its threshold value h for firing. Thus xn > 0
implies that the neuron has fired and xn < 0 corresponds to not firing this
time around. Now, let us suppose that the neuron receives input In at each
time instant; then we arrive at a map

xn+1 = [In + (1 − δ)h+ wΘ(xn)] exp
(

−wΘ(xn)
S

)

, (4.18)

where Θ(x) is the Heaviside step function which is zero for x < 0 and 1 for
x > 0. Here, 0 < δ < 1 represents a voltage leakage factor during time interval
td, and the constants w and w/S represent weights (degree of influence of the
firing of one neuron on another) associated with self-interaction; w being a
constant weight and w/S being the coefficient of a term proportional to the
excess action potential above threshold at time tn−1. Note that both S and
w can take either sign depending on whether the neuron is self-excitatory or
self-inhibitory.

If such a neuron is embedded in a network, in general In would be a sum
of many terms proportional to weights w1j times Heaviside functions that
determine whether each neuron j in the network has fired at time tn. Also
there would be further exponential factors with weights wij/Sij . If one wants
to consider the dynamics of the single neuron, though, we can assume that at
each time tn the action potential receives a constant input In = I. Then we
can express the map (4.18) more simply as

xn+1 = f(xn) =
{

ν1xn + a, if xn < 0,
ν2xn + b, if xn ≥ 0, (4.19)

where ν1 = δ, ν2 = δe−w/S , a = I − (1− δ)h, b = (a+w)e−w/S . Note that a,
b and ν2 can take either sign, whereas 0 < ν1 < 1.

Clearly, upon letting μ = a and l = (b − a), then this map fits into the
framework of the above theory. Indeed, the cases of Farey trees and of chaos
were observed in the numerical simulations presented in [37].
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4.3 Square-root maps

We consider now a class of continuous maps characterized by a square-root
singularity on one side of the discontinuity boundary Σ with linear behavior
(associated with the matrix N) on the other side. Such maps arise naturally
in the study of grazing bifurcations of hybrid and piecewise linear flows stud-
ied theoretically in Chapters 6 and 7, and experimentally in Chapter 9. The
border-collision of a fixed point of the map with Σ then corresponds to a graz-
ing bifurcation of the flow. We will start by studying one-dimensional maps,
with the main result being a classification theorem for the border-collision,
describing various scenarios including period-adding and robust chaos. We
then generalize this analysis to maps of higher dimension treating separately
the case where N has positive real eigenvalues, which closely resembles the
one-dimensional case. We then present quite general conditions for an orbit
of a given symbol sequence to be born in the border collision. Finally, we
restrict attention to the two-dimensional maps, where we show a rich variety
of possible bifurcating stable behavior. Note that by being so general for the
case of square-root maps (which is justified as they play such a key role in un-
folding the dynamics near grazing bifurcations), the derivation of the results
we present in this section are somewhat technical and we recommend that the
details are skipped on a first reading.

4.3.1 The one-dimensional square-root map

In case study VII in the Introduction, we considered a simple continuous
square-root map described by

x �→ f(x) =
{

F1(x) =
√
μ− x + νμ, if H(x, μ) ≡ x− μ < 0,

F2(x) = νx, if H(x, μ) ≡ x− μ > 0, (4.20)

where Σ = {x : H(x, μ) = 0}. This form of the map is motivated by the
behavior of the simple impact oscillator near to grazing and, therefore, the
region H(x, μ) < 0 will be denoted the impacting region. Note that (4.20) has
the form (4.4) with γ = 1/2 if we make the simple co-ordinate transformation
x → x − μ. Following the notation introduced in Chapter 3, we will use a
to denote an iteration of the map in the region for which H(x, μ) < 0 (an
impacting iteration) and b an iteration in the region for which H(x, μ) > 0 (a
non impacting iteration).

If μ < 0, then the map has a single (non impacting) , stable fixed point at
x∗ = 0 for which H(x∗, μ) = −μ > 0 and e := dH(x∗, μ)/dμ = −1. Moreover,
if 0ν < 1, this fixed point is stable. A border-collision bifurcation of this
fixed point occurs when μ = x∗ = 0. At this value of μ we have F1,x(0−) =
−∞ and F2,x(0+) = ν. We show that increasing μ through zero leads to the
instant creation of an infinite number of new, unstable, periodic orbits. The
specific stable scenario that will be observed for μ > 0 however, depends
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on the value of ν ∈ R. The possible bifurcation scenarios were investigated
by various authors and can be summarized by the following classification
theorem, which describes how the form of the bifurcation depends upon the
(damping) parameter ν.

Theorem 4.2 (Border-collision in the one-dimensional square-root
map [199, 54, 43, 103]). Consider the one-dimensional square-root map
(4.20) with stable fixed point for μ < 0 with positive eigenvalue 0 < ν < 1.
Then the dynamics for μ > 0 can be characterized as follows:

1. Weakly stable case 2/3 < ν < 1. As μ increases through zero, there
is an immediate creation of robust chaotic motion, for which the chaotic
attractor has size proportional to

√
μ.

2. Intermediate case 1/4 < ν < 2/3. There is a period-adding cascade of
stable period-m orbits of the form Bm−1A (using the previous notation)
with m → ∞ as μ → 0. Moreover in between each period-m and period-
(m + 1) window, there is an interval of values of μ for which we see a
chaotic attractor. The width and the location of these windows decrease
geometrically with asymptotic ratio ν2 as μ→ 0.

3. Strongly stable case 0 < ν < 1/4. There is again a period-adding
cascade, accumulating on μ = 0 as m → ∞. However, this time there
is no chaos and adjacent periodic windows overlap, giving multiplicity of
attractors for some parameter values.

To illustrate this result, we present in Fig. 4.7 plots of the bifurcation
diagrams in each of the three cases.

Proof. Consider the simple square-root map given by (4.20) illustrated in
Fig. 4.8 If x is just less than μ, then fx ≡ F1,x is negative and approaches
−∞ as x → μ, leading to a significant degree of stretching. In contrast, if
x > μ, then 0 < fx ≡ F2,x = ν < 1. The function f(x) becomes equal to
its minimum value f(x) = νμ when x = μ. Let V be the interval defined as
V ≡ {x : νμ < x < μ}, in which |fx| is large. We proceed to show that, under
the action of f , a discontinuous map F is then induced from V to itself, which
can, in turn, be approximated by a single map G that is invariant under the
rescaling μ → ν2μ. By studying the fixed points of G, it is then possible to
determine the form of the periodic orbits of f . We call the interval V the
trapping region of the map.

To construct the mapG from a generic initial condition x0 ∈ V , we proceed
as follows. Let x0 ∈ V and x1 = f(x0). If μ is sufficiently small, then apart
from a small interval close to μ, the stretching associated with f implies that
x1 > μ. As ν < 1, then there will be a (possibly large) number, say m(x0, μ),
of iterations xn of f(x) such that xn+1 = f(xn) < xn and xn > μ if n < m.
It is easy to see that

xn = νn−1√μ− x0 + νnμ.

Let us now define xm to be the first of these iterates which again lies in V . The
number m(x0, ν) of iterations required to re-enter V takes its maximal value,
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M(μ), when x0 = νμ and decreases monotonically as x0 increases towards μ.
We can then define the induced map from V → V as

xm(x0,μ) = ̂F (z) ≡ νm−1√μ
√

1 − z + νmμ where z = x0/μ. (4.21)

The map ̂F (z) is continuous on intervals over which m(x0, μ) is constant and
is discontinuous across the boundaries of such intervals. These intervals are
given by

Vm = {z : μν < νm−1√μ
√

1 − z + νmμ < μ}. (4.22)

In particular ̂F has M(μ) continuous branches, where M = m(μν, μ) so that

̂F (ν) = νM−1√μ
√

1 − z + νMμ ∈ [νμ, μ]. (4.23)
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These figures show the near equivalence of the function ̂F (z)/μ in these two cases
and the increase of m(z) by one as μ is decreased by the factor ν2.

Figure 4.9(a) illustrates the map ̂F (z)/μ for two values of μ in the ratio of
1 : ν2. In particular, we see the map when M = 19 and M = 20, respectively,
and Fig. 4.9(b) shows the variation of m(z) with z. It is apparent from these
figures that the form of the map is similar in both cases and that m increases
by one. Crucial to the development of the structure of the period-adding
cascade is understanding this strong degree of self-similarity in the map ̂F
under rescaling in μ. Indeed, if μ is small compared to 1 − ν, then ̂F (z)/μ is
closely approximated by νm−1

√
1 − ν/

√
μ. If we change μ to ν2μ, then this

approximation to ̂F (z)/μ does not change on each subinterval provided that
m is increased by one. When this occurs, M is also increased by one and an
extra branch is added to the map ̂F close to z = 1. However, the local form of
̂F on the sub-branches does not change significantly. To make this calculation
more precise, we set k = M −m and introduce the parameter

λ =

(

ν

( ̂F (ν)/μ)

)2

∈ [ν2, 1]. (4.24)

It follows from (4.23) that on each interval, the map ̂F (z)/μ takes the form

̂F (z)
μ

=
ν1−k

√
1 − z√

1 − ν
√
λ

+ νM−k

(

1 −
√

1 − z√
1 − ν

)

.

Now, if M is large compared to k, then we have

̂F (z)/μ ≈ G(z, λ),

where the function G(z, λ) is defined for all k = 0, 1, 2, 3, 4, . . . by

G(z, λ) =
ν1−k

√
1 − z√

1 − ν
√
λ
, (4.25)
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with G(ν, λ) = ν/
√
λ and k taking constant values on sub-intervals z ∈ Ik ⊂

[ν, 1]. Now, if λ is held constant, then the map ̂F (z)/μ which maps the interval
J ≡ [ν, 1] to itself, is closely approximated by the function G(z, λ). It follows
from (4.23) that, if μ is small, then λ is constant precisely when μ is reduced
by a factor of ν2 and M is increased by one. This is the origin of the self-
similar structures inherent in the period-adding cascade. The map G(z, λ) has
a series of branches of increasing slope as z increases. A simple calculation
shows that

|Gz(z, λ)| > |Gz(ν, λ)| =
ν

2(1 − ν)
√
λ
. (4.26)

Furthermore G has an infinite number of branches and a corresponding infi-
nite number of fixed points zk ∈ Ik. The stability of each such point can be
determined from the formula

Gz(zk, λ) = − zk

2(1 − zk)
. (4.27)

Note that |Gz(zk, λ)| increases as zk increases, indicating that it is the first
fixed point (with k = 0) that is most likely to be stable and observed. This
point satisfies the equation

z0 =
ν
√

1 − z0√
1 − ν

√
λ
. (4.28)

Now let us treat each subcase of Theorem 4.2 in turn.

1. If 2/3 < ν < 1, then for all λ ∈ (ν2, 1], it follows from (4.26) that
|Gz(z, λ)| > 1 for all z. Thus no stable periodic points exist for G. The only
other possibility is chaotic motion confined to the set J . The maximum
amplitude of the iterates of the original map f(x) in this chaotic motion
is given by the image of the point νμ. Hence the strange attractor of f(x)
lies in the interval (νμ,

√
μ
√

1 − ν + νμ).
2. If ν < 2/3, then for each fixed M it is possible for the first fixed point z0

to be stable provided that |Gz(z0, λ)| < 1. For the original map f(x), such
a fixed point corresponds to a periodic maximal M -orbit of the symbolic
form ABM−1, which has one iterate in the region where the map has a
square-root form and (M − 1)-iterates in the region where the map is
linear. As M is kept fixed and λ varies, then there is typically a range of
values of λ ∈ [ν2, 1] where this orbit exists and is stable. When λ = 1 and
ν < 2/3 we have z0 = ν and |G′(z0)| = ν/2(1 − ν) < 1. As λ decreases,
then z0 and |G′(z0)| increase, until z0 = 2/3 when G′(z0) = −1 and there
is a period-doubling bifurcation, leading to an instability of the fixed point.
This arises when

λ = λPD =
3
4

ν2

(1 − ν)
.

If ν > 1/4, then λPD > ν2 and the fixed point z0 corresponding to the
M-orbit exists and is stable if λ ∈ [λPD, 1] ⊂ [ν2, 1]. For λ ∈ (ν2, λPD) we
expect to see more complex, and possibly chaotic, motion.
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We can now see how period-adding arises. In terms of the original variable
μ the M-orbit exists and is stable for a range μ ∈ [μPD(M), μe(M)]. If μ
is small, then we can estimate λ by

λ ≈ μ

ν2(M−2)(1 − ν)
,

so that
μe(M) ≈ (1 − ν)ν2(M−2), μPD(M) ≈ 3

4
ν2(M−1)

and there is a periodic M -maximal orbit in the interval

μ ∈ PM = (μPD(M), μe(M)) ≈
(

3
4
ν2(M−1), (1 − ν)ν2(M−2)

)

.

Because 1/4 < ν < 2/3, these intervals do not overlap and have width in
geometric progression so that |CM+1| = ν2|CM |. There are gaps between
these intervals, and in these gaps more complex, indeed chaotic motion,
will exist.

3. We now finally look at the case of ν < 1/4. In this case, there are no
period-doubling bifurcations at which the maximal periodic M -orbit loses
stability. Instead, the M -orbit persists as ν is reduced and the regions for
existence of the M and M + 1 orbits overlap. This is because the second
fixed point z1 of the map G(z, λ) becomes stable for values of λ for which
z0 is also stable.

4.3.2 Quasi one-dimensional behavior

The one-dimensional square-root map of the previous section is a special case
of the more arbitrary n-dimensional square-root type maps that arise in the
unfolding of grazing bifurcations in hybrid and piecewise-smooth flows (see
Chapters 6 and 7). Generically, these maps combine a linearizable smooth map
with a correction on the far side of a discontinuity boundary Σ ≡ {H(x, μ) =
0} that to leading order is proportional to y =

√

|H|.
For the sake of simplicity, in what follows we will consider a semi-

linearization of such a general map. All of the stated results are easily general-
izable under the inclusion of higher-order terms. Accordingly, we now consider
square-root maps of the form x→ f(x, μ), x ∈ R

n, μ ∈ R, where

f(x, μ) =
{

F1(x, μ) = Nx+Mμ+ Ey, if H(x, μ) < 0,
F2(x, μ) = Nx+Mμ, if H(x, μ) > 0. (4.29)

Here we will take

H(x, μ) = CTF2(x)+Dμ = CT (Nx+Mμ)+Dμ, y =
√

−H(x, μ), (4.30)

and take N , M , E, C, and D to be general matrices of appropriate dimensions.
We will refer to the region H(x, μ) < 0 as the impacting region and denote
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such iterates by a. The slightly cumbersome form of the function H(x, μ) is
motivated by the derivation of square-root maps for hybrid systems that we
will describe in Chapter 6. The derivative of the map F1 with respect to x is
given by

F1,x = N − ECTN

2y
.

Hence terms in this derivative become unbounded as y → 0, which implies a
high degree of stretching in appropriate directions. However, the map is still
dissipative (so that it contracts area) if |det(F1,x)| < 1. Maps derived from
dissipative flows must have this property. A necessary condition for this to be
true as y → 0 is that the operator N is dissipative and that

CTE = 0. (4.31)

As we shall see, in Chapter 6, maps with this restriction arise naturally in the
analysis of stable orbits undergoing a grazing impact in hybrid systems. In
fact, we shall now assume that (4.31) holds in what follows. The map (4.29)–
(4.31) was first introduced by Nordmark [197], and in [54] is referred to as the
Nordmark map, although the map analyzed there is a linear transformation
of (4.29).

The non-impacting fixed point x∗ of the map F2 (4.29)–(4.31) can be
computed easily and we have

x∗ = (I −N)−1Mμ. (4.32)

The condition for x∗ to also be an admissible fixed point of f (i.e., to not
impact) is that

0 < H(F2(x∗), μ) = H(x∗, μ) = CT (I −N)−1Mμ+Dμ := eμ. (4.33)

However, if x∗ is not a fixed point of f , it can still act as an attractor of
the iterates of the map F2. The form that this attractor takes then largely
determines the overall dynamics of f . In the simplest case, the fixed point of F2

is a stable node that attracts iterates along a one-dimensional stable manifold.
Such behavior arises when the leading eigenvalue ν1 of the matrix N is real,
positive and less than one. In this case the iterates of the map f may approach
x∗ in the region H(x, μ) > 0 until there is a first point when H(x, μ) < 0 and
the map F1 applies. It is this transition that leads to interesting dynamics
that can be understood in terms of the behavior of the one-dimensional map.

The situation is more subtle when the operator N has complex eigenvalues.
In this case rather different behavior from that of the one-dimensional map is
observed, with delicate transitions between various types of periodic orbit. We
will consider this case in the next section, after we have shown the following
direct analog of Theorem 4.2 for higher dimensional maps.

Theorem 4.3 (Quasi-one-dimensional border-collision in the n-di-
mensional square-root map [106, 171]). Consider the map (4.29)–(4.30).
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Suppose that for all n ≥ 1 we have CTNnE > 0 and that 0 < ν1 < 1 is the
leading eigenvalue of N (that is, the unique real eigenvalue having the largest
modulus), then as μ passes through zero, the stable fixed point x∗, which occurs
when eμ > 0 evolves into one of the following scenarios when eμ < 0:

1. If 2/3 < ν1 < 1, there is a robust chaotic attractor close to the origin
for all small negative values of eμ. The chaotic attractor has size propor-
tional to

√−eμ. Moreover, the attractor comprises a fixed number, m, of
thin fingers (almost one-dimensional sets) in the positive NnE directions,
where 0 ≤ n ≤ m.

2. If 1/4 < ν1 < 2/3, then for all small negative values of eμ there is an
alternating series of chaotic and stable periodic motions. The periodic
motions accumulate in a period-adding cascade as μ → 0 in a sequence
of windows that are mapped into each other by a factor asymptotically
proportional to ν2

1 . The periodic bands have width that increases from zero
as ν1 decreases from 2/3 to 1/4.

3. If 0 < ν1 < 1/4, then there is a period-adding cascade in which the periodic
bands overlap and increase in period as eμ→ 0−.

Remark. In Case 1, it can be shown that the principal Lyapunov exponent
on the chaotic attractor scales as 1/ log(−eμ) as μ → 0 [171]. Moreover, for
larger values of −eμ, the attractor may terminate in a period-subtracting
cascade from an initial maximal orbit.

Proof. If the effect of impacts are ignored, then the map F2 has a fixed point
x∗(μ). We assume that H(x∗, μ) = eμ = −σ with σ > 0. To study the
dynamics close to x∗, when σ is small, we set x = x∗ + z. On rescaling, we
have

z → f(z) =
{

Nz, CTNz > σ,

Nz + E
√
σ − CTNz CTNz < σ.

We identify two regions: Region I, for which CTNz < σ, and Region II for
which CTNz > σ. As N is contracting, and as CTNnE > 0 for all n, it follows
that the origin in the new co-ordinate system is a global attractor. Hence,
Region I is a trapping region for the map into which all iterates must eventually
fall. Given a starting point z0 in Region II, there is typically a series of (linear)
iterates of zn = fn(z0) = Nnz0 in Region II that asymptotically approach the
origin. Eventually an iterate zn enters Region I. Let M be the first iterate to
enter Region II, so that zn = Nnz0 is in Region I for 0 ≤ n ≤ M − 1. Now,
in Region I the high derivative of the square-root term implies that a small
neighborhood of z = 0 is stretched along the direction of the vector E with
the most significant local stretching occurring when CTNzM is close to σ. For
σ sufficiently small then, as CTNE > 0, point f(zm) re-enters Region II in
the next iteration of f , and so such an event sequence repeats. See Fig. 4.10.

In Region II we have linear dynamics: z → Nz. Suppose that, corre-
sponding to the eigenvalue ν1, N has right eigenvector ψ1 normalized so that
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Fig. 4.10. Illustration of the proof of Theorem 4.3.

CTψ1 > 0, and left eigenvector φ1. That is, Nψ1 = ν1ψ1, and NTφ1 = ν1φ1.
If z0 is a point in Region II, then for sufficiently large n, we have

zn = Nnz0 ≈ νn
1 (φ1z0)ψ1

so that the iterates approach the origin along the direction ψ1. Along this line
there will be a first value of n for which CTNzn < σ but CT zn > σ.

Let γ > 0 and set z = σγψ1. We next consider the one-dimensional interval

W = {σγψ1 : ν1γb < γ < γb} with γb = 1/(ν1(CTψ1)).

Here the range of values of γ is chosen so that W lies in Region I, but N−1W
lies in Region II. For large n, the iterates of z0 approaching the origin in the
direction of ψ1, enter the set W and then experience stretching in the direction
of E. The image ̂W of the set W under the action of the square-root map is
given by

̂W = F1(W ) = {γν1σψ1 + E
√
σ
√

1 − γ/γb}. (4.34)

The set W is thus stretched into the set ̂W , which is almost tangent to E for
σ � 1 and is of ‘length’

√
σ
√

1 − ν1|E|. As CTNE > 0, then, nearly all points
of ̂W will be in Region II unless γ is very close to γb. Subsequent iterations
of the map of the form Nn

̂W will comprise a series of ‘fingers’ which lie in
Region II, and return to Region I (owing to the fact that the origin is an
attracting fixed point) after M iterations; see Fig. 4.10.

The value of M will be largest when γ = ν1γb. Hence, we can estimate M
by solving the equation

CTNME
√
σ
√

1 − ν1 = σ.
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Noting that for large M we have CTNME ≈ νM
1 α where α > 0 is a constant,

we get
νM
1 ≈

√
σ/(α

√
1 − ν1),

so that M varies as log(σ)/2 log(ν1). During the iterations, the orbits are
bounded by a set of size proportional to

√
σ. More generally, the points in

̂W will return to W after a number m(γ, σ) of iterations, giving an induced
map F from W to itself parameterized by σ The function m(γ, σ) is a locally
constant discontinuous function of γ, which, to leading order, is constant over
the interval

Wm = {γ : ν1γbσ < ανm
1

√
σ
√

1 − γ/γb < γbσ.}.

This behavior of the induced map F is entirely equivalent to that of the one-
dimensional map described in (4.22), and the rest of the proof follows that of
Theorem 4.2.
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Fig. 4.11. Bifurcation diagrams for the two-dimensional maps in example 4.2: (a)
Immediate jump to chaos when N = N1, (b) period-adding cascade interspersed
with chaos when N = N2, (c) overlapping period adding cascade when N = N3 and
(d) chaotic attractor for case (a) when μ = 0.02 showing the series of fingers given
by the iterates of the set W . See text for explanation of labels

Example 4.2. We illustrate this behavior by taking three specific two-dimensional
square-root maps with the matrix N = Ni given by one of the following three
cases:

N1 =
(

1.4635 3.8396
−0.2063 −0.3935

)

,
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N2 =
(

0.7833 1.6660
−0.0895 −0.0175

)

, N3 =
(

0.3252 0.7244
−0.0389 −0.0252

)

.

These operators have eigenvalues {ν1, ν2} given, respectively, by {0.8, 0.27},
{0.5, 0.27}, and {0.2, 0.1}. We take

M = (−0.5337, −0.2277), E = (0, 1), CT = (1, 0), D = 0,

and set x = (x1, x2). The resulting bifurcation diagrams for iterations of the
Nordmark map withN = N1, N2, N3 are given in panels (a)–(c) of Fig. 4.11. In
these plots we see, respectively, an immediate jump to chaos, a period-adding
cascade with periodic windows separated by regions of chaos and a period-
adding cascade with overlapping periodic orbits. In all cases the attractor
grows like

√
μ for positive μ, in perfect agreement with Theorem 4.3. Note

in panel (b) we see evidence of orbits of periods 4, 5 and 6 within windows
whose width decreases by a factor of 0.25 = 0.52 as μ→ 0.
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Fig. 4.12. The computed return map from the set W to itself, plotting succes-
sive iterates z1. Note the strong similarity between this map and the map G(x, λ)
illustrated in Fig. 4.9.

The chaotic attractor plotted in the original co-ordinates for μ = 0.02 in
Fig. 4.11(a) with N = N1 is given in Figure 4.11(d). In this case we have
ψ1 = [0.9854 − 0.1704] and the fixed point is given by

x̄ = (I −N1)−1Mμ = (−11.0653 1.474)μ

so that e = −11.06 and σ = −11.06μ. Note the star shaped appearance of
the attractor with iterates lying along the sets Nn

1 E. The sets W and ̂W are
indicated together with the inadmissible fixed point of the linear portion of
the map. A direct calculation shows that the set W is given by x ∈ [0, 0.0553].
Using this, we may calculate the first return map from the set W to itself
directly from the iterates of the map. To do this we find those iterates for
which x1 ∈ W and plot each iterate against the previous such iterate. The
resulting map is plotted in Fig. 4.12. The almost piecewise (discontinuous)
nature of the map is immediate from the figure, which we can compare directly
with Fig. 4.9.
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4.3.3 Periodic orbits bifurcating from the border-collision

For more general forms of the matrix N , particularly when it has complex
eigenvalues, there is much less we can say about the overall dynamics of the
square-root map. Instead, as in Sec. 3.2, we shall focus on classifying the be-
havior of the simplest kind of periodic orbits, first dealing with existence, and
then stability. We will establish precise conditions for the existence of periodic
orbits of arbitrary period and then consider the case of two-dimensional maps
in detail. The presentation is based on the work of Nordmark in [199].

To do this we will slightly generalize our earlier discussions and consider a
general square-root map of the following form, which agrees with the earlier
map (4.30) to leading order:

f(x, μ) =
{

F1(x, μ) = F2(x, μ) + E(F2(x, μ), y, μ)y, if H(x, μ) < 0,
F2(x, μ) = Nx+Mμ, if H(x, μ) > 0,

(4.35)
where

H(x, μ) = CTF2(x) +Dμ+O(|x, μ|2) and y =
√

−H(x, μ) > 0, (4.36)

and E is a generals smooth function whose leading-order term E(0, 0) is the
matrix E defined earlier.

It follows immediately, from an application of the Implicit Function The-
orem, that the fixed point x∗ = F2(x∗, μ) of the map F2 exists provided that
(I −N)−1 exists. This is a small perturbation of the point (I −N)−1Mμ and
is a fixed point of f provided that

H(x∗, μ) ≡ eμ > 0.

Our aim is now to establish similar necessary conditions for the existence
of more complex periodic orbits of f , which have the symbolic form

bn1−1abn2−1a . . . bnm−1a.

Typically these will have a given impacting sequence in which starting with
a point x1 the system has n1 − 1 non-impacting iterations of f followed by
an impact for which y = y1 leading to a new state x2 with a further n2 − 1
non-impacting iterations and so on. A necessary set of equations satisfied by
such a periodic orbit is

x2 − E(Fn1
2 (x1, μ), y1, μ)y1 − Fn1

2 (x1, μ) = 0,
H(Fn1−1

2 (x1, μ)) + y2
1 = 0,

... (4.37)
x1 − E(Fnm

2 (xm, μ), ym, μ)ym − Fnm
2 (xm, μ) = 0,

H(Fnm−1
2 (xm, μ)) + y2

m = 0.
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For this periodic orbit to exist, it must also satisfy the compatibility conditions
for the non-impacting iterates given by

H(F k
2 (xi, μ), μ) > 0for0 ≤ k ≤ ni − 1 and yi > 0. (4.38)

We initially consider the linearized system obtained from (4.37) by setting
F2(x, μ) = Nx +Mμ and H(x, μ) = CTF2(x) +Dμ = CT (Nx +Mμ) +Dμ
and E(F2(x), y, μ) = E(0, 0, 0). This gives a set of linear equations, subject
to linear constraints, acting on the vector w ∈ R

m×(n+1) defined as

w =
[

x1 y1 · · · xm ym

]T
.

In this linearized system, the solution w(μ) is directly proportional to μ.
More generally, if we consider the set of nonlinear equations F(w) = 0

defined by (4.37), then the solution w(μ) is given uniquely, for small μ, by
the Implicit Function Theorem, provided that ∂F

∂w is nonsingular at (0, 0) and
(4.38) hold. To simplify the calculation of this solution, we rescale the system
of equations (4.37) by setting xi = x∗(μ) + eμXi, and yi = eμYi. A periodic
solution, which solves the rescaled system, can then be described by the vector

W =
[

X1 Y1 · · · Xm Ym

]T
.

A period-k non-impacting sequence of iterations of F2 then has the form

F k
2 (x1, μ) = F k

2 (x∗(μ) + eμX1, μ),

which gives on expansion, up to an error of O(μ2),

F k
2 (x1, μ) ≈ F k

2 (x∗(μ), μ) + F k
1,x1

eμX1 = x∗(μ) + eμNkX1 (4.39)

Similarly, expressing H in terms of the new co-ordinates we have

H(F k
2 (x1, μ), μ) ≈ H(x∗(μ)) + eμCTNkX1 = eμ(1 + CTNkX1). (4.40)

Taking the first line of (4.37) with (4.39) and (4.40) gives

eμX2 − EeμY1 − eμNn1X1 +O(μ2) = 0,

and the second line of (4.37) yields

eμ+ eμCTNn1X1 +O(μ2) = 0.

Similar expressions for the rest of the impacting sequence can be derived and
put into matrix form. For the impacting sequence bn1−1abn2−1a . . . bnm−1a,
the Jacobian matrix of the system defined by (4.37), say J = FW (0, 0), can
then be shown to have a block-banded structure of the form



4.3 Square-root maps 201

J =
∂F
∂W

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−Nn1 −E I 0 0 . . . 0 0
CTNn1 0 0 0 0 . . . 0 0

0 0 −Nn2 −E I . . . 0 0
0 0 CTNn2 0 0 . . . 0 0

· · · · · · · · · · · · · · · · · · · · · · · ·
I 0 0 0 0 . . . −Nnm −E
0 0 0 0 0 . . . CTNnm 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (4.41)

The entire linearized system can then be written as

JW (μ) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0
−1
...
0
−1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

+ O(μ). (4.42)

This system of equations must be augmented with the compatibility conditions
(4.38), which give

sign(eμ)(1 + CTNkXi(μ) + 1) +O(μ) > 0 for 1 ≤ k ≤ ni − 1 (4.43)

and
sign(eμ)Yi(μ) > 0 (4.44)

derived as above. Here we divide by the modulus of eμ to preserve the de-
pendence on the sign of eμ. The linear set of equations defined by (4.42)
can then be solved for W in all cases. A solution with impacting sequence
(n1, n2, ..., nm) exists for small μ for one of μ > 0 or μ < 0 if the compatibility
conditions (4.43) and (4.44) hold for the solution to (4.42). The conditions
det(I − N) �= 0, e �= 0 and detJ �= 0 ensure that this calculation is correct
to O(μ2) for the more general system. If any expression on the left-hand side
of the compatibility condition (4.43) or (4.44) are negative then no solution
exists for that sequence of impacts. Close to the border-collision at μ = 0, the
term e can be taken to be a constant, so that the left-hand sides of (4.43) and
(4.44) change sign as μ passes through zero. Hence the necessary conditions
cannot simultaneously hold for both signs of μ. So, if all conditions in (4.43)
and (4.44) are of the same sign and positive for a given impacting sequence,
then the orbit exists for the same sign of μ as the simple non-impacting fixed
point. Conversely, if all the conditions are of the same sign but negative, then
the orbit exists on the opposite side to the non-impacting orbit. Finally, if
conditions (4.43) and (4.44) are of both signs for a particular orbit sequence
(n1, n2, ..., nm), then no periodic orbit of that type can be either created or
destroyed in the bifurcation.

Let us now discuss the stability of the bifurcating period orbits. Whereas
the stability of a non-impacting orbit is determined by (the eigenvalues of) the
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matrixN , the stability of an impacting orbit is strongly affected by the stretch-
ing implicit in the map F1. To estimate the nature of any such (in)stability,
consider the map associated with a sequence of n−1 non-impacting iterations
followed by one impact. In the notation of the previous section, this is given
by

Q(X1, y1) ≡ NnX1 + Ey1, with CTNnX1 + y2
1 + eμ = 0.

If we make the perturbations X1 → X1 +ΔX1, y1 → y1 +Δy1 we have

ΔQ = NnΔX1 + EΔy1, with CTNnΔX1 + 2y1Δy1 = 0.

Eliminating Δy1 between these two expressions gives

ΔQ = (Nn − [CTNnE]/2y1)ΔX1.

Hence the dominant growth factor in ΔQ is given by −CTNnE/2y1. As y1 is
of order μ as μ→ 0 at the bifurcation, this will lead to unbounded growth in
this term; hence, close to the bifurcation the orbit corresponding to this impact
sequence is unstable. If an orbit has more impacts, then this growth factor
increases. As |μ| (and hence y1) increases away from the bifurcation point
at μ = 0, the impacting orbit may stabilize if |CTNnE/2y1| < 1. Clearly
this is most likely if all the eigenvalues of N have modulus less than unity,
n is large and only one impact occurs. periodic orbits with a single impact
and period n for large n take the symbolic form bn−1a. These orbits have the
same form as the orbits of the one-dimensional square-root map and if n takes
its largest possible value M for a given set parameters. We shall term these
maximal orbits [54]. From the above discussion we see that of all possible
periodic orbits these are the most likely to be stable in a neighborhood of
the bifurcation point. Determining the maximum value of n in terms of the
system parameters thus gives important insights into the resulting dynamics.
We restrict attention to three special cases:

Example 4.3 (Bifurcation of single impact period-one orbit). The simplest pe-
riodic impacting orbit is a ba orbit. To leading order, the system in (4.42) can
be written as

(I −N)X1 − EY1 = 0, 1 + CTNX1 = 0.

Rearranging these equations and converting back into the original co-ordinates
with y1 = eμY1 yields

y1 = − eμ

CTN(I −N)−1E
, x1 = x∗ + (I −N)−1Ey1.

For a general period-n orbit, we define the function s(n) by

s(n) := CTNn(I −Nn)−1E. (4.45)

As CTE = 0, this is identical to
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s(n) = CT (I −Nn)−1E.

This linearized expression for the single impact period-one orbit then takes
the form

y1 = − eμ

s(1)
, x1 = x∗ − (I −N)−1E

eμ

s(1)
. (4.46)

To satisfy the compatibility condition, we require y1 > 0, so that eμ must have
the opposite sign to s(1). If we assume that the non-impacting orbit arises
when μ is small and μ < 0, then we must have e < 0, so that the sign of eμ is
+1. It follows that if s(1) is negative, then the impacting periodic orbit exists
in the same range (μ < 0) as the non-impacting periodic orbit and coalesces
with it when μ = 0 in a non-smooth fold. Conversely, if s(1) is positive, then
the impacting orbit exists in the opposite range (μ > 0, for small μ) from
the non-impacting orbit and hence we have a persistence scenario, where the
period-one non-impacting orbit continuously evolves into the single-impact
orbit as μ passes through 0. More formally, applying the Implicit Function
Theorem, we deduce the existence of the period one impacting orbit of the
full nonlinear system provided that e, s �= 0 and (I−N)−1 exists. Note further
that y1, and hence x1−x∗, is proportional to μ so that the typical bifurcation
picture takes one of the two forms illustrated in Figs. 4.13 in which we observe
either super- or sub-critical behavior.
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Fig. 4.13. The two kinds of discontinuity induced bifurcation of period-one orbits in
the general square root map (4.29)–(4.31): (a) super-critical (persistence) if s(1) > 0
and (b) sub-critical (non-smooth fold) if s(1) < 0.

Example 4.4 (Bifurcation of single-impact period-two orbit). We now consider
impacting orbits with symbol sequence b2a. To leading order, these satisfy the
linear equations

(I −N2)X1 − EY1 = 0, 1 + CTN2X1 = 0,

together with the compatibility condition

eμ(1 + CTNX1) > 0.
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Combining the two equations we have

eμCTN(I −N)X1 > 0 and X1 = (I −N)−1(I +N)−1EY1.

Hence this orbit exits provided that

eμCTN(I +N)−1EY1 > 0, with Y1 = − 1
s(2)

, y1 = − eμ

s(2)
> 0,

where s(n) was defined by (4.45). As eμY1 > 0, the compatibility condition
reduces to

CTN(I +N)−1E > 0.

The existence of such an orbit is thus guaranteed for some choice of sign of eμ
provided that s(2) �= 0, CTN(I +N)−1E > 0 and (I +N)−1 and (I −N)−1

both exist. Note that as y1 = −eμ/s(2) > 0, the b2a orbit exists when eμ and
s(2) take opposite signs.

Example 4.5 (Bifurcations of maximal orbits). The two examples considered
above are potentially both examples of maximal orbits of the form bn−1a. As
discussed, we are particularly interested in those maximal orbits for which n
takes the largest possible for a given set of parameters. Such orbits satisfy the
(linearized) equation

(I −Nn)X1 − EY1 = 0, 1 + CTNnX1 = 0,

with the compatibility conditions

eμ(1 + CTNkX1) > 0, k = 1 . . . n− 1, eμY1 > 0.

For certain ranges of the eigenvalues of N there is indeed a maximum value
of n = M for which such an orbit exists. To see this, suppose that the leading
eigenvalue of N is λ1; then asymptotically, there is a constant a for which

1 + CTNkX1 = 1 + aλk
1 .

As 1+CTNnX1 = 0, then asymptotically 1+CTNkX1 = 1−λk−n
1 . If k and n

are both large, and if λ1 is real and positive, then this expression has a constant
sign. In this case we may see orbits of arbitrary period. In fact precisely this
behavior was observed earlier in Theorem 4.3, closely associated with the
existence of a chaotic attractor. In contrast, if λ1 is negative or complex, then
1 +CTNkX cannot keep a constant sign for large values of k. In this case we
see a maximal orbit with a largest value M of n for which the compatibility
conditions can hold. If the eigenvalues of N change under parameter variation,
then we would expect to see changes in the value of the maximal value M . In
particular M → ∞ as the imaginary part of λ1 → 0. We shall see this in the
next sub-section when we look at maps in two-dimensions. Furthermore, if as
parameters in the system vary, λ1 changes from being complex to real, then



4.3 Square-root maps 205

we see a transition from a large-period maximal orbit, to chaotic behavior
in the post-bifurcation regime. This transition was investigated by Chin et
al. [54]. They observed that stable maximal orbits can arise in (smooth) fold
bifurcations μ = μSN close to the border-collision at μ = 0.

In general it is not easy to analyze such fold bifurcations for the full nonlin-
ear map as higher-order terms in the expressions for the orbits must be taken
into account. In cases where the square-root maps arise as Poincaré maps of
flows, these higher-order terms must also include detailed calculations of the
flow that are often difficult to determine. However, an analysis of the fold
structure is possible in the case of the Nordmark map described exactly by
(4.29)–(4.31). If we include the quadratic terms and pose the system in the
original co-ordinates, we find that y1 satisfies the quadratic equation

eμ+ s(n)y1 + y2
1 = 0, (4.47)

so that

y1 = −s(n)
2

± 1
2

√

s(n)2 − 4eμ

with

Fn−1
2 x1 = (I −N)−1Mμ+Nn−1(I −Nn)−1Ey,

x1 = NFn−1
2 x1 +Mμ+ Ey1, (4.48)

etc.

It is immediate that such orbits can only occur close to the bifurcation
point for the values of μ for which −eμ/s(n) > 0, however, for larger values
of μ, they exist when −eμ > 0. A saddle-node bifurcation then arises in the
case of s(n) < 0 at the point

μSN =
s(n)2

4e
.

Of course, we must also check the compatibility conditions for any given ex-
ample system. We give one such example in the following section.

4.3.4 Two-dimensional square-root maps

The conditions for periodic orbits derived in Sec. 4.3.3 can in principle be used
to classify any border-collision in a square-root map. However, they are in gen-
eral too unwieldy to use in practice. In fact, since only maximal orbits are likely
to be stable, much more practical information can be obtained by considering
only such orbits. We explain how to use maximal orbits in such a classification,
restricting attention to the case of two-dimensional maps, for which we can
develop a much more complete theory. Such maps are important in applica-
tions. Indeed, two-dimensional square-root maps arise naturally in the study
of impacting systems of the form described in case study I in the Introduction,
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where the underlying system is described by a second-order, non-autonomous
differential equation. This leads to a flow in a three-dimensional phase space,
and the natural Poincaré map associated with this flow is two-dimensional.
The link between this map and the map described in this chapter will be
made precise in Chapter 6, but the key feature of this link is that nearly all
of the parameter space of the possible two-dimensional maps can be explored
by considering impacting systems with various combinations of coefficients.

A simple co-ordinate transformation, such as that described for the two-
dimensional piecewise-linear continuous maps described in Chapter 3, trans-
forms the matrices N E and CT into the normal form given by

N =
(

τ 1
−δ 0

)

, E =
(

0
1

)

bγ, CT = [1 0], (4.49)

where b > 0. Note that the condition CTE = 0 is satisfied automatically
for such a normal form. Now suppose that the eigenvalues of N are given by
λ1, λ2. Then τ = λ1 + λ2 is the trace of N and δ = λ1λ2 is the determinant,
and we can consider the different types of behavior that arise as τ and δ vary.
A maximal orbit arises for those values of n,X and Y for which

(I −Nn)X − EY = 0, CTNnX + 1 = 0, Y = −1/CTNn(I −Nn)−1E.

Because CTE = 0, we have

CT (I −Nn)X = 0, and hence CTX + 1 = 0.

The compatibility conditions are then given by

eμ(CTNkX + 1) > 0 and eμY > 0,

these simplify to
eμbn,k > 0 and eμγcn > 0,

where
bn,k = CTNkX + 1, and cn = CT (I −Nn)X.

A key feature of the analysis of the two-dimensional square-root map is that
Nn can be calculated in terms of its eigenvalues, and hence the fixed points
and periodic orbits can be calculated explicitly. For example, the vector X is
given by

X =
(

−1,
(λn+1

1 − λn+1
2 ) − (λ1 − λ2)
λn

1 − λn
2

)

.

Given this value for X, the curves along which bn,k = 0 represent tran-
sitions (called iterate boundaries in [199]) across which the value of n must
change along the maximal orbit. Curves cn = 0 are lines in which the direction
of the bifurcation changes. Observe that for a given X, the possible existence
of the maximal n-orbit then depends upon the signs of eμ and γ. Using the
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expression for X we can calculate bn,k and cn entirely in terms of the values
of λi so that

bn,k =
−(λ1λ2)(λn−k

1 − λn−k
2 ) − (λk

1 − λk
2) + (λn

1 − λn
2 )

λn
1 − λn

2

,

cn =
−(λ1 − λ2)(λn

1 − 1)(λn
2 − 1)

λn
1 − λn

2

.

As the parameters in the problem vary, the eigenvalues of N change and
hence the possible periodic orbits also change. The above expressions for bn,k

and cn allow the existence regions for the various types of orbit to be de-
termined entirely in terms of the eigenvalues of N , and hence in terms of τ
and δ. Suppose we assume that the pre-impacting system is stable so that
0 < δ ≤ 1. Following [197], [54] we can identify five regions of parameter
space corresponding to qualitatively different forms of behavior. These arise
from different configurations of the eigenvalues of N and the nature of the
fixed point x∗ of the non-impacting system.

1. τ > δ + 1; saddle-point: 0 < λ2 < 1 < λ1.
2. τ − 1 < δ < τ2/4; stable-node: 0 < λ2, λ1 < 1.
3. τ > τ2/4; stable-spiral: λ1,2 = ρe±iθ, 0 < ρ < 1.
4. −τ − 1 < δ < a2

1/4; flip node: −1 < λ2 < λ1 < 0.
5. δ < −τ − 1; flip saddle: λ2 < −1 < λ1 < 0.

In Regions 1, 2, 4 and 5 the system is ‘over-damped’ and the eigenvalues
are real. In Region 3 the system is ‘under-damped’ and the eigenvalues are
complex. We now briefly examine the dynamics of the full impacting system
in Regions 1, 2 and 3. The dynamics in Regions 4 and 5 are similar to that in
Regions 2 and 1, respectively, when we consider the second iterate of the map.
Hence the fundamental bifurcation of the period-one orbit becomes more akin
to a period-doubling than to a fold or persistence. Typically we see chaotic
behavior and/or period-adding in Regions 1 and 2, similar to that of the
quasi-one-dimensional map. In contrast, in Region 3 we typically see periodic
behavior and complex transitions between orbits of high period.

Regions 1 and 2: real positive eigenvalues. In these regions the map
has the behavior of the quasi-one-dimensional map described in Sec. 4.3.2,
and we can now explore this in more detail. If the eigenvalues λi are both
positive, then the sign of bk,n is independent of k and n and is the same as
the sign of (λ1 − 1)(1 − λ2) [199]. A similar result holds for cn, with both cn
and bn,k changing sign as λ1 passes through 1. Hence, provided that 0 < λi,
all orbits are possible.

In Region 2, we have bn,k and cn both negative. Hence eμ must be negative
and γ must be positive. In Region 2, all periodic orbits can exist, but most are
unstable. The transitions between the various types of bifurcation diagram
occur when λ1 = 2/3 and λ1 = 1/4. As τ = λ1 + λ2 and δ = λ1λ2 these
boundaries form the two lines
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Fig. 4.14. The five regions (labeled by numbers from 1 to 5) of the two-dimensional
square root map (4.29)–(4.31) as functions of τ and δ, corresponding to the quali-
tatively different eigenvalue configurations for the matrix N . Dashed lines indicate
the boundaries inside Region 3 where the number n changes for the maximal orbit,
see text for details.

δ =
2
3

(

τ − 2
3

)

and δ =
1
4

(

τ − 1
4

)

.

Suppose now that λi has associated right eigenvector φi and left eigenvec-
tor ψi; then

CTNnE = λn
1 (CTφ1)(ψ1E) + λn

2 (CTφ2)(ψ2E) ≡ pλn
1 + qλn

2 .

As 0 < λ2 < λ1 the condition CTNnE is true for all n provided it is true for
n = 1, which is true since we can choose

φ1,2 =

(

1,−τ

2
±

√
τ2 − 4δ2

2

)T

, ψ1,2 =

[

−τ

2
∓

√
τ2 − 4δ2

2
, 1

]

,

so that (CTφi) = (ψiE) = 1. Hence we can apply Theorem 4.3, and the
bifurcation sequences will be much like those for the one-dimensional square-
root map.

Region 3: Complex Eigenvalues. In Region 3, we see very different
behavior from the quasi-one-dimensional case. For a fixed set of parameter
values τ, σ periodic orbits of period up to a maximum value of n ≤ M(τ, σ)
can exist and there are many internal boundaries corresponding to the change
in type of the maximal orbit, i.e., where bk,n and cn change sign for different
n. The first few such curves are depicted as dashed lines in Fig. 4.14. They
accumulate, asM → ∞ on the curve δ = τ2/4. This curve marks the transition
between real and complex eigenvalues. If n = 1, then an orbit exists for
eμ > 0, γ < 0 and for eμ < 0, γ > 0 when τ < δ + 1. If n = 2 we have
cn = −|λ2

1−1|2/τ , which has a constant sign if τ has a constant sign, similarly
for bk,n. If τ > 0 this orbit exists if eμ < 0 and γ > 0. More generally, if
λ1,2 = ρe±iθ, then
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sign(bn,k) = sign
(

−rn sin((n− k)ψ1) + rn−k sin(nθ) − sin(kθ)
sin(nψ1)

)

and

cn = − sin(θ)
sin(nθ)

|1 − λn
1 |2.

Hence
signcn = −sign(sin(nθ)).

An internal boundary therefore occurs when nθ = π. As τ = 2r cos(θ) and
δ = r2, we have an internal boundary when

τ = 2
√
δ cos(π/n)

and existence of the maximal n-orbit provided that

2
√
δ cos(π/n) < τ < δ + 1.

This orbit exists for eμ < 0 and γ > 0. It continues to exist for τ > δ + 1 if
eμ, γ > 0.

A complete analysis of all of the existence regions for the various orbits
in Region 3 is missing, although various conjectures are made in [54, 199] for
the existence regions of general period-n orbits, which rely on subtle number
theoretic relations between n and θ/2π.

Example 4.6 (Fold bifurcation of a period-three impacting orbit bifurcating
from a non-impacting orbit.). To illustrate some of this behavior we consider
a particular example of the map (4.29)–(4.31) in which

N =
(

0.4663 1.4337
−0.227 −0.1713

)

, M =
(

−0.5337
−0.2277

)

, E =
(

0
1

)

,

CT = (1 0), D = 0.

For this system, we have λ1,2 = 0.1475 ± 0.4731i, τ = 0.295 and δ = 0.2456.
In the notation introduced in the examples above, we have

e = −1, s(1) = 1.5067, s(2) = 0.2883, s(3) = −0.1894.

We find, by numerical calculation, that an unstable period-3 maximal orbit
is created at a (sub-critical) discontinuity-induced bifurcation when μ = 0,
and this coexists with a non-impacting orbit close to μ = 0 for μ < 0. The
period-3 orbit stabilizes at the saddle-node bifurcation, which occurs when

μSN = s(3)2/4e = −0.0090

and appears to be globally attracting when 0 < μ < 0.15. For μ > 0.15 it
appears to coexist with either a chaotic motion or a period-two motion. In
Fig. 4.15(a) we present a Monte Carlo bifurcation diagram of the iterates of
the map over a broad range of values of μ. In panel (b) of the same figure, we
show the result of a numerical continuation of the period-3 orbit, indicating
both where it is stable and where it is unstable.
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Fig. 4.15. (a) Monte Carlo bifurcation diagram of the two-dimensional Nordmark
map example 4.6. (b) Numerical continuation of the period-three orbit; dashed lines
indicating stability and solid lines stability.

4.4 Higher-order piecewise-smooth maps

We conclude this chapter by studying border-collisions in piecewise-smooth
maps that are locally differentiable at the bifurcation point but have additional
nonlinear terms acting on one side only so that the higher derivatives of these
maps are not smooth. As will be discussed in Chapters 7 and 8, these types
of map arise as normal form maps of grazing bifurcations in piecewise-smooth
continuous flows, for example the Chua Circuit, or of sliding bifurcations in
Filippov systems.

In general such maps will be shown in Chapters 7 and 8 to take the form:

x �→
{

Nx+Mμ : CTx ≤ 0
Nx+Mμ+ E(CTx)γ : CTx > 0,

for some γ > 1. Typically, we see local bifurcations of such maps that are the
same as we see in smooth maps (because of the differentiability of the map),
but close to the bifurcation point the behavior is very different. For example,
we often see saddle-node bifurcations occurring close to the primary bifurca-
tion which arise because of the non-smooth terms in the map. To illustrate
the kind of analysis required to study the dynamics of such maps and the
possible bifurcation scenarios they can exhibit, we shall focus exclusively on
the one-dimensional case, which we can write without loss of generality in the
form

x �→
{

νx− μ x ≤ 0
νx+ ηxγ − μ x > 0 (4.50)

where ν ∈ R, η = ±1 γ > 1 are fixed parameters, and μ ∈ R is the primary
bifurcation parameter. Motivated by the normal forms that follow, we shall
focus exclusively on the cases γ = 3/2 and γ = 2. As for piecewise-linear
maps, we shall consider the border-collision at μ = 0 of the simple fixed point
that exists within CTx > 0 and then classify the fate of the simplest orbits of
period-one and two. Maps of this type were first studied by Halse et al [125],
upon whose analysis most of the rest of this chapter is based.
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4.4.1 Case I: γ = 2

We label as x∗1 the fixed point in the linear region S1 and as x∗±2 those in the
nonlinear region S2. It is easy to see that x∗1 will be admissible if

μ

ν − 1
< 0. (4.51)

The fixed points x∗±2 are given by

x∗±2 =
−(ν − 1) ±

√

(ν − 1)2 + 4ημ
2η

> 0, (4.52)

which must take positive real values to be admissible. The inequalities (4.51)
and (4.52)± thus define regions of parameter space where different combina-
tions of x∗1, x

∗+
2 and x∗−2 may exist.

Clearly, the stability condition for x∗2 is given by −1 < ν < 1. The slope s
of the map linearized about x∗±2 is given by equation

s = ν + 2ηx∗±2 = 1 ±
√

(ν − 1)2 + 4ημ.

Therefore, if x∗+2 is admissible, then its eigenvalue must be greater than unity.
Hence x∗+2 is always unstable. Similarly, if x∗−2 is admissible, its eigenvalue
will be less that +1, so the condition for stability is that this eigenvalue is
greater than −1, or equivalently:

(ν − 1)2 + 4ημ < 4.

Period-two points (AB/ab) can be analyzed similarly. Adopting the nota-
tion used in Chapter 3, we start by considering orbits with a positive (B > 0)
and a negative iterate (A < 0). Therefore

A = νB + ηB2 − μ, B = νA− μ,

which implies

A1,2/a1,2 =
−(ν2 − 1) ±

√

(ν2 − 1)2 + 4νημ(ν + 1)
2νη

,

and

B1,2/b1,2 =
2νημ− (ν2 − 1) ±

√

(ν2 − 1)2 + 4νημ(ν + 1)
2ν2η

.

For the solutions A1B1/a1b1 and A2B2/a2b2 to be admissible we must have
real solutions, that is,

(ν2 − 1)2 + 4νημ(ν + 1) > 0,

and also A1,2/a1,2 < 0 and B1,2/b1,2 > 0.
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The eigenvalues of the period-two points are

1 ±
√

(ν2 − 1)2 + 4νημ(ν + 1).

Clearly, whenever such points exist, the square-root term is positive so a1b1
must always be unstable whereas A2B2 is stable if

(ν2 − 1)2 + 4νημ(ν + 1) < 4.

It is also possible to have period-two orbits existing with two positive
iterates; i.e.,

B1 = νB2 + ηB2
2 − μ, B2 = νB1 + ηB2

1 − μ,

with B1, B2 > 0. However, these orbits exist entirely in the nonlinear region
of the map and are not affected by the discontinuity in the second derivative
at μ = 0. Thus, they will not be influenced by the occurrence of discontinuity-
induced bifurcations in the system.

These existence and stability conditions derived so far make it possible
to describe several different possible border-collision scenarios occurring as
μ passes through 0; see Fig. 4.16. Note that, as the map is differentiable at
μ = 0, there is no actual bifurcation in the classical sense at μ = 0. That is,
the discontinuity-induced bifurcation does not imply an immediate change in
the number or stability of periodic points. However, as we shall argue at the
end of this chapter, classical bifurcations such as saddle-node bifurcations can
be induced by the border-collision to occur a finite distance away in parameter
space.

Fig. 4.16. Different discontinuity-induced transitions at μ = 0 in different regions
of the (ν, η) parameter space when γ = 2.
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4.4.2 Case II: γ = 3/2

We can repeat the above analysis for the important case γ = 3/2 that we shall
see in Chapter 7 arises in the unfolding of grazing bifurcations in piecewise-
smooth continuous systems.

The condition for the existence (4.51) and stability (|ν < 1|) of fixed points
x∗1 remain unchanged. Fixed points, x∗2, on the nonlinear side must satisfy

0 = m3 +
ν − 1
η

m2 − μ

η
, (4.53)

where m =
√

x∗1. This equation has up to three solutions that can be found
using standard formulae for cubic equations. Labeling the solutions m1, m2

and m3, we have

m1 =
h1/3 + 4(ν − 1)2h−1/3 + 2(ν − 1)

6η
,

m2,3 =
−h1/3 − 4(ν − 1)2h−1/3 + 4(ν − 1) ± i

√
3(h1/3 − 4(ν − 1)2h−1/3)

12η
,

where

h = 108μη3−8ν3+24ν2−24ν+8+12η2

√

3μ(−12ν + 12ν2 − 4ν3 + 4 + 27μη3

η
.

Moreover, since
0 = (m−m1)(m−m2)(m−m3)

and there is no linear term in (4.53), we must have

0 = (m1m2 +m2m3 +m1m3).

If there were three positive real solutions, this would lead to a contradiction.
Therefore at most there can be two positive real solutions, and hence at most
two admissible solutions x∗±2 . To fully determine the conditions for existence,
it is necessary to consider separate regions of parameter space bounded by
curves on which the number of real positive solutions to (4.53) changes. For
the sake of brevity we omit such fine detail here. However, it can be easily
shown that the stability of fixed points x∗±2 is ensured if and only if

−1 < ν +
3η

√

x∗1
2

< 1. (4.54)

For a period-two orbit AB, we must have

A = νB + ηB3/2 − μ, B = νA− μ,
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which implies that B = ν2B+νηB3/2−μ. This leads to three pairs of solutions
(Ai, Bi) for i = 1, 2, 3; again at most two of which will have Bi positive as
required. As before, for stability we require

−1 < ν2 +
3νη
2

√

Bi < 1,

where Bi are the positive iterates of the period-two points in question.
The conditions for existence and stability can be examined in all areas

of parameter space. The behavior is exactly the same as in the case γ = 2
(Fig. 4.16), because the map is still differentiable at the bifurcation point.

4.4.3 Period-adding scenarios

Let us now consider in detail maps of type (4.50) with parameter values

0 < ν < 1, η = −1, μ < 0, γ > 1. (4.55)

With these choices of parameters the map can be shown to exhibit an infinite
period-adding sequence, which for small enough ν involves periodic orbits
characterized by only one iterate on the nonlinear side. Specifically, we seek
conditions for the existence and stability of period-k orbits of the form Ak−1B.

Since we suppose that the orbit in question has one iterate, say x1, on the
nonlinear side and k − 1 iterations on the linear one, we thus obtain that x1

must satisfy

xγ
1 +

1 − νk

νk−1
x1 +

μ(1 + ν + ν2 + ...+ νk−1)
νk−1

= 0, (4.56)

together with the compatibility conditions

x1 > ν
1

(γ−1) (4.57)

and
x1 < −μ. (4.58)

Moreover, for stability this solution must also satisfy the condition

x1 <

(

νk + 1
νk−1γ

)
1

γ−1

. (4.59)

We can use these implicit expressions to compute the regions of existence for
periodic windows for any value of γ. For example, the regions of existence of
periodic windows for γ = 2 are shown in Fig. 4.17.

Note that in addition to stable orbits that have only one iteration in the
nonlinear region, other types of orbit may also exist; for example, orbits of the
form Ak−2B2. A complete analysis of all stable period k orbits for arbitrary
γ > 1 is lengthy and would require the derivation of conditions of existence
for all different periodic sequences.

For the cases of primary interest, we have the following
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Theorem 4.4. Consider the map (4.50) with η = −1.

1. With γ = 2 the boundaries of existence of stable k-periodic orbits of the
form Ak−1B are given by

−4 + (1 − νk)k

4νk−1(1 + ν + ν2 + . . .+ νk−1)
< μ <

−(1 + ν + ν2 + . . .+ νk−1)
νk−2

.

2. With γ = 3/2 the boundaries of existence of stable k-periodic orbits of the
form Ak−1B are given by

−8(νk + 1)3 − 12(1 − νk)(1 + νk)2

27ν2(k−1)(1 + ν + ν2 + . . .+ νk−1)
< μ < −

(

ν + ν2 + . . .+ νk

νk−1

)2

.

These boundaries are plotted for the cases γ = 2 in Figs. 4.17(a).

Remark. If 0 < ν < 1 is sufficiently small, then as k → ∞ we see a
form period-adding sequence in which a period-k orbit is observed for values
of μ in a window, which scales geometrically as 1/ν if γ = 2 and as 1/ν2 if
γ = 3/2. Typically these windows are bounded by regions in which we see
chaotic behavior.
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Fig. 4.17. (a) Regions of existence of stable period-k orbits of the form Ak−1B
orbits in map (4.50) with η = −1 and γ = 2. (b) Monte Carlo numerical bifurcation
diagram for the case η = −1, ν = 0.27, γ = 2 and μ ∈ [−72, 0]. This shows both the
periodic window and the bounding chaotic regions.

Proof. We consider first the case γ = 2 for boundaries of the existence and
the stability of orbits of the forms Ak−1B. The existence conditions are given
by (4.57) and (4.58). In this case with γ = 2 firstly we have

x1 > ν. (4.60)

The second condition is again

x1 < −μ. (4.61)
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In this quadratic case we can solve (4.56) explicitly for x1, giving

x1 =
(νk − 1) +

√

(1 − νk)2 − 4νk−1μ(1 + ν + ν2 + . . .+ νk−1)
2νk−1

. (4.62)

The alternative solution of the quadratic can be neglected as ν < 1, which
gives the solution a negative value.

We can substitute this expression for x1 into the existence conditions (4.60)
and (4.61), which, after some manipulation, gives

μ <
−ν

1 + ν + ν2 + . . .+ νk−1
, (4.63)

and

μ <
−(1 + ν + ν2 + . . .+ νk−1)

νk−2
. (4.64)

We can see (4.64) implies (4.63) so we only need consider the latter.
The stability condition is given by (4.59). We can substitute our expression

(4.62) for x1 to get the requirement for stability that

μ >
−4 + (1 − νk)k

4νk−1(1 + ν + ν2 + . . .+ νk−1)
.

Consider now the case γ = 3/2. For existence we have to satisfy conditions
(4.57) and (4.58), which here are

x1 > ν2 (4.65)

and
x1 < −μ. (4.66)

For stability the solution must satisfy (4.59), which here becomes

x1 <

(

νk + 1
νk−1γ

)2

. (4.67)

The first condition (4.65), when substituted into the implicit expression (4.56),
leads to the inequality

μ <
−νk+2 + νk+4 − ν4

1 + ν + ν2 + . . .+ νk−1
. (4.68)

The second condition (4.66) leads to the inequality

μ < −
(

ν + ν2 + . . .+ νk

νk−1

)2

. (4.69)

Substituting the stability condition (4.67) we have

μ >
−8(νk + 1)3 − 12(1 − νk)(1 + νk)2

27ν2(k−1)(1 + ν + ν2 + . . .+ νk−1)
. (4.70)

It again holds that (4.69) implies (4.68).
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4.4.4 Location of the saddle-node bifurcations

There is no immediate bifurcation at μ = 0 for the maps of the form (4.50)
for γ > 1. However, there is still a discontinuity-induced bifurcation because
simple orbits can change their symbol sequence with respect to visits of Re-
gions S1 and S2. This in turn may cause there to be a saddle-node or a
period-doubling bifurcation at parameter values away from μ = 0. However,
if we derive the piecewise-smooth map (4.50) as a normal form close to a
limit cycle bifurcation in a non-smooth flow, we should remember that the
full Poincaré mapwill have additional (smooth) nonlinear terms. So, there is
little point in analyzing maps of the form (4.50) if the nonlinear terms of the
full Poincaré would cause there to be other nearby saddle-node or period-
doubling bifurcations. What we shall now show is that, at least in the case
γ = 3/2, we should expect that the saddle-node bifurcation induced by the
border-collision occurs nearer to μ = 0 than would have been expected for a
smooth map.

Consider a map of the form (4.50) for which

0 < ν < 1, γ = 3/2.

Then a saddle-node bifurcation occurs at a double root x = y of a fixed point
of the map, which implies that

y(1 − ν) + μ− ηy3/2 = 0,

y(1 − ν) + μ− 3η
2
y1/2 = 0.

From these equations we obtain the μ-value of the saddle-node bifurcation to
be

μSN = −4(1 − ν)3

3η2
. (4.71)

This should be compared to the case of an analytic map with Taylor series
coefficient of x2 being η, which would exhibit a saddle-node bifurcation at the
parameter value

μsmoothSN = − (1 − ν)2

4η
. (4.72)

On comparing (4.71) with (4.72) we notice that the power of (1 − ν) in the
numerator of the right-hand side is higher for the non-smooth map than for
the analytic map. Thus, if a border-collision takes place for a map with multi-
plier ν close to unity, then the saddle-node would occur asymptotically closer
than it would for to the corresponding smooth map. Also, as we shall from
examples in Chapter 7, often the coefficient η can be large compared to ν.
Then, the factor η2 in the denominator of (4.71) can mean that that the
saddle-node of the non-smooth map occurs extremely close to the parameter
value at which the border-collision occurs. In fact, these two parameters can
be almost indistinguishable, so that simulations would falsely suggest that the
fold occurs precisely at the border-collision point.
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Boundary equilibrium bifurcations in flows

We have seen so far that a rich variety of dynamical scenarios can occur when
a fixed point of a non-smooth map undergoes a border-collision. This chapter
is concerned with a closely related class of discontinuity-induced bifurcations,
involving equilibria of n-dimensional piecewise-smooth flows. Specifically, in
this Chapter we will study transitions studied that occur when a boundary
equilibrium, that is one lying within a discontinuity manifold, is perturbed.
We will show that such equilibria can either persist or disappear in non-
smooth fold transitions when the system parameters are varied. We will also
present partial results on the creation of other attractors (e.g. limit cycles)
at boundary-equilibrium bifurcations (BEB). A complete analysis of what
attractors may then arise in n-dimensions is unknown, but we will take care to
show where specific results are known in special cases, such as planar systems.

In the three sections that follow, we treat in turn piecewise-smooth contin-
uous systems (with degree of smoothness equal to 2), Filippov systems (degree
one) and hybrid systems (degree zero), each of which leads to subtly different
dynamics.

5.1 Piecewise-smooth continuous flows

Let us first focus on locally piecewise-smooth continuous systems, i.e. systems
with a single discontinuity boundary Σ with degree of smoothness across Σ
equal to 2. We restrict attention to a region of phase space, say D, where the
system can be described in terms of a local set of co-ordinate as introduced
in Chapter 2:

ẋ =
{

F1(x, μ), if H(x, μ) < 0,
F2(x, μ), if H(x, μ) > 0, (5.1)

where x ∈ R
n, μ ∈ R, F1, F2 : R

n+1 �→ R
n and H : R

n+1 �→ R are sufficiently
smooth functions of both their arguments throughout D, and Σ is defined by
H = 0. Owing to the continuity assumption, we can define
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F2(x, μ) = F1(x, μ) + J(x, μ)H(x, μ), (5.2)

for some smooth function J : R
n+1 �→ R

n, so that when H(x, μ) = 0 then
F1 = F2 as required. Locally, Σ divides D in the two regions S1 and S2 where
the system is smooth and defined by the vector fields F1 and F2 respectively:

S1 = {x ∈ D : H(x, μ) < 0},
S2 = {x ∈ D : H(x, μ) > 0}.

We can identify different types of equilibria of system (5.1):

Definition 5.1. We term a point x ∈ D an admissible equilibrium of
(5.1) if x is such that either

F1(x, μ) = 0 and H(x, μ) < 0

or
F2(x, μ) = 0 and H(x, μ) > 0 .

Alternatively, we say that a point y ∈ D is a virtual equilibrium of (5.1) if
either

F1(y, μ) = 0 but H(y, μ) > 0 ,

or
F2(y, μ) = 0 but H(y, μ) < 0 .

For some value of the system parameters, it is possible for an equilibrium to
lie on the discontinuity boundary.

Definition 5.2. We term a point z ∈ D a boundary equilibrium of (5.1)
if

F1(z, μ) = F2(z, μ) = 0 and H(z, μ) = 0 .

Finally, we define a boundary equilibrium bifurcation as follows.

Definition 5.3. The PWS system (5.1) is said to undergo a boundary equi-
librium bifurcation (BEB) at μ = μ∗ if there exists a point x∗ such that, for
both i = 1 and 2:

1. Fi(x∗, μ∗) = 0.
2. H(x∗, μ∗) = 0.
3. Fi,x(x∗, μ∗) is invertible (equivalently det(Fi,x) �= 0).
4. Hμ(x∗, μ∗) −Hx(x∗, μ∗)

[

F−1
i,x Fi,μ

]

(x∗, μ∗) �= 0.

The first two requirements in this definition are the defining conditions for
the bifurcation, namely that x∗ is a boundary equilibrium at μ = μ∗. The
third item is a non-degeneracy condition that ensures that x∗ is an isolated
hyperbolic equilibrium to both vector fields F1 and F2. The final stipulation
is a nondegeneracy condition with respect to the parameter, that admissible
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branches of equilibria, say x+(μ) and x−(μ), of vector fields F1 and F2, respec-
tively, cross through the bifurcation point at μ = μ∗. The condition is derived
from the requirement that the total derivative dH

dμ (x±(μ), μ) is non-zero at
(x∗, μ∗) . It is worth mentioning here that a boundary equilibrium bifurcation
is completely analogous to a border-collision with the admissible equilibrium
playing the role of the admissible fixed point of the map.

The existence of different types of dynamics following a BEB was discussed
in the book by Bautin & Leontovich [25] as well as the recent work by Freire
et. al. [108] and Liene and co-workers [176, 177]. In these references such
bifurcations are also illustrated through various one-dimensional and two-
dimensional examples. Rather than be completely general here, we shall seek
to understand the simplest part of the bifurcation, namely what happens to
equilibria, in some generality in n dimensions. For that purpose, we will use a
modification of Feigin’s strategy introduced in Chapter 3 for border-collisions.
We shall then deal only briefly with other attractors that may be created or
destroyed in the bifurcation, as it is clear that a complete classification in
n-dimensions is practically impossible.

5.1.1 Classification of simplest BEB scenarios

Without loss of generality let’s assume in what follows that x = 0 is a bound-
ary equilibrium for μ = 0; i.e. F1(0, 0) = F2(0, 0) = 0,H(0, 0) = 0. We
shall seek to unfold the bifurcation scenarios that can occur when μ is per-
turbed away from zero. In complete analogy with what happens to period-one
fixed points at border-collisions, we have the following generic possibilities
for unfolding the equilibrium behavior at a boundary equilibrium bifurcation.
Specifically upon varying μ through zero, we see one of the following:

Persistence (or border-crossing): At the bifurcation point, an admissible
equilibrium lying in region S1 becomes a boundary equilibrium and turns
into a virtual equilibrium. Simultaneously, a virtual equilibrium lying in
region S2 becomes admissible. Thus there is one admissible equilibrium
on either side of the bifurcation, which is why this is termed persistence.

non-smooth fold: At the bifurcation point, the collision of two branches
of admissible equilibria is observed at the boundary equilibrium, before
turning into two branches of virtual equilibria past the bifurcation point.

The following extension of Feigin’s classification strategy is able to decide
which of the above occurs. See was di Bernardo et. al. [83]. for more details.

We start by giving more precise definitions of the persistence and non-
smooth fold scenarios.

Definition 5.4. We say that (5.1) exhibits a persistence (or border-crossing)
for μ = 0 if, upon variation of μ through zero (for example, as μ is increased),
one branch of admissible equilibria and a branch of virtual equilibria cross at
the boundary equilibrium point, x = 0. In so doing the virtual equilibrium
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becomes admissible, and vice versa. Namely, we assume there exist smooth
branches of equilibria x+(μ) and x−(μ) such that x+(0) = x−(0) and

1. F1(x−, μ) = 0,H(x−, μ) < 0 and F2(x+, μ) = 0,H(x+, μ) < 0 for μ < 0
2. F1(x−, μ) = 0,H(x−, μ) > 0 and F2(x+, μ) = 0,H(x+, μ) > 0 for μ > 0

or vice versa.

Definition 5.5. We say, instead, that the BEB at μ = 0 is a non-smooth
fold if, upon variation of μ through zero, two branches of admissible equilibria
collide at the boundary equilibrium point x = 0 and are both turned into two
branches of virtual equilibria past the bifurcation point. Namely, there exist
smooth branches of equilibria x+(μ) and x−(μ) such that, x+(0) = x−(0) and

1. F1(x−, μ) = 0,H(x−, μ) < 0 and F2(x+, μ) = 0,H(x+, μ) > 0 for μ < 0
2. F1(x−, μ) = 0,H(x−, μ) > 0 and F2(x+, μ) = 0,H(x+, μ) < 0 for μ > 0

Remarks

1. Note that there is no analogy of the period-doubling case for border-
collisions of fixed points.

2. We can infer nothing in general about the stability of the admissible equi-
libria from these definitions. That depends on the precise eigenvalues of
Fi,x for i = 1, 2.

3. In the case of a non-smooth fold, there is no admissible equilibrium beyond
the bifurcation point. Under conditions we delineate in the next section,
we can anticipate that there must be a more complicated attractor existing
after the two admissible equilibria are destroyed.

4. The non-degeneracy condition that Fi,x be invertible will be crucial in
what follows. If this were not the case then one of the equilibria would
be non-hyperbolic and hence would undergo a local bifurcation (with re-
spect to one of the vector fields F1 or F2) precisely on the discontinuity
boundary. Such a scenario would be of codimension-two and is beyond
the scope of this book, although we shall see some preliminary remarks
about codimension-two discontinuity-induced bifurcations in Chapter 9.

We will now derive conditions to distinguish between these two fundamental
cases in arbitrary n-dimensional systems. Firstly, in order for x− to be an
admissible equilibrium, we must have

F1(x−, μ) = 0,
H(x−, μ) := λ− < 0. (5.3)

Similarly, for x+ to be admissible using (5.2),

F2(x+, μ) = F1(x+, μ) + J(x+, μ)H(x+, μ),
H(x+, μ) := λ+ > 0 . (5.4)
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Then, linearizing about the boundary equilibrium point, x = 0, μ = 0, we
have

N1x
− +Mμ = 0 , (5.5)

CTx− +Dμ = λ− , (5.6)

and

N2x
+ +M2μ = N1x

+ +Mμ+ Eλ+ = 0 , (5.7)
CTx+ +Dμ = λ+ , (5.8)

where N1 = F1,x,M = F1,μ,M2 = F2,μ, C
T = Hx,D = Hμ and E = J are

all evaluated at x = 0, μ = 0. Note that N1 is invertible by condition 3 of
Definition 5.3. Hence we have

x− = −N−1
1 Mμ ,

and substituting into (5.6), we obtain

λ− = (D − CTN−1
1 M)μ . (5.9)

Similarly using (5.7) and (5.8), we have

λ+ =
(D − CTN−1

1 M)μ
(1 + CTN−1

1 E)
=

λ−

(1 + CTN−1
1 E)

. (5.10)

Therefore, we can state the following.

Theorem 5.1 (Equilibrium points branching from a boundary equi-
librium). For the systems of interest, assuming

det(N1) �= 0, (5.11)
D − CTN−1

1 M �= 0, (5.12)
1 + CTN−1

1 E �= 0. (5.13)

1. A persistence scenario is observed at the boundary equilibrium bifurca-
tion point if

1 + CTN−1
1 E > 0 . (5.14)

2. A non-smooth fold is instead observed if

1 + CTN−1
1 E < 0 . (5.15)

This can be easily proven by considering that, from (5.9) and (5.10), that
λ+ and λ− have the same sign for the same value of μ (persistence) if con-
dition (5.14) is satisfied, whereas they have opposite signs (non-smooth fold)
if condition (5.15) is satisfied instead. Also, since the given conditions ensure
that the linearized system is non-singular, an application of the Implicit Func-
tion Theorem implies that the conclusions are still valid for the full nonlinear
system, in some neighborhood of the boundary equilibrium point of interest.
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Remarks

1. Note that, using a similar approach to the one followed in Chapter 3, it is
possible to recast the conditions derived above in terms of the same nota-
tion introduced by Feigin for border-collisions of fixed points in maps [83].
Namely, label by A (a) a stable (unstable) admissible equilibrium of the
flow ẋ = F1(x, μ) and B (b) a stable (unstable) admissible equilibrium of
ẋ = F2(x, μ). Then, we have that at the boundary equilibrium bifurcation
point:
a) Persistence is observed if

σ−
1 + σ−

2 is even, (5.16)

e.g. A→ B, A→ b etc.
b) A non-smooth fold is observed if

σ−
1 + σ−

2 is odd, (5.17)

e.g. A, b→ ∅, etc.
where σ+

i , σ
−
i are the number of positive and negative real eigenvalues of

the Jacobians of Fi,x, i = 1, 2, respectively.
2. Equation (5.17) implies that at a non-smooth fold, a branch of stable

admissible equilibria always collides on the boundary equilibrium with a
branch of unstable admissible equilibria at the bifurcation point. This can
be easily proven by considering that the total number of negative real
eigenvalues of the Jacobians, σ−

1 + σ−
2 , can be odd if and only if at least

one of them changes sign across the boundary, causing the branches to
exchange their stability properties. In the case of all eigenvalues being
strictly complex on one side, the system must be even dimensional. Then
in order for the sum of eigenvalues less than zero to be odd (to guaran-
tee a non-smooth fold), the number of real negative eigenvalues must be
odd. Since n is even this means that at least one real eigenvalue must by
positive. Hence one of the two colliding equilibria must be unstable.

3. Without loss of generality, as in Chapter 3, we shall assume (by making
a local co-ordinate transformation) that D = 0.

1   

(a)

−1−1

1

10

0

x1

μ

(b)

−1
−1

1

1

0

0

x1

μ

Fig. 5.1. Bifurcation diagrams of (5.18) showing (a) a persistence scenario when
ε = 1 and (b) a non-smooth saddle-node when ε = 10, both associated with a BEB.
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Example 5.1. Consider the three-dimensional piecewise-linear continuous sys-
tem of the form:

ẋ =
{

N1x+Mμ, if CTx < 0,
N2x+Mμ if CTx > 0,

(5.18)

with

N1 =

⎛

⎝

−1 1 0
−3 0 1
−2 0 0

⎞

⎠ , N2 =

⎛

⎝

−1 1 0
−3 0 1

−2 + ε 0 0

⎞

⎠

and
M = [0 0 1]T , CT = [1 0 0] .

In this case, we have E = ( 0 0 ε ), thus according to the theory developed
in this section we get 1+CTN−1

1 E = 1/(1−ε/2) and we should get persistence
if ε < 2 and a non-smooth saddle node if ε > 2. Fig. 5.1 show the effects of
a BEB for ε = 1 and ε = 10. We can clearly see the two different scenarios
with branches of admissible and virtual equilibria collapsing onto a boundary
equilibrium when μ = 0.

5.1.2 Existence of other attractors

Several calculations in the literature point out that invariant sets other than
equilibria can be created or destroyed in a BEB (see e.g. [176, 175, 177] and
references therein). It is worth mentioning here that, currently, there is no
general theory accounting for all the possible scenarios associated to a bound-
ary equilibrium transition in generic piecewise-smooth systems, nor does it
seem that there ever will be. This unlikelihood is because the dynamics close
to a nondegenerate BEB is governed by a piecewise-linear flow. Even in three
dimensions it is possible to construct piecewise-linear flows with remarkably
complex dynamics; see for example the system analyzed in [241], which ex-
hibits Shil’nikov homoclinic chaos.

Here, we focus only on one of the possible scenarios to illustrate the type
of analysis needed to classify the simplest possible cases. Specifically, we look
at cases where we can definitely say that perturbing a boundary equilibrium
causes the trajectory to tend to some attractor (other than an equilibrium)
whose amplitude scales with |μ|. We start with the case of planar piecewise-
smooth continuous systems where the only such attractors are limit cycles,
making this the closest discontinuity-induced equivalent of a Hopf bifurca-
tion for smooth systems. This has sometimes therefore been referred to as
a discontinuity-induced Hopf bifurcation, although we should stress there is
no sense in which eigenvalues cross the imaginary axis. More complex, often
non-generic scenarios, which have been discussed in the literature, are also
sketched in what follows.
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5.1.3 Planar piecewise-smooth continuous systems

In the planar case the only other generic type of invariant set that can be
involved in a border-equilibrium bifurcation is a limit cycle. Such a limit cycle
must enclose an equilibrium. The cycle will be stable if it encloses an unstable
equilibrium, or unstable if it encloses a stable one. limit cycles may branch
off a boundary equilibrium bifurcation point either in a persistence scenario
or a non-smooth fold. Note that a limit cycle always encircles an equilibrium
of ‘focus’ type. Also there is a fixed area inside the cycle, which means that
there must be a balance between area production and destruction inside the
cycle.

In what follows we will state the results derived by Freire et. al. [108] for
piecewise-smooth continuous systems that give conditions for a branch of limit
cycles to exist in a BEB. The conditions below are derived in terms of the
linearized systems introduced above. But the conditions also guarantee that
the piecewise-linear systems are unchanged by small nonlinear perturbations
(structural stability). Thus they accurately describe the dynamics of a full
nonlinear piecewise-smooth, continuous system close enough to a BEB point.
For simplicity, all examples in this section are all in linearized form.

It is possible to summarize the results in the following theorem.

Theorem 5.2 ([108]). Consider a planar piecewise-linear system of the form

ẋ =
{

N1x+Mμ, if CTx < 0,
N2x+Mμ if CTx > 0,

(5.19)

with x ∈ R
2, μ ∈ R and

N2,x = N1,x + ECTx.

Assume that det(N1) �= 0 and 1 + CTN−1
1 E �= 0, trace(N1) �= 0, det(N1) �=

trace(N1)2/4, det(N1 + ECT ) �= trace(N1 + ECT )2/4.

1. If trace(N1)trace(N1 + ECT ) > 0 then no limit cycle is involved in the
bifurcation (because of the area restriction).

2. If trace(N1)trace(N1 + ECT ) < 0 then:
a) If we have a BEB with 1 +CTN−1

1 E > 0 (persistence) and there is
at least one focus involved, then

i. If the transition from a focus to a node is observed then the cycle
exists and is stable if trace(J) < 0 (the node is stable) and unstable
if trace(J) > 0, where J is the Jacobian obtained by linearizing
the system about the node.

ii. If instead the transition from a focus to a focus is present, then
assuming αi ± jωi, i = 1, 2 are the eigenvalues of the two foci
with ωi > 0, and e

α1
ω1

πe
α2
ω2

π �= 1, then a cycle exists which is stable
if e

α1
ω1

πe
α2
ω2

π < 1 and unstable if e
α1
ω1

πe
α2
ω2

π > 1.
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iii. If a transition of type node/node or saddle/saddle is observed, then
no cycle exists.

b) If we have a BEB with 1 +CTN−1
1 E < 0 (non-smooth fold) then a

limit cycle can only surround a focus.
i. If the equilibria are node/saddle then no limit cycle exists.
ii. If we have a saddle/focus bifurcation, then:

A. If the focus is unstable and the unstable manifold of the saddle
point curls inside the stable one, then a stable limit cycle exists.

B. If the focus is stable and the stable manifold of the saddle
point curls inside the unstable one, then an unstable limit cycle
exists.

C. If the respective manifolds curl outside instead, then no limit
cycle exists.

To illustrate the theorem, we now look at a set of simple representative
examples. In all examples we use

CT = ( 1 0 ) , M =
(

0
−1

)

, D = 0. (5.20)

Example 5.2. Fig. 5.2 shows the bifurcation diagram of a planar system ful-
filling the conditions stated above with

N1 =
(

−1 1
−1 0

)

, E =
(

3
−4

)

, N2 = N1 + ECT =
(

2 1
−5 0

)

.

Here, as expected, a stable focus hits the boundary and becomes unstable.
We observe that, when this occurs, a limit cycle is indeed generated at the
border-collision point and that the amplitude of the limit cycle scales linearly
with the parameter.

0

0

x1

−1

5

−20

μ 0.8

Fig. 5.2. Bifurcation diagram of Example 5.2. showing the occurrence of a Hopf-like
transition at μ = 0.

Example 5.3. Suppose

N1 =
(

−2.1 1
−1 0

)

, E =
(

2.6
−4

)

. (5.21)
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Then trace(N1) = −2.1 < 0, trace(N1 +ECT ) = 0.5 > 0 and 1+CTN−1
1 E =

5 > 0 and we have persistence with a stable node for μ < 0. For μ > 0 we
have an unstable focus surrounded by a stable limit cycle. See Fig. 5.3.
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−4
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Fig. 5.3. Phase portraits for Example 5.3. (a) Unstable focus with stable limit cycle
(μ = 1), (b) stable node (μ = −1).

Example 5.4. Suppose

N1 =
(

−1 1
−1 0

)

, E =
(

1.5
−4

)

. (5.22)

Then trace(N1) = −1 < 0, trace(N1 +ECT ) = 0.5 > 0, 1+CTN−1
1 E = 5 > 0

and e
α1
ω1

πe
α2
ω2

π < 1, and we have persistence with a stable focus for μ < 0.
For μ > 0 we have an unstable focus surrounded by a stable limit cycle. See
Fig. 5.4.
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Fig. 5.4. Phase potraits for Example 5.4. (a) An unstable focus with a stable limit
cycle (μ = 1), (b) a stable focus (μ = −1).

Example 5.5. Suppose

N1 =
(

−1 1
1 0

)

, E =
(

1.5
−6

)

. (5.23)

Then trace(N1) = −1 < 0, trace(N1 + ECT ) = 0.5 > 0 and 1 + CTN−1
1 E =

−5 < 0, and we have a non-smooth fold with a saddle point, and an unstable
focus surrounded by a stable limit cycle for μ > 0, as illustrated in Fig. 5.5.
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Fig. 5.5. Phase potraits for Example 5.5. (a) Unstable focus with stable limit cycle
and saddle point (μ = 1), (b) no limit sets (μ = −1).

5.1.4 Higher-dimensional systems

Classifying the existence of other attractors in higher-dimensional systems is
a cumbersome task. In particular, the lack of general results to characterize
the existence of limit cycles or chaos in higher-dimensional piecewise-smooth
systems makes it impossible to obtain a complete classification.

In n-dimensions it is possible to characterize with some degree of generality
the existence of other attractors branching off a boundary equilibrium bifur-
cation point under some specific circumstances. For example, it is possible to
prove the following theorem.

Theorem 5.3. [87] If (x∗, μ∗) is a boundary equilibrium point that is asymp-
totically stable (Lyapunov stable and attracting) in a piecewise smooth, con-
tinuous system, then for all μ close to μ∗, there is at least one attractor close
to x∗. The amplitude of such an attractor scales linearly with μ to leading
order.

Because the boundary equilibrium is assumed to be asymptotically stable
for μ = 0, then by continuity with respect to parameter variation, for μ �= 0
a local neighborhood, say B(0), of the boundary equilibrium must exist into
which trajectories continue to be attracted. As a corollary, if an asymptotically
stable equilibrium point is missing on one or both sides of the bifurcation, some
other attractor must exist.

The fact that this attracting set scales locally linearly with μ comes from
the fact that the linearization Fi,x is non-degenerate and hence locally the
piecewise-smooth continuous system can be approximated by its linearization

ẋ =
{

N1x+Mμ, if CTx > 0,
N2x+Mμ = N1x+Mμ+ ECTx, if CTx < 0.

(5.24)

However this linear system can be made scale-invariant for a fixed sign of μ by
substituting y = x/μ and dividing by μ. Hence any attractor of (5.24) must
scale precisely linearly with μ. This then must be the leading-order scaling of
any piecewise-smooth continuous system that has (5.24) as its linearization
at a BEB.
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From the classification viewpoint, in the case of two-dimensional systems,
we have seen that only a single attractor is possible in the generic case of a
structurally stable linearized system, and that it must either be an equilibrium
point or a limit cycle. As we shall see, in higher dimensions, both multiple
and more complicated attractors are also possible.

In general, it is a cumbersome task to assess the asymptotic stability
of higher dimensional piecewise-smooth systems. For instance, an interesting
phenomenon that occurs in higher dimensional systems is that, even though
both N1 and N2 are Hurwitz matrices (i.e. matrices for which all the eigen-
values lie in the open left half plane), the overall system can exhibit instability.
Such an example can be constructed as follows [52]

Example 5.6.

N1 =

⎛

⎝

−1 −1 0
1.28 0 −1

−0.624 0 0

⎞

⎠ N2 =

⎛

⎝

−3.2 −1 0
25.61 0 −1
−75.03 0 0

⎞

⎠

and
CT = ( 1 0 0 ) .

Carmona et al. [52] studied the stability of the origin for n = 3. With the
help of the notion of invariant cones, they reached the following result.

Proposition 5.1 ([52]). Consider the system (5.24) with n = 3. Assume that
the pair (CT , N1) is observable. Let N1,2 and CT be given by

N1,2 =

⎛

⎝

t1,2 1 0
m1,2 0 1
d1,2 0 0

⎞

⎠ , CT =

⎛

⎝

1
0
0

⎞

⎠ , (5.25)

which are in canonical form. Suppose that the eigenvalues of the matrices N1,2

are λ1,2 ∈ R and σ1,2 ± iω1,2, where ω1,2 > 0. Also suppose that

(σ1 − λ1)(σ2 − λ2) < 0 (5.26)

and
(t1 − t2)(σ2 − λ2) ≤ 0. (5.27)

Then, the origin is an asymptotically stable equilibrium point if, and only if,
λ1 and λ2 are both negative.

Example 5.7. Using this result, we can construct a three-dimensional piecewise-
linear example of the form (5.24) where, under parameter variation, the
boundary equilibrium at the origin becomes unstable, giving rise to a fam-
ily of stable limit cycles whose amplitude scales linearly with the parameter
perturbation. Specifically, Fig. 5.6 shows the bifurcation diagram of a three-
dimensional system of the form (5.24) where
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−1 0

0

μ 1
−0.2

0.2
x1

Fig. 5.6. Bifurcation diagram for Example 5.7. The lines for μ > 0 represent the
intersections of the limit cycle with a Poincaré section.

N1 =

⎛

⎝

−5 1 0
−9 0 1
−5 0 0

⎞

⎠ , N2 =

⎛

⎝

−5 1 0
−12 0 1
−14 0 0

⎞

⎠ , (5.28)

and

M =

⎛

⎝

0
0
1

⎞

⎠ , CT = ( 1 0 0 ) . (5.29)

As predicted by Proposition 5.1, since λ1 = −1, σ1 ± iω1 = −2 ± i and
λ2 = −7, σ2 ± jω2 = 1± i, in this case the boundary equilibrium at the origin
is asymptotically stable when μ = 0. Moreover, we have

(a)

x1x2

x3

−6

0

0

0

2

−4 −0.6

0.4

(b)

x1

x2

x3

0
0

0

−4
−20

−40

4

Fig. 5.7. Phase potraits corresponding to a non-smooth Hopf bifurcation for Ex-
ample 5.7. (a) Stable equilibrium point for μ = −1, and (b) stable limit cycle for
μ = 1.

1 + CT (N1)
−1

E = 0.3571 > 0.

Hence, according to Theorem 5.1, under variations of μ, we expect the branch
of stable equilibria for μ < 0 to turn into a branch of unstable equilibria for
μ > 0, and as expected from Theorem 5.3, a family of stable limit cycles to be
observed locally to the boundary equilibrium transition. See Figs. 5.6 and 5.7.
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A yet more striking example, that can be found in higher-dimensional
systems, is the sudden transition at a BEB from a stable admissible equi-
librium to a stable chaotic attractor whose amplitude scales linearly with μ
as predicted by Theorem 5.3. Currently, there are no general analytical tools
to account for such a transition so we illustrate this case by means of the
following representative example.

Example 5.8. Consider a PWL system of the form (5.24) where

N1 =

⎛

⎝

−0.8 1 0
−0.57 0 1
−0.09 0 0

⎞

⎠ , N2 =

⎛

⎝

−0.1 1 0
−0.2 0 1
−60 0 0

⎞

⎠ , (5.30)

and

M =

⎛

⎝

0
0
1

⎞

⎠ , CT = ( 1 0 0 ) . (5.31)

This is again a case of persistence, and in this case the transition through a
boundary equilibrium causes there to be a chaotic attractor as a result of the
bifurcation at μ = 0. See Fig. 5.8.
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Fig. 5.8. Phase potraits corresponding to a non-smooth bifurcation for Example
5.8. In (a) for μ = −1 stable equilibrium point, and in (b) for μ = 1 stable chaotic
trajectory are observed.

5.1.5 Global phenomena for persistent boundary equilibria

Depending on the value of the parameters, admissible equilibria can collide
with Σ giving rise to one of the local transitions discussed above. In addition,
for some degenerate cases, non-smooth global bifurcations are also possible
involving interactions of the invariant manifolds of the equilibria with the dis-
continuity manifold. Indeed, it has been shown that global phenomena like
single- or double-saddle connections (homoclinic or heteroclinic loops) can
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occur when some parameters of the system are varied. To illustrate the oc-
currence of such global non-smooth phenomena, we refer to results presented
in [108]. Specifically it can be proved that the so-called Lum–Chua conjec-
ture is true; namely, that a continuous piecewise-linear vector field with one
boundary condition has at most one limit cycle of period one which visits
each region of phase space precisely once. Moreover, it exists, the limit cycle
is either attracting or repelling. Also, under some additional conditions, the
existence of homoclinic loops can be proved.

Example 5.1 continued. For example, Fig. 5.9(a) shows a bifurcation diagram
where a continuum of homoclinic loops (shaded region) is born at the bifurca-
tion point. At this point, the global attractor at the origin changes stability.
A phase potrait corresponding to μ = 1.75 is shown in Fig. 5.9(b), where the
homoclinic loops are clearly seen.
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Fig. 5.9. (a) Bifurcation diagram showing the occurrence of a continuum of homo-
clinic orbits; (b) phase potrait corresponding to μ = 1.75.

5.2 Filippov flows

In this section, we study bifurcations of equilibria in Filippov systems, that is,
systems which, local to a single switching manifold, have uniform smoothness
of degree one (a jump in the value of F ). Thus, generically we will not see
codimension-one bifurcations where both vector fields vanish at a boundary
equilibrium as in the previous section. However, in Filippov systems there is
the possibility of sliding motion and, in particular, the presence of equilibria
of the sliding flow (called pseudo-equilibria in what follows). We shall there-
fore find a new boundary equilibrium bifurcation where a pseudo-equilibrium
turns into an admissible equilibrium of one of the vector fields away from the
boundary. In what follows we shall give a complete unfolding of equilibrium
behavior in the neighborhood of such a transition. However, once again a
complete description of the dynamics in n-dimensions is not known. Instead
we shall focus on the special case of planar Filippov systems, following the
results of Kuznetsov et al. [169]. A classification of generic bifurcations in
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sliding vector field was carried out in the earlier work of Teixera [248]. Other
equilibrium bifurcations in non-generic classes of Filippov systems were stud-
ied by Küpper and co-workers in [167, 283, 284, 286, 285] where, for example,
a form of generalized Hopf bifurcation was shown to occur as a focus located
on the switching surface is perturbed. The transition to sliding cycles (a limit
cycle with a segment of sliding motion) in a different class of planar Filippov
systems was studied in Giannakopoulos & Pliete [117].

We consider Filippov systems that can be written locally to some region
D in the form

ẋ =
{

F1(x, μ), if H(x, μ) < 0,
F2(x, μ), if H(x, μ) > 0. (5.32)

As in the case of piecewise-smooth continuous vector fields, it is possible to
identify different types of equilibria in a Filippov system. We give the following
definitions.

Definition 5.6. We say that a point x ∈ S is an admissible equilibrium
of (5.32) if

F1(x, μ) = 0, (5.33)
H(x, μ) := λ1 < 0,

or

F2(x, μ) = 0,
H(x, μ) := λ2 > 0.

Definition 5.7. We call a point x̃ a pseudo-equilibrium if it is an equilib-
rium of the sliding flow, i.e. for some scalar α,

F1(x̃, μ) + α(F2 − F1) = 0,
H(x̃, μ) = 0. (5.34)

Again, we have to check that α lies in the allowed range.

Definition 5.8. We call a pseudo-equilibrium admissible if

0 < α < 1.

Alternatively, we say that a pseudo-equilibrium is virtual if

α < 0 or α > 1.

Note that, typically, pseudo-equilibria are equilibria of neither F1 nor F2.

Definition 5.9. A point x̂ is termed a boundary equilibrium of (5.32) if

F1(x̂, μ) = 0 or F2(x̂, μ) = 0,
H(x̂, μ) = 0.
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Note that a boundary equilibrium is always located on the boundary of the
sliding region where one of the vector field vanishes.

As shown in Sec. 5.1 for non-smooth continuous systems, the appearance
of a boundary equilibrium in a Filippov systems represents a codimension-one
discontinuity-induced bifurcation. In similarity with Definition 5.3, we have:

Definition 5.10. The PWS Filippov system (5.1) undergoes a boundary
equilibrium bifurcation at μ = μ∗ with respect to vector field Fi, i = 1, 2,
if there exist a point x∗ such that

1. Fi(x∗, μ∗) = 0, but Fj(x∗, μ∗) �= 0.
2. H(x∗, μ∗) = 0.
3. Fi,x(x∗, μ∗) is invertible (or equivalently det(Fi,x) �= 0) for i = 1 and 2.
4. Hμ(x∗, μ∗) −Hx(x∗, μ∗)

[

F−1
i,x Fi,μ

]

(x∗, μ∗) �= 0.

5.2.1 Classification of the possible cases

Without loss of generality, let us assume that x = 0 is a boundary equilib-
rium with respect to F1 for μ = 0. We shall now seek conditions to classify
the equilibrium behavior in an unfolding of such BEBs. We will show that as
μ is varied, scenarios similar to those presented for non-smooth continuous
systems are possible. That is, we can observe persistence where a branch of
admissible equilibria turns into a branch of pseudo-equilibria or, alternatively,
non-smooth fold where a branch of admissible equilibria disappears after col-
liding with a branch of pseudo-equilibria on the boundary. The assumption
about invertibility of F1,x and F2,x means that we can study what happens by
using the linearization of both vector fields. So, let x be an admissible equilib-
rium of (5.32) and x̃ a pseudo-equilibrium. Then, linearizing (5.33) and (5.34)
about the boundary equilibrium point at the origin, we have

Nx+Mμ = 0,
CTx+Dμ = λ1 < 0, (5.35)

and

Nx̃+Mμ+ Eα = 0,
CT x̃+Dμ = 0, (5.36)

α > 0,

where N = F1,x,M = F1,μ, C
T = Hx,D = Hμ and E = F2 −F1 all evaluated

at x = 0, μ = 0.
Now, from (5.35) we have x = −N−1Eμ and

λ1 = (D − CTN−1M)μ. (5.37)

Moreover, from (5.37), x̃ = −N−1Mμ−N−1Eα. Hence, we find
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α =
(D − CTN−1M)μ

CTN−1E
(5.38)

or, equivalently,

α =
λ1

CTN−1E
. (5.39)

In order for x and x̃ to exist for the same value of μ, both λ1 and α must
share the same sign. However, they will exist for opposite values of μ if λ1

and α have opposite sign. Therefore, using (5.39), we can state the following
theorem.

Theorem 5.4 (Equilibrium points branching from a boundary equi-
librium). For the systems of interest, assuming

det(N) �= 0, (5.40)
D − CTN−1M �= 0, (5.41)

CTN−1E �= 0. (5.42)

1. Persistence is observed at the boundary equilibrium bifurcation point if

CTN−1E < 0.

2. a A non-smooth fold is instead observed if

CTN−1E > 0.

Remarks

1. Note that the conditions delineating the two kinds of behavior the found
are different from those in Theorem 5.1, as we should expect.

2. As with piecewise-smooth continuous systems, a full unfolding of the dy-
namics near boundary equilibrium bifurcations in Filippov systems is vir-
tually impossible, as the possibilities in n-dimensions seem almost endless.
In the next section we show that even in the planar case there are more
cases that one has to consider than for continuous PWS systems.

3. Under certain special conditions, Filippov systems can also exhibit sets of
equilibria (see [39]) that can be attracting or repelling. Models of certain
systems involving friction naturally give rise to these kinds of dynamics.
Discontinuity-induced bifurcations of sets of equilibria, which are bound
to occur under parameter variation, remain an important open challenge
for further study.
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5.2.2 Planar Filippov systems

We present here a summary of the results of Kuznetsov et al. [169] which
illustrate all the generic topologically distinct phase potraits near a boundary-
equilibrium bifurcation. In two dimensions, a sliding region becomes a sliding
line, and the boundary of such a region is a point T . Such a point in [169] is
called a tangent point, and is such that the vectors Fi(T ), i = 1, 2 are nonzero
but at least one of them is tangent to Σ. Suppose that a tangent point T ∈ ̂Σ
is such that Hx(T )F1(T ) = 0, see Fig.5.10. We say that this tangent point is
visible if the orbit of ẋ = F1(x, μ) starting at T belongs to D1 for all sufficiently
small |t| �= 0 . We say that it is invisible if the orbit belongs to D2. Similar
definitions hold for tangent point with respect to F2.

(a)

T

S1

S2

Σ T

(b)

̂Σ

S1

S2

Fig. 5.10. Visible (a) and invisible (b) tangent points of a planar Filippov system.

Here the solid portion of the boundary Σ, represents the sliding region ̂Σ.

We will consider only transitions that involve sliding on the discontinuity
boundary. Actually, the appearance or disappearance of a sliding segment is
already a discontinuity-induced bifurcation in the topological sense introduced
in Chapter 2. To meet all generic one-parameter transitions involving the
discontinuity boundary Σ we use the following criterion: for a given parameter
value μ, we consider the sliding set ̂Σ and find all the pseudo-equilibria and
tangent points in it. These points are finite in number but can collide as μ
varies, leading to local codimension-one DIBs. Another discontinuity-induced
bifurcation can occur when a standard hyperbolic equilibrium in S1 or S2

collides with Σ, i.e. a boundary equilibrium bifurcation.
Specifically, we can distinguish three main cases involving the collision of

equilibria with the boundary.

Boundary focus: There are five generic critical cases. In all of them there
is a visible tangent point for μ < 0 and an invisible tangent point for
μ > 0. The cases are distinguished by the relative position of the zero-
isoclines of the focus and the behavior of the orbit departing from the
visible tangent point into S1, as well as by the direction of the motion
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(1)

(2)

(3)

(a) (b) (c)

(4)

(5)

Fig. 5.11. Boundary focus transitions. (a) μ < 0, (b) μ = 0, (c) μ > 0. Cases (1),
(2) and (5) are non-smooth fold bifurcations, whereas (3) and (4) correspond to
persistence.
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(a) (b) (c)

(1)

(2)

Fig. 5.12. Boundary node transitions. (a) μ < 0, (b) μ = 0, (c) μ > 0. Case (1) is
a persistence bifurcation, whereas (2) corresponds to a fold.

in S2. If we assume that the colliding focus is unstable and has counter-
clockwise rotation nearby, we can distinguish all five cases in Fig. 5.11.
Cases (1), (2) and (5) are non-smooth fold bifurcations, whereas (3) and
(4) correspond to persistence.

Boundary node: Depending on the direction of motion in S2, there are two
generic critical cases, which are shown in Fig. 5.12. Case (1) is a persistence
bifurcation whereas (2) corresponds to a fold.

Boundary saddle: When the colliding equilibrium is a saddle, the three
generic cases are determined by the slope of the zero-isoclines of the saddle,
as shown in Fig. 5.13. In all cases, there is an invisible tangent point for
μ < 0 and a visible tangent point for μ > 0. These points delimit the
sliding segments on the discontinuity boundary. Cases (1) and (2) are fold
bifurcations, whereas (3) corresponds to persistence.

Note that, when μ varies, two pseudo-equilibria can collide and disappear
via a standard fold bifurcation, which in this case we will call a pseudo-fold
transition. Figure 5.14 shows this transition in the case of a stable sliding
segment.

As for piecewise-smooth continuous systems, it is possible to go further
in the case of planar Filippov systems and find conditions for the existence
of other attractors in a neighborhood of a BEB. In particular, in the two-
dimensional case a limit cycle will always contain part of the sliding set, and
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(a) (b) (c)

(1)

(2)

(3)

Fig. 5.13. Boundary saddle transitions. (a) μ < 0, (b) μ = 0, (c) μ > 0. Cases (1)
and (2) are fold bifurcations, whereas (3) corresponds to persistence.

(a) (b) (c)

Fig. 5.14. Pseudo-fold transition. (a) μ < 0, (b) μ = 0, (c) μ > 0.
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will always encircle a (real) focus. The limit cycle will be stable if the sliding
region is attracting (CTB > 0), and unstable if it is repelling (CTB < 0).
(Note that trajectories are no longer unique in forward time if the region is
repelling).

Theorem 5.5 ([169]). Assume det(N) �= 0, CTN−1E �= 0, trace(N) �= 0,
det(N) �= trace(N)2/4 and CTE �= 0

1. If trace(N)CTE < 0, then no limit cycle is involved in the bifurcation
(because of the area restriction).

2. If trace(N)CTE > 0, then:
a) If we have a BEB with CTN−1E < 0 (persistence), then a limit

cycle will surround a focus:
i. If a transition from a pseudo-node to a focus is observed then the

cycle exists and is stable if trace(N) > 0 (the focus is unstable)
and unstable if trace(N) < 0.

ii. If a transition of type pseudo-node/node or pseudo-saddle/saddle
is observed then no the cycle exists.

b) If we have a BEB with CTN−1E > 0 (non-smooth fold), then a
limit cycle can only surround a focus.

i. If the equilibria are pseudo-node/saddle or pseudo-saddle/node,
then no limit cycle exists.

ii. If we have a pseudo-saddle/focus bifurcation, then:
A. If the focus is unstable and the unstable manifold of the

pseudo-saddle point curls inside the stable one, then a stable
limit cycle exists.

B. If the focus is stable and the stable manifold of the pseudo-
saddle point curls inside the unstable one, then an unstable
limit cycle exists.

C. If the respective manifolds curl outside instead, then no limit
cycle exist.

To illustrate the conclusions of the theorem above we now look at two
representative examples. In both examples we use

CT = ( 1 0 ) , M =
(

0
−1

)

, D = 0. (5.43)

Example 5.9. Suppose

N =
(

0.5 1
−1 0

)

, E =
(

5
3

)

. (5.44)

Then trace(N) = 0.5 > 0, CTE = 5 > 0 and CTN−1E = −3 < 0, and we
have persistence with a stable pseudo-node for μ > 0. For μ < 0 we have an
unstable focus surrounded by a stable limit cycle. See Fig. 5.15.



242 5 Boundary equilibrium bifurcations in flows

−1 0 1 2 3 4
−6

−4

−2

0

2
(a)

x1

x2

−1 −0.5 0 0.5 1 1.5
−3

−2

−1

0

1
(b)

x1

x2

Fig. 5.15. Phase potraits for Example 5.9. (a) Unstable focus with stable limit
cycle (μ = −1), (b) stable pseudo-node (μ = 1).

Example 5.10. Suppose

N =
(

0.5 1
−1 0

)

, E =
(

10
−2.6

)

. (5.45)

Then trace(N) = 0.5 > 0, CTE = 10 > 0, CTN−1E = 2.6 > 0, and we
have a non-smooth fold with a pseudo-saddle point, and an unstable focus
surrounded by a stable limit cycle for μ > 0. See figure 5.16.
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(b)

x1

x2

Fig. 5.16. Phase potraits for Example 5.10. (a) Unstable focus with stable limit
cycle and pseudo-saddle point (μ = −1), and (b) no limit sets (μ = 1).

5.2.3 Some global and non-generic phenomena

In addition to this classification, global phenomena such as those depicted in
Fig. 5.17 are also possible and were studied in [169]. For example, a pseudo-
equilibrium x̃(μ) can have a sliding orbit that starts and returns back to it
for μ = 0. This is possible if x̃(0) is either a pseudo-fold or a pseudo-saddle.
Moreover, a standard saddle xμ can have a homoclinic orbit containing a
sliding segment at μ = 0. Thus we have the cases, which are shown in Fig. 5.17.

Other phenomena concerning equilibria in Filippov systems have been re-
ported in some non-generic cases which are of interest to analyze relay control
systems. For example, it has been observed that a branch of limit cycles can
appear after a focus changes its stability on the boundary. Specifically, Küpper
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(c)(a) (b)(a) (b) (c)
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(c)(a) (b)(a) (b) (c)
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(c)(a) (b)(a) (b) (c)

(3)

Fig. 5.17. Global phenomena: (1) Sliding homoclinic orbit to a pseudo-fold, (2)
sliding homoclinic orbit to a pseudo-saddle, (3) sliding homoclinic orbit to a saddle.
(a) μ < 0, (b) μ = 0, (c) μ > 0.
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(a) (c)(b)(a) (b) (c)

(1)

(c)(a) (b)(a) (b) (c)

(2)

Fig. 5.18. Global phenomena: (1) Heteroclinic connection between two pseudo-
saddles, (2) heteroclinic connection between a pseudo-saddle and a saddle. (a) μ < 0,
(b) μ = 0, (c) μ > 0.

& Moritz [167] study parameter-dependent Filippov dynamical systems where
the focus is always in the origin. Then, it is possible to give conditions for a
continuous isolated branch of periodic orbits to bifurcate from the boundary
equilibrium at the origin. Another special case is described by Zou et. al.
[283, 284, 285], where the existence is studied of periodic orbits bifurcating
from a corner-like manifold in a planar Filippov dynamical system. There,
the creation of a branch of cycles is determined by interactions between the
geometrical structure of the corner and the eigenstructure of each smooth
subsystem.

A further non-generic Filippov system (with symmetry) modeling a re-
lay system is studied by Giannakopoulos and Pliete in [117]. Specifically, a
piecewise-linear system is considered of the form

u̇ = Au+ sign(wTu)v,
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where A is a 2 × 2 real matrix; u, v, w are two-dimensional real vectors
and sign(ψ) denotes the sign of ψ ∈ R. The theory of point transformation is
applied to obtain conditions for the existence and stability of periodic solutions
with and without sliding motion.

5.3 Equilibria of impacting hybrid systems

We study now the case of impacting hybrid systems, i.e. systems with zero
degree of smoothness. In particular, we restrict our attention to systems of
the form (2.35)–(2.36) given by

ẋ = F (x) if H(x) > 0, (5.46)

(where for the time being we suppress parameter dependence) with impact
at the surface Σ defined by Σ = {x : H(x) = 0}, and where the impact law
R : Σ → Σ takes the form

x+ = R(x−) = x− +W (x−)HxF (x−). (5.47)

For convenience, we will also term the velocity and acceleration (of the vector
field F relative to H) as

v(x) = HxF (x),
a(x) = (HxF )xF (x).

In Chapter 6, we will study the possible dynamical behavior of these sys-
tems in detail, motivating their geometry and their connection to mechanical
systems. Here we concentrate on the fact that these systems have the possi-
bility of sticking motion on the boundary Σ, which is the analogy of sliding
motion in Filippov systems. Sticking points satisfy the conditions

H(x) = 0 and v(x) = 0.

where the impact mapping is the identity. To maintain a sticking motion the
sticking vector field must take the form

Fs(x) = F (x) − λ(x)W (x), (5.48)

where the value λ(x) is chosen to enforce the constraints H(x) = 0, v(x) =
0. This is possible for typical mechanical impacting systems in which W is
parallel to the impact surface. Furthermore, defining

b(x) = (HxF )xW (x) (5.49)

we have for the typical system that b ≤ −1 at sticking points, since an im-
pact with a negative incoming velocity is mapped to a point with a positive
outgoing velocity. It follows that
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λ(x) = a(x)/b(x), (5.50)

and since λ(x) > 0 this is equivalent to the condition a(x) < 0, so that
the acceleration is directed towards the boundary. Thus the sticking set is
determined by the conditions H(x) = 0,v(x) = 0 and a(x) < 0.

We can now distinguish some different types of equilibria.

Definition 5.11. We say that a point x∗ is an admissible equilibrium of
(5.46) if

F (x∗) = 0,
H(x∗) > 0.

We say instead that x∗ is a pseudo-equilibrium point of (5.46) if it is
an equilibrium of the sticking vector field defined by (5.48); i.e.

F (x∗) − λ∗W (x∗) = 0,
H(x∗) = 0,

λ∗ > 0,

where, for convenience, λ∗ is regarded as an independent variable.

Now assume that the system depends on a single parameter μ. Then we
can also give the following definition.

Definition 5.12. A point x = x̄, μ = μ̄ is said to be a boundary equilib-
rium point of (5.46) if

F (x̄, μ̄) = 0,
H(x̄, μ̄) = 0.

As for non-smooth continuous and Filippov systems, when the parameter
μ is changed, admissible and/or pseudo-equilibrium points may branch off
the boundary equilibrium. We can easily extend the definition of a boundary
equilibrium transition, given in the previous section, to the case of impacting
systems. Also, we can again classify the simplest possible cases as further
detailed below.

5.3.1 Classification of the simplest BEB scenarios

Let us assume, without loss of generality, that a BEB occurs when x̄ = μ̄ = 0.
Moreover, suppose x∗ is an admissible equilibrium of (5.46) whereas x̃ is a
pseudo-equilibrium. Then, linearizing the system about (0, 0), we have the
conditions
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Nx∗ +Mμ = 0,
CTx∗ +Dμ > 0,

for the admissible equilibrium, and

Nx̃+Mμ+ Eλ∗ = 0,
CT x̃+Dμ = 0,

α > 0

for the boundary equilibrium, where N = Fx(0, 0), M = Fμ(0, 0), CT =
Hx(0, 0), D = Hμ(0, 0) and E = −W (0, 0).

If the linear systems are not degenerate, they will be representative of
what happens locally in the nonlinear system of interest. Specifically, following
derivations similar to those presented in Sec. 5.1.1 and Sec. 5.2.1, we find

Theorem 5.6 (Equilibrium points branching from a boundary equi-
librium). For systems in this class, and assuming

det(N) �= 0,
D − CTN−1E �= 0,

CTN−1E �= 0.

1. Persistence is observed at the boundary equilibrium bifurcation point if

CTN−1E < 0.

2. A non-smooth fold is instead observed if

CTN−1E > 0.

Remarks

1. The local stability of an admissible equilibrium point is determined by
the eigenvalues of the matrix N . The question of stability of a pseudo-
equilibrium point can be split into stability of the sticking set and stability
of the sticking vector field when restricted to the sticking set, respectively.
The stability of the sticking set is guaranteed if

−2 < b(x̄) ≤ −1. (5.51)

(The expression −(1 + b) acts like a “coefficient of restitution”.) If this is
fulfilled, a small disturbance in the initial conditions will decay towards
the sticking set through an infinite number of impacts in finite time, so-
called chattering (see Chapter 6 for further details).
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2. The linearization of the sticking vector field at x = x̄ is

Ns =
(

I − MCTN

CTNM

)

N, (5.52)

and we see that there is a 2× 2 Jordan block corresponding to eigenvalue
0 with left eigenvector CTN and left generalized eigenvector CT . This of
course corresponds to the invariance of the codimension-two sticking set.
The rest of the eigenvalues of Ns correspond to the dynamics within the
sticking set, and if all have negative real part, the pseudo-equilibrium is
stable within the sticking set.

Example 5.11. Let us consider an unforced single-degree-of-freedom mechan-
ical system, with position x1 and velocity x2 characterized by a spring force
with spring constant k, negative damping (scaled to unity), and an impact
coefficient of restitution r. Such a system can be modeled by equations of the
form (5.46)–(5.47) with

F (x, μ) =
(

x2

μ− kx1 + x2

)

,

H(x) = x1, (5.53)

W = −(1 + r)
(

0
1

)

.

In this case, we have

v(x) = x2, a(x) = μ− kx1 + x2, b(x) = −(1 + r),

and from (5.48) we find

Fs(x, μ) =
(

x2

0

)

.

Clearly, the system undergoes a boundary equilibrium transition at x̄ = 0,
μ̄ = 0. Thus, linearizing about the BEB point, we get

N =
(

0 1
−k 1

)

, M =
(

0
1

)

,

CT = ( 1 0 ) , D = 0,

E = (1 + r)
(

0
1

)

, As =
(

0 1
0 0

)

.

Moreover we have

D − CTN−1M = 1/k and CTN−1E = −(1 + r)/k.

This is consistent with the explicit solution for the admissible equilibrium
given by
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x∗ =
(

μ∗/k
0

)

, μ∗/k > 0,

and the pseudo-equilibrium

x̃ =
(

0
0

)

, α = −μ∗/(1 + r), μ/(1 + r) < 0.

Using Theorem 5.6, if k > 0 the BEB is associated with a persistence
scenario. Hence an admissible equilibrium branch exists for μ > 0 and a branch
of pseudo-equilibria exists for μ < 0. If, instead, k < 0, then no equilibria exist
for μ > 0, whereas two exist for μ < 0, because the BEB is associated with a
non-smooth fold. Moreover, it is easy to show that the admissible equilibrium
point is unstable (a saddle point if k < 0) and that the pseudo-equilibrium
point is stable if 0 ≤ r < 1 (by proving the stability of the sticking set).

5.3.2 The existence of other invariant sets

Little is known about the existence of invariant sets besides equilibrium points
which arise when perturbing a boundary equilibrium in impacting hybrid sys-
tems. The type of analysis required clearly has a strong resemblance to what
would be needed in the corresponding cases for Filippov and non-smooth
continuous systems, where planar systems are fully understood, but only rela-
tively weak results apply in three and higher dimensions. In an impacting sys-
tem, a limit cycle will always contain one impact. Also, a pseudo-equilibrium
will always have focus character, stable if the coefficient of restitution r is less
than unity and unstable if r > 1. As shown in [87], the following theorem can
be proven.

Theorem 5.7 ([87]). Assume det(N) �= 0, CTN−1M �= 0, trace(N) �= 0,
det(N) �= trace(N)2/4, r = CTNM − 1 ≥ 0 and r �= 1.

1. If trace(N)(r − 1) > 0, then no limit cycle is involved in the bifurcation
(because of the area restriction).

2. If trace(N)(r − 1) < 0, then:
a) If we have a BEB with CTN−1M < 0 (persistence), then

i. If a transition from a pseudo-focus to a node is observed, then the
cycle exists and is stable if trace(N) < 0 (the node is stable) and
unstable if trace(N) > 0.

ii. If instead a transition from a pseudo-focus to a focus is present,
then assuming α± iω are the eigenvalues of the focus, with ω > 0,
and re

α
ω π �= 1, then a limit cycle exists. It is stable if re

α
ω π < 1

and unstable if re
α
ω π > 1.

b) If we have a BEB with CTN−1M > 0 (a non-smooth fold) then
we have a pseudo-focus and a saddle point. Both the stable and the
unstable half manifold of the saddle will intersect the boundary Σ. Let
λ1 > 0 be the unstable eigenvalue of the saddle point, and assume
trace(A) �= λ1(1 − r).
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i. If trace(N) < λ1(1 − r) < 0, the pseudo-focus is unstable and the
unstable manifold of the saddle point curls inside the stable one,
and a stable limit cycle exists.

ii. If trace(N) > λ1(1 − r) > 0, the pseudo-focus is stable and the
stable manifold of the saddle point curls inside the unstable one,
and an unstable limit cycle exists.

iii. If λ1(1 − r)/trace(N) > 1, the respective manifolds curl outside
instead, and no limit cycle exists.

Rather than giving the lengthy proof of the above theorem, we will il-
lustrate the conditions presented by means of some simple examples. In all
examples we use

CT = ( 1 0 ) , M =
(

0
−1

)

, D = 0. (5.54)

Example 5.12. Suppose

N =
(

−2.1 1
−1 0

)

, E =
(

0
2.5

)

. (5.55)

Then trace(N) = −2.1 < 0, r = 1.5 > 1, CTN−1E = −2.5 < 0 and we have
persistence with a stable node for μ < 0 and for μ > 0 we have an unstable
pseudo-focus surrounded by a stable limit cycle. See figure 5.19.
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Fig. 5.19. Phase potraits for Example 5.12. (a) Unstable pseudo-focus with stable
limit cycle (μ = 1) and (b) stable node (μ = −1). (Dotted curves to the left of
x1 = 0 are not part of the trajectories; they merely indicate how the trajectories
connect during impact.)

Example 5.13. Suppose

N =
(

−1 1
−1 0

)

, E =
(

0
2.5

)

. (5.56)

Then trace(N) = −1 < 0, r = 1.5 > 1, CTN−1E = −2.5 < 0, re
α
ω π < 1,

and we have persistence with a stable focus for μ < 0. For μ > 0 we have an
unstable pseudo-focus surrounded by a stable limit cycle. See Fig. 5.20.
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Fig. 5.20. Phase potraits for example 5.13. (a) Unstable pseudo-focus with stable
limit cycle (μ = 1) and (b) stable focus (μ = −1).

Example 5.14. Suppose

N =
(

0.5 1
−1 0

)

, E =
(

0
1.5

)

. (5.57)

Then trace(N) = 0.5 > 0, r = 0.5 < 1, CTN−1E = −1.5 < 0, re
α
ω π < 1, and

we have persistence with a stable pseudo-focus for μ > 0. For μ < 0 we have
an unstable focus surrounded by a stable limit cycle. See Fig. 5.21.
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Fig. 5.21. Phase potraits for Example 5.14. (a) Unstable focus with stable limit
cycle (μ = −1) and (b) stable pseudo-focus (μ = 1).

Example 5.15. Suppose

N =
(

−1 1
1 0

)

, E =
(

0
3

)

. (5.58)

Then trace(N) = −1 < 0, r = 2 > 1, CTN−1E = 3 > 0, trace(N) <
λ1(1 − r) < 0, and we have a non-smooth fold with a saddle point, and
an unstable pseudo-focus surrounded by a stable limit cycle for μ > 0. See
Fig. 5.22.
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Fig. 5.22. Phase potraits for Example 5.15. (a) Unstable pseudo-focus with stable
limit cycle and saddle point (μ = 1), and (b) no limit sets (μ = −0.5).
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Limit cycle bifurcations in impacting systems

This chapter begins by motivating the class of impacting hybrid systems
that were introduced in Chapter 2, introducing several practical examples
of impact-oscillator systems. We shall then see how such systems naturally
lead to differing kinds of Poincaré maps on suitably defined surfaces. Next, in
Sec. 6.2, we show in detail how to calculate the discontinuity mapping to un-
fold the dynamics close to a grazing impact. We then show in Sec. 6.3 how to
analyze the discontinuity-induced bifurcation (DIB) associated with a grazing
limit cycle, by reducing locally to Poincaré maps with square-root singulari-
ties. The hybrid system can then be analyzed using the methods developed
in Chapter 4. In Sec. 6.4 we then explore more global issues — including
chattering, chaos and domains of attraction — through seeking to explain the
dynamics observed in Chapter 1 on the single degree-of-freedom impact oscil-
lator. The chapter ends in Sec. 6.5 with a brief discussion of hybrid systems
with more than one impact surface, motivated by multi-body impacting sys-
tems for that a triple collision corresponds to the crossing of an intersection
between two discontinuity surfaces

6.1 The impacting class of hybrid systems

Recall Definition 2.25 of impacting hybrid systems from Chapter 2. Mostly
in this chapter we shall be treating phenomena that occur with respect to
a single impact surface, in that case we shall use the reduced form of such
systems:

ẋ = F (x) for x ∈ S+ = {x ∈ D ⊂ R
n : H(x) > 0} (6.1)

with impact at the surface Σ := {x ∈ D : H(x) = 0}, where the impact law
R : Σ → Σ takes the form

x+ = R(x−) := x− +W (x−)v(x−). (6.2)

Here, W is a smooth function such that x+W (x)v(x) is also smooth, and
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v(x) = HxF (x), a(x) = (Hxx +HxFx)F (x) (6.3)

are the velocity and acceleration, respectively, of the flow relative to H. Often
we shall be interested in the case that W is a constant vector, in that case
the requirement that W maps Σ to itself means that

HxW = 0. (6.4)

Note that the expressions for a and v have a particularly convenient form
when expressed in the Lie derivative notation introduced in Chapter 2. Specif-
ically LF (H)(x) represents the time derivative of H(x) along a trajectory gen-
erated by the vector field F (x). That is, if Φ(x, t) is the flow generated by F ,
we have

LFH(x) =
∂

∂t
H(Φ(x, t)) = Hx

∂

∂t
Φ(x, t) = HxF (x).

Hence, this scalar quantity depends only on the value of the vector field F at
the point x. Similarly,

Lm
F H(x) =

∂mH(Φ(x, t))
∂tm

∣

∣

∣

∣

t=0

= (. . . ((HxF )xF )xF . . .)xF (x)

is a scalar quantity that represents the mth derivative of H along the flow.
Thus, we have

v(x) = LFH(x), a(x) = L2
FH(x) and R(x) = x+W (x)LF (H)(x). (6.5)

Also, it is useful to divide the impacting surface into three separate regions

Σ− = {x ∈ Σ : v(x) < 0}, Σ+ = {x ∈ Σ : v(x) > 0}

and G = {x ∈ Σ : v(x) = 0}.
In general, the impact rule R is defined so that if x− ∈ Σ−, then x+ ∈ Σ+.
Thus flow in S+ that intersects Σ− is mapped to Σ+ and then continues in
S+ again. The set G is called the grazing region. It is also useful to define the
virtual region

S− = {x ∈ D : H(x) < 0},
in that the vector field F and its corresponding flow Φ(x, t) is well defined,
despite not being part of the hybrid system.

In Chapter 5 we analyzed simple equilibrium bifurcations in systems of
the form (6.1)–(6.5). Before proceeding to more detailed analysis of DIBs
associated with limit cycles in such systems, let us consider some motivating
examples, of increasing complexity.
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6.1.1 Examples

Example 6.1 (The single degree-of-freedom (1DoF) impact oscillator). The
simple, forced impact oscillator introduced as case study I is defined by the
three-dimensional autonomous system:

du/dt = v, dv/dt = −u− 2ζv + w(s), ds/dt = 1, if u > σ, (6.6)

so that

x =

⎛

⎝

u
v
s

⎞

⎠ , F (x) =

⎛

⎝

v
−u− 2ζv + w(s)

1

⎞

⎠ .

As already explained in Chapter 2, this system can be written in the form
(6.1)–(6.3) with

H(x) = u− σ, v(x) = v and a(x) = −2ζv + w(s).

On Σ := {x : u > σ} the Newtonian impact law R : v+ = −rv− is of the form
(6.2) with W (x) = (0,−(1 + r), 0), where r is the coefficient of restitution.

In case study I in Chapter 1, we saw transitions in the dynamics that result
when limit cycles graze with the impact surface Σ. Much of this chapter
is devoted to an analysis of this discontinuity-induced bifurcation in some
generality. We also saw in Chapter 1 how fingered strange attractors can
occur close to chattering sequences and how complex basins of attraction
can arise when there are competing attractors. A complete analysis of such
phenomena is beyond the scope of this book, but section 6.4 below is devoted
to an explanation of them in the context of this example system.

Example 6.2 (Two impacting masses). The so-called Newton’s cradle toy con-
sists of suspended masses swinging independently when not in contact, and
interacting through impact with each other. The simplest such device, with
two masses, is illustrated in Fig. 6.1. Such devices also have industrial appli-
cation, for example to test the behavior of the material in the impacting part
of the pendulum under the effects of impact induced wear. See for example
the work of Blackmore et al. [32] for testing the tolerance of pills to impact.

For small angles of swing, we can model this system in terms of two in-
dependent oscillating masses at locations p < q of respective mass M and m,
each undergoing simple harmonic motion

d2p

dt2
+ ω2

1p = w1(s),
d2q

dt2
+ ω2

2q = w2(s), ds/dt = 1, (6.7)

with natural frequencies ω1 and ω2 respectively. Note that ordinarily, for a
forced pendulum system there will be a gross qualitative error involved with
linearizing the sine nonlinearity inherent in the angular DoF of the motion.
However, for small angles of swing, the impact law will provide a far stronger
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(a)

(b)

q(t)

p(t) mm

ω1

ω2

Fig. 6.1. (a) Schematic illustration of simplest Newton’s cradle toy, and (b) its
mathematical model for small angles of swing.

form of nonlinearity than the geometric nonlinearity. Roughly speaking then
we can linearize the sine function without making qualitative error. The New-
tonian rule for impact of two masses conserves momentum, reverses the direc-
tion of relative velocity between the masses while reducing this velocity by a
coefficient of restitution 0 ≤ r ≤ 1:

p+ = p−, q+ = q−, Mṗ+ +mq̇+ = Mṗ− +mq̇− q̇+− ṗ+ = −r(q̇−− ṗ−).
(6.8)

Now we have a five-dimensional autonomous system that can be written
in the form (6.1)–(6.3) with

x = (p, ṗ, q, q̇, s)T , F = (ṗ, f1 − ω2
1p, q̇, f2 − ω2

2q, 1)T ,

where the smooth flow applies in region S+ = {x : q − p > 0} and the
impacting surface is given by

Σ = {x : q − p = 0}, so that H(x) = q − p, v = q̇ − ṗ.

The impact rule (6.8) can be put into the canonical form (6.2) with

W (p, ṗ, q, q̇, s) =
(

0,
(1 + r)m
M +m

, 0,− (1 + r)M
M +m

, 0
)T

Sticking flow in this system occurs when p = q, ṗ = q̇ and

a(x) := d2q/dt2 − d2p/dt2 = f2 − f1 + (ω2
1 − ω2

2)p ≤ 0.

A particular example arises in the Newton cradle problem when the two
masses swing only under the action of gravity, so that f1 = f2 = 0 and
ω1 = ω2. In this case it is possible for the two masses to swing whilst being
in continuous contact with p = q. If the system is started in a general motion
and M � m, then the observed dynamics will be a periodic motion of p that
undergoes a series of impacts, with q resulting in a chattering sequence before
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the mass at q sticks to, and moves in permanent contact with the mass at p.
The time taken for the chattering sequence to converge can be used as a test
of the wear on the mass at q [32].

An interesting simplification of this problem arises when p is infinitely
massive when compared with q, so that q rebounds away from p at impact
without changing the motion of p. We can take p(t) to be a general periodic
function, so that the impacting system becomes

d2q

dt2
+ ω2q = w(t), q(t) > p(t),

with impact law
q̇+ − ṗ = −r(q̇− − ṗ).

In standard form this system has

x = (q, q̇, s)T , F = (q̇, w(s) − ω2q, 1)T , H(x) = q − p(s), v = q̇ − ṗ

with
W (q, q̇, s) = (0,−(1 + r), 0)T .

Note that an example of this case where the angle of swing is large so that
the sine nonlinearity must be taken into account is treated in detail as an
experimental case study in Chapter 9. Another practical example is that of
an internal combustion engine in that valve rods on springs at positions q(t)
are driven by a rotating cam, leading to the periodic function p(t) describing
the impact surface [3, 210, 211]; a schematic of such a cam-follower system is
shown in Fig. 6.2.

Example 6.3 (An impacting cantilever beam). A beam is a structural element
that has a finite resistance to bending and so, unlike a rigid rod, can undergo
continuous deflection along its length. Such an element may be held clamped
at one end and allowed to impact with a rigid stop at a set distance along its
length, see Fig. 6.3. Such an apparatus provides a natural extension to the
1DoF impact oscillator, as it can be thought of as a system that evolves in an
infinite-dimensional phase space, but with a single impact surface.

Specifically, consider a beam of length L that is clamped at one end, z = 0,
and free at the other. Suppose the transverse displacement of the beam is
given by U(z, t), where τ is time and z is position along the axis of the beam.
We suppose that the beam impacts a rigid stop at U = σ, z = z∗, where
0 < z∗ < L. We suppose the beam to be subject to a spatially uniform exter-
nal acceleration ŵ(z, t) in a direction perpendicular to its axis, and that the
motion of the beam is confined to the plane. In the simplest case, assuming
linear elasticity and small angles of deflection, the free (non-impacting) mo-
tion of such a beam satisfies a fourth-order linear partial differential equation
(PDE):

Uττ + EIUzzzz = ŵ(z, t), 0 < z < L,
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Fig. 6.2. Schematic diagram of an ideal cam-follower system at two different time
instants.

σ

u

zL

z∗

ŵ(z, t)

Fig. 6.3. A forced cantilever beam impacting with a rigid stop.

with U(0) = Uz(0) = 0, Uzz(L) = Uzzz(L) = 0,

where E is Young’s modulus and I is the second moment of area of the cross-
section. Nondimensionalization via

t =
L2

√
EI

τ, y =
z

L
,

leads to the dimensionless PDE

utt + uyyyy = w(y, t), 0 < y < 1, (6.9)

with u(0) = uy(0) = 0, uyy(1) = uyyy(1) = 0,
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where w(t) = ŵ(t)L4/EI
By applying the method of separation of variables, the general solution of

this system can then be expressed in the modal form

u(y, t) =
∑

i

xi(t)ψi(y), (6.10)

where the ψi(y) are eigenfunctions of the fourth-derivative operator on the
unit interval subject to the boundary conditions in (6.9). The corresponding
modal frequencies of the system {ωi} are all real, positive and well ordered
ω1 < ω2 < ω3 < . . .. Each modal amplitude satisfies an equation of the form

d2xi

dt2
+ ω2

i xi = wi(y, t), (6.11)

where wi(t) =
∫ 1

0
ψi(y)w(y, t)dy. The motion can then be expressed in terms

of the evolution of the single vector x = (x1, x2, x3, . . . , ẋ1, ẋ2, . . .)T where each
component xi is a solution of a harmonic oscillator equation (6.11). Now, since
the impact occurs at the point y = y∗ := z∗/L, u = σ, the impact surface is
given by

Σ(x) := {x : H(x) := Σixiψi(z∗) − σ := cTx− σ = 0}.

Thus the cantilever beam has a simple impacting surface. However, a simple
impact law

ut(y, t+) = −rut(y, t−) (6.12)

does not uniquely specify the values of xi(t+). At impact, there is typically an
exchange of energy from low-frequency to high-frequency modes. The overall
law can be written as

dxi

dt
(t+) =

∑

j

Rij
dxj

dt
(t−).

However, the evaluation of the coefficients Rij are still unclear for any partic-
ular system and need a detailed knowledge of the nature of the elastic waves
that can move up and down the beam. An example of an experimental, rea-
sonably rigid beam was seen in Fig. 1.5. In this we can see the excitation of
higher modes at impact. Typically these are strongly damped, and provided
that impacts are not too close together, we can approximate the overall mo-
tion of the cantilever beam as that of a 1DoF oscillator with a high coefficient
of restitution [31].

Example 6.4 (A one-dimensional lattice with impacts). Consider a system of
n particles ui, coupled together with springs (such as in a Toda lattice [254])
so that

d2ui

dt2
= −ki(ui − ui−1) + ki+1(ui+1 − ui),
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but with each particle individually constrained by a stop, so that the motion
of this particle is smooth if ui > σi and if ui = σi the particle rebounds
with coefficient of restitution ri. In this system, S+ is a subset of R

n and it
is bounded by the union of the sets Σi = {x : ui − σi = 0}. This is thus
another example of a system with a multiple impact surface. However in this
case there is a possibility of a non-trivial intersection of these surfaces over
the codimension-two sets

{x : ui − σi = 0, uj − σj = 0}.

Locally, that is, close to each set Σi, the motion is essentially identical to the
1DoF impact oscillator. It is possible for the solution to become stuck to one
of these surfaces, for example x may enter Σ1 through a chattering sequence.
In this case the system loses a degree of freedom, with the dynamics confined
to the remaining n− 1 particles, until the acceleration a1 of u1 − σ1 becomes
positive. A detailed description of the dynamics is given in [259].

Fig. 6.4. Possible fate of three particles (a) before, (b) during and (c) after a triple
collision event.

Example 6.5. Multiple impacting particles. Of course there are far more com-
plex mechanical systems, such as robot arms [38], clock mechanisms, or rat-
tling bundles of heat exchanger tubes [135], that comprise many impacting
components, all tightly coupled to each other. These components can move
freely and come into contact with each other. As a simple model of such a
system we might suppose that the problem is reduced to that of particles
constrained to one spatial dimension. The ith particle is assumed to occupy
position ui ∈ R, subject to a smooth evolution equation

d2ui

dt2
= w(ui, u̇i, t)

for ui−1 < ui < ui+1, where w is some external forcing. Smooth motion is
bounded by the surfaces Σi = {x : ui = ui+1}. Note that there is thus the
potential for a multiple collision when x ∈ Σi ∩Σi+1. This would represent a
codimension-one DIB, a full analysis of that is beyond the scope of this book.
Nevertheless, Sec. 6.5 below gives some preliminary results on how to analyze
such events in a special case.

ui+1ui−1 ui

vi vi+1

ui−1

vivi−1 vi+1

ui ui+1 ui−1
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ui ui+1
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6.1.2 Poincaré maps related to hybrid systems

As described in Chapter 2, the overall dynamics of an impacting hybrid system
of the form (6.1)–(6.3) is an alternating sequence of smooth flows in the set
S+ interrupted by impacts with the bounding set Σ, where the orbits either
re-enter S+ instantaneously or, after a chattering sequence, stick to the set
G for a non-zero time. We then have a hybrid flow map Ψ(x, t) that describes
the evolution of the hybrid system for positive times t to new positions in
S+ ∪Σ. For a typical initial condition, this map will consist of a composition
of smooth flow maps Φ in S+ and (a possible infinite number of) reset maps
at any impacts.

A natural method for studying these systems is to derive discrete-time
maps from the flow Ψ and then to apply the theory presented in Chapters
3 and 4 to understand the dynamics of such maps. As outlined in Chapter
2, a common procedure for defining such discrete-time maps is via choice of
suitable transverse Poincaré sections Π. For hybrid flows, several choices of
the surface Π are possible, leading to subtly different maps.

Suppose, for ease of discussion, that we have a time-periodically forced
system, and for the time being, we shall ignore any parameter dependence.
As explained in Chapter 2, this in effect means we can consider the phase
space to be cylindrical, with time playing the role of an additional phase space
variable s that repeats every period T , say, of the forcing. Then, a natural
Poincaré surface ΠS is defined by sampling every time T ,

Π := ΠS = {x : s := t mod(T ) = s0} ∩ S+

with corresponding stroboscopic Poincaré map

PS : ΠS → ΠS given by PS(x(t0)) = x(t0 + T ) = Ψ(x0, T ).

This map is easy to compute numerically, as all that needs to be done is
to evolve the hybrid system forward through time T , allowing for whatever
impacts or sticking occurs. Such a stroboscopic map was used to present the
experimental work on impact oscillators described in Chapter 1 [208]. For gen-
uinely autonomous systems, one can make an analogous map to PS by taking
a local section ΠS away from Σ that intersects trajectories transversally.

Continuity of the flow, and of the impact law, implies that the stroboscopic
map is generally continuous as a function of its arguments. Even if grazing
impacts occur, the map remains continuous although, as we shall see, the map
is not smooth at the intersection of such trajectories withΠS . Although simple
to define and simulate, the stroboscopic map has the analytical disadvantage
that, for a given x, the number m of impacts that occur in the time interval
t0 < t < t0 + T is not known a priori, and indeed can change discontinuously
as x varies.

Another convenient Poincaré section is the impact surface itself so that

Π := ΠI = Σ.
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The so-called impact map, PI , is then obtained by applying the hybrid flow
map Ψ fromΣ to itself followed by the reset map R. Some geometric properties
of the map PI have been studied extensively for 1DoF impact oscillators in
[264, 263, 265], Budd et al. [44] and Chillingworth [53]. The map PI has the
disadvantage that it can only describe orbits that intersect Σ. For this reason
the map is not suitable for analyzing grazing bifurcations, because one needs
to describe the transition from non-impacting to impacting orbits.

A better conditioned map, that we shall call the normal Poincaré mapPN ,
arises by choosing Π to intersect Σ transversally at the boundary G between
Σ+ and Σ−. The simplest example of such a surface is given by taking

Π := ΠN = {x : v(x) = HxF = 0}.

ΠN is everywhere transverse to the flow provided that the normal acceleration
a(x) does not vanish. The Poincaré section discontinuity mapping (PDM), as
introduced in Chapter 2, allows PN to be defined even for x ∈ S−; see Sec. 6.2
below for more details.

To show the action of these three maps, in Fig. 6.5 we illustrate a typical
trajectory and its intersection with the Poincaré surfaces ΠS , ΠN and ΠI =
Σ. With the aid of the figure, consider a trajectory starting from an impact
at the point A ∈ Σ+. This point advances to B where it intersects ΠS , and
onwards to Σ− at the point C. An application of the impact law takes the
flow to the point D, from where it continues within S+, intersecting ΠS at
the point E at time T later than point B. Now, suppose the impact at C was
ignored and the flow was allowed to continue into S−; it would then intersect
ΠN at the point Y . Also, if the flow from A were continued backwards in time
within in S−, it would intersect ΠN at the point X. Similarly, the backwards
flow from D intersects ΠN at the point Z. Hence, we can define the action of
the various maps

PS : B → E, PI : A→ C PN : X → Z.

Note that to define PN in this case we have had to include (non-physical)
parts of the flow in the set S−.

In order to understand possible dynamical behavior in hybrid systems, let
us briefly consider the effect of the stroboscopic map PS on sets of initial data.
Suppose the flow Ψ(x0, t) of a hybrid system intersects ΠS at points x0 at time
t = 0 and x1 at time t = T . Trajectories starting close to x0 will remain close
to Ψ(x0, t) for all t ∈ (0, T ). Hence, an open neighborhood Ω0 ⊂ ΠS of x0 will
evolve, under the action of the flow Ψ(·, T ) to an open neighborhood Ω1 of
the point x1. Thus PS : Ω0 → Ω1. Four possible scenarios result, depending
on the initial condition x0.

1. The flow Ψ(x0, t), 0 < t < T lies wholly in S+ and does not intersect
the discontinuity surface Σ.

2. The flow Ψ(x0, t) intersects Σ transversally a finite number m ≥ 1 of
times at normal velocity v > 0. It does not enter a sticking region.
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Fig. 6.5. An illustration of an impacting non-periodic flow. In these figures PS :
B → E, PI : A → D and PN : X → Z.

3. The flow Ψ(x0, t) intersects Σ tangentially (with v(x) = 0) at a grazing
impact at a point x = x∗ ∈ G.

4. The flow Ψ(x0, t) intersects Σ an infinite number of times, culminating at
an accumulation point, and enters a sticking region.

Of course, the flow from ΠS back to itself can comprise a hybrid combination
of the above. Let us now deal with each possibility in more detail.

Case 1. The evolution of an open neighborhood of x0 leads to trajectories
that remain wholly inside S+ and do not intersect Σ. The Poincaré map
PS for these is then fully described by the smooth flow map Φ(x0, T ) of
the dynamical system in S+. This map will be as smooth as the flow. So,
if the vector field F is analytic at x0, this map will have a regular Taylor
series expansion;

PS(x) = x1 +NT (x− x0) +O(‖(x− x0‖2),

where NT = Φx(x0, T ).
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Case 2. The evolution of an open neighborhood Ω0 of x0 leads to trajectories
that intersect Σ transversally a finite number m times, with m constant
for all flows starting from Ω0. This leads to a well defined map PS that
differs from the smooth flow map Φ due to the impacts. However, as the
intersections are transversal, this map is as smooth as R is. The process for
calculating this linearization, using the transverse discontinuity mapping
Q, was already described in Sec. 2.5.2 of Chapter 2. The derivative of the
map is given by a combination of the linearization of the flow Φ between
impacts combined with the saltation matrix Qx as defined in (2.78) in
Chapter 2, that is the linearization of the discontinuity mapping at impact.
Let Qk,x be the saltation matrix at the kth impact with k = 1 . . .m, and
NT be defined as in Case 1. Consequently, if the impacts are at times tk
we have

PS(x) = x1 + ̂N(x− x0) +O(‖x− x0‖2),

where
̂N = NT−tm

Qm,x . . . Q2,xNt2−t1Q1,xNt1 .

Having constructed these linearizations it is possible to analyze impacting
hybrid flows in much the same manner as we would analyses the smooth
flows in Case 1. Indeed, it is straightforward to calculate fixed points of
the map, PS , corresponding to periodic orbits, and to determine their
stability.

Case 3. This is the case that will concern us for most of this chapter and
differs from Case 1 and Case 2 in that it has dynamics peculiar to the
discontinuous nature of the dynamical system. The set Ω0 is divided into
the subset of (i) initial data leading to orbits that do not intersect Σ
close to x∗ (although they may have other high-velocity impacts with Σ),
(ii) initial data leading to orbits that intersect Σ transversally with low-
velocity orbits close to x∗ and (iii) initial data leading to orbits that graze
Σ close to x∗. The latter is a subset of the set of initial data in Π leading
to grazing impacts. This set has a complex geometry, illustrated in part in
Fig. 6.6. The Poincaré map in Case (i) is again the flow map described in
Cases 1 or 2. In cases (ii) and (iii) we must take account of the near grazing
incidence that leads to considerable stretching of the phase plane by the
Poincaré map. This leads to novel dynamics and a discontinuity-induced
bifurcation. We will study this case in detail presently.

Case 4. This case is in general hard to analyze. The resulting map PS is
highly contracting in phase space due to the loss of energy at each of
the infinitely many impacts. In fact the set Ω0 will be mapped into the
accumulation point of the chattering sequence, and hence it will enter the
codimension-two manifold G. All trajectories will leave G through points at
that a(x) = 0. This is a codimension-three manifold (a point in the case of
the 1DoF impact oscillator example). The forward image of this manifold
on ΠS will also be a set of codimension three. Thus there is a significant
memory loss; for the case of a 1DoF oscillator where ΠS is a plane, an
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entire open region of Ω0 will be mapped to a single point!. In Sec. 6.4 we
study the special geometry of set GΠ and its effect on chattering behavior
in more detail for 1DoF impact oscillator.
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Fig. 6.6. (a) In this figure the branched solid line represents the set of initial data
GΠ leading to a grazing impact, and the circles give sets of initial data whose images
under PS are depicted in one of the next three panels with the corresponding label.
(b) Orbits in this set have one high-velocity impact per period (c) Grazing between
areas with one and two impacts per period. (d) Chatter and incomplete chatter.

We illustrate these four cases in Fig. 6.6 by taking a representative set
Ω0 illustrated by the interior of the solid curve, and evolving it forward a
time T to give the curves in panels (b), (c) and (d). In (b) we see case 2
where the effect of the mapping is clearly a regular perturbation of Ω0. In
panel (c) we see the effects of grazing by allowing Ω0 to intersect a curve GΠ

comprising those trajectories that have grazing impacts. Notice how the set of
orbits with low-velocity impacts is greatly distorted and is mapped to a long
thin set tangent to GΠ , whereas the set of those orbits with high-velocity
impacts is much less distorted by the flow. In panel (d) we look at an open
neighborhood of a chattering orbit that also includes points with incomplete
chatter (where there are a large, but finite, number of low velocity impacts).

6.2 Discontinuity mappings near grazing

Let us now look at the dynamics associated with grazing and near impacts,
as described in Case 3 above. To do this we assume that there is a grazing
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trajectory that intersects Σ non-transversally at a point x∗ (as well as possibly
intersecting it transversally at other distant points) and that close to this
trajectory are initial conditions that lead to impact with low normal velocity
v, and trajectories that do not impact at all locally. As described in Chapter
2, the effects of the low-velocity impacts can be corrected for, by using a
discontinuity mapping; either finding a zero time discontinuity map (ZDM)
or a Poincaré discontinuity map (PDM). In this section we shall carefully
derive local expressions for the ZDM and PDM, without any assumption that
x∗ is part of a distinguished trajectory. Section 6.3 below then considers the
effect of embedding these expressions within the calculation of Poincaré maps
valid around grazing limit cycles.

6.2.1 The geometry near a grazing point

Recall Definitions 2.35 and 2.34 of the ZDM and PDM and consider again
the situation illustrated in Fig. 6.7. Here, a near grazing trajectory starting
at time t = 0 at the point x = x0 intersects the impact surface Σ at the point
x2 that is then mapped to x3. This trajectory is close to one with a grazing
impact at x = x∗. As described in Chapter 2, the ZDM is given by the map
from x0 to x4 and the PDM by the map x1 to x5. We will constantly refer to
this figure as we derive the analytic forms of the ZDM and PDM.
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Fig. 6.7. In this figure the solid line represents the actual flow of the hybrid system
in the region S+, and the dashed line the extended flow in the region S−.

Let us start with some generic hypotheses. Suppose the system in question
is written locally near Σ in the form (6.1)–(6.5), where we assume that the
scalar function H is well defined at the grazing point x∗:

Hx(x∗) �= 0. (6.13)

The grazing point itself is defined by the three conditions
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H(x∗) = 0, (6.14)

v(x∗) =
∂

∂t
H(Φ(x∗, 0)) = LFH(x∗) = 0, (6.15)

a(x∗) =
∂2

∂t2
H(Φ(x∗, 0)) = L2

FH(x∗) := a∗ > 0. (6.16)

Definition 6.1. We shall refer to a point x∗ satisfying (6.13)–(6.16) as being
a regular grazing point.
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Σ
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Σ+
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(a) H

Σ

Σ−

Σ+

(b)

Z

Fig. 6.8. (a) Dynamics close to a regular grazing point x∗. (b) The case when
condition (6.16) is replaced by a∗ < 0.

Note the necessity of the open condition (6.16). This means the grazing tra-
jectory is locally a parabola that points ‘downwards’ towards Σ, see Fig. 6.8. If
the normal acceleration a∗ were negative then trajectories would be parabolic
in the opposite sense and grazing would not occur, see Fig. 6.8(b). The region
of Σ with a(x) < 0 is called the sticking region Z, the dynamics near that we
shall analyze in Sec. 6.4 below in the context of the 1DoF impact oscillator.

A full local neighborhood of x∗ (including points in S− with H(x) < 0)
can be divided into two regions comprising the set G+ of points along that
the trajectories generated by the flow Φ do not impact Σ close to x∗, and the
set G− of points along that the trajectories do impact Σ. These two regions
are separated by the set G of points on trajectories (including the trajectory
through x∗) that have a grazing contact, with G = G∩Σ. The global geometry
of the set G is complex and will be considered further in Sec. 6.4 below;
however, locally it is relatively easy to describe; see Fig. 6.9.

If x0 is a point close to x∗, we can consider the value of H(Φ(x0, t)) along
this flow starting at x0. We define

Hmin(x0) ≡ the local minimum value of H(Φ(x0, t)) with the smallest |t|.
(6.17)

Note that Hmin is well defined for x0 close to x∗ since, by the hypothesis
(6.16), x∗ is a local minimum H.

Definition 6.2. Locally, in a neighborhood D of a regular grazing point x∗ of
a hybrid flow (6.1)–(6.3), the grazing manifold G, the impacting set G−,
and the non-impacting set G+ are given by
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G := {x : Hmin = 0}, G− := {x : Hmin < 0}, G+ := {x : Hmin > 0}.

G

G+

G−

x∗

Σ

ΠN

Hmin

Fig. 6.9. The grazing manifold G, the impacting set G−, and the non-impacting
set G+ close to a regular grazing point x∗.

In a small neighborhood D of a regular grazing point x∗, the surface G is
given by

G =
{

x0 ∈ D : H(x0) − v(x0)2
(

1
2a∗

+ r(x)
)

= 0
}

, (6.18)

where r(x) is a smooth function that is to leading-order linear in ‖x − x∗‖.
Hence, this surface is locally tangent to the set Σ at x∗.

To see how the expression (6.18) arises, suppose ‖x0−x∗‖ = ε� 0. Then,
since H and Φ are smooth, we can expand H(Φ(x0, t)) about x0 for small t:

H(Φ(x0, t)) = H(x0) + v(x0)t+ a(x0)
t2

2
+O(t3),

= H(x0) + v(x0)t+ a∗
t2

2
+O(t3, t2ε). (6.19)

Now, seeking a local minimum with respect to t of (6.19), we find

t = −v(x0)
a∗

+O(ε2) (6.20)

Moreover if v(x0) = 0, then by definition x = x∗, that is a local minimum of
H and so t = 0. Hence v(x0) must be a factor of (6.20) and so we can write

t = −v(x0)
(

1
a∗

+O(ε)
)

. (6.21)

Substitution of (6.21) into (6.19), leads to (6.18).
Using this construction of G we are now in a position to state the form

that the ZDM and PDM take.
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Theorem 6.1 (The local ZDM close to a grazing impact). Suppose that
the point x∗ is a regular grazing point of an impacting hybrid system written
in local form as (6.1)–(6.3). Then, the ZDM, defined for all points x in a
sufficiently small neighborhood of x∗, may be written in the form

x �→
{

x, if Hmin(x) ≥ 0,
x−

√
2a∗W (x)y +O(y2), if Hmin(x) < 0,

(6.22)

where
y =

√

−Hmin(x),

with Hmin defined in (6.17).

The need to find Hmin introduces a technical difficulty into this definition,
that can be avoided by considering flows starting from a Poincaré section on
that Hmin = v = 0. Such a surface is given by

Π = ΠN = {x : v(x) = 0},

which also contains the grazing set G.

Theorem 6.2 (The local PDM close to a grazing impact). Suppose that
the point x∗ is a regular grazing point of an impacting hybrid system written
in local form as (6.1)–(6.3). Then, the PDM, defined for all points x ∈ ΠN

in a sufficiently small neighborhood of x∗, may be written in the form

x �→
{

x, if H(x) ≥ 0,
x+ β(x, y)y, if H(x) < 0, (6.23)

where

β(x, y) = −
√

2a(x)
(

W (x) − b(x)
a(x)

F (x)
)

+O(y),

y(x) =
√

−H(x), b(x) = (HxF )xW (x).

Remarks

1. Note that the map (6.23) stretches phase space in the direction of the
vector β, which is tangent to Σ at the point x∗. To see this, note that
F (x∗) and W (x∗) are both in the tangent space of Σ by assumption.
Provided that a, b, F and W can be calculated, each of these maps can
be readily constructed. We contrast the form taken by these maps with
that given by the expression (2.78) in Chapter 2 when v is not close to
zero. Here we have a term proportional to y, that gives a square-root
singularity. Instead, the discontinuity mapping for transverse intersection
is smooth and is linear to leading-order.
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2. The proofs of Theorems 6.1 and 6.2 are constructive and use local ex-
pressions for the orbit given by the Taylor series expressions and simple
calculations of the evolution of H along the flow. In the next three sub-
sections, we give a sketch proof by calculating the leading-order terms of
the PDM and ZDM, to give an intuitive motivation of the form that they
take. This is followed in Sec. 6.2.5 by a more detailed derivation using the
notation of Lie derivatives, that includes a procedure for calculation of the
higher-order terms. This latter method is the one that will be adopted in
Chapters 7 and 8 for deriving discontinuity mappings in piecewise-smooth
flows.

Example 6.6. We illustrate the PDM and ZDM construction by again looking
at the forced 1DoF impact oscillator, without dissipation. Consider

ü+ u = cos(ωt) − σ, ṡ = 1, x = (u, v, s)T

with impact at u = 0. Thus H(x) = u. We look for solutions with initial
conditions x0 = (u0, v0, s0) close to grazing at a point where u = v = s = 0.
In this case we write

Hmin := umin = u0 −
v2
0

2a0
,

where
a0 = a(u0, v0, s0) = γ cos(ωs0) − σ ≈ a∗ = γ − σ,

where a∗ is the value of a at the grazing point. Also we have

b(x) = −(1 + r), F (x) = (0, a(x), 1)T , W (x) = (0,−(1 + r), 0)T .

Thus, to leading-order

β = −
√

2
a

⎛

⎝

0
0

1 + r

⎞

⎠ .

On the impact side (u < 0), we then have to leading-order

ZDM(x) = x+
√

2a

⎛

⎝

0
1 + r

0

⎞

⎠

√
−umin ,

PDM(x) = x−
√

2
a

⎛

⎝

0
0

1 + r

⎞

⎠

√
−u .

Note that in the PDM, the correction is purely in the direction of the time
variable to leading-order. In fact, as we shall see in detail in Example 6.7,
there are also higher-order corrections proportional to u, that affect the co-
ordinate direction u as well. Significantly, there is a square-root singularity in
both the ZDM and the PDM for this example. In the ZDM it is manifest as
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a change in v proportional to
√−umin and in the PDM a change in phase,

again proportional to
√
−u. As the function

√
−u has an infinite gradient as

u→ 0, this simple analysis demonstrates the stretching of phase space in the
limit of x→ 0.

6.2.2 Approximate calculation of the discontinuity mappings

The method of construction of the maps is composed of three steps related to
the points shown earlier in Fig. 6.7. See also Fig. 6.10.

1. For a general initial condition x0 ∈ G− with ‖x0 − x∗‖ � 1, we follow the
flow through a time δ0 until the trajectory intersects Σ, at the point x2.

2. The reset map R is applied to x2 to obtain x3.
3. To construct the local ZDM, we then compute the flow from x2 backwards

through time −δ0 to the point x4. Thus, the total transformation of the
flow from x0 to x4 takes zero time.

4. Alternatively, to construct the PDM, we assume the initial point x1 ∈ ΠN

and, as above, follow the flow through a time δ < 0 to reach the impact
point x2 and to compute its image x3 = R(x2). For the final step, though,
we flow backwards through a new time −Δ until the original Poincaré
section ΠN is reached, at the point x5.

To compute the local forms for these maps, we shall use Taylor series
expansion, exploiting the smoothness of the vector field F both above and
belowΣ. To obtain the leading-order expressions, it is sufficient to assume that
the surfaces Σ and G are flat, i.e., linear manifolds. (By choosing appropriate
co-ordinate changes, this may be assumed without loss of generality when
calculating higher-order approximations too; see [78].) Thus, we take

Σ = {x ∈ D : Hxx = 0}, and G = {x ∈ Σ|z(x− x∗) = 0}, (6.24)

where z = (HxF )x is a vector normal to the grazing set within Σ.

6.2.3 Calculating the PDM

It is most instructive to start with the derivation of the PDM, for that the
surface ΠN becomes the linear manifold

ΠN = {x ∈ D : z(x− x∗) = 0}. (6.25)

To calculate the PDM, we take an initial point x1 lying in ΠN with
H(x1) < 0 and such that ‖x1−x∗‖ = ε, where ε is small. Now, we can expand
H(Φ(x1, t)) as a Taylor series in time, using the fact from the definition of
ΠN that

H(x1) := −y2 < 0,
∂

∂t
H(Φ(x1, 0)) = z(x1 − x∗) = 0
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and
∂2

∂t2
H(Φ(x1, 0)) = (HxF )xF (x1) = a∗ +O(ε).

Hence, along the flow starting at x1 we have

H(Φ(x1, t)) = H(x1) +
1
2
a∗t2 +O(t3) = −y2 +

1
2
a∗t2 +O(t3). (6.26)

Note that we expanded H(Φ(x1, t)) in t, and then the coefficients of the Taylor
series can be further expanded around x = x∗.

Expanding now the flow in t about the grazing point x = x∗, we also find
that

Φ(x1, t) = x1 + F ∗t+O(t2, εt, ε2), (6.27)

where henceforth we shall use a superscript ∗ to mean evaluation at x = x∗.
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Fig. 6.10. Similar to Fig. 6.7 but with times δ, δ0, and Δ.

From these expressions we can calculate the negative time δ and point
x2 = Φ(x1, δ) for that H(x2) = 0. From (6.26), we obtain

δ = −
√

2
a∗
y +O(y2),

that, using (6.27), gives

x2 = x1 − F ∗
√

2
a∗
y +O(y2).

It is here that we immediately see the source of the square-root term in the
discontinuity map (cf. Fig. 6.10). Due to the locally quadratic nature of the
trajectory, the time (of the virtual flow) spent with H(x) < 0 scales like y,
the square root of the penetration H(x1).
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The normal velocity at x2 can be expanded in a Taylor series about x1

v(x2) = HxF (x2) = HxF (x1) + a∗δ +O(y2) = 0 − a∗
√

2
a∗
y +O(y2).

Hence we can apply the reset map (6.2) to obtain

x3 = R(x2) := x2 +W (x2)v(x2),

= x2 −W (x2)

(

a∗
√

2
a∗
y +O(y2)

)

,

= x1 − F ∗
√

2
a∗
y −W ∗√2a∗y +O(y2). (6.28)

As a final step, we take this point and flow backwards from x3 for a time
−Δ (comparable with δ) to reach ΠN at a point x5. From Taylor expansion,
we obtain

x5 = x3 −ΔF ∗ +O(y2). (6.29)

Now, using (6.28) and the identities

z(x1 − x∗) = 0, zF ∗ := a∗ and zW ∗ := b∗,

we obtain to leading-order

0 = z(x5 − x∗) = −a∗
√

2
a∗
y − b∗

√
2a∗y − a∗Δ.

Hence

Δ = (−b∗ − 1)

√

2
a∗
y = −(b∗ + 1)δ.

Substitution into (6.29) gives finally,

x5 = x1 − F ∗
√

2
a∗
y −W ∗√2a∗y + F ∗(b∗ + 1)

√

2
a∗
y (6.30)

= x1 −
√

2a∗
(

W ∗ − b∗

a∗
F ∗

)

y +O(y2), (6.31)

which is the leading-order expression for the PDM given by (6.22).

6.2.4 Approximate calculation of the ZDM

Calculation of the ZDM follows along similar lines. Here we start from a gen-
eral initial point x0. There is an additional step that involves the calculation
of the time δ1 to reach the point x1 at that H = Hmin, see Fig. 6.10. From a
Taylor expansion about x = x∗ we have, to leading-order,
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x1 = x0 + δ1F
∗

for some time δ1 yet to be determined. Then the derivation follows closely
that of the PDM to obtain

δ =

√

2
a∗
y,

as the leading-order expression for the time to flow from x1 to x2. The point
x3 = R(x2) is again given by

x3 = x1 − F ∗
√

2
a∗
y −W ∗√2a∗y.

The final step for the ZDM is different though. To reach the final point
x4, we must flow for precisely the time

δ0 = (δ − δ1).

Thus we have

x4 = x3 + (δ − δ1)F ∗

= x1 − F ∗
√

2
a∗
y −W ∗√2a∗y − δ1F

∗ + F ∗
√

2
a∗
y

= (x0 + δ1F
∗) −W ∗√2a∗y − δ1F

∗

= x0 −W ∗√2a∗y,

that is the leading-order expression for the ZDM given by (6.22). Notice that,
due to cancellation, for this leading-order expression, we did not need to com-
pute the unknown time δ1.

6.2.5 Derivation of the ZDM and PDM using Lie derivatives

The asymptotic expansion process leading to the above leading-order expres-
sions for the ZDM and the PDM in Theorems 6.1 and 6.2 can in principle
be continued to compute the O(y2) and higher terms; however, the algebra
soon becomes unwieldy. It is better to use the Lie derivative notation (6.5),
since then we can express everything in terms of scalar quantities Lm

F (H)(x∗)
for different orders m. Therefore, we shall use the hypotheses (6.14)–(6.16)
written in the form

H(x∗) = 0 v(x∗) = LF (H)(x∗) = 0 and a(x∗) = L2
F (H)(x∗) > 0.

Bearing in mind the construction in Fig. 6.10, note that the ZDM may be
written concisely as the following combinations of flows and mappings:

Φ(R(Φ(x0, δ0)),−δ0), (6.32)
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where δ0 is the time taken to flow from x0 to the point x2 at that impact
occurs.

As in the above approximate derivation of the ZDM, we split the time δ0
into the time δ < 0 taken to flow to x2 from a point x1 at that H = Hmin,
and the time δ1 taken to flow from the initial point x0 to x1, that is

δ0 = δ + δ1.

By introducing the scalar variable y =
√
−Hmin forHmin < 0, we find a regular

expression for the flow combination (6.32) in terms of x0, y, δ and δ1. Before
evaluating (6.32), we first calculate y, δ and δ1 in terms of the initial condition
x0. Thus, every step of our derivation can be treated as a separate calculation,
and it is thus highly suited to implementation in computer algebra.

Calculation of the time δ. Let us start by supposing that x is a point
where, in the absence of the impacting surface, an impacting trajectory would
attain its minimum H-value; so that H(x) = Hmin < 0 and LF (H)(x) = 0.
As before, we define y > 0 by

y2 +Hmin = 0

and seek the time t = δ < 0 so that

H(Φ(x, δ)) = 0. (6.33)

Now, in order to write expressions that remain asymptotically valid, even
when LF (H)(x) �= 0, and y �=

√
−Hmin, it is convenient to rewrite (6.33) in

the form
H(Φ(x, δ)) − (y2 +H(x)) − LF (H)(x)δ = 0. (6.34)

Note that the two subtracted terms are both zero for the x in question, but
for more general x this leads to a regular asymptotic expansion in the two
variables x and y, that we can think of as independent. Expanding (6.34) in
powers of δ, we get

L2
F (H)(x)

δ2

2
+ L3

F (H)(x)
δ3

6
+O(δ4) − y2 = 0. (6.35)

In order to solve for δ, we first recast (6.35) as

(
√
A+ y)(

√
A− y) = 0, (6.36)

where

A = L2
F (H)(x)

δ2

2
+ L3

F (H)(x)
δ3

6
+O(δ4).

Our assumption that y is positive means that, in order to solve (6.36), we
need the second factor to be zero. Moreover, since by construction δ < 0, we
have
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δ

√

(

L2
F (H)(x)

1
2

+ L3
F (H)(x)

δ

6
+O(δ2)

)

+ y = 0. (6.37)

Now, since L2
F (H)(x∗)/2 is non-zero by the hypothesis (6.16), the Implicit

Function Theorem guarantees the existence of a smooth function δ(x, y) in a
sufficiently small neighborhood of the grazing point (x, y) = (x∗, 0) that solves
equation (6.37). Thus, we can invert the power series (6.37) term by term to
obtain

δ(x, y) = y

(

−
√

2
L2

F (H)(x)
− 1

3
L3

F (H)(x)
(L2

F (H)(x))2
y +O(y3)

)

. (6.38)

The velocity before the impact. We define x2 to be the point of first
impact, so that

x2(x, y) = Φ(x, δ(x, y))

and
v2(x, y) = LF (H)(x2(x, y)) − LF (H)(x). (6.39)

Once again, in (6.39) we have subtracted a term, in this case LF (H)(x), that
is zero for the point x in question but that makes the asymptotics become
uniformly valid for any x and y. Expanding v2 in powers of δ, we have

v2(x, y) = −y
(

√

2a(x) − 2
3
c(x)
a(x)

y +O(y2)
)

,

where
a(x) = L2

F (H)(x) and c(x) = L3
F (H)(x).

The velocity after the impact. We define x3 to be the image of x2

after impact, x3 = ̂R (x2(x, y), v2(x, y)), where ̂R(x, v) is the expression for
R(x) where x and v are considered as independent co-ordinates, i.e., ̂R(x, v) =
R(x) = x+W (x)v. Hence, we write

x3(x, v) = x+W (x)v,

where v = LF (H)(x), and we set

v3(x, v) = LF (H)(x3(x, v)) − LF (H)(x) + v,

where the term LF (H)(x) − v that is zero by definition, has been subtracted
to make the expression valid for any independent x and v. This gives

v3(x, v) = v(1 + LWLF (H)(x) +O(v)).

The expansion for the ZDM. Finally, we define x4 via the condition
that the total time taken is zero, so that
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x4(x, δ, v) = Φ( ̂R(Φ(x, δ), v),−δ). (6.40)

Note that this expression is just the flow combination introduced in (6.32) for
δ0 = δ. Expanding (6.40) in v and δ, we get

x4(x, δ, v) = x+W (x)v +WxF (x)δv − FxW (x)δv + vO((δ, v)2). (6.41)

We are now in a position to derive general expressions for the ZDM and
PDM. There are several cases to consider.

The ZDM for a point x such that LF (H)(x) = 0. For such special
points, the ZDM is simply given by

ZDM(x, y) = x4(x, δ(x, y), v2(x, y)). (6.42)

Using expansion (6.41) we have that

ZDM(x, y) = x−
√

2a(x)W (x)y +O(y2), (6.43)

that is the leading-order term of the ZDM given in (6.22). The next order
term is

2y2

(

c(x)
3a(x)

W (x) +WxF (x) − FxW (x)
)

,

and, in principle, we can carry out the expansion process to any arbitrary
order.

The ZDM for a general point x. To obtain the ZDM for a point x such
that LF (H)(x) = v �= 0, we must apply a correction to the ZDM presented in
(6.43) obtained by employing an additional projection onto the zero velocity
surface. To determine this projection we must solve for the time δ1 taken to
reach a point for that the velocity is zero. That is

LF (H)(Φ(x, δ1)) − LF (H)(x) + v = 0, (6.44)

where, once again, we have subtracted a zero term LF (H)(x) − v, that in
effect defines v as an independent variable.

Using the previous techniques we find that

δ1(x, v) = −v
(

1
a(x)

+O(v2)
)

; (6.45)

and we define
x1(x, v) = Φ(x, δ1(x, v)) (6.46)

Hmin(x, v) = H(x1(x, v)) + [v − LF (H)(x)]δ1(x, v). (6.47)

Substituting for δ1 from (6.45) into (6.47) we find
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Hmin(x, v) = H(x) − v2

(

1
a(x)

+O(v)
)

. (6.48)

The final time of flow from x3 to x4 should now be δ0 = δ + δ1. We can
therefore write the ZDM as

ZDM(x, y, v) = x4(x, δ1(x, v) + δ(x1(x, v), y), y, v2(x1(x, v), y)), (6.49)

where x4 is given by (6.41).
Evaluation of (6.49), shows that the leading-order term of this general

ZDM is identical to the ZDM (6.42) calculated from the zero-velocity surface,
that is

ZDM(x, y, v) = x− y
(
√

2a(x)W (x) +O(y, v)
)

, (6.50)

but there are differences in the expressions for the higher-order terms.

The PDM map. To obtain the PDM it is sufficient to consider the ZDM
(6.43) projected onto the zero velocity surface. We define the point x5 by

x5(x, δ(x, y),Δ0, v2(x, y)) = Φ(x4(x, δ(x, y), v2(x, y)),Δ0), (6.51)

where Δ0 = −Δ+δ0 is the time taken to flow from x4 to x5. Expanding (6.51)
in the small scalar variables Δ0 and v2, we find that

x5(x, t,Δ0, v2) = ZDM+FΔ0 +FxW (x)Δ0v2 +FxF (x)
Δ2

0

2
+O((t,Δ0, v2)3).

(6.52)
Now we must determine the time Δ0 by solving the identity

LF (H)(Φ(x4(x, t, v2),Δ0)) − LF (H)(x) = 0, (6.53)

that can be expanded in powers of Δ0. The Implicit Function Theorem guar-
antees the existence of a smooth function Δ0(x, v2) provided that L2

F (x) �= 0.
This latter condition is guaranteed by the hypothesis (6.16) for x sufficiently
close to x∗. Thus, we can invert the power series expansion of (6.53) to obtain

Δ0 = − b(x)
a(x)

v2 +
(

−b(x)2c(x)
2a(x)2

−H

)

v2
2 +O(v3

2),

where

H =
LFLWLF (H)(x) − LWL2

F (H)(x)
a(x)

− b(x)
a(x)

,

and b(x) = LWLF (H)(x). We are now ready to define the PDM as

PDM(x, y) = x5(ZDM(x, y), v2(x, y))

= x+ y

[

−
√

2a(x)W (x) +

√

2a(x)b(x)
a(x)

F (x) + (6.54)

+2y
(

b(x)2

2a(x)
FxF (x) +WxF (x) −

(

1 + b(x)
)

FxW (x) − c(x)
3a(x)

W (x) +

−b(x)c(x)
3a(x)2

F (x) +
(

−b(x)2c(x)
2a(x)

−B + C

)

F (x)
)

+O(y2)
]

,
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where B = LFLWLF (H)(x) and C = LWL2
F (H)(x) and the overall error is of

O(y3). This gives not only the leading-order expression (6.23) but the O(y2)
term too.

Remark. Notice that the functional expressions for the ZDMs and the
PDM, when applied to a particular system locally around the grazing contact,
are functions of single variable x. The other independent variables (y, v) are
functions of x. However, the functional expressions for the ZDMs and the
PDM as derived are obviously valid when the variables x, y and v are treated
as independent quantities [with y and v being of O(ε)].

6.3 Grazing bifurcations of periodic orbits

Throughout this section we assume that a regular grazing point x∗ that locally
satisfies (6.13)–(6.16) is part of a limit cycle of an impacting hybrid flow
Ψ(x, t), the ODE part of that can be written as ẋ = F (x, μ). Now, since H is
a scalar function, a periodic orbit will generically have isolated local minimum
values Hmin(μ) of H. When one of these minima becomes zero, upon varying
a single parameter μ, this corresponds to a grazing bifurcation of the periodic
orbit. Thus grazing bifurcations are of codimension-one in parameter space.

Definition 6.3. We say that a limit cycle grazing bifurcation occurs at a
parameter value μ = μ∗ if there exists a hyperbolic limit cycle p(t) of a hybrid
flow Ψ(x, t) that contains a regular grazing point x∗, and that the parameter
μ perturbs the local phase potraits near the grazing point and around the limit
cycle in a non-degenerate way (so that Hmin(μ∗) = 0 and dHmin

dμ �= 0).

Now, we wish to unfold the dynamics in the neighborhood of such a grazing
bifurcation point. There are two steps to this process. First, we use the discon-
tinuity mappings calculated in the previous section, valid in the neighborhood
of the grazing point. These maps must be composed with a Poincaré mapvalid
in the neighborhood of the critical periodic orbit at μ = μ∗ under the supposi-
tion that no impact occurs close to x∗. Thus we obtain a compound Poincaré
mapthat is uniformly valid for both kinds of orbit close to the grazing limit
cycle; orbits that have low-velocity impact near x∗, and those that do not. The
construction of such compound maps forms the subject of Sec. 6.3.1 below.
The second step is then to analyze the dynamics of these maps. It should not
be a surprise given that the DMs constructed above contain square-root sin-
gularities that the compound maps also contain such terms. Thus, as shown
in a suite of examples in Sec. 6.3.2 below, we use the analysis of Sec. 4.3 of
Chapter 4 to explain the different dynamical scenarios that may result from
a limit cycle grazing bifurcation, period-adding cascades, chaos, etc.
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6.3.1 Constructing compound Poincaré maps

We wish to construct a map from a Poincaré section Π to itself that is valid
in a neighborhood of the grazing limit cycle p(t) in both phase and parameter
space. There are two possible approaches to doing this, either using the specific
Poincaré section ΠN that contains the grazing point x∗ and is by construc-
tion normal to the flow, or using a remote Poincaré section ΠS away from the
grazing point. We shall call the latter a stroboscopic Poincaré mapby analogy
with periodically forced systems, where ΠS is often chosen to be given by a
constant value of the phase variable s = t mod T , where T is the period of the
forcing. The induced map PS : ΠS → ΠS is most useful for numerical inves-
tigation, and representation of chaotic attractors and domains of attractions.
In contrast, the map PN : ΠN → ΠN is more useful for theoretical analysis as
it contains only terms evaluated at the grazing point itself; thus such a map
may be termed the grazing bifurcation normal form map, by analogy with the
normal forms of local bifurcations introduced in Chapter 2.

Let us start by considering the stroboscopic map PS ; see Fig. 6.11. Assume
the system has a natural period T , for example, the period of any forcing. Then
the map PS maps x at time t to Ψ(x, t+T ). Suppose that grazing occurs on a
particular orbit p(t) at the point x∗ at time t = 0. (In order to be completely
general, p(t) may not necessarily be a periodic orbit in what follows.) The
orbit may also have further finite-velocity impacts for times not close to zero.
For any given T > s0 > 0, we may then construct surfaces Π−, Π0 and Π+

at times t = −s0, t = 0 and t = T − s0 > 0 so that the map PS acts from
Π− to Π+. Now we have x∗ = p(t) ∩Π0, and let us define x− = p(t) ∩Π−,
x+ = p(t)∩Π+. If p(t) is a periodic orbit, then we necessarily have Π− = Π+

and x− = x+. We can then define natural flow maps P1 from Π− to Π0 and
P2 from Π0 to Π+, by the evolution of the hybrid flow operators Ψ(·, s0) and
Ψ(·, T − s0), respectively, allowing for any transverse impacts that are distant
from x∗, but ignoring any impact close to x∗. Thus, we can construct the
compound Poincaré mapvia

PS = P2 ◦ ZDM ◦ P1.

where ZDM is the zero-time discontinuity map constructed in the previous
section. Note, by definition of the ZDM, this map defines the evolution through
time T as required.

The methods described in Sec. 2.5 of Chapter 2 allow us (by using a
saltation matrix where necessary in the case of distant transverse impacts) to
linearize each of the maps P1 and P2 about p(t). Let us call such linearizations

N1 :=
d

dx
P1

∣

∣

∣

∣

x=x−
and N2 :=

d

dx
P2

∣

∣

∣

∣

x=x∗
.

Now, in Π0 the set G separates orbits that impact close to x∗ from those that
do not. Let us define the pre-image Gπ of the set G in Π−, and its image G2
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P1 P2

G2

G+
π

G−
π

Gπ

G x∗

t

t = T − s0t = 0t = −s0

u

v

Σ

Π−
Π+Π0

ZDM

Fig. 6.11. An illustration of the stroboscopic Poincaré map. See text for details.

in Π+ via
G = P1(Gπ) and G2 = P2(G).

The set Gπ can be called a discontinuity set as it separates initial conditions,
x ∈ G−

π , in P1 that have an impact near x∗ from those, x ∈ G+
π , that do not.

The following result then follows immediately from the leading-order form of
the discontinuity map (6.22).

Theorem 6.3 (The linearized stroboscopic grazing map). Calculating
the map PS for a point x close to x− by taking P1, applying the ZDM and
then taking P2 we have to leading-order:

PS(x) =
{

N2N1(x− x−), if x ∈ G+
π ,

N2N1(x− x−) +
√

2a
√
−HminN2W (x∗), if x ∈ G−

π ,

where the error terms are O
(

‖x− x−‖2
)

. Linearizing Hmin around x∗ gives

Hmin = HxN1(x− x−) +O
(

‖x− x−‖2, v2
)

,

where locally around the grazing contact v = O (||x− x−||). Thus, the effect of
grazing is to stretch the phase space adjacent to the point x− in the direction
of the vector N2W .

In order to unfold the grazing bifurcation, one needs to include parameters in
the derivation of the compound Poincaré map. We do this next, in the context
of maps derived using the normal Poincaré section.

Consider the Poincaré section ΠN = {x : HxF (x) = v = 0}, that we
assume intersects a grazing periodic orbit p(t;μ) at a regular grazing point
x = x∗ at parameter value μ = μ∗. We wish to define a normal form that can
be used to unfold the grazing bifurcation. To do this, we need to calculate
the full Poincaré map PN from ΠN to itself, with the aid of the PDM to
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correct for points with v < 0 that are in the non-physical region S−. We
begin by constructing the natural Poincaré map P̃N from ΠN to itself, which
is obtained by computing the flow Ψ ignoring low-velocity impacts close to
ΠN , but allowing for possible transverse impacts distant from Π. Such a map
is computed by ignoring the presence of Σ close to x∗ and thus allowing points
to have v < 0 while still following the flow Φ of the ODE without correction.
By definition of the PDM in Theorem 6.2, the full Poincaré mapfrom ΠN to
ΠN is then defined by

PN (x) = PDM ◦ P̃N (x); (6.55)

see Fig. 6.12. Note there is a subtle point here. We could equally well have
chosen PN to be P̃N ◦PDM(x). These two maps are topologically equivalent,
and it is essentially a matter of taste whether one chooses to flow first and
correct later as in (6.55), or vice versa.

PDM

ΠN

Σ

PN

Fig. 6.12. Construction of the normal form close to a grazing bifurcation using the
normal Poincaré section ΠN .

Let us now derive the leading-order expression in x − x∗ and μ − μ∗ for
the normal form map (6.55). The assumption that all impacts of p(t;μ∗)
other than at x∗ are transverse means that, using the transverse discontinuity
mapping as presented in Sec. 2.5.2 at all such impacts, the natural Poincaré
mapwill be smooth in both x and μ close to (x, μ) = (x∗, μ∗). Hence, we can
write

P̃N (x, μ) = N(x− x∗) +M(μ− μ∗) +O
(

‖x− x∗‖2, (μ− μ∗)2
)

,

where

N :=
∂

∂x
P̃N

∣

∣

∣

∣

x=x∗,μ=μ∗
and M :=

∂

∂μ
P̃N

∣

∣

∣

∣

x=x∗,μ=μ∗
.

Similarly, there is a row vector CT = Hx and a scalar D = Hμ such that to
leading-order
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H(x, μ) = CT (x− x∗) +D(μ− μ∗).

We are now in position to combine this local form of P̃N with the PDM
in (6.22) to write down the leading-order form of the compound map PN .

Theorem 6.4 (The normal form map at a grazing bifurcation). Sup-
pose a periodic orbit p(t;μ) has a regular grazing at (x, μ) = (x∗, μ∗) of an
impacting hybrid system that is written in local co-ordinates in the form (6.1)–
(6.3). Let x̂ = x − x∗, μ̂ = μ − μ∗. Then the Poincaré map PN from ΠN to
itself defined by (6.55) can be written to leading-order in the form

PN (x̂, μ̂) =
{

Nx̂+Mμ̂, if CTNx̂+ (CTM +D)μ ≥ 0,
Nx̂+Mμ̂+ Ey, if CTNx̂+ (CTM +D)μ̂ < 0, (6.56)

where
y =

√

(−CTNx̂− (CTM +D)μ̂) +O(x, μ)

and
E = β(CTNx̂, 0)

∣

∣

x̂=0
,

with β as defined in (6.23). The error term is O(x̂2, y2, μ̂2) for both signs of
CTNx̂+ (CTM +D)μ̂.

Remarks

1. In the absence of the PDM correction, the periodic orbit p(t;μ) intersects
ΠN at a point x1 that satisfies the leading-order equation

x1 − x∗ = (I −N)−1M(μ− μ∗),

so that to leading-order

H(x1, μ) = CT (x1 − x∗) +D(μ− μ∗) = [CT (I −N)−1M +D](μ− μ∗)
:= e(μ− μ∗) (6.57)

Thus the periodic orbit is in S+∩ΠN if e(μ−μ∗) > 0. So, the condition for
the existence of a simple periodic orbit is that eμ̂ > 0. The dynamics for
eμ̂ < 0 are likely to be much more subtle and may involve the existence of
period-adding cascades, chaotic attractors, and so on, as we now motivate.

2. As with the stroboscopic map, the main feature of the map PN , for eμ̂ < 0
is the stretching associated with the square-root in the direction of the
vector E. Note, though, that by the assumption (6.4) on W in the case
that H and W are linear, we must have in this case that CTE = 0. That
is, the stretching is in a direction tangent to Σ.
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6.3.2 Unfolding the dynamics of the map

Note that the normal form map (6.56) we have just constructed is identical
in structure to the square-root map (4.29) analyzed in Chapter 4.

We can thus completely describe the dynamics close to the grazing point
at μ = μ∗ by using this earlier theory, The nature of this dynamics depends
on the matrices N , E, CT , M and D and in particular on the eigenvalues of
N . These in turn depend upon the nature of the flow Ψ around the periodic
orbit, but in principle the whole range of eigenvalue space can be looked at by
appropriate choices of the parameters of the flow. We will present examples
that show how different behaviors of impacting systems at grazing bifurcations
can be explained simply by finding the eigenvalues of the associated matrix
N . First though, let us briefly recall some key results from Chapter 4. (See
Chapter 4 for the derivation of these results.)

Theorem 6.5 (Existence of a period-one orbit). If

α = CTN(I −N)−1E �= 0, det(I −N) �= 0 and e �= 0,

where e was defined in (6.57), then for small μ − μ∗ there exists a unique
impacting period-one point branching off from the grazing orbit. If α < 0 then
this orbit coexists with the non-impacting orbit (when μ < μ∗) and if α > 0,
the impacting periodic orbit exists for μ > μ∗.

Recall also that periodic orbits of so-called maximal type are most likely
to be observed for μ close to μ∗ when N has complex eigenvalues.

In contrast, if N has real eigenvalues and satisfies the condition

CTNnE > 0 for all n > 0,

then we see attracting periodic or chaotic behavior as μ increases beyond μ∗,
as follows:

1. If λ1 is the principal eigenvalue of N and if 2/3 < λ1 < 1, then there
is a chaotic attractor close to the origin for all small negative values of
e(μ− μ∗).

2. If 1/4 < λ1 < 2/3, then for all small negative values of e(μ− μ∗) there is
an alternating series of chaotic and stable periodic motions, accumulating
in a period-adding cascade as μ→ μ∗.

3. If 0 < λ1 < 1/4, then the chaotic motion disappears and is replaced by
periodic bands that overlap and increase in period as μ→ μ∗.

It is also helpful to recall Fig. 4.14 and the accompanying text in the spe-
cial case of two-dimensional maps. Here differing behavior can be classified
according to the different eigenvalue configurations of the matrix N . In partic-
ular, if N has complex eigenvalues, then we can see a multiplicity of different
behaviors depending on the ratio of the real to the imaginary parts.



6.3 Grazing bifurcations of periodic orbits 285

6.3.3 Examples

We shall now apply the above theory to the 1DoF impact oscillator studied in
case study I, at various parameter values where different unfoldings of grazing
bifurcations occur. In particular we look at the oscillator

ü+ 2ζu̇+ u = w(s), ṡ = 1, u > 0, u̇→ −ru̇ when u = 0, (6.58)

where the forcing w(s) is either constant or periodic. For convenience, and
ease of notation, we will consistently set v = du/dt and x = (u, v, s).

Before embarking on various examples, it would be helpful to construct
general expressions for the Jacobian N of the Poincaré mapP̃N of the flow.
We do this in three stages:

Time-T map of flows without impact. Suppose (u(t), v(t) = du/dt) is
a solution to the equation ü+2ζu̇+u = w(t), and consider the perturbed flow
(u(t) + δu(t), v(t) + δv(t)). The function δu satisfies the variational equation

δü+ 2ζδu̇+ δu = 0, (δu(t0), δv(t0)) = (δu0, δv0),

so that
d

dt

(

δu
δv

)

= L

(

δu
δv

)

:=
(

0 1
−1 −2ζ

)(

δu
δv

)

.

Thus
(

δuT

δvT

)

:=
(

δu(t0 + T )
δv(t0 + T )

)

= eLT

(

δu(t0)
δv(t0)

)

.

The Jacobian matrix of the flow associated with passage through time T
is therefore given by

NT = eLT = e−ζT

(

CT ST

−ζCT − ω0ST ω0CT − ζST

)

, (6.59)

where
ω0 =

√

1 − ζ2, CT = cos(ω0T ), ST = sin(ω0T ).

Observe that
det(NT ) = e−2ζT ,

so that the flow is dissipative if ζ > 0.

Time-T map for flows with impact. Suppose now that in the time
interval T the orbit (u, v) has a single transverse impact at time t = t0 + tI
with impact velocity vI < 0 (just before impact) and impact acceleration a−I
just before impact and a+

I just after impact. The flow is modified by the impact
and the effect of this, as described in Chapter 2 (2.78), can be estimated by
calculating the saltation matrix Qx associated with the impact. In particular,
we have
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(

δuT

δvT

)

= ÑT

(

δu0

δv0

)

,

where the ÑT is the Jacobian derivative of the hybrid flow Ψ in the presence
of a single impact, and it is given by

ÑT = NT−tI
QxNtI

, (6.60)

with NT defined by (6.59). From Chapter 2 the saltation matrix is given by

Qx =

(

−r 0
ra−

I +a+
I

vI
−r

)

,

therefore, in this case
det(ÑT ) = e−2ζT r2.

Clearly we may extend this calculation to the case of m impacts in the period
T , and in this case,

det(ÑT ) = e−2ζT r2m. (6.61)

Observe that the flow is therefore dissipative if r < 1 provided that ζ ≥ 0.

Linearization of the return map PN . Assume next that the flow u(t)
is periodic, with v(t0) = v(t0 + T ) = 0 and with acceleration a0 := a(t0) �= 0.
We now compute the linearization N of the flow map PN from the surface
ΠN = {(u, t) : v = 0} to itself. To do this we consider making a small change
to the initial conditions and find the evolution of a flow starting at time
t0 + δt0 with (u, v) = (u + δu0, 0), and finishing at a time t0 + T + δT with
v(t0 + T + δT ) = 0, and u(t0 + T + δT ) = u(t0 + T ) + δuT . For small δt0 and
δu0 this map can be calculated directly in terms of the linearization of the
evolution map PT by considering a projection at times close to t0 and t0 + T
from the surface ΠN to Π and vice versa. Noting that if v(t0 + δt0) = 0 and
u(t0 + δt0) = u + δu0 we have (to leading-order in δt0) that v(t0) = −a0δt0
and u(t0) = u+ δu0. A similar identity applies at time T . We therefore have

(

δuT

δT

)

= N

(

δu0

δt0

)

:=
(

1 0
0 −1/a0

)

ÑT

(

1 0
0 −a0

)(

δu0

δt0

)

. (6.62)

Note that
det(N) = det(ÑT ).

We are now in a position to consider various examples of grazing bifurca-
tions.

Example 6.7 (Constant Forcing). We consider first an undamped impact os-
cillator with constant forcing

ü+ u = 1, u > 0, R : v → −rv, at u = 0 where v = u̇
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for 0 < r < 1. The simplicity of this example makes it possible to construct the
maps involved in the preceding theory more or less explicitly, with x = (u, v)T .
In particular we can construct closed form expressions for both stroboscopic
map PS and the grazing set GΠ . There is no natural time period for the
forcing in this example; however, all non-impacting periodic orbits have period
T = 2π, so we take this as the natural period to describe the stroboscopic
map. We illustrate the calculation in Fig. 6.13.

Orbits without impact correspond to points (u, v) moving on circles so
that

(u− 1)2 + v2 = ρ2,

with phase
θ = tan−1(v/(u− 1)).

If ρ < 1, then u > 0 for all t, and no impacts occur. If ρ = 1, we have a
periodic grazing orbit. In particular, if we set t = 0, then the set GΠ of initial
conditions leading to a grazing impact is simply the circle of radius one given
by

GΠ = {(u, v) : (u− 1)2 + v2 = 1}.
Observe that when u and v are small and we express u as a power series in v,
we have

GΠ = {(u, v) : u = v2/2 + O(v4)},
that agrees with earlier local analysis [see (6.18)]. Now, consider a set of initial
conditions with ρ > 1. This will lead to an impact when

u = 0, v = −
√

ρ2 − 1,

that is then mapped to the point

u = 0, v = r
√

ρ2 − 1.

After impact, the orbit is again a circle satisfying

(u+ − 1)2 + v+2 = 1 + r2(ρ2 − 1) := ρ̂2

However, the phase of the point on this circle is instantaneously changed by
the impact, from θ− to θ+, where

θ− = − tan−1(
√

ρ2 − 1) and θ+ = tan−1(r
√

ρ2 − 1).

Consequently, there is a jump Δθ in the phase given by

Δθ = tan−1(
√

ρ2 − 1) + tan−1(r
√

ρ2 − 1).

From this analysis, we can easily construct the stroboscopic Poincaré map.
Suppose that at t = 0 we have (u, v) = (1 + ρ cos(θ), ρ sin(θ)); then if ρ > 1,
we have
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(ρ, θ) �→ (ρ̂, θ+Δθ) := (
√

1 + r2(ρ2 − 1), tan−1(
√

ρ2 − 1)+tan−1(r
√

ρ2 − 1).
(6.63)

Similarly, if ρ < 1, then
(ρ, θ) �→ (ρ, θ).

Σ

ΠN

PDM

GΠ

u

v

Fig. 6.13. The effect of impact on an orbit with ρ =
√

2 in that we can see the
effect of the PDM.

Of specific interest is the case when ρ = 1 + ε, corresponding to a near
grazing orbit when ε � 1, with Hmin = −ε. In this case (6.63) becomes to
leading-order,

(1 + ε, θ) �→ (1 + r2ε, θ + (1 + r)
√

2ε).

These results are in perfect agreement with the ZDM, (6.22), because when
u is close to zero, the velocity is changed by

√
2a(1 + r)

√
ε := −

√
2a[−(1 + r)]

√

−Hmin ,

where −(1 + r) is the v component of W (x).
We can also calculate the PDM. On the surface ΠN ≡ {v = 0}, an orbit

of radius ρ− = 1+ ε is instantaneously mapped to one of radius ρ+ = 1+ r2ε,
and v is unaltered. Hence on ΠN , when u = 1 − ρ, we have

(u, v) → (r2u, v) = (u, v) + (r2 − 1, 0)u. (6.64)

Note that u is changed by a linear term only.
This exact expression (6.64) can be replicated using the expression for the

PDM given in Theorem 6.2. To see this, we rewrite the system in the form
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F =
(

v
−u+ 1

)

, Fx =
(

0 1
−1 0

)

, W = −(1 + r)
(

0
1

)

, Hx =
(

1
0

)T

,

and we calculate the PDM on the zero-velocity surface {v = 0}. We find, in
the notation of (6.22), that b(x) = −(1 + r), a(x) = −(u + 1), c(x) = v = 0
and

WxF = (0, 0)T

and that E and C are both zero. We can now use the formula (6.23) to
compute the terms of order y, where y = −u2. We find

−
√

2(−u+ 1)
(

0
−(1 + r)

)

+
−
√

2(−u+ 1)(1 + r)
−u+ 1

(

v
−u+ 1

)

=
(

0
0

)

as v = 0 by assumption. We therefore need to find the next order term. We
have

2y2

[

(1 + r)2

2(−u+ 1)

(

−u+ 1
0

)

− (1 − (1 + r))
(

−(1 + r)
0

)]

=

2y2

(

(1 + r)2

2
− r2 − r

)

= y2(1 − r2) = u(r2 − 1).

Hence, we can write the PDM as

(u, 0) �→ (u, 0) + (r2 − 1, 0)u,

that in our particular case is the exact formula for the PDM (there are no
terms of higher order).

Using these results, we can look at the effect of the map on a small square
of side length 2ε in (ρ, θ) co-ordinates, so that ρ ∈ (1 − ε, 1 + ε), θ ∈ (−ε, ε).
For ρ < 1 the part of the square is unchanged. If ρ > 1, then the sides of the
square are mapped to a parabola parallel to ρ = 1 + θ2. The square is thus
stretched to a set that is tangent to the line ρ = 1, as illustrated in Fig. 6.14.
Note that the area of the stretched portion of the square is reduced by a factor
of r2.

Example 6.8 (periodic orbits with a single low-velocity impact). Consider the
example of a periodically forced undamped harmonic oscillator

d2u/dt2 + u = cos(ωt) − μ, u > 0, impact at u = 0,

with ω ≈ 2. As we saw in case study I in Chapter 1, if ω is fixed and μ <
μ∗ = 1/(1− ω2), this system has a non-impacting periodic orbit, with period
T = 2π/ω given by

u(t) = cos(ωt)/(1 − ω2) − μ
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ρ

2ε

θ

ε

θ = 0

ρ = 1

1 + r2ε

Fig. 6.14. The stretching of a square of initial data either side of GΠ .

that grazes with the surface Σ = {u = 0} when μ = μ∗. Consider the Poincaré
map from the surface ΠN to itself close to this periodic orbit when μ is close
to μ∗. The intersection of the periodic orbit with this surface is given by

(u, t) = (μ∗ − μ, π/ω).

The corresponding matrices and vectors in Theorem 6.4 can readily be calcu-
lated to be

N =
(

1 0
0 −1/a

)(

cos(T ) sin(T )
− sin(T ) cos(T )

)(

1 0
0 −a

)

, E = −
√

2
a

(

0
(1 + r)

)

and

C = (1, 0)T , M =
(

1 0
0 −1/a

)(

cos(2π/ω) − 1
− sin(2π/ω)

)

, D = 0,

where a is the acceleration when v = du/dt = 0. A graze occurs when u =
v = 0 so that at this point a = cos(2πω) − μ. Hence

N =
(

ST −aST

ST /a CT

)

, M =
(

CT − 1
ST /a

)

,

where ST = sin(2π/ω), CT = cos(2π/ω). Hence, in the notation of Theorem
6.5,

(I −N)−1M = (−1 0)T , thus e = −1,

and
α = CTN(I −N)−1E = (1 + r)

√
2as/2(1 − c).

Now, at the grazing point, we have a > 0 and 1−CT > 0; thus, the sign of
α is the same as the sign of ST = sin(2π/ω). We conclude that if sin(2π/ω) < 0
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(locally if ω < 2), then the impacting orbit coexists with the non-impacting
one, and if sin(2π/ω) > 0 (locally ω > 2), then the impacting orbit replaces
the non-impacting one. This is precisely the behavior observed in case study
I corresponding, respectively, to the sub-resonant and super-resonant ellipses
described in Fig. 1.8.

Example 6.9 (Chaotic behavior for orbits with a single low-velocity impact).
Consider next the same impacting system but with non-zero damping:

ü+ 2ζu̇+ u = cos(2t) − μ, u > 0,

for ζ > 0, and the same impact law v → −rv when u = 0. We study the
change in the dynamics as μ varies through the value

μ∗ = −1/
√

9 + 16ζ2.

At μ = μ∗, the system has a period-π grazing orbit

u(t) =
3 cos(2t) + 4ζ sin(2t)

9 + 16ζ2
− μ∗,

with a grazing impact at t = t∗ where tan(2t∗) = 4ζ/3 and no other impacts.
There is a positive acceleration a = cos(2t) − μ∗ at the grazing point. The
linearization of the Poincaré map PN about this orbit is now given by

N =
(

1 0
0 −1/a

)

Nπ

(

1 0
0 −a

)

,

where

Nπ = e−πζ

(

CT + ST ζ
ω0

ST

ω0

−ωST − ζ2ST

ω0
CT − ζST

ω0

)

,

CT = cos(ω0π), ST = sin(ω0π), ω2
0 = 1 − ζ2.

The matrix N is similar to, and therefore has the same eigenvalues, as Nπ.
These eigenvalues are complex and given by

λ1,2 = e−πζ [cos(
√

1 − ζ2π) ± i sin(
√

1 − ζ2π)]

if 0 < ζ < 1. In contrast if ζ ≥ 1, the eigenvalues are both real:

λ1,2 = e−πζe±
√

ζ2−1π.

Note the special case of ζ =
√

3/2 = 0.867, where the eigenvalues are pure
imaginary.

Fig. 6.15 shows the results of computing Monte Carlo bifurcation diagrams
for this example in four illustrative cases. The diagram in panel (a) is for



292 6 Limit cycle bifurcations in impacting systems

ζ = 0.26; in which case, the eigenvalues of Nπ are −0.776 ± 0.083i. Thus,
with reference to Fig. 4.14 in Chapter 4, we are in Region 3 close to the
right-hand parabola-shaped boundary with Region 2. Hence, according to the
theory presented in Chapter 4, we should expect to see a jump to orbits with a
high period or aperiodic. Indeed, the numerics suggest a jump to broad-band
chaos at the grazing bifurcation value μ∗ = −0.3149.

Fig. 6.15(b) shows the case ζ = 0.867, where the eigenvalues λ1,2 are pure
imaginary. Hence we are in the center of Region 3 of Fig. 4.14 where we should
expect to see a maximal periodic orbit of period-two. This is precisely what
the numerical bifurcation diagram shows to occur for μ > μ∗. Panels (c) and
(d) show the cases ζ = 1.2 and 2, respectively, where the eigenvalues are real;
with dominant eigenvalue λ1 = 0.184 for ζ = 1.2 and 0.4301 for ζ = 2. Thus,
according to the results of Chapter 4, we should have an overlapping period-
adding cascade for ζ = 1.2, and a period-adding cascade with intermediate
regions of chaotic motion. This is again what is observed in the numerical
simulations.
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Fig. 6.15. Bifurcation diagrams for the cases (a) ζ = 0.26, (b) ζ =
√

3
2

, (c) ζ = 1.2
and (d) ζ = 2. The corresponding grazing bifurcations happen at (a) μ = −0.3149,
(b) μ = −0.2182, (c) μ = −0.1766 and (d) μ = −0.1170. In figures (c) and (d) we
see hysteresis and a period-adding cascade, whereas (a) shows an immediate jump
to chaos.

Example 6.10 (Chaotic behavior with high-velocity impact in the non-
dissipative limit). We modify the previous example to consider the grazing
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bifurcation that occurs close to a periodic orbit that also contains a trans-
verse impact. For simplicity of calculation we set the damping constant ζ
to zero, that is justified because dissipation is introduced by the restitution
law at the non-grazing impact. Thus we take the periodically forced impact
oscillator given by

ü+ u = cos(2t) − μ, u > 0, v → −rv when u = 0.

Taking the forcing frequency equal to 2 also greatly simplifies the resulting
calculations. Again, we consider the effect on the dynamics of varying μ, this
time for μ > 0. We shall show that there is a critical penetration μ = μ∗

at that the system has a periodic solution u(t) with period T = π and a
single high-velocity impact at time t = tI , velocity vI < 0 immediately before
impact, and velocity −rvI > 0 immediately after. This orbit is given by

u(t) =
[

−rvI −
2
3

sin(2tI)
]

sin(t− tI) −
1
3

cos(2t) − μ,

with
cos(2tI) = −3μ, vI =

4
3(1 − r)

sin(2tI).

Note that vI and μ lie on the ellipse

9
16

(1 − r)2v2
I + 9μ2 = 1.

When μ = 0 there is a large amplitude π-periodic orbit with vI = −4/(1−
r) and u ≥ 0 for all t . When μ = 1/3 there is a grazing orbit with vI = 0, for
that u ≤ 0 for all t. By continuity, it follows that there is a point 0 < μ∗ < 1/3
at that the orbit u(t) ≥ 0 for all t and that has a grazing impact, between the
high-velocity impacts. This is illustrated in Fig. 6.16(a).
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Fig. 6.16. (a) Periodic orbit with high-velocity impact and grazing when μ = 0.3312
and r = 0.8 indicating the grazing impact at time t∗ and the high velocity impact
at time tI . (b) Strange attractor for r = 0.8 at μ = 0.3459.

Suppose that at μ = μ∗ the grazing impact occurs at time t∗ with accel-
eration a > 0 and the high-velocity impact at time tI with t∗ < tI < t∗ + π.
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Let aI be the acceleration at time tI (Note that, as the dissipation is zero, we
have a−I = a+

I = aI .) From (6.62), it follows that the linearization of the map
P̃N about the grazing orbit at μ∗ is given by

N =
(

1 0
0 −1/a

)

Nπ+t∗−tI
QxNtI−t∗

(

1 0
0 −a

)

,

where the saltation matrix is given by

Qx =
(

−r 0
(1 + r) vI

aI
−r

)

.

Now N is similar to the matrix Nπ+t∗−tI
NtI−t∗ , which is in turn similar to

the matrix

̂N = NtI−t∗Nπ+t∗−tI
QxNtI−t∗Nt∗−tI

= NπQx.

But, for a system without damping between impacts, we have simply that

Nπ = −I,

so that the eigenvalues ofN are the same as those of Qx but with opposite sign.
We conclude that the eigenvalues of N are simply r and r and, consequently,
the bifurcation diagram is determined by the value of r. Hence we expect to
see the periodic orbit evolving immediately into a chaotic orbit if r > 2/3, a
period-adding cascade if 1/4 < r < 2/3 and hysteresis if r < 1/4 provided
that CTNnE > 0.

For example, taking r = 0.8 we have

μ∗ = 0.331269, t∗ = 3.0865, a = 0.6629,
tI = 4.7681, vI = −0.7408, aI = −1.3251.

Thus, from the above

N =
(

0.446225 −2.10926
0.059337 1.15378

)

with (degenerate) eigenvalues 0.8, 0.8. For this example we also have

E =
√

2/a∗(0,−1)T , C = (1, 0)T ,

and it is easy to see that CTNnE is positive for all n.
In contrast, when r = 0.3 we have

μ∗= 0.2808, t∗= 2.8551, a = 0.5593, tI = 4.9966, vI = −1.0255, aI = −1.1247,

and thus

N =
(

−0.346321 −0.561721
0.743657 0.946313

)

.
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The vectors CT and E are as before, and again CTNnE > 0 for all n.
A plot of the bifurcation diagrams in these two cases is presented in

Fig. 6.17. In panel (a) we see (as expected) that when r = 0.8 there is an
immediate transition into a region of chaos, that terminates in a maximal
period-21 orbit, followed by a period-subtracting cascade. In contrast, when
r = 0.3, there is a period-adding cascade separated by regions of chaos. Fig.
6.16(b) presents the strange attractor (as iterates of the map PS) for the case
of r = 0.8, μ = 0.3459 in which its fingered structure is clearly visible.
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Fig. 6.17. Bifurcation diagram for (a) r = 0.8, (b) r = 0.3 showing, respectively, a
square-root growth of a chaotic attractor and a period-adding cascade with chaotic
windows.

6.4 Chattering and the geometry of the grazing manifold

We now study the global nature of the flow of impacting hybrid systems, to
help explain phenomena such as complex domains of attraction and the effects
of chattering observed in case study I in Chapter 1. Our main tool of analysis
will be to examine the geometry of the grazing manifold G via its intersection
with a stroboscopic Poincaré section. By doing this we will be able to see
the influence of grazing on the dynamics, motivating the form of the domains
of attraction of certain periodic orbits and the shape of certain strange at-
tractors. We can also understand how to estimate Lyapunov exponents, that
determine the average rate of expansion or compression in an attractor.

The results of this section are discussed solely in the context of the 1DoF
impact oscillator (6.58). General theory, in more phase space dimensions, is
the subject of ongoing research and is beyond the scope of this book.

6.4.1 Geometry of the stroboscopic map

The matrix ÑT calculated in (6.60) is simply the Jacobian of the stroboscopic
map PS away from any grazing point. We observe from (6.61) that if T is
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held fixed, then this matrix has constant determinant over any set Ωα for
that the number of impacts m of any trajectory starting in Ωα is constant.
Consequently, if we set Ωβ = PS(Ωα) and let Aα,β represent the areas of the
sets Ωα,β , respectively; then we have

Aβ = e−2ζT r2mAα. (6.65)

Now, suppose we take k iterations of the stroboscopic map PS defined over
a time T [that we assume to be the period T = 2π/ω of the forcing function
w(s)]. Suppose that the flow representing the jth iteration of the map has
mj transverse impacts with Σ := {(u, v, s) : u = 0}. Since each impact is
transverse, it will survive under small perturbation. Let Ω0 be the set of
initial conditions for that the number of impacts in each iteration remains the
same, and each impact remains transverse. Let Ωk be the kth iterate of Ω0

under the stroboscopic map. Then, applying the result (6.65) repeatedly we
deduce that the corresponding areas of these two sets are related by

Ak = e−2kζT r2(m0+m1+...+mk−1)A0.

As k → ∞ the average rate of contraction of the phase space between succes-
sive actions of the map PS defined by (Ak/A0)1/k is given e−2ζT r2z, where
the winding number of the flow is defined by

z = lim
k→∞

⎛

⎝

1
k

k−1
∑

j=0

mj

⎞

⎠ .

Using z we can estimate the Lyapunov exponents of the flow directly. If the
Lyapunov exponents are Λ1 and Λ2, then the average rate of contraction of the
area of a set over the time interval T is given by e(Λ1+Λ2)T . However, we have
already shown that this rate of contraction is given by e−2ζT r2z. Equating,
we have the following estimate for the sum of the Lyapunov exponents

Λ1 + Λ2 = 2(z log(r)/T − ζ).

The winding number z helps to distinguish between different types of flow,
in particular z will be rational for a periodic orbit and may not be so for a
chaotic orbit. For an orbit with no impacts at all, z is zero and for a chattering
orbit [42] in that one of the mj is infinite, z is also infinite, and there is a
consequent infinite contraction of the phase space because Λ1 + Λ2 = −∞.

6.4.2 Global behavior of the grazing manifold G.

It is now natural to consider the boundaries of regions Ω of trajectories that
have the same event history. Such boundaries represent initial conditions for
that the corresponding flow has a non-transverse impact with Σ. Thus, these
initial conditions must form part of the grazing manifold G; see Definition 6.2.
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Let us now define GΠ = G∩Π to be the set of initial data in a Poincaré section
Π leading to an orbit with a grazing impact at some future time. Specifically
throughout this discussion, we shall take Π to be the stroboscopic Poincaré
section t = t0 mod T where T is the period of the forcing function w(s). We
shall look at the geometry of GΠ , that was first described by Whiston [264].
We also refer to the careful topological study of Chillingworth [53] for more
precise information, including rigorous proofs.

The set GΠ is made up of the union of the sets G(k)
Π that comprise initial

data that lead to a grazing impact together with k − 1 transversal impacts
before intersecting Π again. The set GΠ is locally a one-dimensional sub-
manifold of Π. However, GΠ can self-intersect at points in Π corresponding
to the initial data of orbits with more than one grazing impact (we already
saw this in Fig. 6.6(a)). As calculation of GΠ is difficult in general, we confine
attention here to calculating it for the periodically forced, undamped, impact
oscillator given by

ü+ u = cos(ωs) − σ, u > 0, v → −rv, at u = 0,

with s = t mod T = 2π/ω, and taking Π = ΠS = {(x, v, s) : s = 0}
To determine the form taken by GΠ , consider a grazing impact at u = v =

0 occurring at time t = s0 > 0. Close to the grazing point we have

u = (σ − γ cos(ωs0))C0 + ωγ sin(ωs)S0 + γ cos(ωt) − σ, (6.66)
v = −(σ − γ cos(ωs))S0 + ωγ sin(ωs)C0 − ωγ sin(ωt), (6.67)

γ =
1

1 − ω2
, S0 = sin(t− s0), C0 = cos(t− s0). (6.68)

This orbit is only a solution of the hybrid system if u > 0, which requires
that the local acceleration a and penetration σ both be positive. That is, we
are not in the sticking region Z ⊂ G ⊂ Σ defined by

Z = {(u, v, s) : u = v = 0, a := cos(ωs) − σ < 0}.

Observe that if σ < −1, then Z is the empty set and if σ > 1 then Z is the
whole interval s ∈ [0, T ]. For −1 < σ < 1, Z is a line, a subinterval of the
grazing set G, centered on the point s = π/ω. Namely, we have

Z = {(u, v, s) : u = v = 0, tα < s < tβ},

where tα and tβ are defined by

cos(ωtα,β) − σ = 0, tα + tβ =
2π
ω
.

Provided (0, 0, s0) is not in the sticking set, we may continue the orbit
(6.66)-(6.68) backwards in time allowing for any further impacts as necessary.
The intersection of this orbit with the manifold Π at t = 0 is then a point on
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GΠ . If no impacts occur in the interval [0, s0], then the corresponding part of
GΠ is given by

G(0) = {(u, v) :

u = (σ − γ cos(ωs0) cos(s0) − ωγ sin(ωs0) sin(s0) + γ − σ,

v = (σ − γ cos(ωs0)) sin(s0) + ωγ sin(ωs0) cos(s0)}.
If s0 � 1 and σ < 1, then this set is given locally by the half parabola

{(u, v) : u = (1 − σ)s20/2, v = (σ − 1)s0}.

Now, as s0 increases from zero, we have

du

ds0
= sin(s0)(cos(ωs0) − σ),

dv

ds0
= cos(s0)(σ − cos(ωs0)).

Thus, the curve G(0) has a stationary point when (σ − cos(ωs0)) = 0, which
is precisely when s0 lies on the boundary of the sticking region Z, at s0 = tα.
We call this point Gα.

If s0 > tβ , then we may again calculate the pre-image on Π of the grazing
impact. In general this pre-image will lie on an orbit that has several trans-
verse impacts in the interval [0, s0]. Suppose that there are k such impacts
at times ti, i = 1 . . . k. As s0 increases it is likely that further impacts will
occur between, or before, these k impacts. The s0-values at that the number
k changes will correspond to the occurrence of an additional grazing impact.
Suppose, for example, that this grazing impact occurs before the first trans-
verse impact at a time t = t0 < t1. The pre-image on Π of the orbit starting
from this s0-value is then also the pre-image on Π of an grazing orbit starting
from s0 = t0, that defines a point in the set G(0). Hence we see an intersec-
tion point between two parts of GΠ , between G(0) and G(k). Also for higher
s0-values, the set G(k) will now become G(k+1).

The effect of this scenario is to increase the number of impacts on the
orbit starting from (0, 0, s0) by one. Thus G(k) spawns a new segment G(k+1)

within ΠS . For further increase in s0, G(k+1) will likely cross G(0) again. In
fact this sequence of transitions typically continues making curve segments
G(n) for arbitrarily large n. It was shown in [42] that these curves accumulate
on a limiting curve G(∞) comprising orbits that impact an infinite number of
times before a final grazing impact; that is on orbits that undergo a complete
chattering sequence. This scenario is illustrated in the section ΠS in Fig. 6.18.
In Fig. 6.19, we show the various orbits corresponding to the initial data
labeled in the previous figure. Observe the sticking orbit for initial condition
E = Gα and an orbit with complete chatter starting from the point labeled
F. Note that as s0 varies we see that while each curve G(k) intersects G(0)

transversally, the new segment G(k+1) leaves tangentially (with high speed as
s0 varies). Note also from Fig. 6.18 that the curve G(∞) terminates at the
point Gα, denoted by E in the figure. Notice the complex geometry of the
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Fig. 6.18. The curve GΠ close to the point E = Gα when ω = 2.6, σ = 0
and r = 0.8. In this figure the labeled points correspond to initial data at ‘A’
(u = 0.020718, v = −0.2),‘B’ (u = 0.1, v = −.2881056), ‘C’ (u = 0.033268, v =
−0.250478), ‘D’ (u = 0.049762, v = −0.301258), ‘E’ (u = 0.08282, v = −0.371567),
‘F’ (u = 0.1, v = −0.3905).

set GΠ close to the Gα, where the many leaves G(k) accumulate on the curve
G(∞).

For more general calculations it is useful not only to consider the set GΠ

but also its various pre-images under the action of the map PS . To illustrate
this calculation we show in Fig. 6.20 the full curve GΠ plus 5 pre-images
calculated for the case of σ = 0, ω = 2.6 and r = 0.8.

For many values of ω and σ the impact oscillator has several competing
attractors. Each of these has a domain of attraction. The enormous stretching
of the phase space close to the set GΠ and its pre-images under PS means
that the domain of attraction of these attractors will be greatly influenced by
this set. This process is described in detail in [42]. In particular, GΠ typically
acts as a set separating the domains of attraction of the attracting states. As
the geometry of GΠ is typically complex, it leads to great complexity in the
domains of attraction. We can see some of this behavior in Fig. 6.21. Here
we see the domains of attraction of a period-one and a period-six orbit when
ω = 2.6, r = 0.8 and σ = 0. This figure should be compared with the plot of
GΠ , and its pre-images, for the same parameter values given in Fig. 6.20

6.4.3 Chattering and the set G(∞)

Note that there is a region close to Gα of initial data on Π for that all orbits
(in forward time) intersect Σ an infinite number of times before sticking in
Z. The region bounded by G(∞) is thus part of the pre-image of the sticking
region Z. We shall now investigate this sticking behavior, and the chattering
dynamics as sticking is approached.
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Fig. 6.19. The orbits labeled on the figure of GΠ . Observe the double grazing orbit
in C, the sticking orbit in E and the chattering orbit in F.

Orbits with initial data close to Gα will impact in the sticking region with
low-velocity when the acceleration is towards the impact surface Σ. In this
case, we expect to see complete chatter. That is, there is a sequence of impact
times tk accumulating at a time t∞ lying inside the sticking region Z.

Suppose that a sequence of impacts occur at times tk in the sticking region
with velocity vk immediately after impact and with acceleration ak < 0. If the
times tk are close, and we are not close to the boundary of the sticking region
(where ak is close to zero), then we may approximate the acceleration by the
constant −a < 0. Suppose that an impact occurs at time t0 with (low) velocity
v0 > 0, then on the assumption of constant a, we have

vk+1 = rvk > 0 and Δk := tk+1 − tk =
2vk

a
.
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Fig. 6.20. The curve GΠ together with 5 pre-images when ω = 2.6, σ = 0 and
r = 0.8..
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Fig. 6.21. Domain of attraction when σ = 0, r = 0.8 and ω = 2.6. In this figure the
dark regions are attracted to a period-one periodic orbit, and the light regions to a
period-six orbit.

If uk is the maximum value of u in the interval [tk, tk+1], then from the
parabolic nature of the trajectory under constant acceleration, it follows that
uk = v2

k

2a . It follows that there are an infinite number of impacts (a chattering
sequence) occurring in the time interval [t0, t∞) where

t∞ = t0 +
∞
∑

i=0

Δk = t0 +
2v0
a

∑

rk = t0 +
2v0

a(1 − r)
.

Note that

tk = t∞ − 2vk

a(1 − r)
= t∞ −

√

8uk

a(1 − r)2
. (6.69)

Given a sequence of impact times and velocities (or displacements), either
of the two expressions in (6.69) can be used to estimate t∞. The chattering
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sequence will terminate with the solution at rest (u = v = 0) inside the
sticking region Z. We term such sequence complete chatter. The chatter set
C (that is the pre-image of Z) is defined to be the set of orbits that have a
complete chattering sequence.

In contrast, incomplete chatter occurs when the system has a (large) finite
number of impacts in the sticking region, but it does not come to rest. Typ-
ically this arises when the acceleration a changes sign during the flight time
between impacts, and there is an impact close to, but outside, the sticking
region. Incomplete chatter is closely linked with the calculation of the curve
G∞. Detailed results may be found in the work of Budd & Dux [42]. Loosely
speaking, the curves G(k) bound incomplete chatter regions that have k im-
pacts before leaving the local region of analysis. These curves accumulate on
G∞ in a universal manner that can be analyzed recursively. The set G∞ then
can be shown to bound the complete chatter region C, that is the pre-image of
the sticking region Z. Preliminary results show that transitions from complete
to incomplete chattering, under parameter variations, can lead to dramatic
changes in the system behavior. These phenomena, that were first proposed
by Nordmark in [201], have been recently observed in cam-follower mechanical
systems [211, 3].

6.5 Multiple collision bifurcation

We have seen how the problem of a single forced particle impacting with a
surface can be modeled as a hybrid system and then analyzed by considering
the action of square-root and related maps. However, in many applications,
such as in granular materials, there are many such particles that interact
through impact. Whilst the interaction of two such particles through impact
can be readily analyzed by using the preceding analysis, we may be faced
with the much more difficult problem of determining the dynamics following
a multiple collision between several particles at once. Whilst this may be
thought of as a rather rare event, as parameters in a system vary, then it is
almost certain to occur, and the resulting dynamics is significantly affected
by it. In fact, in a multiple impact surface system such as Example 6.5, a
triple collision represents a trajectory hitting the intersection point between
two different impacting surfaces, Σij and Σik. Thus, a scenario where a limit
cycle crosses such an intersection point would represent a codimension-one
bifurcation in the system.

In this section, we briefly consider the possible richness of the dynamics
that results from the triple collision among three objects. To do this we look at
the case of a massive wall, that moves smoothly and periodically, and interacts
through impact with two particles that are constrained to move in a single co-
ordinate direction. The positions of the wall, and the two particles are given,
respectively, by w(t), z(t) and u(t), where we assume that w(t) ≤ z(t) ≤ u(t).
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The dynamics following a simultaneous collision with w = z = u is not well
understood, but we show through the numerical studies that if the particle
at z is massive compared with the particle at u, that periodic samples of u(t)
behave in a similar manner to the iterations of the discontinuous, piecewise-
smooth maps described in Chapter 4.

We suppose that the massive wall is at the position

w(t) = κ+ sin(ω0t), (6.70)

where κ, ω0 ∈ R. We will also suppose that the motion of the particles at z(t)
and u(t) are governed by the differential equations

−4

−2

ω0

u
(a)

2

2

0

1.997

−2

−4 −3

−2

−1

ω0

u
(b)

0

−2

−1

−3
1.9996 1.9998

Fig. 6.22. Bifurcation diagrams under ω0 variations, where (b) is a zoom-in of (a)
close to a corner bifurcation. Here ω1 = 1.001, ω2 = 1, κ = 0 and r1 = r2 = 0.8.

d2z

dt2
+ ω2

1z = 0 and
d2u

dt2
+ ω2

2u = 0, for w < z < u. (6.71)

Furthermore, let the mass of the first particle be M and the mass of second
particle m, and let the mass ratio between the two particles be

μ =
M

m
.

An impact between the two free particles occurs at a time t if z(t) = u(t). Let
the positions of the particles before and after the impact be z± and u± and
the velocities y± and v±, respectively. A reasonable model for the impact is
that the combined momentum of the system is conserved but that the relative
velocity is reversed and reduced by a factor r so that

u+ = u− = z+ = z−, My− +mv− = My+ +mv+,

and
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(

v+ − y+
)

= −r
(

v− − y−
)

.

Solving this system we have
⎛

⎜

⎜

⎝

z+

u+

y+

v+

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

1 0 0 0
0 1 0 0
0 0 μ−r

1+μ
1+r
1+μ

0 0 μ(1+r)
1+μ

1−rμ
1+μ

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

z−

u−

y−

v−

⎞

⎟

⎟

⎠

. (6.72)

In the limit of μ→ ∞ this reduces to the usual restitution impact law.
Interesting dynamics occurs when, as a parameter varies, an impact of u

with z coincides at a time t = tk with an impact between z and w (with a
triple impact). If ω1 = ω2 = 1, then when z is very massive compared to u,
such a triple impact occurs when ω0 = 2 and κ = 0. We show in Fig. 6.22 the
dynamics observed at time intervals of T = 2π/ω0 when μ = 1000, r = 0.8,
ω1 = 1.001, ω2 = 1, keeping κ = 0 fixed and varying ω0. It is clear from
this figure that the dynamics is relatively simple if ω0 > 1.99975 but becomes
much more complex if ω0 < 1.99975. Indeed, we see the creation of a series of
periodic orbits, with a period-adding structure. Thus, the existence of a triple
impact implies the creation of a large number of new periodic orbits. This
calculation clearly demonstrates the rich complexities of the dynamics likely
to be observed when studying systems of impact oscillators. Note that the
structure of the bifurcation diagram is different from that observed following
a grazing bifurcation. In fact it is remarkably similar to that observed in
Fig. 4.4 for the piecewise-linear map with a jump discontinuity described in
Chapter 4. In the study [46] by Budd and Piiroinen the link between such
triple impacts and piecewise-linear discontinuous maps is made more precise.
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Fig. 6.23. Bifurcation diagrams under ω0 variations, for (a) μ = 100 (b) μ = 10.
In both cases ω1 = 1.001, ω2 = 1, κ = 0 and r1 = r2 = 0.8.

In comparison, we plot in Fig. 6.23 the same scenario as in Fig. 6.22 but
now with μ = 100 and μ = 10, respectively. In the first case (μ = 100)
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we find that the bifurcation scenario has not changed significantly from μ =
1000. However, in the second case (μ = 10) the bifurcation diagram is clearly
different and the structure that was visible before cannot be located. The
number of attractors is higher for ω0 > 2 than before that could explain
why the sudden jump to high-periodic orbits cannot be seen. In conclusion,
this brief discussion shows the additional complexity that the increase in the
number of impacting objects gives to the dynamical behavior, and how this
depends on the mass ratio of the particles as well as many other factors.

The next chapter considers a different generalization of the analysis in this
chapter: not in regard to multiple impacts, but to the case where the impact
law is replaced by smooth dynamic evolution. That is, trajectories are allowed
to flow on the far side S− of a discontinuity manifold, Σ.



7

Limit cycle bifurcations in piecewise-smooth
flows

This chapter concerns the analysis of the discontinuity-induced bifurcations
(DIBs) that arise in piecewise-smooth flows in the case where no sliding oc-
curs. Two specific DIBs are treated: in Sec. 7.2 the dynamics that arise when a
trajectory (typically a limit cycle) becomes tangent to (grazes) a single discon-
tinuity boundary Σ; and, in Sec. 7.3, when a trajectory passes transversally
through an intersection between two boundaries Σ1 and Σ2. In each case, local
discontinuity maps, valid close to such degenerate trajectories, are derived us-
ing similar methods to those used in the previous chapter. The resulting maps
can be analyzed using the theory presented in Chapters 3 and 4 in order to
classify the ensuing dynamics. In each case, the theory is applied to both ex-
plicitly constructed examples and those arising in applications; including the
bilinear oscillator, and DC–DC converter case studies from Chapter 1, and a
more complicated stick-slip friction oscillator model.

7.1 Definitions and examples

Recall Definition 2.20 of a general n-dimensional piecewise-smooth flow from
Chapter 2. This consists of a set of autonomous smooth systems of ODEs

ẋ = Fi(x, μ), if x ∈ Si,

where ∪iSi = D ⊂ R
n and each Si has a non-empty interior. The flow cor-

responding to each Fi is written as Φi(x, t), is assumed to be smooth, and is
defined in a full neighborhood of each boundary Σij = Si ∩ Sj .

In this chapter we shall be interested in DIBs that involve at most two
discontinuity boundaries. So, for ease of notation, we shall exclusively con-
sider systems defined locally in a neighborhood of the appropriate number of
boundaries. Specifically, in Sec. 7.2 we shall consider systems with a single
discontinuity boundary Σ := {x ∈ D : H(x) = 0} for some smooth function
H, for which the complete system can be written in the form
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ẋ = f(x, μ) =
{

F1(x, μ), if H(x) > 0,
F2(x, μ), if H(x) < 0. (7.1)

Note that it is without loss of generality that we assume that H is independent
of the parameter μ, since a change of co-ordinates can incorporate parameter
variation into the functions F1 and F2. In contrast, Sec. 7.3 concerns a neigh-
borhood of two transversally intersecting boundaries Σ1 := {x ∈ D : H1(x) =
0} and Σ2 := {x ∈ D : H2(x) = 0}, for separate smooth functions H1 and
H2, for which the system can be written in the form

ẋ = f(x, μ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

F1(x, μ), if H1(x) < 0 and H2(x) < 0,
F2(x, μ), if H1(x) < 0 and H2(x) > 0,
F3(x, μ), if H1(x) > 0 and H2(x) < 0,
F4(x, μ), if H1(x) > 0 and H2(x) > 0.

(7.2)

A key feature of these systems is that the form of the derived (Poincaré)
maps close to grazing bifurcations is strongly influenced by the degree of
smoothness m at a point x in the discontinuity boundary. Recall from Defini-
tion 2.21 that this degree is the order of the first non-zero partial derivative
with respect to t of the difference between the flows Φi(x, t) − Φj(x, t) eval-
uated at the time t at which the flow intersects Σ. As we might expect, the
higher the degree of smoothness, the smoother the derived map associated
with grazing at such a point x. If the degree of smoothness is independent
of x, or at least is constant in a neighborhood of x, then the boundary Σ
is uniformly discontinuous (Definition 2.22). Recall that in such a case [writ-
ten in terms of the local description (7.1)] the vector field on one side of the
boundary, F2 say, can be written in terms of the vector field on the far side
via

F2(x, μ) = F1(x, μ) + J(x, μ)H(x)m−1, (7.3)

where J , F1 and F2 are all sufficiently smooth in a neighborhood of x, and m
is the degree of smoothness

We shall assume in this chapter that no sliding flow takes place close
to the points considered, so that trajectories do not evolve within the set
Σ. In particular, we will be interested in systems that do not have sliding
trajectories close to points where a flow grazes the discontinuity boundary Σ.
One assumption that ensures this is that the degree of smoothness across Σ is
two or more so that if x∗ ∈ Σij , then Fi(x∗) = Fj(x∗) and any grazing of the
flow Φi with Σ implies simultaneous grazing of Φj . Generally speaking, the
onset of grazing in systems with Fi(x∗) �= Fj(x∗) can lead to sliding nearby,
because grazing of the flow Φi does not necessarily imply grazing of the flow
Φj . Tangency with Σ and sliding in such systems will form the topic of the
next chapter. However, in certain examples a special structure of the system
can mean that sliding can be prevented in piecewise-smooth discontinuous
systems (with degree of smoothness one).

Let us further motivate the analysis given in this chapter by considering
some typical examples of piecewise-smooth flows.
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Example 7.1 (The bilinear oscillator). In case study II in the Introduction
we introduced the bilinear oscillator, which is a simple canonical example of a
piecewise-smooth flow. To continue with our study of such systems, we include
the possibility of a variable stiffness ki, damping coefficient ζi, offset ai and
forcing amplitude bi, to give the second-order oscillator

d2u

dt2
+ 2ζi

du

dt
+ k2

i u = ai + bi cos(ωt), (7.4)

where i = 1, 2 with i = 1 if u > 0 and i = 2 if u < 0. This can be written as
the first-order system

ẋ1 = x2,

ẋ2 = −2ζix2 − k2
i x1 + ai + bi cos(ωx3),

ẋ3 = 1,

in which x = (x1, x2, x3) = (u, du/dt, t). In the context of the above definitions
S1 = {x ∈ R

3 : x1 > 0}, S2 = {x ∈ R
3 : x1 < 0} and Σ is the set {x ∈ R

3 :
H(x) = 0}, where H(x) = x1. The set of grazing points where flows intersect
Σ tangentially is given by the line G = {x ∈ R

3 : x1 = x2 = 0}.
As in Chapter 6, we are interested in the behavior of the flows of piecewise-

smooth systems close to a grazing trajectory. Suppose such a trajectory grazes
with Σ at the point x∗ = (0, 0, x∗3). Then locally to this point we can write to
leading-order that

ẋ =
{

A1x+B1, if H(x) = CTx > 0,
A2x+B2, if H(x) = CTx < 0,

(7.5)

where

A1 =

⎛

⎝

0 1 0
−k2

1 −2ζ1 0
0 0 0

⎞

⎠ , B1 =

⎛

⎝

0
a1 + b1 cos(ωx∗3)

1

⎞

⎠ ,

A2 =

⎛

⎝

0 1 0
−k2

2 −2ζ2 0
0 0 0

⎞

⎠ , B2 =

⎛

⎝

0
a2 + b2 cos(ωx∗3)

1

⎞

⎠ ,

CT = ( 1 0 0 ) . (7.6)

In general, the degree of smoothness is one across Σ since B1 �= B2. However,
depending on which coefficients are equal across Σ we can have differing de-
grees of smoothness. Also under quite general conditions we do not get sliding
motion, as we now show.

As a first example, let k1 = k2 = k, a1 = a2 = a, and b1 = b2 = b and
suppose only the damping coefficient varies across the boundary. At a grazing
point x = (0, 0, x∗3), we then have
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dF ∗
i

dx
=

⎛

⎝

0 1 0
−k2 −2ζi −bω sin(ωx∗3)
0 0 0

⎞

⎠ F ∗
i =

⎛

⎝

0
a+ b cos(ω(x∗3))

1

⎞

⎠ ,

where a superscript ∗ is always used, as in the previous chapter, to represent
a quantity evaluated at a grazing point. Hence along the grazing set G ⊂ Σ
the degree of smoothness is two at the point, since the lowest-order jump is
in the first derivative of the vector field. Thus, there is no sliding in this case,
because the flows Φ1 and Φ2 always cross Σ in the same sense of direction.
However, for a general point x ∈ Σ with x2 �= 0 the degree of smoothness is
one, since

Fi

∣

∣

x1=0
=

⎛

⎝

x2

−2ζix2 + a+ b cos(ωx3)
1

⎞

⎠ ,

This example of non-uniform discontinuity is illustrated in Fig. 7.1(a).
Alternatively, consider the case where ̂b1 �= ̂b2, where ̂bi = ai + bi cos(x∗3).

Here, in addition to being discontinuous at all other points in Σ, the vector
field itself is also discontinuous at the grazing point, since

F ∗
i =

⎛

⎝

0
̂bi
1

⎞

⎠ .

So, the degree of smoothness is uniformly one in this case. However, even in
this instance, there is no sliding close to the grazing point. This is because
the grazing line of the two vector fields F1 and F2 coincide, and for both flows
G := {x ∈ R3 : x1 = x2 = 0}. Moreover if ̂b1 and ̂b2 are both positive, then
the acceleration

∂2H

∂t2
(Φi(x∗, t)) := L2

Fi
H(x∗) = ̂bi

has the same sign of direction for both vector fields. Hence, in addition to
both flows sharing the same grazing set on Σ, trajectories of both flows cross
Σ in the same sense of direction near the grazing set; see Fig. 7.1(b).

Finally, consider the case where ̂b1 = ̂b2, ζ1 = ζ2 but k1 �= k2; see
Fig. 7.1(c). Here the degree of smoothness is uniformly two, since for any
point x0 in Σ, F1(x0) = F2(x0) but

dF2

dx
− dF2

dx
=

⎛

⎝

0 0 0
−k2

2 − k2
1 0 0

0 0 0

⎞

⎠ .

Note in this case that we can write the system in the form (7.3)

F2(x) = F1(x) + J(x)H(x) with J(x) = (0, k2
2 − k2

1, 0)T .
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Fig. 7.1. Illustrating the continuity properties of the vector fields F1 (solid line,
above Σ) and F2 (dashed line, below Σ) for the bilinear oscillator in the three cases:

(a) ̂b1 = ̂b2, ζ1 �= ζ2; (b) ̂b1 �= ̂b2; (c) ̂b1 = ̂b2, ζ1 = ζ2, k1 �= k2. Here x∗
3 = t∗ is

the time at which grazing occurs. Dotted lines depict the vertical projection of the
vector fields onto Σ.

Generalizing from this example, we require a general sufficient condition
that can apply to non-uniformly discontinuous systems, which ensures that
no sliding takes place close to a grazing point. Specifically, upon writing the
system in the local form (7.1), we require that under the flow the boundary
{H = 0} should never be simultaneously attracting (or repelling) from both
sides. This is given by the condition

LF1H(x)LF2H(x) ≥ 0 ∀x ∈ Σ. (7.7)
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In particular, such a condition implies that if LF1H(x) smoothly goes through
zero as we vary x along some curve in Σ, then LF2H(x) must also go through
zero. Hence the grazing sets Gi = {x ∈ Σ : LFi

H(x) = 0} for the two flows
must coincide and also the sets Π(i)

N = {x ∈ D : LFi
H(x) = 0}.

Example 7.2 (The rocking block). An important problem related to the be-
havior of buildings in an earthquake is that of the motion of a block rocking
on an oscillating table. The block takes the form illustrated in Fig. 7.2 and

(a)

R

α

θ < 0

P
Q

θ

üg

(b) θ > 0

P

Q

θ

üg

Fig. 7.2. Schematic diagram of the dynamics of a rocking block.

typically can either teeter on a single corner, or wobble on both of its corners
alternately. Modeling the transition from rocking on the corner P to rocking
on the corner Q as an instantaneous change leads to a piecewise-smooth model
for this system. In particular, if θ gives the angle of the block to the vertical
position, then it rocks on corner P if θ < 0 and on corner Q if θ > 0. Let α
be the (fixed) angle between the side of the block and the center of mass and
R the length of the line from the corner to the center of mass, m the mass
and I the moment of intertia. If we assume that the system is undamped and
has a horizontal ground acceleration of üg, the equations of motion take the
following form [12, 133]:

Iθ̈ +mgR sin(−α− θ) = −mügR cos(−α− θ), if θ < 0,

Iθ̈ +mgR sin(α− θ) = −mügR cos(α− θ), if θ > 0.

In terms of the usual notation, this system has S1 = {θ < 0}, S2 = {θ > 0}
and Σ = {θ = 0}. The rocking block system that has received the most atten-
tion in the literature is that for which α and θ are relatively small, so that we
can use linear approximations for the various trigonometric functions. By us-
ing various appropriate rescalings and taking a sinusoidal ground acceleration
with ug proportional to sin(ωt+ φ), the linearized system becomes

θ̈ − θ = β sin(ωt+ φ) + α if θ < 0,
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θ̈ − θ = β sin(ωt+ φ) − α if θ > 0.

This system is thus an example of a bilinear oscillator with a forcing term
that is discontinuous across Σ; that is, it has degree of smoothness equal to
one. The dynamics of the rocking block described for example in the work of
Hogan [133, 134] include a wide variety of periodic motions, characterized by
differing numbers of rocks with θ > 0 and with θ < 0, together with chaotic
motions.

Example 7.3 (The DC–DC buck converter). We return to case study V from
the Introduction. Recall that the equations of state of the converter can be
written in terms of the output voltage V (t) and a corresponding current I(t),
as

V̇ = − 1
RC

V +
I

C
(7.8)

İ = −V

L
+

{

0 if V ≥ Vr(t)
E/L if V < Vr(t)

, (7.9)

where Vr is the ramp signal

Vr(t) = γ + ηt( mod T ) . (7.10)

t

V

I

Σ5

Σ6

(a)
V = Vr

(b)
(c)

Fig. 7.3. (a) Qualitative figure illustrating the discontinuity surfaces Σ5 and Σ6 of
the DC–DC buck converter (7.8)-(7.10) and (b), (c) the changes in the dynamics
that arises when the flow crosses them in two different ways for I < Cη + Vr/R and
I > Cη + Vr/R, respectively.
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Now, if we include time t as a third dynamic variable, then we can consider
the model (7.8)–(7.10) as evolving in a three-dimensional phase space, with
two discontinuity surfaces

Σ5 := {V = Vr(t), t �= 0 mod T}, Σ6 := {t = 0 mod T},

which meet at a corner; see Fig. 7.3(a). Note that the vector field is discon-
tinuous across Σ5 since a constant term E/L is added to or subtracted from
İ as the surface is crossed in the direction of decreasing or increasing V [see
Fig. 7.3(b) and Fig. 7.3(c) respectively]. Hence the degree of smoothness is
one. However, note that it is not possible for the flow to be tangent to Σ5 for
the parameter values chosen in this case study

R = 22Ω, C = 4.7μF, L = 20mH, T = 400μs,
γ = 11.75238V, η = 1309.524V s−1, E ∈ [20, 40], (7.11)

except possibly for t = 0 mod T . In order to see this, note that the parameters
(7.11) satisfy the inequality

ER > Lη(γ + ηT )R. (7.12)

Let a subscript 1 represent flow for V ≥ Vr(t) and a subscript 2 represent flow
for V < Vr(t). Now suppose that we have a flow that is tangent to the ramp
signal Σ5 for a time t∗ �= 0 mod T . Then, V = Vr and V̇ = η. Substitution
of these values into (7.10), using the inequality (7.12), shows that V̈1(t∗) > 0,
whereas V̈2(t∗) < 0. Thus these accelerations are of the wrong sign for a
trajectory to reach the ramp and to become tangent to it.

The only possibility for motion tangent to Σ5 is if a trajectory approaches
V = Vr = γ at t = 0 mod T . In order to be tangent to Σ5, we thus require
t = 0, V = γ and V̇ = η, which implies I = Cη+V/R, which is a unique point
in the three-dimensional phase space of the system. Note that the trajectory
through this point then undergoes sliding motion along the line V = Vr(t),
I = Cη + V/R, until t = T . For a distinguished trajectory, such as a limit
cycle, the existence of such sliding motion will represent a bifurcation event
of codimension-two, because two conditions must be imposed, one on V and
one on I when t = 0; see Fig. 7.4(a).

Across Σ6 the degree of smoothness is also one, provided V is in the range
[γ, γ + ηT ]. Outside of this range, there is no change in the dynamics as we
cross Σ6. Note, though, that flow always crosses Σ6 transversally, since time
increases along trajectories. Hence we have for this model that a codimension-
one grazing bifurcation of a periodic orbit with either of the discontinuity sets
is not possible. However, a different kind of codimension-one DIB is possible
in this system, which occurs if a distinguished trajectory crosses the point
of intersection between Σ5 and Σ6; see Fig. 7.4(b); specifically if t = T and
V (T ) = Vr(T ) = γ + ηT . Note that this is a codimension-one condition
since only the value of V need be specified at t = T , whereas I(T ) can be
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(a) (b)

Fig. 7.4. (a) Schematic representation of a trajectory undergoing a codimension-two
sliding bifurcation for the buck converter (7.8)–(7.10). The bold line represents the
sliding portion of the trajectory. (b) A codimension-one corner-collision bifurcation.

arbitrary. We shall see in Sec. 7.3 below that complex dynamics can result
from such a boundary intersection crossing bifurcation in the case where the
distinguished trajectory is a limit cycle. This DIB can also be called a corner-
collision bifurcation in this case, since we could view the intersection of Σ5

and Σ6 as providing a sharp corner in the boundary between two regions
S1 : {V > Vr(t)} and S2 : {V ≤ Vr(t)} in which smooth dynamics apply.

Example 7.4 (The Chua circuit). Another piecewise-smooth electronic system,
which has historical importance in the development of dynamical systems the-
ory, is the Chua electronic circuit, depicted in Fig. 7.5 and extensively docu-
mented in the book [185]. This electronic circuit has proved to be a major stim-

(a)

R0

R

L

C1C2 NR

i

m1 1

(b)

0

0−2

−2

2

2

x

z

Fig. 7.5. The Chua circuit: (a) a schematic circuit diagram, and (b) the ‘double
scroll’ chaotic attractor at parameter values α = 9.85, β = 14.3, m0 = −1/7, and
m2 = 2/7. Here C1 and C2 are capacitors, R0 and R are resistors and L is an
inductor. The component NR represents non linear resistance of the circuit, and it
can be written in dimensionless form via (7.13) below.

ulus for the development of the theory of certain types of dynamical systems.
A Chua circuit comprises two capacitors, an inductor and a nonlinear resistor
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for which the current-voltage response closely approximates a piecewise-linear
function. The Chua circuit is known to exhibit chaotic behavior under certain
operating conditions, arising from a period-doubling cascade. The dynamics of
the Chua circuit can be shown to be governed by the following dimensionless
system of equations:

ẋ = α(y − h(x)),
ẏ = x− y + z,

ż = −βy.

Here α, and β are positive parameters, x and y measure the nondimension-
alized voltage of the capacitors C1, and C2 respectively, and z is the current
through the inductance L. Finally,

h(x) = m1x+
m0 −m1

2
(|x+ 1| − |x− 1|) (7.13)

represents the characteristics of the nonlinear resistor. Hence, the Chua circuit
closely resembles a bilinear oscillator and has a degree of smoothness equal to
two across either of the two non-intersecting discontinuity boundaries Σ1 =
{x = 1} and Σ2 = {x = −1}. As we shall see from the analysis in Sec. 7.2
below, any grazing bifurcation with Σ1 and Σ2 will not lead to an immediate
change in the attractor. Indeed, the occurrence of chaotic dynamics in this
example can be attributed to a sequence of smooth bifurcations, although the
shape of the chaotic attractor depicted in Fig. 7.5(b) is clearly influenced by
the presence of the discontinuity boundaries; the attractor appears to fold
about the planes {x = ±1}. Also, since Σ1 and Σ2 do not intersect, there is
no possibility of the boundary intersection crossing bifurcation that we will
analyze in Sec. 7.3.

Example 7.5 (A stick-slip oscillator). We conclude our examples with an au-
tonomous friction oscillator model. Rather than modeling dry friction with
discontinuous Coulomb type laws as we did in case study IV (a study we shall
return to in Chapter 8), such models take account of the micro-dynamics of
friction. Specifically, Dankowicz & Nordmark [64] studied the following five-
dimensional model of a friction oscillator:

ẏ1 = y2,

ẏ2 = −1 +
[

1 − γU |1 − y4|y2 + βU2(1 − y4)2
√
K(y1)

]

ey1−d,

ẏ3 = y4, (7.14)

ẏ4 = −sy3 +
√
gσ

U
e−d

[

μ(y5e
−y1 − 1) + αU2S(y1, y4)

]

,

ẏ5 =
1
τ

[(1 − y4) − |1 − y4|y5],
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where

K(y1) = 1− y1 − d

Δ
, S(y1, y4) = (1−y4)|1−y4|K(y1)e−y1−1+

d

Δ
. (7.15)

This dimensionless model is based on the derivation in [63], which aims to
explain experimentally observed stick-slip motion using more realistic laws
than simple Coulomb friction. Here the variable y1 is a vertical and y3 a
horizontal degree of freedom of a mass m being pulled across a horizontal
surface by a spring of stiffness k whose other end moves at constant speed U .
The corresponding velocities are y2 and y4. The extra co-ordinate y5 ∈ [−1, 1]
is an internal variable measuring the shear deformation between the surface
and the mass. Here g is the acceleration due to gravity, μ is the equivalent to
a static friction coefficient, σ measures the roughness of the surface and s, τ
are dimensionless constants given by

s =
kσ

mg
, τ =

μσ

U

√

g

σ
. (7.16)

The constants α, β, γ and d are parameters that describe the dynamic friction
law, with d representing the horizontal displacement beyond which there is no
longer a normal component to the friction force; see [63, 64] for more details.
Finally, Δ defines the equilibrium vertical displacement, which is given by the
formula

βU2 =
eΔ − 1
√

1 − Δ
d

. (7.17)

U = 1

y1

y3

y5

Fig. 7.6. Schematic diagram of the autonomous friction oscillator model (7.14).

The dynamics is such that the mass is subject to a constant downwards
gravitational force (scaled to be −1 in these dimensionless co-ordinates) and
a vertical repulsion/adhesion force that depends on the horizontal velocity
y4, which keeps the mass at a small fixed vertical height d from the friction
surface. The horizontal velocity variable y4 is scaled by U and is measured in a
frame that moves with the moving end of the spring so that y4 = 1 corresponds
to the sticking motion where the mass is stationary. If y4 < 1, then slipping
takes place; that is, the mass is being dragged across the surface. Thus, the
discontinuity in this system occurs as the dynamics crosses {y4 = 1}.
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Now let

Σ = {x ∈ R
5 : H(x) = 0}, where x = (y1, . . . y5)T , H(x) = 1 − y4

and the two regions of smooth dynamics be given by

S1 = {x ∈ R
5 : H(x) > 0}, S2 = {x ∈ R

5 : H(x) < 0}.

Let F1 represent the vector field (7.14) in region S1 and F2 the vector field in
region S2. Then we have

F2(x) − F1(x) = H(x)

⎛

⎜

⎜

⎜

⎜

⎝

0
−2γUy2e

y1−d

0
−2

√
gσ

U e−y1−dαU2H(x)K(y1)
− 1

τ y5

⎞

⎟

⎟

⎟

⎟

⎠

, (7.18)

from which we see that F2 − F1 vanishes when H(x) = 0. Thus the degree of
smoothness is more than one. In fact, it is easy to see that this system has
degree of smoothness two at all points on Σ except when y2 = y5 = 0, where
the degree of smoothness is at least three. Specifically we can write the system
in the form (7.3) with m = 2, and F2(x) = F1(x) + J(x)H(x), where J(x) is
the smooth vector function appearing in the bracket in (7.18).

Having finished with these motivating examples, we are now ready to an-
alyze the two discontinuity-induced bifurcations that form the heart of this
chapter.

7.2 Grazing with a smooth boundary

Motivated by the analysis of grazing bifurcations for impacting hybrid systems
presented in Chapter 6, we now ask the question of what maps are associated
with the event of a limit cycle of a piecewise-smooth system grazing with
a smooth boundary Σ. In Chapter 6 we saw that the analogous maps for
impacting hybrid systems had square-root type singularities. The situation
for piecewise-smooth systems is richer. It depends crucially upon the degree
of smoothness of the system and whether or not the discontinuity is uniform
or not. We start by looking at the local neighborhood of a grazing point,
then state the form that the discontinuity mappings take. At this point we
should recall the discussion in Sec. 2.5.3 about the differences between the
zero-time and Poincaré-section discontinuity mappings (ZDM and PDM) and
the experience from the previous chapter about how they can be used in
practice.

The derivation of the ZDM and PDM is technical for piecewise-smooth
systems and so a detailed explanation is relegated to Sec. 7.2.5. Before doing
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so, in Sec. 7.2.3 we derive the form that the compound Poincaré maps take
in a neighborhood of a limit cycle that grazes and Sec. 7.2.4 shows how to
compute the discontinuity mappings in examples: several forms of a bilinear
oscillator and the above stick-friction model.

7.2.1 Geometry near a grazing point

As with grazing in impacting systems, we start with some generic hypotheses.
Suppose the system in question is written locally in the form (7.1) in the
neighborhood D of a single discontinuity boundary

Σ := {x ∈ D : H(x) = 0}.

To begin with we shall suppress any parameter dependence and consider sys-
tems of the form

ẋ =
{

F1(x), if H(x) > 0,
F2(x), if H(x) < 0. (7.19)

We assume that the scalar function H is well defined at the grazing point x∗:

Hx(x∗) �= 0. (7.20)

We suppose, without loss of generality, that the grazing trajectory Φ1(x∗, t)
approaches from the side S1 : {x ∈ R

3 : H(x) > 0}. Thus, grazing occurs at
a point where the vector field F1 is tangent to Σ. Hence we require the three
conditions (see Fig. 7.7)

H(x∗) = 0, (7.21)

v1(x∗) =
∂

∂t
H(Φ1(x∗, 0)) = LF1H(x∗) = 0, (7.22)

a1(x∗) =
∂2

∂t2
H(Φ1(x∗, 0)) = L2

F1
H(x∗) := a∗1 > 0. (7.23)

(a) G

x∗

Φ1

Φ2

(b)

G

x∗

Φ1

Φ2

Fig. 7.7. (a) The geometry near a grazing point satisfying (7.20)–(7.23) in a system
with uniform discontinuity of degree two. (b) The geometry if (7.23) is replaced by
a1(x

∗) < 0. Here grazing occurs from the side S2.
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The first condition (7.21) states that x∗ ∈ Σ, whereas equation (7.22) is
the defining equation that the flow is tangent to Σ at x∗. Note the necessity
of the sign condition (7.23) on the acceleration. The opposite sign of a∗ leads
to trajectories that curve toward the discontinuity surface Σ and would not
correspond to a trajectory that grazes from the side S1; see Fig. 7.7(b).

Note that if the degree of smoothness is two or more across Σ in a
neighborhood of the grazing point, then (7.20)–(7.23) are sufficient to as-
sume that v2(x∗) = LF2H(x∗) = 0. Also, by continuity, we find that
a2(x∗) = L2

F2
H(x∗) > 0 must be satisfied in order for trajectories of flows

Φ1 and Φ2 to cross Σ in the same sense, see Fig. 7.7(a).
In the case where the degree of smoothness is one at some points of Σ,

we shall require a condition that ensures that no sliding motion is possible
near x∗ (cases where sliding is possible form the subject of Chapter 8). A
sufficient condition to avoid sliding was given by (7.7). This condition has
several consequences. First, as already mentioned, the grazing sets Gi = {x ∈
Σ : LFi

H(x)} for the two flows Φ1 and Φ2 must coincide (see Fig. 7.8).
Moreover, if x∗ satisfies (7.22), then (7.7) implicitly implies that

v2(x∗) = LF2H(x∗) = 0, (7.24)
sign(a2(x∗)) = sign(L2

F2
H(x∗)) = sign(L2

F2
H(x∗)) > 0. (7.25)

Definition 7.1. We shall refer to a point x∗ satisfying (7.7), (7.20)–(7.23)
as being a regular grazing point of a piecewise-smooth continuous system
written in the local form (7.1).

Note that condition (7.7) is automatically satisfied for systems with uni-
form discontinuity with smoothness of degree two or more. Grazing for such
systems is therefore a true codimension-one bifurcation, with the single defin-
ing condition for the bifurcation being (7.22). The other conditions (7.21) and
(7.23) are non-degeneracy conditions that ensure the bifurcation unfolds in a
regular way. In systems with degree of smoothness one, condition (7.7) might
be seen as defining a higher-codimension grazing bifurcation, since we require
an additional equality condition to hold. Rather, we think in this chapter that
(7.7) defines a class of systems we are interested in this case, as motivated by
the bilinear oscillator example, in which no sliding motion can occur. It is also
possible to relax the assumptions slightly and still avoid sliding solutions. For
example, one case would be if the grazing sets G1 and G2 were not coincident,
but under variation of a bifurcation parameter, the periodic orbit undergoing
the grazing does not enter the sliding regions depicted in Fig. 7.8(a). We shall
not pursue such more general conditions here, as our motivation is to explain
the behavior observed in more general examples.

We are now in a position to state normal form results for grazing bifurca-
tions, by constructing discontinuity maps in terms of these local co-ordinates.
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Fig. 7.8. (a) Under weaker hypotheses the two grazing sets G1 and G2 do not
necessarily coincide and there can be a region of sliding (shown as the shaded portion
of Σ). (b) The geometry near a grazing point x∗ defined by (7.20)–(7.23) in systems
with degree of smoothness one under the assumption (7.7), which implies that the
grazing sets coincide.

7.2.2 Discontinuity mappings at grazing

To motivate, and help to define, the discontinuity maps associated with a
piecewise-smooth flow without sliding, we consider the trajectories shown in
Fig. 7.9, which is an adaptation of Fig. 2.30 in Chapter 2. Consider a flow in
S1 close to a trajectory that contains a regular grazing point x∗. Consider a
general initial condition x0 and the flow Φ1 passing through x0, which first
intersects Σ at the point x2 after a time t = δ0 (this time may be positive or
negative depending on whether x0 ∈ S1 or S2). The piecewise-smooth system
continues in S2 using flow Φ2 until the trajectory hits Σ again at the point x3,
after a further time t = δ2. Now, if we continue backwards from x3 using flow
Φ1 for a time −(δ0 + δ2), we reach the point x4. The map x0 → x4 represents
the zero-time discontinuity mapping (ZDM). Thus, we can write

ZDM = Φ1(Φ2(Φ1(x0, δ0), δ2),−(δ0 + δ2)) (7.26)

If instead we had continued to flow forward using Φ1 from the point x2,
we would reach the normal Poincaré surface

ΠN = {x ∈ D : LF1H(x) = 0} (7.27)

at the point x1, where the time to go from x1 to x2 is δ < 0. Thus, in order to
define the Poincaré-section discontinuity map (PDM) we flow Φ1 backward in
time from x1, forwards in time using Φ2 through a time δ2 until we hit Σ for
a second time at x3, and then finally backwards through a time −δ3 using Φ1

until we reach ΠN again, at the point x5. The PDM is then the map x1 → x5:

PDM = Φ1(Φ2(Φ1(x1, δ), δ2),−δ3). (7.28)
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ΠN

xg
Σ

x0

x1

x2 x3

x4

x5

Fig. 7.9. Illustrating the construction of the ZDM and the PDM for a piecewise-
smooth flow. Here, the ZDM maps x0 to x4 and the PDM maps x1 to x5. Solid lines
represent the actual trajectories where the trajectory changes from being the flow
Φ1 to the flow Φ2, and the dashed lines to the smooth extensions of the trajectories
in S1 into the region S2 under the action of the flow Φ1 alone.

The detailed calculation of the leading-order expressions for the ZDM and
PDM can be rather cumbersome in the general case. However, the leading-
order expression for the ZDM takes a particularly simple form in the case of
uniform discontinuity.

Theorem 7.1 (The ZDM for surfaces with a uniform discontinuity
[200]). Let x∗ be a regular grazing point of a piecewise-smooth system (7.3),
(7.19) with a uniform degree of smoothness m ≥ 2. Let x be a general point
near x∗ and Hmin(x) be the minimum value of H(x0) attained along the flow
Φ1(x0, t). Then, the zero-time discontinuity mapping for small ‖x0 − x∗‖ is
given by

x0 �→
{

x0, if Hmin ≥ 0,
x0 + e(x, y)y2m−1, if Hmin < 0, (7.29)

where
y =

√

−Hmin for Hmin < 0

and e is a sufficiently smooth function of its arguments within D whose lowest
order term is given by

e(0, 0) = 2(−1)m+1I(m)J(0)

√

2
(HxF1)xF1(0)

,

with

I(m) =
∫ 1

0

(1 − ξ2)m−1dξ; I(2) =
2
3
, I(3) =

8
15
, I(4) =

16
35
, . . . .
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Remarks

1. The proof of this theorem was given by Nordmark in [200], using a com-
bination of Lie derivatives, the Implicit Function Theorem and a Picard
iteration scheme.

2. The key feature of this ZDM is the existence of fractional powers 1/2,
3/2, 5/2, etc. of y2 = Hmin that arise in the correction term provided by
the ZDM. As was the case for the impacting systems considered in the
last chapter, these fractions arise because the grazing trajectory is locally
parabolic close to Σ. Thus the time spent within S2, scales like the square
root of the penetration −Hmin.

Table 7.1. The relationship between the degree of smoothness of the system at the
grazing point and the local form of the corresponding map.

degree of smoothness System at grazing point Map singularity

jump in Uniform Case Non-uniform

1 F - 1/2

2 Fx 3/2 3/2

3 Fxx 5/2 3/2

3. Intuitively, the fact that decreasing the degree of smoothness m by 1 leads
to a decrease in the fractional power by 1 can be motivated by considering
the derivative of the flow. That is, if flows Φ1 and Φ2 lead to a ZDM
with a correction term proportional to y2m−1, then flows ∂

∂tΦ1 and ∂
∂tΦ2

have degree of smoothness one less, and will lead to a ZDM correction
proportional to d

dxy
2m−1 ∝ y2m−3.

4. The basic order of singularity of the leading-order term of the ZDM (and
hence the PDM) are summarized in Table 7.1. This also includes the more
general results for the ZDM where we do not assume uniform discontinuity,
as given in the next theorem, first derived in [78].

Theorem 7.2 (The ZDM at a general grazing bifurcation). Let x∗ be
a regular grazing point of a piecewise-smooth system (7.19). Then, the ZDM
describing trajectories in a neighborhood of the grazing trajectory has:

(i) a square-root singularity if F ∗
1 �= F ∗

2 ;
(ii) a 3/2-type singularity at the grazing point in the case where F ∗

1 = F ∗
2

while F ∗
1,x �= F ∗

2,x or F ∗
1,xx �= F ∗

2,xx,

where an asterisk represent terms that are evaluated at the grazing point x =
x∗. Specific formulae for these maps are given in the two cases as follows.

(i) If the vector field is discontinuous at the grazing point, i.e., F1(x∗) �=
F2(x∗) we have:



324 7 Limit cycle bifurcations in piecewise-smooth flows

x �→ ZDM =
{

x, if Hmin ≥ 0,
v
√
−Hmin +O(x), if Hmin < 0, (7.30)

where

v = 2
√

2
(HxF2)xF1

(HxF2)xF2((HxF1)xF1)
1
2
(F2 − F1).

Or, in Lie derivative notation

v = 2
√

2
LF1LF2(H)(x)

L2
F2

(H)(x)
√

L2
F1

(H)(x)
(F2 − F1).

(ii) If the vector field is continuous at the grazing point, i.e., F1(x∗) =
F2(x∗) := F , but has a discontinuous first or second derivative, then:

x �→ ZDM(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x, if Hmin > 0,

x+ 2
√
Hmin

√

2
(HxF1)xF

v(x) +O(|x|2), if Hmin(x) < 0,

(7.31)
where v(x) = v1 + v2 + v3 with v1, v2, v3 ∈ R

n being each proportional to
x and given by

v1 = −
{

−
(

(HxF2)x

(

F1 − 2
3F2

))

x
F

(HxF2)xF
(F2 − F1)xF

+
(

F1,xF2 −
1
3
F1,xF1 −

2
3
F2,xF2

)

x

F

}

Hxx

(HxF1)xF
,(7.32)

v2 = (F2 − F1)xx, (7.33)

v3 = −(F2 − F1)xF
(HxF2)xx

(HxF2)xF
, (7.34)

Hmin(x) = Hxx+O
(

|x|2
)

. (7.35)

The proof of Theorem 7.2 is given in Sec. 7.2.5 below.
In the general, non-uniform case it is possible to derive equivalent ex-

pressions for the PDM applied at the local normal Poincaré section ΠN that
contains the grazing point. As will become apparent in the proof, note that
this map may be expressed as a smooth projection, S of the ZDM map

PDM = S(ZDM)

for points x that satisfy x ∈ ΠN , where S is the smooth projection operator
that takes trajectories along flow lines until they hitΠN . Note that the smooth
projection that converts from the ZDM to the PDM does not change the order
of the leading singularity of the map in general. A specific form for the PDM
map is given by the next Theorem.
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Theorem 7.3 (The PDM for a general grazing bifurcation). Let x
be a point in ΠN , the Poincaré section given by (7.27). Then, sufficiently
close to a regular grazing point of a system (7.19) satisfying (7.7)–(7.23), the
Poincaré-section discontinuity mapping can be written as follows:

(i) If, at the grazing point, F ∗
2 �= F ∗

1

x �→
{

x if H(x) > 0,
vz

√

−H(x) +O(x, μ) if H(x) < 0,
(7.36)

where
vz = 2

√
2(F2 −

F2z

F1z
F1)

HxF2,xF1

HxF2,xF2((HxF1)xF1)
1
2
. (7.37)

A subscript z denotes the projection along z = (LF1(H)(x))x, the normal
vector to ΠN , so that F2z = (HxF1)xF2, F1z = (HxF1)xF1, etc.

(ii) If the vector field is continuous at the grazing point, i.e., F ∗
1 = F ∗

2 := F ,

x �→

⎧

⎨

⎩

x, if H(x) ≥ 0,
x+ v1z(−H(x))

3
2 + v2zx(−H(x))

1
2

+v3zHxF2,xx(−H(x))
1
2 +O(x2), if H(x) < 0,

(7.38)

v1z =
2

(HxF1,xF )3/2

{

1
3
(F2,xx − F1,xx)F 2 + F2,xF1,xF − 1

3
[

F 2
1,x + 2F2,x

]

F

− 1
HxF2,xF

(F2,x − F1,x)F
[1
3
HxF2,xxF

2 +HxF2,xF1,xF

−2
3
HxF2,xxF

2
]

}

,

v2z =
2
√

2
√

HxF1,xF
(F2,x − F1,x),

v3z =
2
√

2
HxF2,xF

√

HxF1,xF
(F2,x − F1,x)F.

Here, v1, v2 and v3 are given by (7.33) and a subscript z has the same
meaning as in case (i) above.

7.2.3 Grazing bifurcations of periodic orbits

The above theory was all posed local to a grazing point, without reference to
parameter variation. In order to describe a discontinuity induced bifurcation
event, we must suppose that the grazing point x∗ is part of a distinguished
trajectory of a parameter dependent system with x ∈ R

n and μ ∈ R, at a
certain parameter value μ∗. In particular we suppose that local co-ordinates
can be chosen close to the grazing point that puts the system in the form
(7.1):
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ẋ =
{

F1(x, μ), if H(x) > 0,
F2(x, μ), if H(x) < 0.

Suppose we take this distinguished trajectory to be a limit cycle p(t;μ∗),
which may or may not intersect other discontinuity boundaries other than
Σ = {x ∈ R

n : H(x) = 0}. We simply stipulate that any such intersections
are transversal for parameter values μ close μ∗, except at x = x∗, which is
a regular grazing point when μ = μ∗; see Fig. 7.10. As in Chapter 6, for
grazing bifurcations in impacting systems, we shall then use the PDM map
to define a grazing bifurcation normal form, the leading-order terms of which
will capture all the recurrent dynamics in a neighborhood of the grazing orbit,
for sufficiently small ‖x− x∗‖ and ‖μ− μ∗‖.

(a) S1

S2

ΠN

Σ

(b)

x∗

S1

S2

ΠN

Σ

(c) S1

S2

ΠN

Σ

Fig. 7.10. A periodic orbit undergoing a grazing bifurcation (a) for μ − μ∗ <
0 before/after the bifurcation, (b) for μ − μ∗ = 0 at the bifurcation and (c) for
μ − μ∗ > 0 after/before the bifurcation.

The assumption of transverse boundary crossing away from the grazing
point means that we can use transverse discontinuity mapping theory from
Chapter 2 to define a natural Poincaré map P̃N from ΠN to itself that ignores
the presence of Σ near x∗; see Fig. 7.10. That is, local to x∗, the flow map
used to construct P̃N is assumed to be governed by vector field F1 alone. That
is, close to x∗, we map points using trajectories of flow Φ1. Such a Poincaré
mapwill be smooth and have a well-defined linearization

P̃N (x, μ) = N(x− x∗) +M(μ− μ∗) +O
(

‖x− x∗‖2, (μ− μ∗)2
)

for an n× n matrix N and 1 × n matrix M satisfying

N :=
∂

∂x
P̃N

∣

∣

∣

∣

x=x∗,μ=μ∗
and M :=

∂

∂μ
P̃N

∣

∣

∣

∣

x=x∗,μ=μ∗
.

Similarly, there is a row vector CT = Hx and a scalar D = Hμ such that to
leading-order

H(x, μ) = CT (x− x∗) +D(μ− μ∗).

Then we have the following description of the compound Poincaré mapthat
describes the unfolding of the grazing bifurcation.
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Theorem 7.4 (The normal form map at a grazing bifurcation). Sup-
pose a periodic orbit p(t;μ) of a piecewise-smooth system that is written in
local co-ordinates in the form (7.1) has a regular grazing at (x, μ) = (x∗, μ∗).
Let x̂ = x− x∗, μ̂ = μ− μ∗. Then the Poincaré map PN from ΠN defined by
(7.27) to itself can be written as

PN (x, μ) = PDM(P̃N (x, μ)), (7.39)

In the case of degree of smoothness 1, this map takes the form

PN (x, μ) =
{

Nx̂+Mμ̂, if CTNx̂+ (CTM +D)μ ≥ 0,
Nq +Mμ̂, if CTNx̂+ (CTM +D)μ̂ < 0,

where q = vzy with

y =
√

(−CTNx̂− (CTM +D)μ̂) +O(x, μ)

and vz given by (7.37) in the case of degree of smoothness one and q = x +
v1zy

3
2 + v2zxy

1
2 + v3zHxF2,xxy

1
2 +O(x2) given by (7.38) in the case of degree

of smoothness two or more.

7.2.4 Examples

We now look at some examples that illustrate the above theory.

Example 7.6 (Example 7.1 continued: grazing in the undamped, constantly
forced bilinear oscillator). To illustrate the above theory, we take a special
case of the bilinear oscillator, for which calculations can be carried out explic-
itly from first principles. In particular, we show the effect that the degree of
smoothness of the flow has on the form of the discontinuity map. Specifically,
consider the undamped bilinear oscillator

d2u

dt2
+ k2

i u = ai, v =
du

dt
, (7.40)

with Σ = {x : u = 0} and i = 1 if u > 0, i = 2 for u < 0. In the absence of
damping, the motion is conservative, such that along trajectories, the energy
E

Ei =
1
2

(

du

dt

)2

+
1
2
kiu

2
i − aiu

is conserved. Note that E is conserved along all trajectories, even if they
intersect Σ (that is E = E1 each time x ∈ S1 and E = E2 each time x ∈ S2).

If we take the initial condition v = du/dt = 0 at t = 0, then (7.40) has the
exact solution

u(t) =
ai

k2
i

+
(

u(0) − ai

k2
i

)

cos(kit). (7.41)



328 7 Limit cycle bifurcations in piecewise-smooth flows

Now, consider the PDM for a trajectory starting on the (normal) Poincaré
surface ΠN = {(u, v, t) : v = 0} at the point x1 = (u0, 0, 0) with u0 := −y2

1 <
0.

To construct the PDM we follow the procedure outlined in Fig. 7.9. That
is we follow the trajectory (7.41) for a time interval δ < 0 using the ODE
(7.40) with i = 1 until it intersects Σ at x2 = (0, v2, δ). Next, we flow forward
using the ODE with i = 2 through a time δ2 until we reach the point x3 =
(0, v3, δ2 + δ) in Σ. Finally, we flow back through a time δ3 using the ODE
with i = 1 to reach ΠN again at the point x5 = (u5, 0, δ2 + δ − δ3). As
E is conserved throughout the motion, it is immediate that δ = −δ3 and
u1 = u5. However, the map takes a non-zero time Δ = δ2 + 2δ. To calculate
this time we observe (from symmetry and the energy conservation) that when
the trajectory moves in S2 from x2, then it intersects ΠN after a time δ2/2.
Let (u, v, t) = (−y2

2 , 0, δ2/2 + δ) be the point of intersection. By applying the
conservation law and also considering the exact solution, one can obtain the
following identities:

1
2
k1y

4
1 + a1y

2
1 =

1
2
k2y

4
2 + a2y

2
2 ,

0 =
a1

k2
1

−
(

y2
1 +

a1

k2
1

)

cos(k1δ) =
a2

k2
2

−
(

y2
2 +

a2

k2
2

)

cos(k2δ2/2).

If y1 and y2 are both small, then so are δ and δ2. We can then express δ and δ2
as a power series in y1 and y2 respectively, and use the Taylor series expansion
of cos(k1δ) and cos(k2δ2/2) about δ = 0 and δ2 = 0. After inverting the power
series, it then follows that

δ = −y1

√

2
a1

(

1 − 5
12

y2
1k

2
1

a1
+O(y4

1)
)

,

δ2 = 2y2

√

2
a2

(

1 − 5
12

y2
2k

2
2

a2
+O(y4

2)
)

, (7.42)

and
y2
2 =

a1

a2
y2
1 +

1
2a3

2

y4
1(k1a

2
2 − k2a

2
1) +O(y6

1). (7.43)

By substituting the expression (7.43) for y2 into (7.42) we obtain an ex-
pression for the time Δ = δ2 + 2δ that is given by:

Δ = y1
2
√

2
a2
√
a1

(a1 − a2) + O(y3
1). (7.44)

This then is the PDM correction in the time direction if a1 �= a2 is proportional
to y1 = |u1|1/2.

Now, the equation (7.40) can be written in first-order form with x =
(u, v, t) as
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ẋ1 = x2,

ẋ2 = −k2
i x1 + ai,

ẋ3 = 1.

It is easy to check that a grazing point with v = u = 0 satisfies the assumptions
of the PDM Theorem (7.3) with H = x1 and, when evaluated at a grazing
point, (HxFi)xF1 = a1 and (HxFi)F2 = a2, for i = 1 or 2. We can now apply
the formula (7.36) for the PDM for which we obtain

vz =
2
√

2a1

a2
√
a1

(a1 − a2)
a1

⎛

⎝

0
0
1

⎞

⎠ =
2
√

2
a2
√
a1

(a1 − a2)

⎛

⎝

0
0
1

⎞

⎠ . (7.45)

Hence the PDM correction to the time variable in the case that a1 �= a2 is

y1
2
√

2
a2
√
a1

(a1 − a2),

which agrees with the leading-order term of Δ calculated explicitly.
Note that when a1 = a2, the vector field is continuous at the grazing

point. Then, as expected from the theory, we observe in this case that the
leading-order term given by (7.45) is annihilated and that the leading-order
correction term of the PDM is then proportional to y3

1 or equivalently |u1|3/2.

Example 7.7 (A third-order oscillator). We next consider a third-order oscilla-
tor used to describe the dynamics of a relay feedback controller [255], which is
similar to the one we considered in case study III in Chapter 1, as an example
of a system that can undergo sliding motion. For simplicity, we consider a
model that can be written in the form

d3u

dt3
= −a3i

d2u

dt2
− a2i

du

dt
− a1iu+ b, i = 1, 2, (7.46)

where i = 1 corresponds to u > 0 and i = 2 to u < 0. For simplicity we will
take the forcing term b to be constant in time. Equation (7.46) can be recast
as a system of three first-order differential equations in the form

ẋ =
{

A1x+B, if H(x) = CTx > 0,
A2x+B, if H(x) = CTx < 0,

(7.47)

where

Ai =

⎛

⎝

0 1 0
0 0 1

−a1i −a2i −a3i

⎞

⎠ , B =

⎛

⎝

0
0
b

⎞

⎠ , CT =

⎛

⎝

1
0
0

⎞

⎠

T

.

First, we notice that, when x = 0, system (7.47) is such that:
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1. H(x) = CTx = 0 for x = 0
2. Hx(0, 0) = CT �= 0
3. LFi

(H(0)) = HxFi(0, 0) = CTB = 0
4. L2

Fi
H(0) = (HxFi,x)Fi = CTAiB = 0.

Hence, the system does not satisfy all the conditions required for a regular
grazing to occur at x = 0; specifically it violates the condition on the curvature
of the vector fields (7.23).

In fact, at a grazing point we have x1 = u = 0, x2 = u̇ = 0, and solving
(7.46) we get:

x3 = ü = −b/a3i.

Thus, for the oscillator described by (7.46), the grazing point is located at
x∗ = (0, 0,−β1/a31). In order to apply the local theory presented in this
chapter, we need therefore to consider an appropriate change of co-ordinates
to shift the grazing point from x = x∗ to x = 0 as required. Specifically, let
w = x− x∗ so that system (7.47) becomes

ẇ =
{

A1w +B1, if CTw > 0,
A2w +B2, if CTw < 0,

(7.48)

where, in this case:

Ai =

⎛

⎝

0 1 0
0 0 1

−a1i −a2i −a3i

⎞

⎠ , (7.49)

B1 =

⎛

⎝

0
λ

a31λ+ b

⎞

⎠ , B2 =

⎛

⎝

0
λ

a32λ+ b

⎞

⎠ , CT =

⎛

⎝

1
0
0

⎞

⎠

T

, (7.50)

with λ = −b/a31.
Note that system (7.48) now satisfies all the properties required for a

regular grazing point to occur at w = 0. Now consider an initial point w =
ε(x1, x2, x3) with ε� 1. According to Theorem 7.2, we will have terms of the
form ε1/2 in the map if the vector field is discontinuous, i.e., if

B1 �= B2.

From (7.49), (7.50), we can deduce that this occurs if and only if a31 �= a32,
i.e., the coefficient of ÿ varies across Σ. For all other cases, we have B1 = B2,
and terms in the map proportional to ε3/2 arise instead.

In fact, assuming a31 �= a32 while a11 = a12,a21 = a22 in (7.49), (7.50) the
Taylor expansion of the ZDM in w, around w∗ = 0, gives

ZDM =

⎛

⎝

0
0

2λ(a32 − a31)γ1

⎞

⎠ ε
1
2 + . . . ,
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for x1 < 0, where

γ1 =

√

|x1|
λ

:=
√

−a31
x1

b
.

Thus, the third component of the state perturbation exhibits ε
1
2 behavior as

expected.
If, instead, we assume a31 = a32 = α, but suppose that a11 �= a12 and

a21 �= a22, then careful substitution of all the relevant terms in (7.31) yields

ZDM = εw+

⎛

⎝

0
2
3 (a21 − a22)γ3

1
1
3 [a11 − a12 + 2α(a21 − a22)]λγ3

1 + 2(a11 − a12)x1γ1

⎞

⎠ ε
3
2 +. . .

We should comment here that we implicitly assumed that Hmin(w) = H(w)
to leading-order for the initial points. This in turn implies that we restrict
the set of initial points to some subset of the phase space where the ZDM
correction applies. Note that this assumption is true for all points that lie on
the zero-velocity manifold given by LF1(H)(w) = 0.

Example 7.8 (Example 7.5 continued, the stick-slip oscillator). We conclude
our examples by looking again at the autonomous friction oscillator model
introduced in Example 7.5, which is a piecewise-smooth system with degree
of smoothness equal to 2.

Figure 7.11 shows a bifurcation diagram for this system in which the bi-
furcation parameter is the spring stiffness k and the other parameters are held
at

m = 0.01, σ = 10−6, α = 4000, γ = 20000, (7.51)

g = 9.82, μ = 0.4, β = 20000, d = ln 2, Δ = 0.1, (7.52)

with the horizontal velocity U calculated from (7.17). When k = 214.2529, an
unstable limit cycle grazes with Σ. This causes the onset, upon decreasing k
of a stick-slip motion that makes repeated tiny penetrations into the region
with y4 > 1. This motion can be quite involved and features chaotic dynamics
and period-doubling bifurcations.

The onset of this rich dynamics, observed when k is decreased through the
grazing value, can be largely explained by the theory treated here. Specifically,
an evaluation of the relevant terms in the normal form (7.31) in Theorem 7.2.
gives the local ZDM

x→
{

x for y4 ≥ 1,
x+ 38.58432719 J(x∗)(1 − y4)3/2 for y4 < 1

(7.53)

where x = (y1, . . . , y5)T and x∗ = (−0.099724, 0.000393, 12.258254, 1, 1)T

J(x∗) = (0, 0.037457, 0, 0, 3.80423)T .
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Fig. 7.11. Successive enlargements of a Monte Carlo bifurcation diagram of (7.14)–
(7.17) for varying spring stiffness k with other parameters given by (7.51)-(7.52).
The vertical axis depicts local maxima of y4. The dotted line corresponds to the
discontinuity set Σ = y4 = 1 and the dashed line to a branch of unstable limit cycles
that are born in a sub-critical Hopf bifurcation for a lower value of k. (Reprinted
from [64] with permission from Elsevier.)

Recall the discussion at the end of Chapter 4 on the location of fold bifur-
cations of a map with a leading-order nonlinear term proportional to x3/2 close
to the grazing bifurcation in the case that the coefficient of the O(3/2)-term is
large. Note from (7.53) that the coefficient in question, that of the term in the
y4 direction is equal to 146.784. Also, computing the Poincaré maparound the
grazing orbit, we find that the Jacobian matrix of this map has eigenvalues
(corresponding to Floquet multipliers of the flow) approximately equal to 1.2,
1 (the trivial Floquet multiplier), and (approximately) 0, 0 and 0. However,
the non-zero elements of the Jacobian matrix are approximately of size 102.
Hence, a simple sensitivity argument shows that a perturbation caused by
the discontinuity mapping of size 10−2 has the potential to change these mul-
tipliers by an O(1) amount. However, since the coefficient multiplies the 3

2
term (η in the notation of Chapter 4) is actually O(103), clearly the DM is
likely to have a massive influence on the dynamics. This observation is borne
out in the numerics in Fig. 7.11 where a non-smooth fold bifurcation appears
to occur at precisely the parameter value of the grazing bifurcation, at least
to an accuracy of four decimal places in the parameter. However, we know
in theory that the discontinuity mapping is actually smooth at the grazing
bifurcation point, with a singularity only in the O(3/2) terms. We conclude
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that there must be a smooth fold bifurcation approximately O(10−5) or closer
away from the grazing bifurcation.

These observations are confirmed by the results in Fig. 7.12, which re-
produce a computation from [64] that compares the results of iteration of the
compound discontinuity map over one whole period with the results of the nu-
merics. Note over this small scale the close agreement between the mapping
and the simulations. The variables in this figure have been rescaled so that
the grazing bifurcation occurs at ν̃ = 0. However, even at the scale depicted
it is hard to see the existence of a fold bifurcation for small ν̃. In fact, further
zooming shows the fold occurs at a ν̃-value within 10−3 of the grazing point.
Returning to the physical co-ordinates, this implies a fold for k within 10−7

of the grazing point!

0 2 4 6 8 10

−10

0

10

ν~

v~

0 2 4 6 8 10

−10

0

10

ν~

v~
(a) (b)ṽṽ

ν̃ν̃

Fig. 7.12. Comparison between the numerical simulations (left panel) and the dis-
continuity mapping (right panel) local to the grazing bifurcation at k = 214.2528.
Here ṽ is a rescaling of y4 and ν̃ is a rescaling of −k [cf. Fig. 7.11(c)] such that
the grazing bifurcation occurs at ν̃ = 0. (Reprinted from [64] with permission from
Elsevier.)

This example serves to illustrate a key point about grazing bifurcations
where the degree of smoothness is 2 or more. The local analysis of the normal
form of the map, as given earlier, shows that it (and its first derivative) is
continuous at the grazing point and that it has a 3/2-type discontinuity there.
At the grazing point, there should not be a change in the tangent to the branch
of fixed points and we might conclude that this would rule out any complex
dynamics emerging from such transitions. But, if no instantaneous transition
occurs, grazing in piecewise-smooth systems with degree of smoothness 2 can
cause a rapid change in the curvature of a bifurcation branch giving rise to a
nearby fold, followed in this example by a period-doubling cascade and many
nearby classical bifurcations.

It is worthwhile to point out some more features of the bifurcation diagram
in Fig. 7.11. First, there is another grazing bifurcation at k ≈ 176.3429. This
bifurcation again induces a smooth bifurcation at a nearby parameter value.
In this case it is a period-doubling bifurcation, as evidenced by the obvious
period-two attractor in the figure for k larger than this value. Second, notice
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what appears to be a period-adding cascade, interspersed by regions of chaotic
dynamics for approximately k ∈ (200, 210). This occurs below a k value for
which there is no immediate attractor in the dynamics. What actually happens
here is that the dynamics created as k is decreased through 214.2529 (the value
of the grazing bifurcation we analyzed above) rapidly disappears at around
k = 214.2485 in a boundary crisis involving the unstable limit cycle (see the
second zoom of Fig. 7.11). The attracting behavior then reappears in another
boundary crises at around k = 210. Recall, these results were all for Δ = 0.1.
Now, other results presented in [64] show a similar grazing bifurcation for
the case of Δ = 0.01 [and all other parameters held fixed at their values
given in (7.51)–(7.52)]. Then there is no equivalent pair of boundary crises,
and the period-adding behavior exists over a wide range of parameter values,
right up to that of the grazing. Thus, the period-adding would appear to
be symptomatic of the global bifurcation diagram of maps with an O(3/2)
singularity, as described in Chapter 4.

7.2.5 Detailed derivation of the discontinuity mappings

We now present the necessary analytic steps required to compute the leading-
order expressions of the ZDM and PDM given in Theorems 7.2 and 7.3. The
derivation follows in a similar manner to that of the equivalent maps for im-
pacting hybrid systems described in Chapter 6, using Lie derivative notation.
Guided by Fig. 7.9 the derivation of the local discontinuity mappings is di-
vided into three different stages:

1. Calculating the trajectory starting from x under the action of the flow
Φ1, until it intersects (if it does so) the manifold Σ at the point x2 after
an elapsed time t = δ0;

2. Calculating the trajectory starting from x2 under the action of the flow
Φ2 until the second crossing of Σ at the point x3 after an elapsed time δ2;

3. Calculating the trajectory starting from x3 under the action of the flow
Φ1 backwards in time either until either it reaches the point x4 after a zero
total time has elapsed (the ZDM case) or until the trajectory intersects
the Poincaré section ΠN at the point x5.

In this calculation Steps 1 and 3 are identical to the equivalent steps
described in Chapter 6. The difference here comes in the new step 2, which
requires following flow Φ2 rather than applying a restitution map R. Thus,
referring to Fig. 7.9, we define the ZDM as (7.26)

Φ1(Φ2(Φ1(x0, δ0), δ2) − (δ0 + δ2))

and the PDM as (7.28)

Φ1(Φ2(Φ1(x1, δ), δ2),−δ3).
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Before calculating these expressions, we calculate separately each of the times
δ, δ0, δ1, δ2 and δ3 through Taylor expansion, appealing to the Implicit Func-
tion Theorem where necessary. As in Chapter 6, we shall decompose the cal-
culation of δ0 into the calculation of times δ1 to flow from the initial point to
the point x1 at which LF1H(x) = 0 and the time δ < 0 to flow from such a
point to Σ, so that

δ0 = δ1 + δ.

Step 1. To find δ and hence the point x2, we solve the problem

H(x2) = H(Φ1(x1, δ)) = 0

for δ as a function of y, where

LF1H(x1) = 0 and Hmin = H(x1), y2 = −H(x1).

This step is identical to the equivalent step for impacting systems presented
in Chapter 6 but with F replaced by F1. There, application of the Implicit
Function Theorem gave the existence of a unique, smooth function (6.38)
given by

δ(x1, y) = y

(

−
√

2
L2

F1
H(x1)

− 1
3

L3
F1
H(x1)

(L2
F1
H(x1))2

y +O(y3)
)

, (7.54)

where L2
F1
H(x1) > 0 is the normal acceleration at the point x.

Note that x1 determines the value of y, hence the left-hand side is a func-
tion of x1 only. However, (7.54) is a valid expression when x1 and y are treated
as independent variables.

Step 2. We next need to find the time δ2. To do this we expand the
expression H(Φ2(x2, δ2)) = 0 in powers of δ2. As H(x2) = 0 this gives

H(Φ2(x2, δ2)) = LF2H(x2)δ2 +
1
2
L2

F2
H(x2)δ22 +O(δ32). (7.55)

Note that LF2H(x2) is a small quantity. To be able to find an expression for
δ2 as a power series in y, we first expand in the Taylor series LF2H(x2) and
L2

F2
H(x2) in x2 about x1. Using properties of Lie derivatives, (7.55) becomes

H(Φ2(x2, δ2)) = LF2H(x1)δ2−C(x1)LF1LF2H(x1)yδ2+
1
2
L2

F2
H(x1)δ22+O(δ32),

(7.56)
where

C(x1) =

√

2
L2

F1
H(x1)

.
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Now, we can divide the right-hand side of (7.56) by δ2 since we seek a time
δ2 > 0. Also, since the term 1

2L2
F2
H(x1) is non-zero and ofO(1), by assumption

(7.23) and the fact that x1 is sufficiently close to x∗, we can appeal to the
Implicit Function Theorem to guarantee the existence of a smooth function
δ2(x1, y) for which H(Φ2(x2, δ2)) = 0. Moreover, the term LF2H(x1) is zero
because LF1H(x1) = 0 by definition, and the assumption (7.7) that means
the sets

{x ∈ D : LF1H(x1) = 0} and {x ∈ D : LF2H(x1) = 0}

coincide. After inverting the power series (7.56) to leading-order in y, we have

δ2(x1, y) = 2
LF1LF2H(x1)
L2

F2
H(x1)

C(x1)y +O(y2). (7.57)

Step 3. We can now complete this calculation to find the ZDM for an
initial point x ∈ ΠN close to a grazing point. To do this we define

ZDM(x, y) = x4(x, δ(x, y), δ2(x, y)) = Φ1(Φ2(Φ1(x, δ), δ2),−(δ + δ2))

A Taylor expansion of this expression gives

x4 = x+ δ2(F2 − F1) +O((δ, δ2)2)).

After substituting for δ2 from (7.57), we can write the leading-order ZDM for
a point x ∈ ΠN as

ZDM(x, y) = x+

⎧

⎨

⎩

0, if H(x) ≥ 0,

2CLF1LF2H(x)
L2

F2
H(x)

(F2(x) − F1(x))y, if H(x) ≤ 0, (7.58)

where the error term is O(y2). Finally we can expand (7.58) in x around the
grazing point at x = x∗ giving to leading-order

ZDM(x) = x+
{

0, if H(x) > 0,
C∗D∗(F2(x∗) − F1(x∗))y +O(H(x)), if H(x) < 0, (7.59)

with C∗ = C(x∗), D∗ = D(x∗) where

D(x) = 2
(HxF2)xF1

(HxF2)xF2
(x).

Each calculation (for the time δ, δ1, the point x2 etc.) should be treated as
a separate calculation, and only when the final expression for the ZDM map
is introduced we make use of the expressions found earlier. Now we are in a
position to start stating the forms that the PDM and ZDM take for general
initial conditions in a neighborhood of the point x∗.
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The ZDM for a general initial point. The above expressions for the
ZDM were derived assuming that the starting point x was in ΠN ; that is
LF1H(x) = 0. In order to apply these expressions for a general initial point
x, we must first advance the flow using vector field F1 for a time δ1 to a point
where LF1H(Φ1(x, δ1)) = 0. Hence, we consider the following flow combination

Φ1(ZDM(Φ1(x, δ1), y),−δ1), (7.60)

where ZDM denotes the zero time correction (7.59), where we now define

y =
√

−H(Φ1(x, δ1)) =
√

−Hmin(x),

since Φ1(x, δ1) is the point where H has its local minimum along a trajectory
through x. Let us also set

v = LF1H(x)

and solve for δ1 in the expression

LF1H(Φ1(x, δ1)) − LF1H(x) + v = 0. (7.61)

where |x − x∗| and v are small. Note that the introduction of the additional
variable v is used to make this a regular expression at all points in a neigh-
borhood of x∗.

Now, by Taylor expansion of the flow we have

LF1H(Φ1(x, δ1)) = v + L2
F1
H(x)δ1 +O (δ1)

2 = 0,

and since L2
F1
H(x) �= 0 by (7.23), we can appeal to the Implicit Function

Theorem to guarantee the existence of a smooth function δ1(x, v), which solves
(7.61). After inverting the power series we get

δ1(x, v) = − v

L2
F1
H(x)

+O
(

v2
)

. (7.62)

Now, we can write Hmin as

Hmin(x, v) = LF1H(Φ(x, δ1)) + (v − LF1H(x))δ1(x, v)
= H(x) + vδ1(x, v) +O

(

δ1(x, v)2
)

. (7.63)

After substituting for δ1 (7.62) into (7.63), we get

Hmin(x, v) = H(x) − v2r(x, v),

where r(x, v) contains the remaining terms. Note that, similarly to grazing
bifurcations in impacting systems, the correction that accounts for the fact
that we start at different initial point does not affect the leading-order ap-
proximation for the ZDM obtained for x such that LF1H(x) = 0. This follows
from the fact that if we expand (7.60) in δ1, there is no correction to this flow
combination for the terms of order y.
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Thus, we can write the final form of the ZDM as

ZDM(x, y, v) = x+
{

0, if Hmin(x) ≥ 0,
2C∗D∗F ∗

d y + O[(y, v)2], if Hmin(x) ≤ 0, (7.64)

where

C(x)D(x) =

√

2
L2

F1
H(x)

LF1LF2H(x)
L2

F2
H(x)

and Fd(x) = F2(x) − F1(x),

and an asterisk denotes evaluation at the grazing point x = x∗. Note that to
leading-order, (7.64) is exactly the same as (7.59), and indeed provides the
proof of the first part of Theorem 7.2. However, the ZDM for a general point
is a function not just of x, y but also of an additional small variable v that
measures the closeness of the initial point to ΠN . Therefore the expansion of
(7.64) to higher order will lead in general to more complex expressions than
the expansion of (7.59).

The ZDM derivation in the case when F1 = F2 = F . Note that
the leading-order (square root) term of (7.64) vanishes if F1(x∗) = F2(x∗).
To obtain the next-order expression for the map, we first need to establish
the order of the next non-vanishing term in the expansion. Roughly speaking,
given degree of smoothness 2, the value of F2 −F1 in (7.58) is proportional to
x, which will lead to terms in (7.59) proportional to |x − x∗|3/2. The precise
derivation of these terms follows exactly the same steps as above, but carrying
out the computation of the times δ, δ1, and δ2 to higher-order. Since these
expressions were derived using the Implicit Function Theorem, we know that
each of them has a regular Taylor series expansion. In particular, we find that
if F2(x∗) = F1(x∗), then

δ2 = −2δ − 2
(HxF2)xx

(HxF2)xF2
+O(|x|3/2).

The precise expressions that lead to the coefficient of the O(3/2) term pre-
sented in the second part of Theorem 7.3 are rather lengthy and are best
produced with the aid of computer algebra. Instead we merely motivate here
how each of the terms v1, v2 and v3 arise.

Note first that the term F2 − F1 expanded in x around x = x∗ is to
leading-order given by (F2 − F1)x(x − x∗). This gives the term v2 of (7.31)
and is O(|x − x∗|3/2). To find the terms v1 and v3, we need to expand the
flow combination (7.60) to third order. After some algebraic manipulations,
we can show that the remaining terms that contribute to v3 are of the form
(F2−F1)xFδδ2, with δ2 containing only terms of order |(HxF2)x(x−x∗)|. We
can also obtain the expression

1
2

((F2 − F1)xF ) δ22
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that contributes to the first part of the v1 term. The remaining part of the
v1 term comes from the contribution of the third-order terms of the flow
expansion (7.55) with δ and δ2 being considered to leading-order only, in
which case δ2 = −2δ. Finally we find that in the case where F2 −F1 vanishes
at x∗, consideration of the time δ1 does not change the coefficient of the
leading O(3/2) term.

The PDM for a grazing bifurcation. Since the ZDM above was derived
assuming that the starting point x ∈ ΠN satisfying LF1H(x) = 0 to obtain
the PDM from ΠN to itself, it is the most convenient to compose the ZDM
with a projection map that maps its image onto ΠN . Hence, we follow the
procedure outlined in Chapter 6 and calculate the PDM by considering the
following combination of flows:

Φ1(ZDM(x, y), ̂δ) = ZDM(x, y) + ̂δF1(x4) +O
(

(y, ̂δ)2
)

(7.65)

where ZDM(x, y) denotes the expression (7.58) that was derived under the
assumption that LF1H(x) = 0, and

̂δ = δ3 − (δ0 + δ2)

is the time of flow under Φ1 from the final point x4 of the ZDM construction to
intersect ΠN at the point x5. We know that LF1H(Φ1(x4, ̂δ)) = 0. Expanding
this expression in powers of ̂δ, we get

LF1H(Φ1(x4, ̂δ)) = LF1H(x4) + ̂δL2
F1
H(x4) +O

(

̂δ2
)

= 0. (7.66)

We now solve (7.66) for ̂δ as a power series in y yielding

̂δ(x4, y) = −LF1H(x4)
L2

F1
H(x4)

y +O
(

y2
)

. (7.67)

From the properties of Lie derivatives we have

̂δ(x, y) =
(

LF2LF1H(x)C(x)D(x)
L2

F1
H(x)

− C(x)D(x)
)

y +O
(

y2
)

.

From expression (7.65), we can then obtain the leading-order expression of
the PDM given by

PDM(x, y) = x+
{

0 H(x) ≥ 0
Z(x∗)y +O

(

y2
)

H(x) < 0 , (7.68)

with

Z(x) = 2

(

F2 −
LF2LF1H(x)
L2

F1
H(x)

F1

)√

2
L2

F1
H(x)

LF1LF2H(x)
L2

F2
H(x)
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evaluated at the grazing point, and Hmin replaced by H(x) since ΠN has been
chosen so that the initial point x lies at a local minimum of H. Alternatively
we can express Z as

Z(x) = 2
(

F2 −
(HxF1)xF2

(HxF1)xF1
F1

)

√

2
(HxF1)xF1

(HxF2)xF1

(HxF2)xF2
,

which is the term vz given in the Theorem 7.3.
For simplicity we have only derived here the leading-order expression for

the PDM for the case of F1(x∗) �= F2(x∗) for which the PDM has square-root
form. The 3/2 form of the PDM arises when F1 = F2 at the point of grazing,
follows after lengthy calculation of the next-order terms in the expansion
(7.68). We omit the details here. A complete derivation, using asymptotic
expansion methods rather than Lie derivatives is given in [78].

7.3 Boundary-intersection crossing bifurcations

A basic hypothesis, assumed so far in this and previous chapters, is that the
discontinuity boundary Σ should be a smooth subset of phase space. However,
in many applications, for example the DC–DC converter circuit in case study
V, this is not the case since the switching manifold itself is a sawtooth function.
In general, in many control systems and electronic switching devices, switching
conditions may be governed by several overlapping inequalities. A generic
feature of such examples is that the discontinuity boundary will have corner-
type singularities formed by the transverse intersection, along a set C, of two
smooth codimension-one surfaces Σi and Σj , which locally divide the phase
space into four regions with differing vector fields Fi, i = 1 . . . 4.. If the system
has a parameterized periodic orbit p(t, μ), then interesting behavior occurs
when, as μ is varied, this orbit intersects the set C. We will now show that such
an interaction is characterized by continuous maps that are locally piecewise-
linear. Thus the behavior can be understood in terms of the theory developed
in Chapter 3.

The locus of boundary intersection points C will in general be a (n − 2)-
dimensional subset of the phase space R

n. The passage of a trajectory through
a point in c ∈ C is a DIB in the sense of a topological change of a piece of phase
potrait introduced in Chapter 2 because in a neighborhood of the boundary
intersection, there are distinct trajectories that do not behave similarly with
respect to phase-space regions on either side of Σ = Σi ∪ Σj . This situation
is illustrated in Fig. 7.13(a).

The special case illustrated in Fig. 7.13(b) that corresponds to three vector
fields in 7.13(a) being identical, arises in many applications (such as the DC–
DC converter) and has previously been called a corner-collision bifurcation
[76]. In this case we consider two discontinuity surfaces Σ5 and Σ6 that meet
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(a) (b)(a) (b)

C

C

F1

F2

F4 F5

F6

Σ1 Σ2

Σ5
Σ6Σ5

Σ6

F3

Fig. 7.13. (a) A boundary-intersection crossing trajectory that intersects the cross-
ing manifold C between two discontinuity surfaces Σ1 and Σ2, and two nearby
trajectories each starting in the region of phase space for which the vector field is
given by F1. Here it is assumed that a different smooth vector field Fi, i = 1...4
applies in each of the four local phase space regions. (b) The special case of a corner
crossing where only two different vector fields, F5 and F6 apply, and the crossing
manifold can be described as the corner in a single discontinuity surface made up of
two smooth pieces Σ5 and Σ6. Two distinct kinds of corner-intersecting trajectories
are depicted, external (trajectory starting in S6) and internal (trajectory starting in
S5) corner-collisions.

along a corner C. We call the region inside the corner S5 and that outside S6,
with corresponding vector fields F5 and F6. There are two generic kinds of such
intersections between a trajectory and C, leading to differing bifurcations that
we shall refer to either as external or internal corner-collision. These are both
illustrated in Fig. 7.13(b). A sufficient condition for a boundary-intersection
crossing to occur is that the periodic orbit p(t, μ) intersects the codimension-
two corner manifold C. Since we can choose the phase of p(t, μ) for which this
happens, a boundary-intersection crossing is thus a codimension-one bifurca-
tion.

7.3.1 The discontinuity mapping in the general case

In this chapter, we shall consider only the case where the overall vector field
is discontinuous across each of Σi and Σj , under conditions that no sliding
occurs, and shall show that to lowest order this leads to a piecewise-linear
normal form. The case where the vector field is continuous can be similarly
shown to lead to a discontinuity mapping with a jump at quadratic order.
In general, degree of smoothness m leads to maps with a jump in the mth
derivative.

Consider first the general case depicted in Fig. 7.13(a) where the four
vector fields all differ and the trajectory is assumed to start in the region
of phase space where the vector field is given by F1 and the discontinuity
surfaces are Σ1 and Σ2. Suppose this trajectory is part of a periodic orbit
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p(t, μ), which is parameterized by μ. We set up local co-ordinates such that
the point of intersection of the periodic orbit with Σ1∩Σ2 occurs when μ = 0
at the point x = 0. Let the boundaries Σ1 and Σ2 be given by the zero sets of
smooth functions H1(x) and H2(x) respectively, which for simplicity we take
to be linear; Σ1 = {H1 = 0} and Σ2 = {H2 = 0}, and the sense of their
normal vectors is as depicted in Fig. 7.15.

Now, it will follow that the linear approximation to the flow and to the
boundaries is sufficient to determine the leading-order expression for the dis-
continuity mapping in a neighborhood of (x, μ) = (0, 0). Thus the vector field
Fi(x, μ) can be replaced by Fi(0, μ) and we suppose for simplicity that the
local situation near the point x = 0 is unchanged by the variation of μ, so
that Fi(x, μ) ≈ Fi(0, 0) := Fi. Let the flow associated with the vector field
Fi be Φi. Also let a final subscript indicate a component in the direction per-
pendicular to each surface given by dHj

dx := Hj,x, so that Fij = Hj,xFi(0) and
xj = Hj,xx, for j = 1, 2.

We make the further assumption that there is no sliding or grazing in the
neighborhood of x = 0, so that all four vector fields cross both Σ1 and Σ2

transversely and in the same sense. That is,

Fij > 0 for i = 1, . . . , 4, j = 1, 2. (7.69)

Because of this assumption, it is possible and indeed convenient, to take one
of the surfaces Σi to be a Poincaré section. Without loss of generality we take
this section to be

Π := Σ1 = {x : H1(x) = 0},
as in Fig. 7.15. We construct the resulting Poincaré map associated with this
section. The global form of this map is illustrated in Fig. 7.14 in two cases,
one where the trajectory passes through the region S2 close to the point of
intersection, and the second where it passes through the region S3 close to
the point of intersection. In the first case the Poincaré map from Σ1 to itself
follows from a trajectory that starts from the point A, intersects Σ2 at the
point B and is then mapped (under the action of the vector field F2) to the
point C. If the flow from B is continued under the action of the vector field
F1, then it will intersect Σ1 at the point D. This map is a composition of the
return map from Σ1 to itself (mapping A to D and ignoring the impact with
Σ2) followed by the PDM(x) which maps D to C. Similarly, in the second
case, the Poincaré map can also follow from a trajectory that maps the point
P to the point S, so that the trajectory moves from P to Q ∈ Σ2 under the
action of the vector field F3 and the trajectory continued backwards from Q
under the action of the vector field F4 intersects Σ1 at the point R. In this
case the Poincaré map from P to S is a composition of first taking the PDM
mapping P to R followed by the return map from Σ1 to itself, mapping R to
S and again ignoring the impact with Σ2.

To construct the global Poincaré map we must first calculate the PDM
described above. The calculation for this is illustrated in Fig. 7.15. After some
algebra we arrive at the following
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F1

F2

F3

F4

P
R
S

Q

A

B C

D

Σ1

Σ2

Fig. 7.14. A schematic representation of the action of the global Poincaré map
from Σ1 to itself. In this case either A is mapped to C or P is mapped to S. The
solid line shows the actual trajectory, and the dashed line the continuation of the
trajectory using different vector fields.

H2 = 0

PDM

F2

H1 = 0

F4

F1

F3

H2,x

H1,x

x = 0

PDM

Fig. 7.15. A more detailed representation of the construction of the local PDM in
a neighborhood of a boundary-crossing intersecting trajectory.

Theorem 7.5 (The local PDM at a boundary crossing point inter-
section). Under the above assumptions, the local PDM based on the Poincaré
section Σ1 is given by

PDM(x) =

⎧

⎨

⎩

x+ x2
F12

(

F2
F11
F21

− F1

)

+ O
(

|x|2
)

, if x2 > 0,

x+ x2
F32

(

F4
F31
F41

− F3

)

+O
(

|x|2
)

, if x2 < 0.
(7.70)

Here the correction is made to a trajectory which is assumed to evolve in
region S1 before hitting the intersection point of the manifolds Σ1 and Σ2 and
finally evolving in region S4.

Proof. Taking the Poincaré section to be Σ1 the PDM can be written as the
following flow composition:

Φ2(Φ1(x, δ1), δ2), when H2,xx > 0,

where δ1 is the (negative) time required to move from Σ1 to Σ2 following
the flow Φ1 associated with the vector field F1 and δ2 is the (positive) time
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required to move from Σ2 to Σ1 following the flow Φ2 associated with the
vector field F2.

On the other hand, when H2,xx < 0, the PDM can be expressed as the
flow composition

Φ4(Φ3(x, δ3), δ4).

This time the flow directions are reversed so that δ3 is positive and δ4 is
negative.

Following the earlier approach we expand Φ2(Φ1(x, δ1), δ2) in terms of the
scalar variables δ1 and δ2 to give

Φ2(Φ1(x, δ1), δ2) = x+ F1δ1 + F2δ2 +O
(

(δ1, δ2)2
)

. (7.71)

To find the sought time δ1 we must determine when this trajectory intersects
the surface Σ2. To do this we expand the identity

H2(Φ1(x, δ1)) = 0

in δ1. This gives

H2(Φ1(x, δ1)) = H2(x) +H2,xF1δ1 +O
(

δ21
)

= 0. (7.72)

We now define the auxiliary variable y = H2(x) and solve (7.72) for δ1 as a
power series in y. Provided that H2F1 �= 0, the Implicit Function Theorem
guarantees the existence of a solution δ1(x, y) with δ1(0, 0) = 0. After inverting
the power series, it is straightforward to show that

δ1(x, y) = − y

H2,xF1
+O

(

y2
)

. (7.73)

To find the time δ2 when the trajectory intersects Σ1, we solve the identity

H1(Φ2(Φ1(x, δ1), δ2)) = 0.

After expanding the above expression in δ1 and δ2, we have

H1(x) +H1,xF1δ1 +H1,xF2δ2 +O
(

(δ1, δ2)2
)

= 0. (7.74)

Note that by the choice of Poincaré section H1(x) = 0. Substituting for δ1
(7.73) into (7.74) gives

− y

H2,xF1
H1,xF1 +H1,xF2δ2 +O

(

(δ1, δ2)2
)

= 0. (7.75)

A further application of the Implicit Function Theorem implies the existence
of a smooth function δ2(x, y) with δ2(0, 0) = 0 that is a solution of (7.75).
After inverting the power series, we have

δ2(x, y) = H1,xF1
y

H2,xF1

1
H1,xF2

+O
(

y2
)

. (7.76)
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We now define a final point xf = M(x) by xf (x, y) = Φ2(Φ1(x, δ1(x, y)),
δ2(x, y)).

Substituting for δ1 (7.73) and for δ2 (7.76) into (7.71) yields

xf (x, y) = x− F1
y

H2,xF1
+ F2H1,xF1

y

H2,xF1

1
H1,xF2

+O
(

y2
)

. (7.77)

To obtain the PDM when H2,xx < 0, we can follow the same steps. We
give the final expression for times δ3 and δ4.

δ3(x, y) = − y

H2,xF3
+O

(

y2
)

.

δ4(x, y) = H1,xF3
y

H2,xF3

1
H1,xF4

+O
(

y2
)

.

Define xf (x, y) = Φ4(Φ3(x, δ3(x, y)), δ4(x, y)). Thus, we have

xf (x, y) = x− F1
y

H2,xF3
+ F2H1,xF3

y

H2,xF3

1
H1,xF4

+O
(

y2
)

. (7.78)

Expanding (7.77) and (7.78) in x gives the PDM expressed by (7.70), which,
when expressing these results in the appropriate notation, proves the theorem.

�
Remarks

1. To leading-order, the PDM takes the form of a piecewise-linear map of the
form described in Chapter 3 such that each of the maps for x2 > 0 and
x2 < 0 is a rank-one update of the identity. Consequently, when studying
boundary-crossing events we expect to see the full range of the dynamics
introduced in Chapter 3. This will include such behavior as non-smooth
fold, Hopf and period-adding bifurcations and also transitions to robust
chaos.

2. The ZDM can be constructed in a similar manner and again takes the
form of a piecewise-linear map.

It is now straightforward to construct the global Poincaré map close to
the (parameterized) periodic orbit p(t, μ) that passes through the boundary
crossing point at x = 0, μ = 0, crossing Σ1 transversally, passing from the
region with vector field F1 to that with vector field F4. Consider a trajectory,
close to p(t) starting from a point x close to the origin, and evolve this ignoring
any intersections with Σ2 close to the point x = 0. If |x| and μ are both small,
then this will intersect Σ2 at a point Q(x), which to leading-order is given by

Q(x) = Nx+Mμ,

where N is the linearization of the Poincaré around the periodic orbit, as
derived in Chapter 2. The global Poincaré map P (x) is then given by

P (x) = PDM ◦Q(x) if x2 > 0, P (x) = Q ◦ PDM(x) if x2 < 0.

This is, of course, a piecewise-linear map.
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7.3.2 Derivation of the discontinuity mapping in the
corner-collision case

The corner-collision illustrated in Fig. 7.16 is a special case of the above more
general event. With reference to Fig. 7.13 an external corner-collision arises
if we set F3 = F5 �= F6 = F1 = F2 = F4 and we set Σ1 = Σ5 and Σ2 = Σ6.
Similarly an internal corner-collision arises if we set F1 = F5 �= F6 = F2 =
F3 = F4 and we set Σ2 = Σ5 and Σ1 = Σ6.

S1

S2Σ
1

2Σ

p(t)

(a) (b) (c)

cc
c

Fig. 7.16. Illustrating, in a general two-dimensional slice, trajectories in the neigh-
borhood of the three types of interaction with the corner depicted in Fig. 7.13(b):
(a) external corner-collision; (b) internal; and (c) which is not a corner-collision.
Note the topological difference between cases (a) and (b). In(b), all trajectories en-
ter both regions S5 and S6, whereas in (a), some trajectories remain locally in S6.
Case (c) fails the hypotheses because the left-hand portion of the boundary, Σ1 = 0,
is attracting from both sides and hence sliding solutions would occur.

To derive the local form of the PDM for trajectories close to the corner we
apply Theorem 7.5 using the relabeled vector fields described above, and make
the assumption that the Poincaré surface is always the set corresponding to
Σ1, so that it is Σ5 for an external corner-collision and Σ6 for an internal one.
Doing this, the following theorem follows immediately.

Theorem 7.6. (PDM at a corner-collision) The PDM for the external corner-
collision is

PDMext(x) =

{

x, if x6 > 0,
x+ x6

F56

(

F6
F55
F65

− F5

)

+O(|x|2), if x6 < 0. (7.79)

Similarly, the PDM for the internal corner-collision is given by

PDMint(x) =

{

x+ x5
F55

(

F6
F56
F66

− F5

)

+O(|x|2), if x5 > 0,
x, if x5 < 0.

Note that the choice of Poincaré section here is rather arbitrary and we
could have used either of the two surfaces Σ5 or Σ6. A similar calculation
allows us to determine the ZDM at a corner-collision and the global Poincaré
map. Further details are given in [76].
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7.3.3 Examples

To motivate this theory we consider two examples of a corner-collision.

Example 7.9 (An explicitly calculable corner-collision).

S1 S1
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β
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Σ5Σ5

Σ6

S5

S6

Fig. 7.17. Sketch of the phase potrait of (7.80), (7.81) with a = 1.

Consider first an example where a hyperbolic limit cycle grazes with a cor-
ner in an autonomous, piecewise-smooth vector field that is soluble in closed
from. Specifically we take a system

ẋ1 = γ
ẋ2 = δ

, for x1 > 0, x2 > 0, x2 < x1 tan(β) (region S5), (7.80)

ṙ = εr(a− r)
θ̇ = 1

, otherwise (region S6). (7.81)

Here
x1 + 1 = r cos(θ), x2 = r sin(θ),

and γ, δ, β, ε and a are real constants satisfying the constraints

0 < β < π/2, δ > γ tan(β). (7.82)

See Fig. 7.17(a). Consider the system (7.81); for a > 0 there is a limit cycle
that is stable if ε > 0; at a = 1 this limit cycle collides with the boundary of
region S5 in an external corner-collision bifurcation. Specifically we take

H5(x1, x2) = −x2, H6(x1, x2) = x2 cos(β) − x1 sin(β).

The constraints (7.82) ensure that the inequality constraints (7.69) are satis-
fied along H5 = 0 and H6 = 0.
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Since the systems in regions S5 and S6 are solvable in closed form we can
explicitly construct the Poincaré map associated with the Poincaré section
{x2 = 0, x1 > −1} which is a portion of Σ5. In region S6 the general solution
takes the form

r(t) =
ar0 exp(εat)

r0 exp(εat) + a− r0
, θ = θ0 + t. (7.83)

For x1(0) < 0 (r0 < 1), this equation defines the Poincaré map after setting
r0 = x1(0) + 1, θ0 = 0 and t = 2π. For x1 > 0, however, we must first solve
(7.80) until the time

̂t =
x1(0) tan(β)
δ − γ tan(β)

(7.84)

at which x2 = x1 tan(β). Taking the (x1, x2)-values at this point, converting
to polar co-ordinates (r̂, ̂θ) where

r̂ cos(̂θ) = x1(0) + γ ̂t+ 1, r̂ sin(̂θ) = δ ̂t, (7.85)

substituting these values as r0 and θ0 in (7.83) and evaluating at t = 2π − ̂θ
then gives us an analytic expression for the Poincaré mapfor x1(0) > 0. Thus
we obtain

x1(0) �→ ar̂ exp[εa(2π − ̂θ)]

r̂ exp[εa(2π − ̂θ)] + a− r̂
, x1(0) > 0, (7.86)

where ̂θ and r̂ are related to x1(0) via (7.84) and (7.85).
As shown, in [77], in the case where ε = 0.1, β = π/4, γ = 3/8 and δ =

0.5, the slopes of the map are such that the corner-collision has the effect
of destroying the limit cycle. Namely, for these parameter values, before the
bifurcation, i.e., for a < 1, there is a stable limit cycle lying solely in region
S6, but this coexists with an unstable limit cycle that passes through region
S5. At a = 1 these two periodic solutions coalesce and for a > 1 they have
disappeared. Note, finally, that unlike a saddle-node bifurcation for a smooth
system, the Floquet multipliers of the two periodic orbits (the slopes of the
two portions of the map) do not approach 1 as a → 1− (see [77] for further
details).

Example 7.10 (Example 7.3 continued; corner-collision in the buck con-
verter).

We conclude the examples, and the chapter, by returning to the DC–DC
buck converter, which is described in case study V, of Chapter 1. Here we
shall limit ourselves to an analytical explanation of a phenomenon observed
numerically in [75, 104, 81], namely that corner-collision of a periodic orbit is
associated with a piecewise-linear map. Moreover the dynamics of this map are
such that it causes a fold (actually a sharp corner) in the bifurcation diagram
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of a branch of periodic orbits. Specifically a sequence of such folds was found
for certain 3T and 5T -periodic orbits, as part of a bigger picture of a spiraling
bifurcation diagram that can be explained in terms of a local analysis close to
a (codimension-two) sliding periodic orbit. What we shall show here, using the
preceding analysis, is that by calculating a few features of the single trajectory
undergoing the corner-collision, we can calculate precisely the angle of the fold
in the bifurcation diagram and determine the stability of orbits.

Consider the model (7.9). Suppose that at some E = E0, an nT -periodic
orbit for some n > 1 collides with the upper corner of the function Vr(t) at

t = t0 = 0 mod T, V = γ + ηT, I = I0,

for some I0 representing the value of current as the periodic trajectory crosses
the corner. Moreover (see Fig. 7.18), we can have both internal and external
corner-collision. We shall treat here only the external corner-collision case.
Internal corner-collisions are similarly treated in [77].

As a first step, define local co-ordinates

x1 = V − (γ + ηT ), x2 = I − I0, x3 = t− t0 (7.87)

and rewrite the equation (7.9) in the form

ẋ1 = −a1 + b1x1 − c1x2,

ẋ2 = −a2 − c2x2 + dΘ(σ(x3) − x1),
ẋ3 = 1,

in which

a1 =
γ + ηT −RI0

RC
, b1 =

1
C
, c1 =

1
RC

, a2 =
γ + ηT

L
, c2 =

1
L
, d =

E

L
,

Θ is the Heaviside step function and

σ(x3) = η[(x3 mod T ) − T ].

For this system we have

Σ5 := {H5 = 0} = {x1 = σ(x3)}, Σ6 := {H6 = 0} = {x3 = 0},

and C = {x1 = 0, x3 = 0}.
The corner-collision happens at x1 = x2 = x3 = 0, and it can be checked

that the conditions of the preceding theory are met there.
It is convenient to take a Poincaré section Π = {(x, y, z) : z = 0} in order

to calculate the local effect of trajectories that are close to the corner-collision
(the PDM and ZDM are then equivalent). The derivatives of the functions
defining the discontinuity surfaces at the origin are then given by

H5,x = (−1, 0, η), H6,x = (0, 0, 1),
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Fig. 7.18. Periodic orbits of the DC/DC buck converter with period 5T undergoing
(a) an external and (b) an internal corner collision.

with the vector fields given by

F5 = (−a1,−a2, 1), F6 = (−a1,−a2 + d, 1).

Using (7.79), the discontinuity map for an external corner-collision associated
with the Poincaré surface z = 0 then takes the form

PPDM :
(

x1

x2

)

�→
(

x1

x2 + k1(E)x1

)

+ h.o.t, (7.88)

where

k1(E) =
−dη
a1 + η

= − E RC

L(γ + ηT −RI0 + ηRC)
, (7.89)

k2(E) =
−da1

a1 + η
= − E(γ + ηT −RI0)

L(γ + ηT −RI0 + ηRC)
.

Note that this map depends on the bifurcation parameter E.
We must next compose the map PPDM with a global return map associated

with the flow close to the periodic orbit at E = E0 ignoring the effects of the
corner. To leading-order this return map takes the form

PΠ :
(

x1

x2

)

�→ N

(

x1

x2

)

+M(E − E0), (7.90)

where the coefficients of the matrix N and vector M must in general be
calculated numerically for the particular periodic orbit undergoing the corner-
collision.

For trajectories that do not cross the ramp signal x = σ(z) close to the
corner the global Poincaré mapis PΠ . But for trajectories that do cross, it
takes the form

(

x1

x2

)

�→
[

a11 a12

a21 + a11k1(E0) a22 + a12k1(E0)

](

x1

x2

)

+
(

b11
b21 + k1(E0)b11

)

(E − E0), (7.91)
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where

N =
[

a11 a12

a21 a22

]

, M =
(

b11
b21

)

.

As an example, an external corner colliding 5T -periodic orbit depicted in
Fig. 7.18(a) occurs for the values

E = E0 = 19.9786656, I0 = 0.56929860.

From these data we calculate from (7.89) that

k1(E0) = −0.934 .

By computing this trajectory over five periods and using numerical differenc-
ing to calculate derivatives, we find that

N =
[

−3.96 −44.0
−2.03 −23.0

]

, M =
(

0.31
0.15

)

. (7.92)

Figure 7.19 shows the result of substituting these numerical values into the
analytical Poincaré map (7.90), (7.91) and its comparison with a map calcu-
lated from straightforward numerical integration of trajectories. We have cho-
sen to illustrate just a one-dimensional approximation to this two-dimensional
map, by only displaying the effect of changes in initial current y. The results
in Fig. 7.19(a) and (b) show good quantitative and qualitative agreement
between the local theory and the numerical calculations at E = E0. They
also illustrate the extent of the region of validity for the local analysis; for
−0.006 < y(0) < −0.0035 at E = E0, the local map is qualitatively correct,
but outside of this region the numerical map shows extra corners. This is due
to other corner-collisions taking place at t = nT for some n ≤ 5. Note from
panel (b) in particular that there is no corner in the x-component of the nu-
merically computed map — this component of the map is smooth — which
is in complete agreement with the analytical result (7.91) (there is no change
in the x-component).

Panels (c) and (d) show the effect of variation of E, with the existence
of a fixed point on such a graph of y(5T ) against y(0) being indicative only
of a fixed point of the full two-dimensional map. Here again there is good
agreement between theory and numerics on how the map is perturbed as E
varies and that two fixed points (corresponding to unstable periodic orbits of
the ODEs) are created at E = E0 and coexist for E > E0.

We have, thus, shown that the Poincaré map close to the corner-collision
has the form of a continuous piecewise-linear map. We can now use the results
of the analysis of border-collision bifurcations given in Chapter 3 to classify
the dynamic behavior of the DC–DC converter. At E = E0 the map takes the
form

(

x1

x2

)

�→

⎧

⎪

⎪

⎨

⎪

⎪

⎩

N1

(

x1

x2

)

, when − 3.96x1 − 44x2 < 0,

N2

(

x1

x2

)

, when − 3.96x1 − 44x2 ≥ 0,
(7.93)
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Fig. 7.19. The Poincaré mapfor a 5T -periodic external corner colliding orbit at
E0 = 19.9786656, computed numerically (solid line with crosses) and via the corner-
collision analysis (dashed line). A one-dimensional slice of the map is taken consid-
ering the effect of varying only the initial current y(0). (a) and (b) depict the final
current and voltage, respectively, for E = E0; (c) and (d) show the effect on the
final current of variation of the bifurcation parameter E. In the final current versus
initial current figures, the 45◦ line is depicted as dotted; viewing the graphs as ap-
proximations of one-dimensional maps, intersections with this line are indicative of
nearby fixed points of the two-dimensional map.

with N1 =
[

−3.96 −44
1.67 18.10

]

and N2 =
[

−3.96 −44
−2.03 −23

]

. Following the methodol-

ogy introduced in Chapter 3 we now calculate eigenvalues of N1 and N2. We
get the following four eigenvalues: λl1 = 0.126, λl2 = 14.010, λn1 = −0.065
and λn2 = −26.895. Subscript ‘l’ denotes the eigenvalues of matrix N1 and
‘n’ the eigenvalues of N2. The number of the eigenvalues of N1 and N2, with
real part greater than 1, is odd (λl2 is the only eigenvalue with the real part
greater than 1). Therefore, according to our discussion in Chapter 3 we ex-
pect a non-smooth fold bifurcation. This agrees with our discussion on the
character of the map for neighboring values of parameter E. However, using
the analysis given in Chapter 3 we can also make prediction on the possi-
ble existence of period-two points that are involved in the bifurcations. We
note that there is an odd number of the eigenvalues of N1 and N2 that have
the real part less than −1. Therefore, a period-two point is involved in the
border-collision bifurcation. The stability and whether the period-two point
collides and vanishes together with the fixed points, or whether it is born in
the collision, can be determined by calculating the eigenvalues of the matrix
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compositions N1N2 and N1N1. We find, using a similar notation, the follow-
ing set of the eigenvalues λln1 = −0.008, λln2 = −384.618, λnn1 = 0.004
and λnn2 = 723.317. The eigenvalues of N1N2 determine the stability of the
period-two orbit. Clearly the orbit is unstable because λln2 is less than −1.
Moreover, because the number of the eigenvalues of the N1N2 and N2N2 that
are greater than 1 is odd, the period-two orbit collides and vanishes with the
fixed points at the border-collision.

This chapter has considered grazing in piecewise-smooth systems specif-
ically in the absence of sliding motion when discontinuity boundaries are
simultaneously attracting from both sides. The next chapter shall consider
specifically the case of Filippov systems and the DIBs associated with peri-
odic orbits doing structurally unstable things with respect to the boundary
of the sliding region of a discontinuity boundary.



8

Sliding bifurcations in Filippov systems

We have already shown in Section 1.3.2 that the onset of sliding motion in
Filippov piecewise-smooth systems can lead to intricate dynamics. The cur-
rent chapter focuses on the classification of discontinuity-induced bifurcations
(DIBs) caused by the interaction of a trajectory with the boundary of a slid-
ing region. First, in Section 8.1, we classify the four principal codimension-one
cases — crossing-sliding, grazing-sliding, switching-sliding and adding-sliding
— and give expressions for the local discontinuity mappings (DMs) close to
such points. Section 8.2 then gives a detailed motivating example, before go-
ing on in Section 8.3 to an explanation of how these DMs were calculated.
Section 8.4 discusses the composition of these DMs with a Poincaré mapin
the case that the trajectory undergoing the sliding bifurcation is part of a
limit cycle. We show in the grazing-sliding case that the dynamics local to the
bifurcation point are governed by a piecewise-linear map that is singular in
one region, as studied in Section 3.6. We then explicitly calculate this normal
form map for the example of a friction oscillator (case study IV in Chapter 1)
in order to explain its dynamics close to grazing-sliding. Finally, Section 8.6
presents briefly other possible bifurcations involving limit cycles and sliding.

8.1 Four possible cases

As in the previous chapter we consider n-dimensional piecewise-smooth con-
tinuous autonomous systems of ODEs, which, local to some discontinuity
boundary Σ = {x ∈ D : H(x) = 0}, can be written in the form

ẋ =
{

F1(x), if H(x) > 0,
F2(x), if H(x) < 0, (8.1)

where, for the time being we have suppressed any parameter dependence. In
this chapter we shall assume that the degree of smoothness is uniformly 1.
That is, we consider Filippov systems for which F2(x) �= F1(x) for all x ∈ Σ.
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In Chapter 7, we considered grazing bifurcations in such systems, but only
under the condition (7.7) that

LF1(H(x))LF2(H(x)) := (HxF1)(HxF2) ≥ 0, ∀x ∈ Σ. (8.2)

In particular, this would imply that at a grazing point both vector fields should
be tangent to Σ; that is, LF1(H(x)) = LF2(H(x)) = 0. This is a non-generic
assumption (but was motivated in Chapter 7 by a class of second-order oscil-
lators with non-smooth forcing). In this chapter, we will relax this condition
so that generically when HxF1 = 0 we have that HxF2 �= 0 and so we are at
the boundary of a region of sliding. Recall that sliding motion occurs when the
product in (8.2) is negative; see Section 2.2.3 to which we refer for definitions
and notation. Adopting the Utkin equivalent control method, we define the
sliding flow as

Fs =
F1 + F2

2
+
F2 − F1

2
β(x), (8.3)

where specifically the equivalent control is

β(x) = −LF1(H(x)) − LF2(H(x))
LF1(H(x)) − LF2(H(x))

. (8.4)

The sliding region is given by

̂Σ := {x ∈ Σ : −1 ≤ β ≤ 1}, (8.5)

and its boundaries are

∂ ̂Σ± := {x ∈ Σ : β = ±1}. (8.6)

Note that the boundary ∂ ̂Σ+ corresponds to points where there is a tangency
between the vector field F1 and Σ (that is where LF1H(x) = 0) and ∂ ̂Σ+ to
where there is a tangency between F2 and Σ (so that LF2H(x) = 0).

Except briefly in Section 8.6 below, we shall deal exclusively with the case
of attracting sliding; that is where the sliding set ̂Σ is attracting from both
sides.

8.1.1 The geometry of sliding bifurcations

sliding bifurcations are defined here as DIBs caused by the interaction be-
tween limit cycles of the Filippov system and the boundary of the sliding
region ̂Σ. Four different codimension-one DIBs involving interaction with the
boundary ∂ ̂Σ± of a sliding region were originally identified by Feigin [98]
and were subsequently analyzed by di Bernardo, Kowalczyk and coworkers in
[84, 159, 85, 86] for general n-dimensional systems of the form (8.1). A three-
dimensional schematic representation is given in Fig. 8.1, where we assume
the local phase space topology introduced in Section 2.2.3 and depict only
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Fig. 8.1. Illustration in three dimensions of the four codimension-one bifurcation
scenarios involving collision of a segment of trajectory with the boundary of the
sliding region: (a) crossing-sliding, (b) grazing-sliding, (c) switching-sliding and (d)
adding-sliding. In each case the discontinuity set Σ is a horizontal plane, with F1

applying above Σ and F2 below. The shaded portion represents the sliding region
̂Σ, and the boundary in question is ∂ ̂Σ−.

segments of trajectories (‘A’, ‘B’ and ‘C’) in a neighborhood of a boundary
∂ ̂Σ−. In each case trajectory B is the critical one that defines the sliding
bifurcation in question. Trajectories A and C would occur under perturba-
tion of trajectory B, such that A → B → C would occur under a continuous
small change in initial conditions. Later on, in Section 8.3, we will assume
that what distinguishes the particular trajectories A and C is that they are
small parameter perturbations from a limit cycle (trajectory B) that under-
goes the DIB. (In fact, as we shall see in Section 8.3, in grazing-sliding — see
Fig. 8.1b — limit cycles A and C might exist for the same parameter values.
In the other three cases, close to the bifurcation, the cycles ‘A’, ‘B’ and ‘C’
must exist for distinct parameter values.) For definiteness, in Fig. 8.1 and
throughout this chapter, we assume that the boundary in question is ∂ ̂Σ−,
but this is without loss of generality since we may relabel F1 as F2 and vice
versa.

Let us now focus on Fig. 8.1. Panel (a) depicts the scenario we term a
crossing-sliding bifurcation. Here, a trajectory crosses the switching manifold
Σ transversally, precisely at the boundary of the sliding strip ∂ ̂Σ−. This
forms the boundary between two topologically distinct kinds of trajectory:
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C that undergoes a small segment of sliding motion, and A that crosses Σ
transversally, but outside the sliding region. Note that, by continuity, the
sliding trajectory C evolves under the sliding flow Fs towards the boundary
∂ ̂Σ−, at which point by definition [see (8.3), (8.6)] Fs = F1, so the trajectory
leaves the switching manifold tangentially there. The name ‘crossing-sliding’
refers to the fact that all trajectories under consideration approach Σ with
non-zero speed, but as we move from A → B → C, we cross the sliding
boundary ∂ ̂Σ

The second case depicted in Fig. 8.1(b) is the one we call a grazing-sliding
bifurcation. Here, the trajectory A, lying locally within region S+, is contin-
uously perturbed into a trajectory B that forms a point of grazing with the
switching manifold from above. Under further perturbation, we find a tra-
jectory C, which has a section of sliding motion that evolves towards ∂ ̂Σ−,
at which point it leaves Σ tangentially. This scenario is the most directly
analogous to the grazing bifurcation analyzed in Chapter 7, especially from
the point of view of trajectory A; hence, the name grazing-sliding. Note that
the conditions on the vector fields to define the geometry in this case are
identical to those of the previous, crossing-sliding case (compare panels (a)
and (b) of the figure). The difference comes in the trajectory segments we are
interested in. In panel (a), we consider trajectories that arise from below the
switching manifold, and in (b) trajectories from above. This nicely illustrates
the non-uniqueness backwards in time associated with Filippov systems that
undergo attracting sliding. The forward part of trajectories B is the same in
both panels from the point of intersection with ∂Σ onwards, but their prior
histories are wildly different!

A third kind of bifurcation event, which we shall refer to as a switching-
sliding bifurcation, is depicted in Fig.8.1(c). At first sight this scenario seems
similar to the crossing-sliding case in panel (a). The distinction is in the
sign of the curvature of trajectories under vector field F1 that applies above
Σ. Here trajectories curve downwards. Another way of stating this is that
the sliding boundary ∂ ̂Σ− is repelling within the sliding region in this case,
whereas in (a) it was attracting. Thus, if we perturb trajectory B to the
right to form trajectory A, we will no longer cross Σ transversally as in panel
(a), but now the downwards curvature makes us intersect Σ again, this time
within the sliding region. Perturbing B to the left gives trajectory A, which
evolves exclusively within the sliding region, away from the boundary ∂ ̂Σ−.
The name switching-sliding reflects the gaining of an extra switching transition
(transversal crossing of Σ) under the sequence A → B → C.

The fourth and last case is the so-called adding-sliding bifurcation, shown
in Fig. 8.1(d). It differs from the other three cases in that there is a segment
of trajectory A that lies entirely within the sliding region ̂Σ. The bifurcation
event is that this trajectory is perturbed into B, which has a tangency with
the boundary ∂ ̂Σ−. Thus this is effectively a grazing bifurcation of the sliding
motion itself. However, the effect is not as in a standard grazing bifurcation,
because the perturbation into C causes the trajectory to leave Σ tangentially,
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to evolve above the Σ and then to land back within the sliding region. The
name adding-sliding refers to the transition A → B → C, where a locally
uninterrupted sliding motion is transformed into two separate pieces of sliding,
separated by a region of free, non-sliding evolution. Thus, we have added
one to the number of sliding segments in the trajectory. Note also, that the
adding-sliding point itself, where the trajectory B grazes with the sliding
boundary ∂ ̂Σ, is precisely the point at which the boundary switches between
being attracting and repelling. Recall that the attraction or repulsion of this
boundary was precisely what distinguished the cases (a) and (c) above. Hence
one might easily anticipate a codimension-two DIB where any of the critical
trajectories B in (a)–(c) happened additionally to interact with a point of
∂ ̂Σ− at which the sliding flow is tangent. We shall delay any treatment of
codimension-two bifurcations until Chapter 9.

The above four cases in some sense represent the simplest ways that tra-
jectories can interact with the boundary of a sliding region. The main aim
of this chapter is to understand and classify the dynamical consequences of
these bifurcations when the trajectory in question is a limit cycle, especially
when this causes chaotic motion or a rapid change in attractor. We shall treat
the general n-dimensional situation. Kuznetsov, Rinaldi & Gragnia [169] give
a more complete classification of possible DIBs that involve sliding in two-
dimensional Filippov systems with a single switching surface. This includes
possibilities of global bifurcation, and also some equilibrium bifurcations that
we covered in Chapter 5. In general n-dimensional systems, a complete clas-
sification remains unknown. In Section 8.6 below, we shall briefly treat two
other cases of DIBs that involve repulsive sliding segments or multiple switch-
ing surfaces.

8.1.2 Normal form maps for sliding bifurcations

Having dealt with the geometry of sliding, let us now turn to an analytical
description of the four kinds of sliding bifurcations we have just introduced.
For each case, we can calculate a discontinuity mapping that accounts for the
extra correction that must be added to account for the short extra passage
of the more complex trajectory C in Fig. 8.1 when solving for a trajectory
with the same event sequence as trajectory A. The results are summarized in
Table 8.1, which gives the size of the leading-order term in the discontinuity
mapping as a function of the size ε of a perturbation in initial conditions away
from the critical trajectory B. The precise functional forms of these maps will
be given shortly.

We start by giving analytical conditions that define each of the four bi-
furcation scenarios, along with appropriate non-degeneracy assumptions. In
all four cases, the critical trajectory involved in the bifurcation event has a
point of intersection with the boundary of the sliding region ∂ ̂Σ−. Suppose
this point of intersection occurs at x = x∗; then in all four cases, we have the
following defining conditions:
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Table 8.1. Summary of the singularities arising in each of the four sliding bifurcation
scenarios.

Bifurcation type DM leading-order term Map singularity

crossing-sliding ε2 + O(ε3) 2

grazing-sliding ε + O(ε3/2) 1
switching-sliding ε3 + O(ε4) 3

adding-sliding ε2 + O(ε5/2) 2

H(x∗) = 0, Hx(x∗) �= 0, (8.7)
β(x∗) = −1, LF1(x

∗) = 0. (8.8)

(Note that β(x∗) = −1 implies Fs(x∗) = F1(x∗).) The first conditions (8.7)
state that the point x∗ belongs to the switching manifold, which is well defined;
whereas the second ones (8.8) state that x∗ is on the boundary of the sliding
region, which without loss of generality we assume to ∂ ̂Σ−.

Now let us turn to non-degeneracy conditions for each of the four sliding
bifurcations. The first is that in a neighborhood of x∗, the vector field F2 is
not grazing and points towards Σ. That is

HxF2(x∗) > 0. (8.9)

Other considerations involve the tangency of the sliding flow to ∂ ̂Σ−. In order
to define such a tangency, note that a convenient notation for the normal
vector to ∂ ̂Σ− := {x ∈ Σ : β(x) = −1} is βx, which given (8.8) implies

βx =
−2

(LF2H(x))2
d

dx
LF1H(x); (8.10)

see Fig. 8.2. Note that the denominator of (8.10) is positive, according to
(8.9).

With reference to the geometry in Figs. 8.1 and 8.2, note that the crossing-
sliding and grazing-sliding cases require the sliding flow to evolve locally to-
wards ∂ ̂Σ−. Hence we require

∂β(Φs(x∗, 0))
∂t

∣

∣

∣

∣

t=0

< 0.

Where Φs is the flow operator corresponding to the sliding flow Fs. However,
we have that Fs = F1 at x∗ by (8.8); hence, Φs(x∗, 0) = Φ1(x∗, 0). Moreover

∂β(Φ1(x∗, 0))
∂t

= βxF1(x∗) =: LF1β(x∗).

Therefore the sign of LF1β(x∗) determines whether the boundary ∂ ̂Σ− is
attracting or repelling with respect to the siding flow. crossing-sliding and
grazing-sliding will therefore require the non-degeneracy condition
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Hx

βx

̂Σ ∂ ̂Σ−

Σ

{β(x) = −1}

{β(x) = −1}

Fig. 8.2. Geometry of the boundary ∂ ̂Σ−.

LF1β(x∗) < 0, (8.11)

whereas switching-sliding (case (c) of Fig. 8.1) requires

LF1β(x∗) > 0, (8.12)

so that the sliding flow points away from the boundary.
adding-sliding (case (d) of Fig. 8.1) is more subtle. Here we require an

additional defining condition that there is a point of tangency of the sliding
flow with ∂ ̂Σ− at the bifurcation point. That is

LF1β(x∗) = 0. (8.13)

Moreover, the geometry clearly implies that the sliding flow must reach a local
minimum of β at the bifurcation point. Hence, we also require

∂2β(Φs(x∗, 0))
∂2t

> 0;

that is
L2

F1
β(x) := βxF1xF1 + βxxF

2
1 > 0. (8.14)

We can now state the following Theorem on the form of the ZDM at each of
the four sliding bifurcations. In each case, ZDM case describes the correction
that must be made to trajectories of type A in Fig. 8.1 in order to obtain
trajectories of type C.

Theorem 8.1 (ZDM for sliding bifurcations). Suppose a piecewise-smooth
system of the form (8.1) undergoes a sliding bifurcation at point x∗, defined
by the conditions (8.7) and (8.8) under the non-degeneracy assumption (8.9).
Then we have the following four cases:
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crossing-sliding; under the additional non-degeneracy condition (8.11) the
ZDM for trajectories starting in S2 (H(x) < 0) to leading-order is given
by

x �→

⎧

⎨

⎩

x, if LF1H(x) ≤ 0,

x+ (LF1H(x))2 F2(x) − F1(x)
2LF2H(x)L2

F1
H(x)

, if LF1H(x) > 0, (8.15)

where the error term for LF1H(x) > 0 is O(|x− x∗|3).

grazing-sliding; also under the additional non-degeneracy condition (8.11)
the ZDM for trajectories starting in S1 (H(x) > 0) to leading-order is
given by

x �→
{

x, if H(x) ≥ 0,

x+ H(x)(F2(x) − F1(x))
LF2H(x) , if H(x) < 0, (8.16)

where the error term for H(x) < 0 is O(|x− x∗|3/2).

switching-sliding; under the additional non-degeneracy assumption (8.12),
the ZDM may be written to leading-order in the form

x �→

⎧

⎨

⎩

x, if LF1H(x) ≤ 0,

x+ 2
3

(LF1H(x))3

(LF2H(x))2(L2
F1
H(x))2

Q, if LF1H(x) > 0, (8.17)

where

Q = LF2H(x)(F1,xFd − Fd,xF1) − L(F1,xFd−Fd,xF1)H(x)Fd

and Fd = F2 − F1. The error term for LF1H(x) > 0 is O(|x− x∗|4).

adding-sliding; under the additional defining condition (8.13) and non-
degeneracy assumption (8.14), the ZDM to leading-order is

x �→

⎧

⎨

⎩

x, if LF1H(x) ≥ 0,

x− 9
2

(LF1H(x))2

(LF2H(x))2L3
F1
H(x)

Q, if LF1H(x) < 0, (8.18)

with Q defined as above. The error term for LF1H(x) > 0 is O(|x−x∗|5/2).

Remarks

1. The proof of this theorem follows from the explicit derivations in Sec-
tion 8.3 below.
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2. The corresponding PDMs can be derived by appropriate projection onto
a chosen Poincaré section, which does not alter the leading-order discon-
tinuity, as we will explain in Section 8.4. We also show how to compose
this map with the natural Poincaré mapthat is constructed in the absence
of sliding bifurcation. However, there is a subtlety because for most of
these bifurcations, this normal form map can be shown to be singular on
one side of the bifurcation. That is, the map has an eigenvalue precisely
zero. This is an artifact of the loss of dimensionality of the flow associated
with sliding. As we shall see, the subtlety is that, except in the case of
the grazing-sliding bifurcation, this loss of dimensionality is not evident
in the ZDM itself. It is only after projection with the smooth flow in order
to construct the PDM that one can see it.

3. Note from the above forms of the maps, and indeed from Table 8.1, that it
is only for grazing-sliding that the singularity of the map is 1. Hence, the
dynamics can be analyzed using the analysis in Section 3.6. In all other
cases, the induced map has a higher-order singularity so that it is both
continuous and differentiable at the grazing bifurcation point and so will
not lead to an immediate change in the attractor.

4. In the case that Σ is a locally flat manifold, Σ := {x ∈ D : Hx(x− x∗) =
0}, then the various expressions in this theorem take on a particularly
simple form. (Note that the conditions (8.7) mean that this flatness can
always be obtained to sufficiently high order by near identity co-ordinate
transformations, akin to those used to calculate a center manifold of a
smooth flow, see e.g. [78].) Here, using (8.10), the condition that βxF1 <

0 reduces to HxF1xF1 > 0. Moreover, if we suppose that ∂ ̂Σ− is flat
also, then the condition (8.14) βxF1xF1 + βxxF

2
1 > 0 becomes simply

HxF
2
1xF1 < 0. Then simplified expressions for leading-order terms of the

above mappings may be written, without Lie derivatives, in the forms
(where combinations of F1, F2, H and their derivatives are evaluated at
the grazing point x = x∗. In particular, we have:
crossing-sliding; equation (8.15) may be rewritten as

x �→
{

x, if (HxF1)x(x− x∗) ≤ 0
x+ u, if (HxF1)x(x− x∗) > 0, ,

where

u =
1
2

[(HxF1)x(x− x∗)]2

(HxF2) [(HxF1)xF1]
Fd;

grazing-sliding; equation

x �→
{

x, if Hx(x− x∗) ≥ 0,

x− Hx(x− x∗)
HxF2

(F2 − F1), if Hx(x− x∗) < 0;

switching-sliding;
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x �→
{

x, if (HxF1)x(x− x∗) ≤ 0,
x+ w, if (HxF1)x(x− x∗) > 0,

where

w =
2
3

[(HxF1)x(x− x∗)]3

(HxF2)2 [(HxF1)xF1]
2Q,

Q = [(HxF2)(F1,xFd − Fd,xF1) − (Hx(F1,xFd − Fd,xF1))Fd] ;

adding-sliding; equation (8.18) may be rewritten as

x �→
{

x, if (HxF1)x(x− x∗) ≥ 0
x+ z, if (HxF1)x(x− x∗) < 0,

where

z = −9
2

[(HxF1)x(x− x∗)]2

(HxF2)2 {[(HxF1)xF1]x F1}
Q.

Before proceeding to a derivation of such maps, we consider a motivat-
ing example of how these sliding bifurcations can organize the complicated
dynamics.

8.2 Motivating example: a relay feedback system

We return to a more detailed description of the dynamics of case study III
introduced in Chapter 1. As we shall see, this system undergoes both adding-
sliding and grazing-sliding in different parts of its parameter space. Also, in
Example 8.1 below, we shall show that a crossing-sliding bifurcation occurs in
the same system at different parameter values. Examples of crossing-sliding
and of switching-sliding will also be presented in Section 9.4.1 when discussing
a friction oscillator example that has a codimension-two sliding bifurcation.

Let us focus on a particular three-dimensional relay system of type (1.22)–
(1.24),

ẋ = Ax+Bu,

y = CTx,

u = −sgn(y),

specifically taking

A =

⎛

⎝

−(2ζω + λ) 1 0
−(2ζωλ+ ω2) 0 1

−λω2 0 0

⎞

⎠ , B =

⎛

⎝

k
2kσρ
kρ2

⎞

⎠ , C =

⎛

⎝

1
0
0

⎞

⎠ . (8.19)

The parameters are chosen so that ζ ± iω are a complex pair of poles of the
transfer function



8.2 Motivating example: a relay feedback system 365

G(s) = k
s2 + 2σρs+ ρ2

(s2 + 2ζωs+ ω2)(s+ λ)
,

whereas σ ± iρ are a complex pair of zeros of G. Moreover, −λ is the single

real pole and kρ2

ω2λ
is the steady-state gain.

We can write the three-dimensional relay system equivalently in the form
(8.1) with

F1 = Ax−B, F2 = Ax+B, H(x) = CTx.

Thus, we can define regions of smooth dynamics as

S1 := {x ∈ R
3 : H(x) = x1 > 0},

S2 := {x ∈ R
3 : H(x) = x1 < 0},

and the switching manifold Σ such that:

Σ := {x ∈ R
3 : H(x) = x1 = 0}.

A trajectory corresponding to typical symmetric self-oscillations for this
system are presented in Fig. 8.3 with either no sliding or one sliding segment
per half-period.
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Fig. 8.3. (a) Typical non-sliding trajectory (corresponding to self-oscillations) of
the relay feedback system (1.22)–(1.24) with −σ = k = λ = ξ = ω = 1, ρ = 3. (b)
A simple symmetric orbit with two sliding segments for −σ = k = λ = ξ = ω = 1,
ρ = 1.

More complex periodic orbits might contain many sliding segments per
period. Solutions of this type are represented in Fig. 8.4. To avoid confusion, in
what follows, we term a periodic solution characterized by N distinct sections
of sliding motion per period as an N -sliding orbit; so that Fig. 8.3(b) shows a
2-sliding orbit and Fig. 8.4 two different 12-sliding orbits. Moreover, we refer
to an orbit as being symmetric if one half-period may be mapped into the
other under the transformation x �→ −x (the simplest form of Z2 symmetry).
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8.2.1 An adding-sliding route to chaos

We consider the bifurcation scenario that occurs for decreasing values of the
parameter ζ ∈ [−0.08,−0.06] with all other parameters fixed at the values

k = 1, λ = 0.05, ω = 10, ρ = 1, σ = −1. (8.20)

This represents a region of parameter space where a seemingly chaotic solution
was found [84]. We begin by considering the stable 12-sliding stable symmetric
orbit shown in Fig. 8.4(a) and represented by the solid branch to the right of
the point SB in the bifurcation diagram shown in Fig. 8.5. This Monte Carlo
bifurcation diagram depicts the discrete values of the x3 co-ordinate versus
the bifurcation parameter ζ.
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Fig. 8.4. (a) Symmetric 12-sliding orbit for parameter values (8.20) and ζ =
−0.0628. (b) Stable asymmetric 12-sliding orbit close to the adding-sliding bifur-
cation point. Note the near-tangency of one of its sliding sections.

This choice of co-ordinate follows from the fact that we can introduce a
Poincaré section at the exiting portion of the boundary ∂ ̂Σ± of the sliding
region. In our case, such a choice implies that x1 and x2 remain constant
under variation of the bifurcation parameter ζ. Hence, all information is con-
tained in the value of x3 at these points, which immediately illustrates the
loss of information inherent in sliding. After a sliding portion of trajectory,
information on the point of entry to the sliding region ̂Σ has been lost by the
evolution under the vector filed Fs, which lives in a lower-dimensional space.
Thus we have effectively a one-dimensional Poincaré mapinstead of the usual
two-dimensional map one would expect for a three-dimensional flow.

Consider Fig. 8.5 in detail, the isolated points of which were computed
using a Monte Carlo approach augmented by dashed lines that represent the
simplest unstable periodic orbits. The specific Poincaré section is given by the
segment x1 = 0, x2 = −1 and x3 ∈ [2.3 2.6].

Starting from the right-hand side of the figure we observe that the 12-
sliding stable symmetric orbit undergoes a subcritical symmetry-breaking bi-
furcation at ζ ≈ −0.0628 (point SB in Fig. 8.5). This is an example of a smooth
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Fig. 8.5. The bifurcation diagram for the third-order relay feedback system
under investigation for parameter values (8.20) with ζ varying in the interval
[−0.08,−0.06]. See text for details.

bifurcation occurring in the Poincaré map associated with the flow around the
periodic orbit. Upon tracing the two branches of asymmetric solutions, we find
that they each restabilize in a saddle-node bifurcation at ζ ≈ −0.0623 [points
AS1 and AS2 in Fig. 8.5, and solution depicted in Fig. 8.4(b)]. The new sta-
ble asymmetric periodic solution branches born there are labeled as11 and
as21 in the figure. Despite the apparent similarity of this transition with a
classical saddle-node bifurcation, we wish to emphasize that the bifurcation
at AS1 (equivalently AS2) is strongly organized by the near-tangency of a
sliding segment with ∂ ̂Σ±. Such tangency of a limit cycle with the boundary
of the sliding region corresponds to an adding-sliding in the notation we have
just introduced. Note from Table 8.1 and from Theorem 8.1 that the adding-
sliding discontinuity mapping leads to a map singularity that is quadratic.
Therefore, according to the analysis in Chapter 4, there would not be an im-
mediate jump in the slope of the map, and hence no immediate change in the
attractor. Instead, we should expect a singularity in the second-derivative of
the solution curve in the bifurcation diagram. This then explains the apparent
sharpness in the change of slope near the saddle-node points in Fig. 8.5.
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Fig. 8.6. (a) One of the two stable asymmetric chaotic attractors exhibited by the
system for ζ = −0.07. (b) Symmetric chaotic attractor exhibited by the system for
ζ = −0.078 formed by the merging of two bands of asymmetric chaos.

As we now reduce ζ from these AS points, the newly formed stable asym-
metric sliding orbits undergo a sequence of period-doublings that accumulate
into an asymmetric pair of fully developed chaotic attractors. As shown in
Fig. 8.6(a), these chaotic attractors are organized by underlying asymmetric
orbits with a multiple number of sliding segments. Decreasing ζ further, these
two bands of asymmetric chaos then merge into one and the symmetric stable
chaotic attractor depicted in Fig. 8.6(b) is created (eventually to be destroyed
in a boundary crisis bifurcation for ζ < −0.08; not depicted).

It might be worth mentioning that in the control theory literature it has
often been assumed that self-oscillations of symmetric, unforced relay feedback
systems such as (1.22)–(1.24) are also symmetric. Specifically, it is usually
conjectured that asymmetric periodic solutions in these systems can only exist
through asymmetric external forcing or relay characteristics (see for example
the conjecture by Tsypkin [255, p. 179]). Here, we have shown that indeed a
symmetric unforced relay feedback system may exhibit stable asymmetric self-
oscillations through symmetry-breaking bifurcations of sliding periodic orbits
like at the point SB in Fig. 8.5. Moreover, via an adding-sliding bifurcation
and subsequent period-doubling cascade, there can be asymmetric chaotic
solutions.

8.2.2 An adding-sliding bifurcation cascade

Let us next consider a different example of adding-sliding where an N -sliding
orbit is created by a sequence of adding-sliding transitions in which it succes-
sively acquires extra sliding sections.

Taking the fixed parameter values

−σ = ρ = k = λ = 1 and ζ = 0.05, (8.21)
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upon increase of ω through the value 10.24, it is found that a symmetric
4-sliding orbit transforms into a 6-sliding orbit through adding-sliding. See
Fig. 8.7.
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Fig. 8.7. The first adding-sliding bifurcation in the cascade for parameter values
(8.21): (a) a symmetric 4-sliding orbit at ω = 10.17; (b) a 6-sliding orbit at ω = 10.74.
Panels (c) and (d) depict the orbit at the bifurcation value ω = 10.24.

Magnification of the bifurcating orbit in Fig. 8.7(d) clearly shows the tan-
gency of the orbit with ∂ ̂Σ at the adding-sliding point. It is easy to show that
this is an adding-sliding DIB. The 4-sliding orbit instantaneously transforms
into a 6-sliding orbit with no apparent change in slope of the path of solu-
tions as it passes through the bifurcation. In the notation of Chapter 3, this
is an A �→ B transition (see the left-most transition in Fig. 8.8). This is an
important point since the fold-like scenario we described in Fig. 8.5 actually
occurred a short parameter distance away from the point AS1. In both of
these manifestations of adding-sliding, the effect of the bifurcation is to cause
a jump in the second derivative of the solution locus, which gives rise to a
sharp, but smooth (C1-differentiable) corner. In the case in Fig. 8.5 this cor-
ner gives rise to a saddle-node nearby, whereas in Fig. 8.8 the corner merely
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Fig. 8.8. Bifurcation diagram for the third-order relay feedback system under in-
vestigation, with ω varying in the interval [10, 20].

gives a rapid local rise in amplitude (as measured by the value of x3 in the
Poincaré section).

The bifurcation diagram in Fig. 8.8 shows how, with further increase of bi-
furcation parameter ω, the 6-sliding orbit acquires additional sliding segments
through a cascade of qualitatively similar adding-sliding bifurcations. In this
manner, a 2-sliding orbit at ω = 5 eventually becomes a 14-sliding orbit at
ω = 25.
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Fig. 8.9. (a) The 8-sliding at ω = 16 and (b) the 14-sliding orbit at ω = 25, from
the adding-sliding cascade depicted in Fig. 8.8
.

The 8-sliding and 14-sliding orbits in the sequence of are depicted in
Fig. 8.9.

8.2.3 A grazing-sliding cascade

Upon further exploration of the parameter space of the system under inves-
tigation, we find that the symmetric 12-sliding orbit that undergoes symme-
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try-breaking at point SB in Fig. 8.5 is born in a cascade of grazing-sliding
bifurcations. To explain this cascade, let us return to parameter regime (8.20)
and allow the bifurcation parameter ζ to vary between 0.02 and 0.05. The
resulting bifurcation diagram is presented in Fig. 8.10.
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Fig. 8.10. Bifurcation diagram for the third-order relay feedback system under
investigation for parameter values (8.20) with varying ζ, using the same Poincaré
section as in Fig. 8.5.

Let us now explain the observed phenomena upon decreasing ζ. For
ζ ≈ 0.048, there is a stable, symmetric 4-sliding orbit, which at label GS1
undergoes a grazing-sliding bifurcation and becomes a 6-sliding orbit. If we
continue along this branch with decreasing values of the parameter ζ, the
6-sliding orbit disappears in a fold at ζ ≈ 0.0385 close to the adding-sliding
point (labeled AS), akin to what we observed to occur for the asymmetric
12-sliding orbits at labels AS1 and AS2 in Fig. 8.5. The unstable branch
from this bifurcation then bends back and restabilizes at ζ ≈ 0.0415 in a
regular saddle-node bifurcation (label SN). This restabilized 4-sliding orbit
then undergoes a sequence of grazing-sliding bifurcations labeled GS2-GS5 in
Fig. 8.10. Each bifurcation adds a (symmetric pair of) sliding segments to
the orbit, culminating in the existence for ζ < 0.03 of a symmetric 12-sliding
orbit.

Consider the grazing scenario labeled GS5 in more detail; see Fig. 8.11 As
the parameter ζ is decreased, one of the loops making up the orbit changes
its shape [Fig. 8.11(c)]. Further decrease of ζ causes the loop to touch the
boundary of the sliding strip and causes an extra local piece of sliding to
occur [Fig. 8.11(d)]. All the grazing-sliding bifurcations have the character
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Fig. 8.11. Stable symmetric orbits with multiple sliding sections near point GS5 in
Fig. 8.10; (a) ‘before’ (ζ = 0.032) and (b) ‘after’ (ζ = 0.025) the bifurcation. Panels
(c) and (d) show zooms into the relevant part of the trajectories in (a) and (b),
respectively.

that neither the stability nor the existence of the fundamental periodic orbit
in question changes through the bifurcation; that is, we have a persistence
scenario A �→ B in the parlance of Chapter 3. It is worthwhile to note though
that there is an appreciable change in the slope of the locus of periodic orbits
in the bifurcation diagram as we pass through each grazing-sliding bifurcation.
This is most pronounced for GS1 and GS2, but it is nevertheless there in the
other manifestations of this bifurcation.
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Fig. 8.12. The overall effect of the grazing-sliding cascade. The 4-sliding symmetric
orbit depicted in (a) for ζ = 0.05 becomes the 12-sliding orbit in (b) for ζ = 0.025.
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In case study IV, a friction oscillator, we also saw an example of a Filippov
system that exhibits a grazing-sliding bifurcations, but whose effect is far less
benign than in the above example, leading to an immediate jump to chaos.
We shall return to that example in Section 8.4 below, where we will explicitly
show the onset of robust chaos via an analysis of the discontinuity mapping.

Note that an analysis of the cascading of the adding-sliding and grazing-
sliding bifurcations we have uncovered here is beyond the scope of this book.
In particular, what kind of mechanism could lie at the accumulation of such
cascades, and whether there could be some universal ‘Feigenbaum’ constant
as for period-doubling cascades, remains an open question.

8.3 Derivation of the discontinuity mappings

Let us now return to a proof of Theorem 8.1 by explicit construction of the
discontinuity mappings. The method will be the same as for the grazing bi-
furcations presented in Chapters 6 and 7 using Lie derivatives, but it will lead
to somewhat more cumbersome expressions due to the presence of the sliding
flow. We shall treat the grazing-sliding and crossing-sliding cases in some de-
tail and merely sketch the steps necessary to derive the presented expressions
for adding-sliding and switching-sliding.

For clarity, it is useful in what follows to write all expressions in terms of
Lie derivatives with respect to F1 and the difference vector field Fd = F2−F1.
Thus, using the definition of β from (8.4), we obtain

β(x) = −
L(F1+F2)H(x)

LFd
H(x)

= −1 − 2
LF1H(x)
LFd

H(x)
, (8.22)

and after writing the sliding vector field as

Fs =
F1 + F2

2
+
Fd

2
β(x),

we get the closed-form expression

Fs = F1 −
LF1(H)
LFd

(H)
Fd. (8.23)

Also,

LFs
= LF1 −

LF1(H)
LFd

(H)
LFd

. (8.24)

Therefore,
LFs

H(x) = LF1H(x) − LF1H(x) = 0, (8.25)

which accords with our geometrical intuition, since the sliding flow lies tangent
to Σ := {x : H(x) = 0} and LFs

H(s), which is the time derivative of H along
the sliding flow, should be zero.

Before proceeding further, let us establish a few useful results.
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Lemma 8.1. At a point x∗ where LF1H(x∗) = 0, we have β(x∗) = −1 and
Fs(x∗) = F1(x∗). Also, for any smooth scalar function, say G(x), we have
LFs

G(x∗) = LF1G(x∗), Moreover,

LFs
(β)(x∗) = −2

L2
F1

(H)
LFd

(H)
(x∗).

Proof. The first two results follow immediately from (8.22) and (8.23). The
next results follow by direct calculation

LFs
(G)(x∗) = Gx

(

F1 −
LF1H

LFd
H
Fd

)

(x∗)

= Gx(x∗)F1(x∗) −
LF1H(x∗)
LFd

H(x∗)
GxFd(x∗)

= LF1(G)(x∗). (8.26)

Finally, by (8.26),
LFs

β(x∗) = LF1β(x∗).

Applying LF1 to (8.22), we then have

LF1

(

−1 − 2
LF1H(x∗)
LFd

H(x∗)

)

= −LF1H(x∗)LF1

(

2
LFd

(H)(x∗)

)

− 2
L2

F1
H(x∗)

LFd
H(x∗)

= −2
L2

F1
H(x∗))

LFd
H(x∗)

.

Lemma 8.2. At a point x∗ for which LF1H(x∗) = 0, where H satisfies (8.7),
and L2

F1
H(x∗) �= 0, then Hx(x∗) and d

dxLF1H(x∗) are linearly independent.
Hence, if two surfaces defined by H = 0 and β = −1 intersect at a point
where L2

F1
H(x∗) �= 0, they must intersect transversally and they define a

codimension-two manifold as represented in Fig. 8.2.

Proof. By (8.7), Hx(x∗) �= 0. Suppose that d
dxLF1H(x∗) = αHx(x∗) for some

non-zero scalar α; then

L2
F1

(H)(x∗) =
d

dx
LF1H(x∗)F1(x∗) = αHxF1(x∗) = αLF1H(x∗) = 0,

which contradicts our assumption.

Using the above, we can rewrite certain of the defining and non-degeneracy
assumptions purely in terms of F1 and Fd. The defining condition (8.7) valid
for all sliding bifurcations becomes

LF1H(x∗) = 0. (8.27)

The non-degeneracy assumption (8.9) valid for all sliding bifurcations becomes
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LFd
(x∗) > 0, (8.28)

and the extra non-degeneracy condition (8.11) for crossing-sliding and grazing-
sliding becomes

L2
F1
H(x∗) > 0, (8.29)

with the opposite inequality (8.12) applying at a switching-sliding now being
written as

L2
F1
H(x∗) < 0. (8.30)

Also, the defining condition for an adding sliding bifurcation (8.13) becomes

L2
F1
H(x∗) = 0, (8.31)

and the non-degeneracy assumption (8.14) becomes

L3
F1
H(x∗) < 0. (8.32)

Let us now treat each of the bifurcations in turn, treating the crossing-
sliding and grazing-sliding cases in some detail, giving only the briefest details
for the other two. Complete derivations may be found in [85].

8.3.1 Crossing-sliding bifurcation

ZDM

̂Σ Σ

x3

x2

x1

x∗

Φs(x1, δ)

Φ1(x2,−δ)

Φ1(x
∗, t)

Φ1(x2, t)

−βx

Hx

Fig. 8.13. A schematic representation of the ZDM derivation for the crossing-sliding
bifurcation.

Suppose the defining conditions (8.7), (8.27) hold with non-degeneracy
conditions (8.28) and (8.29) at a point x∗ that is part of a critical trajectory
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that starts in region S2, flows under Φ2, intersects the point x∗ on the bound-
ary ∂ ̂Σ− and then continues under Φ1. Figure 8.13 depicts a perturbation of
this trajectory that flows under Φ2 to hit the sliding region at some point,
say x1 ∈ ̂Σ. This trajectory is then constrained to evolve within ̂Σ under the
sliding flow Φs(x1, t) until it hits the boundary ∂ ̂Σ− after some time, say δ,
at the point x2 := Φs(x1, δ). The trajectory then leaves Σ following the flow
Φ1.

The zero-time discontinuity mapping or ZDM in this context is the correc-
tion that needs to be applied to the flow at point x1 in order to account for the
presence of the sliding region. Specifically, this correction must be such that
the evolution from the point at which Σ is first hit onwards may be described
entirely by applying the discontinuity map and using flow Φ1. As depicted in
Fig. 8.13, the ZDM maps x1 to the point x3, which is the image of the point
x2 under the flow Φ1(x2,−δ). Hence the total elapsed time from x1 to x3 is
zero.

To get an analytical expression for the ZDM, we therefore need to consider
the following combination of flows:

x3 = Φ1(Φs(x1, δ),−δ). (8.33)

We start by expanding the operator (8.33) as a Taylor series in time using
Lie derivatives. Specifically, for x close to x∗, let P (x) be any smooth scalar
function; then we have

P (Φ1(Φs(x, t),−t)) = (I + tLFs
+
t2

2
L2

Fs
+O(t3))(I − tLF1 +

1
t2
L2

F1
+

+O(t3))P (x1),

= (I + (LFs
− LF1)t+

t2

2
(L2

Fs
− 2LFs

LF1 + L2
F1

) +

+O(t3))P (x). (8.34)

Substituting for LFs
using (8.24), we find the coefficient of the O(t) term to

be
v(x)

LFd
H(x)

LFd
, where v(x) = LF1H(x). (8.35)

Note that v(x) is a small quantity since by (8.25) v(x∗) = 0 and x is close to
x∗. Hence the first term of the expansion (8.34) is of O(vt). After operator
multiplication and carrying out various simplifications on the O(t2) term, we
then obtain

P (Φ1(Φs(x1, t),−t)) = (I− v(x)t
LFd

H(x)
LFd

− t2

2
L2

F1
H(x)

LFd
H(x)

LFd
+O((v, t)3))P (x).

Taking P (x) to be each of the components of x in turn, we thus obtain the
general expression
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Φ1(Φs(x, t),−t) = x− v(x)t
LFd

H(x)
Fd(x) − t2

2
L2

F1
H(x)

LFd
H(x)

Fd(x)

+O((v, t)3). (8.36)

We next need to find the time δ. To do this we must solve

LF1H(Φs(x1, δ(x1))) = 0, (8.37)

for δ(x1). Expansion of (8.37) in δ gives

LF1H(Φs(x1, δ)) = v(x1) + L2
F1
H(x1)δ +O((v, δ)2) = 0. (8.38)

Now, since L2
F1

(H)(x1) is non-zero by the non-degeneracy hypothesis (8.29),
the Implicit Function Theorem guarantees that there is a locally unique solu-
tion of the form

δ = − v(x1)
L2

F1
H(x1)

+O(v2), (8.39)

where v(x1) is given defined in (8.35). Note that δ is positive, since within the
sliding set, v(x1) = LF1H(x1) < 0 and L2

F1
H(x1) is positive by hypothesis

(8.29).
Substitution of (8.39) for t = δ into the expansion (8.36) evaluated at a

point x1 gives that the leading-order expression for the ZDM is

x3(x1, v) =

⎧

⎨

⎩

x1, v ≥ 0,

x1 + v(x1)2
Fd(x1)

2LFd
H(x1)L2

F1
H(x)

+O(v3), v < 0. (8.40)

Finally, substituting for v from (8.35) into (8.40) and expanding around x1 =
x = x∗ gives the leading-order expression for ZDM(x1) = x3(x1, v(x1)):

ZDM(x) =

⎧

⎨

⎩

x, LF1H(x) ≥ 0,

x+ LF1H(x∗)2 Fd(x∗)
2LFd

H(x∗)L2
F1
H(x∗)

, LF1H(x) ≤ 0, (8.41)

which is equivalent to the final form of the ZDM stated in Theorem 8.1.
Notice that (8.40) is expressed as a function of two independent variables.

However, when the ZDM map is formulated, the initial point x1 determines
the variable v.

8.3.2 Grazing-sliding bifurcation

We now take exactly the same defining and non-degeneracy conditions (8.7),
(8.27), (8.28) and (8.29), but this time suppose that the critical trajectory
evolves entirely in the region S1 apart from the point x∗ at which it hits ∂ ̂Σ−

tangentially. See Fig. 8.14.
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ZDM

∂ ̂Σ−
̂Σ

S1

Σ

x4

x3
x2

x1

x∗

Φs(x2, δ2)

Φ1(x1, δ1)

Φ1(x3,−(δ1 + δ2)

Φ1(x
∗, t)

−βx

Hx

Fig. 8.14. Schematic representation of the construction of the ZDM for the grazing-
sliding bifurcation.

We consider the motion of a perturbed trajectory close to the critical one,
starting from a general point x1 that after evolution under the flow Φ1 through
a time δ1 would hit the switching manifold, ̂Σ, at some point x2. Note that δ1
may be positive or negative. If δ1 > 0, then x1 ∈ S1 is a point on a physical
trajectory of the piecewise-smooth system. If δ1 < 0, then we are in the
situation depicted in Fig. 8.14 where x1 ∈ S2 is a virtual point that would be
reached if the flow Φ1 were followed throughΣ as if the discontinuity boundary
were not there. In order to construct the ZDM, we follow the evolution from
the point x2 within ̂Σ using the sliding flow, for a time δ2 > 0 until we
reach ∂ ̂Σ− at the point x3. The ZDM correction is then given by the flow
Φ1(x3,−(δ1 + δ2)) to the point x4. Hence the total time spent in going from
x1 to x4 is zero. The construction of the analytical form of the ZDM follows
in a similar fashion to the equivalent derivations for grazing bifurcations in
Chapters 6 and 7. Consider the following combination of flows:

x4 = Φ1(Φs(Φ1(x1, δ1), δ2),−(δ1 + δ2)), (8.42)

and perform a Taylor expansion for small times δ1,2 using Lie derivatives.
Thus, for any scalar function P (x) that is smooth near x = x∗ we have

P (Φ1(Φs(Φ1(x, t), s),−(t+ s))) =

(I + tLF1 +
t2

2
L2

F1
+O(t3))(I + sLFs

+
s2

2
L2

Fs
+O(s)3)

(I + (−t− s)LF1 +
(−t− s)2

2
L2

F1
+O(t+ s)3)P (x).
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After operator multiplication and collection of terms at successive orders of t
and s, we get

P (Φ1(Φs(Φ1(x, t), s),−(t+ s))) =
(I + s(LFs

− LF1) + st(LF1LFs
− LFs

LF1) +
s2

2
(L2

Fs
L2

F1
− 2LFs

LF1) + sO(s, t)2)P (x). (8.43)

We now substitute for LFs
using (8.24), and to lowest order, we find

P (Φ1(Φs(Φ1(x, t), s),−(t+ s))) =

(I + (−st− s2

2
)
L2

F1
H(x)

LFd
H(x)

LFd
+ LF1H(x)Q(x) +

sO(s, t)2)P (x),

where Q(x) represents a somewhat lengthy expression that we do not spell
out here. Taking P (x) to be each of the components of x in turn, we obtain

Φ1(Φs(Φ1(x, t), s),−(t+ s)) − LF1H(x)Q(x) =

x+ (−st− s2

2
)
L2

F1
H(x)

LFd
H(x)

Fd + sO(s, t)2. (8.44)

Now, as we did in Chapters 6 and 7, we first derive the ZDM under the
assumption that the starting point x1 is chosen such to lie on the normal
Poincaré section

LF1H(x1) = 0. (8.45)

In this case, the term proportional to Q(x) in (8.44) vanishes, which leads
to considerably simpler expressions. At the end of the calculation, we take a
general point x1 and show that leading-order expression for the ZDM does not
change. For the time being then, let us assume (8.45) and calculate leading-
order expressions for the times t = δ1(x1) and s = δ2(x1).

The time δ1 is defined as the time to get from x1 to the point of first
intersection with Σ. That is,

H(Φ1(x1, δ1)) = 0.

This step follows exactly the same methodology as for the derivation of the
equivalent time δ in the ZDM for grazing bifurcations derived in Chapters 6
and 7. Thus, to leading-order, we obtain

δ

√

H(Φ1(x1, δ1)) −H(x) − LF1H(x)δ1
δ21

+ y = 0,

where y =
√

−H(x1). For small y, the Implicit Function Theorem shows the
existence of a unique, smooth function δ1(x1, y)
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δ1(x1, y) = y

(

−
√

2
L2

F1
H(x1)

+O(y)
)

(8.46)

satisfying δ1(x∗, 0) = 0.
We next need to similarly solve for the time δ2. The equation determining

δ2 can be written to leading-order as

LF1H(Φs(Φ1(x1, δ1)), δ2) = 0, (8.47)

where δ1 is the time at which sliding begins. Expanding the operator on the
left-hand side of (8.47) in δ1 and δ2 we get

[

I + LF1δ1 +O(δ21)
] [

I + LFs
δ2 +O(δ22)

]

[LF1H(x1)]

and hence

LF1H(Φs(Φ1(x1, δ1)), δ2) − LF1H(x1)
(

1 − δ2
LFd

LF1H(x1)
LFd

H(x1)

)

=

(δ1 + δ2)L2
F1
H(x1) +O(δ1, δ2)2.

Using (8.47) and LF1H(x1) = 0, we see that

δ2(x, δ1) = δ1(−1 +O(δ1)). (8.48)

Substituting (8.46) into (8.48) gives us

δ2(x1, δ1(x1, y)) = y

(

√

2
L2

F1
H(x1)

+O(y)
)

. (8.49)

After substituting for δ2 (8.49), and for δ1 (8.46) into (8.44), we finally
obtain the ZDM for the trajectories that contain a sliding segment (H(x1) ≤
0)

ẐDM(x1) = x1 + y2

(

1
LFd

H(x1)
Fd(x1) +O(y)

)

:= x1 + Γ (x1, y)y2, (8.50)

where y(x1) =
√

−H(x1) and Γ is a smooth function of its two arguments.
However, we obtained (8.50) under the assumption that LF1H(x1) = 0. If

we consider any point x1 such that LF1H(x1) = v, then to get the leading-
order term, we need to project the ZDM by a smooth flow mapping Φ1 and
obtain our ZDM by additionally flowing for some time, say δ0 to the point
where LF1(H)(Φ1(x1, δ0)) = 0. Thus, we consider the following flow combina-
tion

Φ1(ẐDM(Φ1(x, δ0), y),−δ0) = x+ y2(̂β(x, y) +O(t1)) (8.51)

and
y =

√

−H(Φ1(x1, δ0)) =
√

−Hmin(x1) (8.52)
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since Φ1(x1, δ0) is the point where H has its local minimum along a trajectory
through x1.

The algebra is identical to that for the grazing bifurcation in Chapters 6
and 7, so we merely state the result that

Hmin(x1, v) = H(x) +O(v2)

and that the ZDM is unchanged by this additional projection. That is, we can
finally write the ZDM for the grazing-sliding as

ZDM(x) = x+
{

0, Hmin ≥ 0,
Γ (x, y, v)y2, Hmin < 0, (8.53)

with v = LF1H(x), y =
√

−Hmin(x, v), Hmin(x, 0) = H(x) and

Γ (x, 0, 0) =
Fd(x)

LFd
H(x)

.

Note that to leading-order all the Lie derivatives can be evaluated at x = x∗,
which gives the form of the ZDM map for grazing-sliding given in Theorem
8.1.

8.3.3 Switching-sliding bifurcation

ZDM

̂Σ Σ

x3x2

x1

x∗

Φs(x2,−δ1)

Φ1(x1, δ1)

Φs(x
∗, t)

−βx

Hx

Fig. 8.15. A schematic representation of the construction of the ZDM for the
switching-sliding bifurcation.

Suppose now the same conditions (8.7), (8.27) and (8.28) hold but the
opposite inequality (8.30) applies. Then the critical trajectory, which starts in
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region S2 before hitting the sliding region at a point x∗ in the boundary ∂ ̂Σ−,
subsequently slides away from ∂ ̂Σ− within the sliding region ̂Σ. See Fig. 8.15.
Let us consider a perturbed trajectory that hits the switching manifold at a
point x1 outside the sliding region in a neighborhood of the point x∗. The
ZDM in this case represents the correction that must be applied to the point
x1 in order that the subsequent evolution can be locally described using just
the sliding flow Φs. The analytical construction of the ZDM proceeds in two
steps: First, we consider the flow from x1 using flow Φ1 until it reaches the
sliding region at a point x2 after some time δ; then we flow backwards in
time for the same amount of time from the point x2 using the sliding flow Φs,
reaching the point x3. As usual, the ZDM is then the mapping from x1 to x3.

Thus the ZDM can be written as

x3 = Φs(Φ1(x1, δ),−δ), (8.54)

where the time δ is found by solving

H(Φ1(x1, δ)) −H(x1)
δ

= 0.

Note that such an expression is uniformly valid for x1 in a sufficiently small
neighborhood of x∗ since H(Φ1(x, δ)) is locally quadratic in δ at x = x∗.
The form of the ZDM stated in the Theorem is then calculated by Taylor
expansion of the flow combination (8.54) using appropriate Lie derivatives.

8.3.4 Adding-sliding bifurcation

We have come now to the last of the four sliding bifurcation scenarios. Here,
the same conditions (8.7), (8.27) hold but the non-degeneracy condition is
replaced with the equality (8.31) and the degeneracy condition (8.32).

As shown in Fig. 8.16, in this case a segment of the critical trajectory
lies locally entirely in ̂Σ and has a quadratic tangency with the boundary of
the sliding region ∂ ̂Σ− at the point x∗. Consider a perturbed trajectory, with
initial point x1, that crosses the boundary ∂ ̂Σ− at some point, say x2. The
system then switches to flow Φ1, until it reaches Σ again at x3. The ZDM in
this case represents the correction that needs to be applied at point x1 so that
the local description of the trajectory is governed entirely by the sliding flow
Φs. To derive such a mapping we need to consider three different steps (see
Fig. 8.16): We first need to find the time δ1 at which the trajectory crosses
the boundary of the sliding region at x2; then we must find the time of flight
δ2 under Φ1 in order to reach x3 in Σ; finally we flow the system using Φs

through time −(δ1 + δ2) so that the total time spent is zero.
The ZDM is thus encapsulated in the flow composition

x4 = Φs(Φ1(Φs(x1, δ1), δ2),−(δ1 + δ2)), (8.55)

where the times δ1 and δ2 are found by solving
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ZDM

∂ ̂Σ−
̂Σ Σ

x4

x3

x2

x1x∗
Φs(x

∗, t)

Φs(x2, δ2)

Φ1(xs, δ1)

Φs(x3,−(δ1 + δ2))

−βx

Hx

Fig. 8.16. A schematic representation of constructing ZDM for adding-sliding bi-
furcation case.

LF1H(Φs(x1, δ1)) = 0, for δ1

and
H(Φ1(Φs(x1, δ1), δ2)) = 0, for δ2.

The form of the ZDM stated in the Theorem is then obtained by Taylor
expansion of the flow combination (8.55) using appropriate Lie derivatives.

8.4 Mapping for a whole period: normal form maps

Let us now consider a parameterized version of (8.1)

ẋ =
{

F1(x, μ), if H(x, μ) > 0,
F2(x, μ), if H(x, μ) < 0, (8.56)

where x ∈ D ⊂ R
n and μ ∈ R. We suppose that one of the bifurcations ana-

lyzed above occurs with respect to the critical trajectory that passes through
the point x∗ when μ = μ∗. We suppose that the critical trajectory is a hyper-
bolic limit cycle.

We shall be interested in the bifurcation scenarios caused when the critical
trajectory undergoing the sliding bifurcation is part of a limit cycle. Specifi-
cally we shall see how discontinuities in the ZDMs translate into discontinuities
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in the Poincaré mapping around the periodic orbit. We then try to understand
the dynamics of this non-smooth ‘normal form map’ using the classification
strategies introduced in Chapters 3 and 4. The idea behind the use of discon-
tinuity mappings is that we can construct a Poincaré map for a given orbit as
a composition of mappings. These are all smooth except for the discontinuity
mapping itself. Since the type of discontinuity is generically preserved under
composition with a smooth mapping, we can thus state that the type of dis-
continuity found in the discontinuity mapping will be the one characterizing
the full Poincaré map. However, as we shall see, there are subtleties when
sliding is involved, because the creation of a new portion of sliding motion
leads to a loss of system dimension that results in maps that are singular in
one region of definition (as analyzed in Section 3.6). This loss of dimension
can already be seen in the Poincaré discontinuity mapping (PDM), which also
contains the discontinuity inherent in the ZDM. Composing this map with the
regular Poincaré map defined around the periodic orbit in the absence of the
extra degeneracy associated with the sliding bifurcation leads to the normal
form map. However, due to the presence of sliding in some of the cases, the
choice of Poincaré section used to define the PDM needs to be treated with
some delicacy.

We shall take each of the four cases in turn in each subsection below. Sec-
tion 8.5 that follows considers the grazing sliding case in more detail, because
that is the only case that can lead to an abrupt change in attractor precisely
at the DIB point.

8.4.1 Crossing-sliding bifurcation

For simplicity, we begin by considering a Filippov system with a single discon-
tinuity boundary Σ, which at some parameter value μ = μ∗ has a hyperbolic
limit cycle that undergoes a crossing-sliding bifurcation that without loss of
generality we assume to take place at ∂ ̂Σ−, as depicted in Fig. 8.17. Such an
orbit starts at a point A, where it satisfies the conditions for crossing-sliding
(8.7), (8.8), (8.11). From this point the trajectory leaves Σ tangentially and
moves into region S1 following the flow Φ1. Eventually, it crosses the switching
manifold at the point B (outside ̂Σ), moves into region S2 following the flow
Φ2, before closing itself at the point A.

Suppose we choose as a (remote) Poincaré section, the segment Π1 ⊂ Σ
that includes the point B (see Fig. 8.17). We then consider two auxiliary
sections Π2 and Π3, which are entry and exit sections local to the crossing-
sliding point A.

Then, the compound Poincaré map PN := Π1 �→ Π1 describing the orbit
can be obtained as the composition of the following maps:

P12 : Π1 �→ Π2, PDM : Π2 �→ Π3, P31 : Π3 �→ Π1.

Notice that maps P12 and P31 are obtained by considering the flows Φ2 and
Φ1, respectively. Hence, they are smooth and invertible since the flow is locally



8.4 Mapping for a whole period: normal form maps 385

sliding region

S1

S2

Π1Π2

Π3

Σ

A

B

Fig. 8.17. A periodic orbit undergoing the crossing-sliding scenario

transversal to the starting and ending sections. Therefore, the discontinuity
in PN must be introduced by the PDM.

ZDM

Π2

Π3

x2

x3

x4

x1x̂1 = x̂3

Q

Q

Fig. 8.18. Action of the PDM applied to a point x̂0 that lies outside of the sliding
region and to a point x0 that lies within the sliding set.

Let us first discuss the geometric construction of the PDM in this case, as
it is more subtle than in all other examples. Here the entry and exit Poincaré
sections Π2 and Π3 are allowed to be different. This is because we need to
choose an entry Poincaré section that is transverse to all incoming trajecto-
ries, irrespective of whether they slide. Similarly, the exit section should be
transverse to all outgoing trajectories. For this reason we choose the incoming
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section to be
Π2 = Σ = {x ∈ D : H(x) = 0},

and the outgoing section

Π3 = {x ∈ D : LF1H(x) = 0}.

Note that the grazing point A = x∗ for μ = μ∗ is in both Poincaré sections
by definition. Now, from this geometry it is intuitively obvious where the loss
of dimensionality comes from.

Consider the two points x̂1 and x1 in Fig. 8.18. Consider first points x̂1

in Π2 outside the sliding region. The action of the PDM for such points is
reduced to that of the projection mapping, since the ZDM for such points is the
identity. That is x̂1 = x̂3, where x̂3 is the image of x̂1 under the action of the
ZDM. The flow Φ1 starting from these points is almost tangential to Σ. Thus,
we will see a near loss of rank by 1 in the PDM mapping (i.e., this segment of
Π2 is squeezed into a small segment of Π3). This is depicted schematically in
Fig. 8.18 where the projection mapping, labeled Q and indicated by a solid
line, maps x̂1 = x̂3 to x4 lying on Π3.

Now consider points x1 in ̂Σ ∩ Π2. Here the ZDM contains a non-zero
quadratic term and, by construction, maps points onto the surface, G say,
formed by computing trajectories backwards in time via flow Φ1 from the
boundary of the sliding region ∂ ̂Σ− (see Fig. 8.13). This surface is everywhere
tangential to the flow Φ1, and therefore an exact loss of rank by 1 in G will be
observed. In Fig. 8.18 we can see that the point x1 is mapped by the ZDM to
x3 ∈ G, which is then mapped by the projection map Q (following flow Φ1)
to x2, which lies on the boundary ∂ ̂Σ−.

Therefore, the ZDM causes a discontinuity in the second-derivative terms,
and the projection map introduces the rank loss such that the mapping is
singular and has co-rank 1 on the sliding side of this discontinuity. Since P12

and P31 are smooth, the full Poincaré mapping PN = P31 ◦ PDM ◦ P12 also
has these properties. In particular, let us suppose that at μ = μ∗ P31(x∗) = x∗
and P12(x∗) = x∗, and that the linearization of the maps can be written in
the form

P31(x∗, μ) = x∗ +N1(x−x∗) +M1(μ−μ∗) +O
(

|x− x∗|2, (μ− μ∗)2
)

(8.57)

P12(x∗, μ) = x∗ +N2(x−x∗) +M2(μ−μ∗) +O
(

|x− x∗|2, (μ− μ∗)2
)

(8.58)

for n× n matrices N1,2 and 1 × n matrix M1,2 satisfying

N1 :=
∂

∂x
P31

∣

∣

∣

∣

x=x∗,μ=μ∗
and M1 :=

∂

∂μ
P31

∣

∣

∣

∣

x=x∗,μ=μ∗
,

N2 :=
∂

∂x
P12

∣

∣

∣

∣

x=x∗,μ=μ∗
and M2 :=

∂

∂μ
P21

∣

∣

∣

∣

x=x∗,μ=μ∗
.

Moreover, without loss of generality, we suppose that the local PDM map is
independent of parameters. Then we can state the following:
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Theorem 8.2 (normal form map for a crossing-sliding bifurcation).
Suppose a hyperbolic periodic orbit p(t;μ) with event sequence as in Fig. 8.17
of a piecewise-smooth system written in local co-ordinates in the form (8.56)
has a regular crossing-sliding at (x, μ) = (x∗, μ∗). Then the Poincaré map PN

from Π1 to itself can be written as

PN (x, μ) = P31(PDM(P12(x, μ)), μ), (8.59)

where P31 and P12 are given by (8.57) and (8.58), respectively, and

PDM(x) =
{

PDML(x,LF1H(x)) when LF1H(x) ≤ 0,
PDMR(x,LF1H(x)), when LF1H(x) ≥ 0, (8.60)

where PDML and PDMR are given by

PDML(x, v) = x− v

(

1
L2

F1
H(x)

+ v2

(

LFd
LF1H(x)

2LFd
H(x)L2

F1
H(x)

+

+
L3

F1
H(x)

2(L2
F1
H(x))2

)

1
L2

F1
H(x)

)

LF1 + v2 LFd

2LFd
H(x)L2

F1
H(x)

+v2
L2

F1

2(L2
F1
H(x))2

+O(v3), (8.61)

PDMR(x, v) = x−
(

1
L2

F1
H(x)

v +
1
2

L3
F1
H(x)

(L2
F1
H(x))3

v2

)

LF1 +

+
1
2

1
(L2

F1
H(x))2

v2L2
F1

+O(v3). (8.62)

Remarks

1. If we compare (8.61) and (8.62) we can clearly see that the two equations
differ at O(v2). Hence, the projection mapping indeed does not cancel the
leading-order correction that needs to be applied to the system due to the
crossing-sliding scenario.

2. More complex event sequences than in Fig. 8.17 can also be captured by
this normal form. If the critical periodic orbit crosses other remote discon-
tinuity boundaries and potentially has other regions of sliding, providing
all crossings and entry points of sliding happen transversely with respect
to both μ and x. Then the Poincaré maps P31 and P12 will be replaced by
the smooth Poincaré mappings that result from the compositions of the
relevant flow maps and transverse discontinuity mappings.

Proof. To prove the theorem we just need to find an explicit expression for
the PDM by projecting x ∈ Σ from the ZDM given by (8.40) onto Π2 using
flow Φ1. Thus, we have



388 8 Sliding bifurcations in Filippov systems

Φ1(x, t) = x+ LF1t+
1
2
L2

F1
t2 +O(t3). (8.63)

We can find the time δ, required to reach Σ, by solving equation

LF1H(Φ1(x, δ)) = 0. (8.64)

Expanding (8.64) in δ and noting that LF1H(x) := v = O(δ) we can solve
(8.64) for δ as a power series in v. The existence of the solution for sufficiently
small v is guaranteed by the Implicit Function Theorem. We have

δ(x, v) = − 1
L2

F1
H(x)

v − 1
2

L3
F1
H(x)

(L2
F1
H(x))2

v2 +O(v3). (8.65)

We can now substitute (8.65) into (8.63).
Thus, the projection mapping for x ∈ {x ∈ Σ : v ≥ 0} to O(v2) becomes

PDMR(x, v) = x−
(

1
L2

F1
H(x)

v +
1
2

L3
F1
H(x)

(L2
F1
H(x))3

v2

)

LF1 +

+
1
2

1
(L2

F1
H(x))2

v2L2
F1

+O(v3). (8.66)

We next need to obtain the PDM for points x ∈ Σ : v ≤ 0. To do so we
project points mapped by the ZDM using flow Φ1 onto Π2. Thus, expanding
Φ1(x3, t) in t, we get

Φ1(x3, t) = x3 + ̂LF1t+ ̂LF1

2 t2

2
+O(t3), (8.67)

where the hat symbol denotes that the quantities are evaluated at x3 which
is the image of a point x ∈ Σ for v ≤ 0 under the action of the ZDM. The
correction of LF1 and to L2

F1
due to the fact that the starting points do not

lie on Σ is of O(v2). Hence, we can rewrite (8.67) as

Φ1(x3, t) = x3 + LF1t+ L2
F1

t2

2
+O((v, t)3),

or equivalently as

Φ1(x3, t) = x+ v2 LFd

2LFd
H(x)L2

F1
H(x)

+ LF1t+
1
2
L2

F1
t2 +O((v, t)3). (8.68)

where we have used the explicit form of the ZDM (8.41). We can find the time
δ as a function of v by solving

LF1(H)(Φ1(x3, δ)) = 0, (8.69)

for δ(x3, v). Expanding (8.68) in t, yields
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LF1H(Φ1(x3, δ)) = v + v2 LFd
LF1H(x)

2LFd
H(x)L2

F1
H(x)

+ L2
F1
H(x)δ +

+L3
F1
H(x)

δ2

2
+O((δ, v)3) = 0. (8.70)

Solving (8.70) for δ as a power series in v, to quadratic order in v, gives

δ(x, v) = − 1
L2

F1
H(x)

v −
(

LFd
LF1H(x)

2LFd
H(x)L2

F1
H(x)

+
L3

F1
H(x)

2(L2
F1
H(x))2

)

1
L2

F1
H(x)

v2.

Substituting (8.4.1) into (8.68) will give us an expression for the PDM for x
that belongs to the sliding region. Hence, we have

PDML(x, v) = x− v

(

1
L2

F1
H(x)

+ v2

(

LFd
LF1H(x)

2LFd
H(x)L2

F1
H(x)

+

+
L3

F1
H(x)

2(L2
F1
H(x))2

)

1
L2

F1
H(x)

)

LF1 + v2 LFd

2LFd
H(x)L2

F1
H(x)

+v2
L2

F1

2(L2
F1
H(x))2

+O(v3). (8.71)

Finally, the PDM (8.60) is written by combining (8.71) and (8.66).

Now let us consider the implications of the structure of this normal form
map on the dynamical unfolding of a stable hyperbolic periodic orbit under-
going a crossing-sliding bifurcation at a critical parameter value μ∗. Since the
first derivative of the Poincaré mapping is continuous, we expect the orbit
to persist under small parameter variations. The main effect of the DIB is
that the orbit will acquire a section of sliding motion. However, the Poincaré
mapping around the limit cycle will not be topological equivalent. In particu-
lar, although the map local to the fixed point corresponding to a non-sliding
solution is invertible, that built around a sliding solution is not. So, this DIB
corresponds to a bifurcation in the classical sense of Definition 2.16, even
though there will not be a change in the local attractor.

In fact, we can say what happens to the multipliers of the periodic orbit
undergoing the bifurcation. Since the Poincaré mapping is piecewise-smooth,
the multipliers should vary smoothly on either side of the discontinuity. They
should be continuous across the boundary, but their derivative with respect
to parameters is expected to have a jump over the discontinuity. Moreover,
on the sliding side, at least one multiplier of the Poincaré mapping must be
zero, since the Poincaré mapping here has co-rank 1, and by continuity, that
multiplier must be approach zero as the bifurcation point is reached from the
other side.

Example 8.1. Consider the third-order relay feedback system (8.19) (8.19), at
the parameter values ρ ≈ 2.09 and −σ = k = λ = k = ζ = ω = 1. Here it is



390 8 Sliding bifurcations in Filippov systems

2 2.05 2.1 2.15 2.2 2.25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−9

ρ

λ1

20

2 10−9

2.1 2.2

Fig. 8.19. One of the multipliers of the Poincaré map calculated for a periodic point
of an orbit with (left) and without (right) sliding segments (see Example 8.1).

found that a simple symmetric periodic orbit (that is an orbit formed by two
segments — one generated by vector field F1 and the other by vector field
F2) undergoes a crossing-sliding bifurcation. Figure 8.19 shows the behavior
of one multiplier of the associated Poincaré map as the parameter ρ is varied
through the bifurcation point (note that we have two multipliers as the system
is three dimensional).

We can see from the figure that the multiplier is identically 0 for periodic
orbits that feature a sliding segment, and that it continuously increases from
this value as we move away from the bifurcation along the branch of non-
sliding orbits. Notice that the multipliers change in a continuous and smooth
way. This follows from the fact that the bifurcating orbit is symmetric with
real multipliers. If we consider a map which captures the dynamics of half of
the orbit then we would observe that the multipliers change continuously but
in a non-smooth way under the variation of the bifurcation parameter.

8.4.2 Grazing-sliding bifurcation

Consider a periodic orbit, shown in Fig. 8.20, that grazes Σ at a point A
on the boundary of the sliding region ∂ ̂Σ− satisfying conditions (8.7), (8.8),
(8.11) for a grazing-sliding, but otherwise lying entirely in region S1.

That is, without loss of generality, we assume that the grazing orbit does
not contain any sliding segments apart from the zero-length sliding segment.
(For more general situations, we only need assume that the flow that takes
the grazing sliding point to itself around the limit cycle crosses all other
discontinuity boundaries — or enters sliding regions — transversally, so that
the Poincaré mapthat takes the grazing sliding point to itself is smooth in
both μ and x.)

To study the bifurcation upon varying a parameter we consider some sec-
tion Π1 transversal to the combination of the system flows Φ1 and Φs in
region S+ and the section Π2 := {x ∈ R

n : μ(x) = −1} going through point
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Fig. 8.20. Simplest orbit undergoing grazing-sliding bifurcation

A transversal to flow Φ1. The full Poincaré map P then maps Π1 back to
itself and is a combination of flows Φ1 and Φs obtained by composition of the
following mappings:

P12 : Π1 �→ Π2, PDM : Π2 �→ Π2, P21 : Π2 �→ Π1.

A similar argument to the previous cases shows that maps P12 and P21

are smooth and of full rank. The discontinuity therefore must be due to the
PDM, which is formed from a composition of the zero-time discontinuity map
for grazing-sliding (8.16) and a projection mapping Q taking points back to
Π2 by flow Φ1.

Consider now the PDM. The ZDM for this case is the identity for trajec-
tories that remain in region S1, and contains a linear leading-order correction
term otherwise. Moreover, from (8.74) we see that this correction cannot be
parallel to the vector field F1, because it has the direction of (F2 − F1) (if
(F2 −F1) were parallel to F1, then sliding would not be possible). Hence, the
composition of the ZDM with the projection map M does not cancel out the
leading-order term and the discontinuity is still of linear leading-order.

We can easily obtain an expression for the PDM by choosing the Poincaré
sectionΠ2 to be the zero level set of a function LF1H(x). Note that this surface
necessarily crosses ∂ ̂Σ− transversally by the non-degeneracy assumptions of
grazing-sliding (see Fig. 8.20).

Then, we simply project the ZDM onto the Poincaré section. We follow
the same steps that were used to express the ZDM for a general point. That
is we can expand

Φ1(ZDM(x, y),−δ) = x+ y2Γ (x, y) − δLF1 + h.o.t, (8.72)

where ZDM(x, y) is given by (8.50) with y(x) =
√

−H(x) and

Γ (x, y) =
1

LFd
H(x1)

Fd(x1) +O(y).

The value of the vector field F1 at some point x that lies on the chosen
Poincaré section, and at some x3 that is the image of x under the action of
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the ZDM, differ by O(y2). That is, the remainder term contains also terms of
O(ty2).

We now need to determine a leading-order expression for the time t. We
know that LF1(H)(Φ1(x3,−δ)) = 0. Hence, expanding this expression in t we
get

LF1H(Φ1(x3,−δ)) = LF1H(x3) − δL2
F1
H(x3) + h.o.t = 0. (8.73)

Note that the first term of (8.73) is small and of O(t). Equation (8.73) can
now be solved for δ as a power series in v3 := LF1(H)(x3) (for sufficiently
small v3), which yields

δ =
v3

L2
F1
H(x3)

+ h.o.t.

We can further express v3 as a function of y =
√

−H(x). To leading-order
in y, we have

v3 = LF1(H)(x+ y2Γ (x, y)) = LF1H(x) + LF1(H)(Γ (x, y))y2.

Hence,
LF1(H)(Γ (x, y))y2

L2
F1
H(x)

in the direction of the vector field F1 is the sought correction to the ZDM,
which gives us the PDM to the leading-order for the grazing-sliding bifurca-
tion.

Expanding (8.72) around x∗ to leading-order in x, we get the PDM:

PDM(x) = x+

⎧

⎨

⎩

0, Hmin ≥ 0,

Hmin

[

F2(x∗)
LFd

H(x∗) − LF2LF1(H)(x∗)
L2

F1
H(x∗)

F1(x∗)
]

, Hmin < 0,

(8.74)
with Hmin defined as for the ZDM.

Finally, consider the surface G which is the forward image under the flow
Φ1 of the sliding region. By construction, the grazing-sliding ZDM maps points
below this surface back to G and therefore is rank-deficient for these points.
Therefore, the PDM is also rank-deficient. We can summarize the construction
as follows:

Theorem 8.3 (normal form map for a grazing-sliding bifurcation).
Suppose a hyperbolic periodic orbit p(t;μ) with event sequence as in Fig. 8.20
of a piecewise-smooth system that is written in local co-ordinates in the form
(8.56) has a regular grazing-sliding at (x, μ) = (x∗, μ∗). Let T (x, μ) be the time
of flight upon following trajectories of flow Φ1 from Π2 to Π2 by composing
the Poincaré maps P12 and P21. Then we can express P21◦P12(x) as Φ1(x, T ).

The normal form map PN : Π2 → Π2 can then be expressed as
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PN (x, μ) =
{

Φ1(x, T (x, μ)), when H(Φ1(x, T (x, μ)), μ) ≥ 0,
PDM(Φ1(x, T (x, μ)), when H(Φ1(x, T (x, μ)), μ) < 0. (8.75)

where PDM(x) is given by (8.74).

Remarks

1. From the above considerations, we see that the derivative of the Poincaré
mapPN is discontinuous at the bifurcation point x∗. Thus, for such map-
pings we cannot therefore conclude that the periodic orbit will persist
under parameter variation through the bifurcation point. To unfold the
bifurcation, we need instead to use the classification technique developed
in Chapter 3 for border-collision bifurcations in locally piecewise-linear
maps that are noninvertible in one region. This unfolding forms the sub-
ject of Section 8.5 below.

2. Finally, if the orbit survives the bifurcation, we can expect a jump in
multipliers as the periodic orbit acquires a sliding portion. The jump in
multipliers is nicely illustrated by the fact that a sliding periodic orbit
must have at least one multiplier 0, whereas no such restriction exists for
an orbit entirely in region S1.

3. Recall the case of grazing bifurcations in systems without sliding but which
nevertheless have degree of smoothness 1 (see Chapter 7): the normal
form map is characterized by a square-root singularity. When grazing in
the presence of sliding is considered the normal form map instead has a
linear leading-order singularity. Thus, the occurrence of sliding makes a
significant change to the nature of the dynamics.

4. This Theorem also applies for grazing-sliding of more general periodic
orbits, which may have other transverse interactions with discontinuity
boundaries away from x∗. In that case Φ1(x, T (x, μ)) should be replaced
with the appropriate smooth combination of flows and transverse discon-
tinuity mappings that describe the event sequence of the critical periodic
orbit.

8.4.3 Switching-sliding bifurcation

Consider a periodic orbit starting at a point A on the boundary of the sliding
region ∂ ̂Σ− that slides up to a point B ∈ ∂ ̂Σ+, crosses the boundary transver-
sally and then follows flow Φ2 until closing itself (see Fig. 8.21). To construct
the full map we introduce three sections. The first is the Poincaré section Π1,
which we can simply assume to be a segment of the sliding boundary ∂ ̂Σ+

containing point B. Section Π2 is taken to be a segment of Σ containing A
and Π3 to be a portion of ∂ ̂Σ− containing A as well. The full Poincaré map
PN : Π1 �→ Π1 is obtained by composing appropriate submappings. Although
the two maps P21 : Π1 �→ Π2 and P31 : Π3 �→ Π1 generated by flows Φ2 and
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Fig. 8.21. Simplest orbit undergoing a switching-sliding bifurcation

Φs, respectively, are smooth and of full rank, the discontinuity is contained in
the map PDM : Π2 �→ Π3.

The PDM is itself formed from a composition of the ZDM with appropriate
projection mapping Q that takes points from the switching manifold Σ to Π3

using flow Φs. Summarizing, we have:

Theorem 8.4 (normal form map for a switching-sliding bifurcation).
Suppose a hyperbolic periodic orbit p(t;μ) with event sequence as in Fig. 8.17
of a piecewise-smooth system that is written in local co-ordinates in the form
(8.56) has a regular switching-sliding at (x, μ) = (x∗, μ∗) Then the Poincaré
mapPiN from Π1 to itself can be written as

PN (x, μ) = P31(PDM(P12(x, μ)), μ),

where P31 and P12 are given by (8.57) and (8.58), respectively, and PDM(x) =
Q(ZDM(x)) where Q is the smooth projection mapping onto Π3 and ZDM(x)
is given by (8.17).

Remarks

1. In this case, Q could cancel the leading- and higher-order discontinuity
introduced by the ZDM. For example, in planar systems, Π3 is a point
and therefore the PDM cannot be discontinuous. Assuming this is not the
case (which would be a generic assumption in three or more dimensions),
then the map has the same properties as the ZDM; see Table 8.1 and
Theorem 8.1.

2. Thus, in the case of switching-sliding, we have continuous derivatives at
least up to order 2 and discontinuous derivatives of higher order. Hence, as
for crossing-sliding, a hyperbolic trajectory will persist under parameter
variation since the mapping has continuous first derivative. Moreover, the
multipliers are continuous with continuous first derivative with respect to
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the parameter, but their second derivative with respect to the bifurcation
parameter will in general be discontinuous.

3. As in Theorem 8.2, the above result is also valid for more complex event
sequences of the critical periodic orbit, provided all other discontinuity
boundaries are encountered transversally, with P31 and P12 represent-
ing the appropriate compositions of flow and transverse discontinuity
mappings.

8.4.4 Adding-sliding bifurcation

A

B

Π1

Π2

Σ ̂Σ

Fig. 8.22. Simplest orbit undergoing adding-sliding bifurcation.

Consider now a periodic orbit entirely contained in the sliding region ̂Σ
that grazes ∂ ̂Σ− at one point, say A (see Fig. 8.25). We can express the normal
form map in a similar fashion as in the grazing-sliding case:

Theorem 8.5 (normal form map for adding-sliding bifurcation). Sup-
pose a hyperbolic periodic orbit p(t;μ) with event sequence as in Fig. 8.25 of
a piecewise-smooth system that is written in local co-ordinates in the form
(8.56) has a regular adding-sliding at (x, μ) = (x∗, μ∗). Let T (x, μ) be the
time of flight upon following trajectories of flow Φ1 from Π2 to Π2 by com-
posing the Poincaré maps P12 and P21. Then we can express P21 ◦ P12(x) as
Φ1(x, T ).

The normal form map PN : Π2 → Π2 can then be expressed as

PN (x, μ) =
{

Φ1(x, T (x, μ)), when LF1H(Φ1(x, T (x, μ)), μ) ≥ 0,
PDM((Φ1(x, T (x, μ))), when LF1H(Φ1(x, T (x, μ)), μ) < 0.

where PDM(x) is given by Q(ZDM(x)) where Q is the smooth projection onto
Π2 using flow Φ2 and ZDM(x) is given by (8.18).

Remarks
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1. By arguments similar to the ones presented for the grazing-sliding case,
the Poincaré map PN for an orbit undergoing a adding-sliding bifurcation
will be smooth on the sliding side but will have a jump in second derivative
across the boundary.

2. Since the first derivative is continuous, a hyperbolic orbit will persist under
parameter variation, but the first derivative with respect to the parameter
of its multipliers will have a jump as we cross the boundary. Similarly, the
second derivative of the multipliers approaches infinity on one side, due
to the presence of a O(5/2) singularity in the Poincaré mapping.

3. As in Theorem 8.3, this theorem is also valid for general adding-sliding
bifurcations of periodic orbits, provided the adding-sliding point is the
only structurally unstable event. Then Φ1(x, T (x, μ)) should be replaced
by the relevant composition of flow maps and transverse discontinuity
mappings.

8.5 Unfolding the grazing-sliding bifurcation

We now extend the analysis of the previous section for the case of the grazing-
sliding in order to understand the bifurcation structure of the simplest periodic
orbits. In order to do so, we use the explicit form of the normal form (8.75)
to extend the classification presented in Section 3.6. To fix notation we sup-
pose that the hyperbolic periodic orbit p(t;μ∗) undergoing the bifurcation has
period T ∗. That is, in the notation of Theorem 8.2, T (x∗, μ∗) = T ∗.

8.5.1 Non-sliding period-one orbits

Consider first the conditions for a branch of non-sliding period-one (i.e., with
period close to T ∗) limit cycles to emanate from the grazing-sliding orbit.
Suppose the period of the orbit we seek is T̄ and let x̄ be its intersection with
the Poincaré section Π2 = {LF1H = 0} local to x∗. Note from the geometry
that at such a point x̄, H must attain a local minimum H(x̄) = Hmin. For
such an orbit to be admissible [that is, to correspond to an actual orbit of the
piecewise-smooth system (8.56)] we require Hmin ≤ 0.

The equations defining such a fixed point of (8.75) are

LF1(H)(x̄, μ) = 0, x̄− Φ1(x̄, T̄ , μ) = 0. (8.76)

At the bifurcation point, when μ = μ∗ we know that x = x∗, T = T ∗ is a
solution. Therefore we can seek a solution to (8.76) in the form x̄(μ), T̄ (μ) for
μ close to μ∗. Such a solution branch is guaranteed by the Implicit Function
Theorem provided the Jacobian derivative of the pair of equations (8.76) with
respect to x̄ and μ is non-singular at μ = μ∗. That is, provided the matrix

L∗ =
(

V ∗ 0
I − J∗ −F ∗

)

,
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where

J∗ = Φ1x(x∗, T ∗;μ∗), V ∗ = LF1(H)x(x∗, μ∗),
F ∗

1 = Φ1t(x∗, T ∗;μ∗) = F1(x∗, μ∗)

is non-singular The determinant of this matrix may be obtained by using the
theory of bordered matrices [121]. We obtain

det(L∗) = V ∗F ∗ det(I −N∗),

where

N∗ = (I − F ∗V ∗

V ∗F ∗ )J∗, V ∗F ∗ = L2
F1

(H)(x∗, μ∗) > 0, (8.77)

with the last inequality holding by virtue of non-degeneracy assumption (8.11)
written in the form (8.29).

Now, the assumption that the critical periodic orbit is hyperbolic means
that when viewed as a non-sliding orbit its linearization cannot have a multi-
plier equal to unity other than the trivial Floquet multiplier 1 corresponding
to the flow direction. In fact, if we recall the construction of Poincaré maps
from Chapter 2, the linearization (8.77) is nothing else but the construction
of the linearization of the Poincaré mapN from the monodromy matrix J∗

[cf. (2.17)]. There we showed that the trivial eigenvalue 1 of J∗ is changed to
a trivial eigenvalue 0 of N∗. Therefore the matrix I −N∗ has no eigenvalues
equal to 1, which means that I − N∗ is non-singular, and so the Implicit
Function Theorem applies. This gives us a unique smooth branch of solutions
x̄(μ), T̄ (μ) for μ close to μ∗.

Moreover, we define
ν0(μ) = H(x̄(μ), μ) (8.78)

it is clear that x̄(μ) corresponds to a unique admissible non-sliding orbit of
period one, if and only if ν0 > 0. Nevertheless, the function x̄(μ) is well defined
and smooth for all μ close to μ∗.

8.5.2 Sliding orbit of period-one

Now consider the possibility of a branch of period-one sliding orbits emanating
from the grazing-sliding bifurcation. Here we shall use the explicit from of the
ZDM map (8.53) for Hmin < 0, namely

ZDM(x, y, v) = x+ Γ (x, y, v)y2

with v = LF1H(x), y =
√

−Hmin(x, v) and

Γ (x, 0, 0) =
Fd(x)

LFd
H(x)

.
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Analogous to the definition conditions (8.75), the equations that define a
period-one orbit that has a small portion of sliding near x∗ can be written

LF1(H)(x′, μ) = 0, x′ − Φ1(x′′, T ′′;μ) = 0,
x′′ − x′ − Γ (x′, y, 0;μ)y2 = 0, y2 +H(x′, μ) = 0. (8.79)

Disregarding the final condition (8.79) for a moment, and viewing y as an
independent variable, we find that the non-sliding period-one orbit provides
a solution to these equations with y = 0 with x′ = x′′ = x̄, T ′′ = T̄ , for all μ
close to μ∗. Now, for (small, fixed) non-zero y we can eliminate x′′ using the
first equation in (8.79) and similarly appeal to the Implicit Function Theorem
to obtain a smooth solution branch x′(μ; y) with

x′(μ; y) = x̄(μ) +
[

N̄(I − N̄)−1Ē +O(y)
]

y2,

where

N̄(μ) =
(

I − F̄1V̄

V̄ F̄1

)

J̄ , J̄(μ) = Φ1x(x̄(μ), T̄ (μ);μ),

F̄1(μ) = F1(x̄(μ), μ), V̄ (μ) = LF1(H)x(x̄(μ), μ),
Ē(μ) = Γ (x̄(μ), 0, 0;μ), C̄T (μ) = Hx(x̄(μ), μ).

Substitution of this expression into the final condition (8.79) and expansion
in y gives

ν0(μ) + y2(ν2(μ) +O(y)) = 0, (8.80)
y ≥ 0, (8.81)

where we have introduced

ν2(μ) := 1 + C̄T N̄(I − N̄)−1Ē. (8.82)

Note that at the grazing point μ∗, ν0(μ∗) = 0, and let us think of ν2 as
a second, independent unfolding parameter. As we shall see the sign of ν2

determines whether this sliding orbit coexists with the non-sliding periodic
orbit, or exists for the other sign of the parameter perturbation μ−μ∗. Before
doing so, it is worth pointing out that it is implicit in the above construction
that the stability of the sliding orbit is governed by the non-trivial eigenvalues
(I − C̄T Ē)N̄ ; note that the linearization of the ZDM with respect to the
x variable gives I − CTE and the linearization around the periodic point
of a cycle, disregarding the presence of switching, is simply N . Hence, the
composition of these two linearizations around the periodic point x̄ gives (I−
C̄T Ē)N̄ .
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8.5.3 Conditions for persistence or a non-smooth fold

Now we are in a position to derive analytic conditions that classify whether
a persistence or non-smooth fold transition occurs for the primary periodic
orbit undergoing the grazing-sliding bifurcation.

Grazing for the non-sliding orbit happens when ν0 → 0, Comparing equa-
tions (8.78) and (8.79), we see that it makes sense to compare ν0 for a non-
sliding orbit with −y2 for a sliding orbit, as they both measure the local
minimum value of H along the trajectory. Hence from (8.79) we find that

ν2 =
ν0

−y2
sliding

=
Hmin(non-sliding)
Hmin(sliding)

in the limit as ν0 → 0 whenever ν2 �= 0. Since Hmin must be positive for a non-
sliding orbit and negative for a sliding one, a positive value of ν2 means that
the non-sliding orbit exists for ν0 > 0 and the sliding for ν0 < 0, whereas a
negative value of ν2 means that both orbits exist for ν0 > 0 a single sign of ν0.
It then follows that the sign of the quantity ν2 given by (8.82) determines the
simplest possible outcome of the grazing-sliding bifurcation, that is, whether
persistence of the primary cycle occurs (ν2 > 0) or a non-smooth fold (ν2 < 0).

It is possible to derive further analytic conditions for the existence of
period-two, period-three orbits, and so on, using the same techniques. In-
stead, in the following example we shall appeal to the fact that the leading-
order normal form map one can derive in a neighborhood of a grazing-sliding
bifurcation will have the leading-order form given by the maps studied in Sec-
tion 3.6. Thus we can appeal directly the classification of the dynamics that
was developed there.

8.5.4 A dry-friction example

Example 8.2 (dry-friction oscillator). Recall the dry-friction oscillator model
in case study IV, presented in Chapter 1, which was found to exhibit a grazing-
sliding bifurcation causing the sudden onset of chaos. Using the affine approx-
imation of normal form PN for the grazing-sliding we will show how the above
theory can explain this behavior.

Let us first reintroduce the system of interest, which can be written as

ü+ u = c(1 − u̇) +A cos(νt), (8.83)

where
c(v) = α0sgn(v) − α1v + α2v

3 (8.84)

is a kinematic friction characteristic and for v = 0 is set valued, i.e., −α0 <
v < α0. The grazing-sliding of a simple limit cycle (without any sliding seg-
ments) can be examined numerically and is found to occur to occur for the
parameter values
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α0 = 1.5, α1 = 1.5, α2 = 0.45 A = 0.1 ν = 1.7077997,

and has period 8π/ν, i.e., 4T where T = 2π/ν is the fundamental driving
frequency.

We start by putting the system (8.83) into the general form (8.1). Setting
νt = τ , x1 = u, x2 = u̇, we can express (8.83) as a set of first-order ODEs
with discontinuous right-hand side of the form

ẋ1 = x2,

ẋ2 = −x1 + α0sgn(1 − x2) − α1(1 − x2) + α2(1 − x2)3 +A cos(τ),
τ̇ = ν.

The switching surface Σ in this case can be defined as

Σ := {x ∈ R
3 : H(x) := 1 − x2 = 0}. (8.85)

Thus, the normal to Σ is the vector

Hx =
[

0 −1 0
]

. (8.86)

The dynamics of the system is smooth and continuous when H(x) is non-zero
and is governed by the vector fields

F1 =

⎛

⎝

x2

−x1 + α0 − α1(1 − x2) + α2(1 − x2)3 + F cos(τ)
ν

⎞

⎠ , if H(x) > 0

(8.87)
and

F2 =

⎛

⎝

x2

−x1 − α0 − α1(1 − x2) + α2(1 − x2)3 + F cos(τ)
ν

⎞

⎠ , if H(x) < 0.

(8.88)
According to our analysis, sliding motion (sticking in the parlance of the
friction systems) is possible if condition (8.5) is satisfied, that is, if

α0 > 0,

which is true since it is assumed that the coefficients of the kinematic friction
characteristic (8.84) are positive.

Using Utkin’s method we can define the vector field Fs which governs the
flow on the switching manifold. Substituting (8.87) and (8.88) into (8.3), we
then get the following expression for the sliding flow Fs:

Fs =

⎛

⎝

x2

−x1 − α1(1 − x2) + α2(1 − x2)3 + F cos(τ) − β(x)α0

ν

⎞

⎠ , (8.89)
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where −1 ≤ β(x) ≤ 1. Since the vector field Fs must lie on the switching
manifold Σ, we have

HxFs = 0, (8.90)

and using (8.4), we can express β(x) as

β(x) = −x1 + α1(1 − x2) − α2(1 − x2)3 − F cos(τ)
α0

. (8.91)

The sliding region ̂Σ can then be defined as

̂Σ = {x ∈ Σ : −1 ≤ −x1 +A cos(τ)
α0

≤ 1}. (8.92)

In our case, the bifurcation point is at

(x∗1, x
∗
2, τ

∗) = (α0 +A cos(τ∗), 1, τ∗) = (1.4198, 1, 3.7828).

We first check that the set of analytical conditions (8.7), (8.8) and (8.11),
which define a grazing-sliding bifurcation are indeed satisfied at the bifurca-
tion point under investigation. In fact, we get:

1. H(x∗) = 0,
2. β(x∗) = −1 ⇒ LF1(H)(x∗) = 0,
3. L2

F1
(H)(x∗) = HxF1xF1 = 1 + νF sin(τ∗) = 0.8971 > 0.

Thus, at the calculated value of x∗, the system satisfies all three conditions
and therefore the bifurcation event described in Fig. 1.23 of Chapter 1 is
indeed due to a grazing-sliding bifurcation. We now show how knowledge of
this can be used to classify analytically the observed bifurcation scenario and
hence explain the sudden appearance of a chaotic attractor using the theory
of border-collisions.

We first calculate the quantity ν2 given by (8.82) above, which we expect
to be positive. We shall also calculate the eigenvalues of N above that give
us information on the stability of the 4T -grazing orbits, with and without the
zero-length sliding segment. A numerical integration of the system along the
grazing orbit of period 4T (with the calculated parameter values given above)
allows the monodromy matrix [the linearization of Φ1(x∗, 4T )] to be found,
and it has the form

J∗ =

⎛

⎝

0.1885 −0.4852 −0.1104
−0.9743 2.5043 0.5705
3.1507 −8.1102 −1.8448

⎞

⎠ .

Using the above theory the stability the non-sliding orbit is given simply
by the multipliers of the Poincaré map, which are the non-trivial eigenvalues
of J∗, which are, λ1N = 0.8407 and λ2N = 0.0072. Also, the stability of the
sliding orbits that bifurcate is governed by the eigenvalues of (I−E∗C∗T )N∗,
using the notation introduced above. Now, for this example CT = [0, −1, 0],
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and the ZDM is simple to calculate, giving E = [0, −1, 0]T . The relevant
eigenvalues are then found to be λ1Ns = −1.6564 and λ2Ns = 0. For stability
of each of these orbits, we require these multipliers to lie inside the unit
circle. Finally, we can use (8.82) to compute ν2(μ∗) = 16.8006. Putting this
information together, we find that the effect of the grazing-sliding bifurcation
is a persistence of the stable non-sliding orbit of period 4T to an unstable
orbit of the same period with a single sliding segment. This agrees with what
is observed numerically.

The dynamics of the friction oscillator can be further classified by obtain-
ing the piecewise-affine approximation of the normal form map PN and by
studying the resulting expression a posteriori for the existence of other at-
tractors. The map has co-rank one or greater, and thus for the friction system
it suffices to use two co-ordinates to describe it. Further we can let one of
the co-ordinates be the value of H, and we can use the other one to put the
affine approximation of PN in the canonical form used in Chapter 3 where
border-collision bifurcations in noninvertible piecewise-smooth planar maps
were studied.

That is, we can now easily obtain a mapping of the form

Σ(x̃1, x̃2, μ̃) = x̃ =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

τ1 1
0 0

)(

x̃1

x̃2

)

+ μ̃

(

1
0

)

, if x̃1 ≤ 0,
(

τ2 1
−δ2 0

)(

x̃1

x̃2

)

+ μ̃

(

1
0

)

, if x̃1 ≥ 0,
(8.93)

where τ1, τ2 are traces of (I−E∗C∗)N∗ and N∗, respectively, δ2 is the product
of the nontrivial eigenvalues of N∗; and μ̃ = (1− τ2 + δ2)ν0 (for a co-ordinate
transformations that give the canonical form (8.93), see the first section of
Chapter 3).
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Fig. 8.23. Bifurcation diagrams obtained from the (a) numerical integration of the
system (8.83) at the parameter values given in the text, and (b) from the map (8.93).

After some algebra (see [158] for the details), we find τ1 = 0.8479, τ2 =
−1.6564 and δ2 = 0.0061, which satisfy the following inequality relations:

τ1 < − 1
1 + τ2

, (8.94)
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τ1(τ2 + 1) − δ2(1 +
1
τ2

) < 0, (8.95)

τ1(τ2 + 1) − δ2(1 +
1
τ2

) + 1 > 0. (8.96)

According to the theory of Section 3.6, these are precisely the conditions
required for a border-collision bifurcation from a fixed point attractor to a
chaotic attractor, which is indeed what we observe numerically. See Fig. 8.23
for the comparison between the bifurcation diagram computed numerically
and that obtained from application of the discontinuity mapping.

8.6 Other cases

We have clearly not exhausted all possible DIBs that involve sliding in Filippov
systems. For example, we could look at boundary-intersection crossings as
identified in Chapter 7, but in the presence of sliding. Also, we could look
at special trajectories in a neighborhood of a point where ∂ ̂Σ+ and ∂ ̂Σ−

intersect (see, e.g., the work by Teixera in [248]). In the next two subsections,
we consider yet more possibilities.

8.6.1 Grazing-sliding with a repelling sliding region — catastrophe

We look at catastrophic discontinuity-induced bifurcations that lead to de-
struction of an attractor. Specifically this can come about due to an attractor
that grazes with a switching manifold Σ within its repelling sliding region.

Consider the following simple, constructed example, where such a scenario
occurs.

Example 8.3. Consider a planar Filippov system that can be written as

F1 =
(

(1 + μ− (x2
1 + x2

2))x1 − (x2
1 + x2

2)x2

(x2
1 + x2

2)x1 + (1 + μ− (x2
1 + x2

2))x2

)

if x1 < 1,

F2 =
(

1
0

)

if x1 > 1,

with μ being a bifurcation parameter. Note that the vector field F1 is like
the normal form for the Hopf bifurcations [168]. The switching manifold Σ is
defined as

Σ := {x ∈ R
2 : x1 = 1}.

For μ < 0 the system has a stable limit cycle that does not intersect Σ.
An example of such an orbit is depicted for μ = −0.1 in Fig. 8.3(a). For μ = 0
the limit cycle undergoes a grazing-sliding bifurcation but with a repelling
sliding set [see Fig. 8.3(b)]. For μ > 0 the limit cycle is destroyed, because the
invariant set forming the cycle crosses Σ (see Fig. 8.25). Note that there is now
no attracting motion in the vicinity of the limit cycle. This might therefore be
described as a kind of ‘blue sky catastrophe’ for piecewise-smooth systems.
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Fig. 8.24. Limit cycle undergoing a ‘catastrophe’ through a grazing-sliding bifur-
cations with a boundary of repelling sliding region, (a) before the bifurcation and
(b) at the bifurcation
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Fig. 8.25. Phase space representation after the grazing-sliding leading to a catas-
trophe. The dashed circle depicts the flow lines along the limit cycle ignoring the
existence of the switching boundary.

8.6.2 Higher-order sliding

Other possible instances of DIBs involve higher-order sliding motion. higher-
order sliding might occur when two switching manifolds characterized by slid-
ing regions intersect transversally (see Chapter 2).

Let us consider Filippov type system of the form

ẋ =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

F1(x), if H1(x) > 0, H2(x) > 0,
F2(x), if H1(x) < 0, H2(x) > 0,
F3(x), if H1(x) < 0, H2(x) > 0,
F4(x), if H1(x) < 0, H2(x) < 0,

(8.97)

with x ∈ R
n and Fi : R

n �→ R
n for i = 1, . . . , 4 and H1, H2 : R

n �→ R. We
define the switching manifolds Σ1 and Σ2 as

Σ1 := {x ∈ R
n : H1(x) = 0} (8.98)
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and
Σ2 := {x ∈ R

n : H2(x) = 0}. (8.99)

We assume that sliding regions, say ̂Σ1 and ̂Σ2, are formed within the
discontinuity sets Σ1 and Σ2, respectively. Moreover, we assume that ̂Σ1 and
̂Σ2 intersect along a codimension-2 submanifold, say ̂Σ12, which is attract-
ing from both ̂Σ1 and ̂Σ2. The system evolution within ̂Σ12 will be termed
higher-order sliding. In the three-dimensional case depicted in Fig. 8.26 ̂Σ12

is a one-dimensional manifold. In the figure we depict a schematic trajec-

S1 S2

S3 S4

Σ1

̂Σ1

Σ2

̂Σ2

̂Σ12

Fig. 8.26. Sliding within a set formed by the union of two sliding regions.

tory containing a segment of higher-order sliding. This trajectory consists of
segments generated by different vector fields. Namely, the first segment is gen-
erated by the vector field F1 until reaching Σ1 within its sliding region ̂Σ1.
From here the trajectory slides within ̂Σ1 until the point of intersection with
the second switching manifold Σ2 within its sliding regions ̂Σ2. From this
point higher-order sliding ensues within ̂Σ12. The evolution continues until
the boundary of ̂Σ1 is reached. Then, the trajectory leaves Σ1 and evolves
within ̂Σ2.

Let us now suppose that the described trajectory forms part of a limit cycle
that depends on some parameter, say μ. Continuous parameter variation will
move the point of intersection of the trajectory with Σ1 and the point at which
the higher-order sliding region ̂Σ12 is reached. Parameter variation might then
lead to the situation depicted in Fig. 8.28 where the trajectory after evolution
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within ̂Σ1 reaches the boundary of the sliding region before getting to ̂Σ12.
Thus, the segment of higher-order sliding is ‘lost’. Such a transition implies
a DIB. At the instant of the bifurcation, a trajectory reaches the boundary
of the sliding region exactly at the same time as when ̂Σ12 is reached — see
Fig. 8.27 where we depict a trajectory reaching a point labeled as C that
belongs to the boundary of ̂Σ1 and to the switching manifold Σ2. We claim

C

S1 S2

S3 S4

Σ1

̂Σ1

Σ2

̂Σ2

̂Σ12

Fig. 8.27. A trajectory at a DIB reaching the boundary of ̂Σ1 and the switching
manifold Σ2 at the same time.

that this scenario is of codimension-1 since generically a continuous variation
of one parameter only is sufficient to observe a transition from a trajectory
depicted in Fig. 8.26 to a trajectory presented in Fig. 8.28.

A detailed analysis of such higher-order sliding bifurcations is beyond the
scope of this book. Although we should point out that other codimension-one
DIB phenomena involving higher-order sliding are possible. Consider, for ex-
ample, a trajectory evolving within ̂Σ2 such that the sliding flow crosses Σ1.
That is, the vector field generating the sliding motion is discontinuous across
Σ1, but in such a way that ̂Σ2 persists on both sides of Σ1 and, while on
̂Σ2, the discontinuity across Σ1 is such that the trajectory in question hits
Σ1 transversally and crosses it. Now, suppose that under parameter varia-
tion the sliding flow hits tangentially the boundary of ̂Σ1. Under appropri-
ate non-degeneracy conditions, further parameter variation would then lead
the trajectory to acquire a segment of higher-order sliding. Such a scenario
would correspond to the codimension-1 crossing-sliding bifurcation, but for the
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Fig. 8.28. A trajectory after a higher-order sliding segment ‘was lost’ due to a DIB
of codimension-1.

already sliding flow. Similarly, switching-sliding and grazing-sliding involving
a segment of higher-order sliding can also occur. If the phase space is four-
dimensional and the manifold ̂Σ12 is two-dimensional, adding-sliding is possi-
ble where the higher-order sliding interacts with the boundary of the sliding
region.

The following model system of relevance to earthquake engineering pro-
vides a potential example that may well exhibit several of these higher-order
sliding bifurcations within its parameter space:

Example 8.4 (A two-mass stick-slip system). Galvanetto [110, 111, 112, 113]
considers the idealized two mass stick-slip dry-friction oscillator model re-
presented in Fig. 8.4. It can be expressed in dimensionless form as

m1ü1 + u1 + k12(u1 − u2) = Ck1(u̇1 − Vdr), (8.100)
m2ü2 + u2 + k12(u2 − u1) = Ck2(u̇2 − Vdr), (8.101)

where m1, m2 denote masses of the blocks; k1, k2, and k12 denote stiffness
of springs attaching masses to rigid walls and stiffness of the spring between
the masses, Vdr denotes velocity of the driving belt; and Ck1 and Ck2 are
functions describing kinematic friction. The function Ck1 is defined as

Ck1(u̇1 − Vdr) =

⎧

⎨

⎩

1 − δ
1 − γv + δ + ηv2, if v < 0,

− 1 − δ
1 + γv − δ − ηv2, if v > 0,

(8.102)
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Fig. 8.29. Two block stick-slip system. (Reprinted from [113] with permission from
Elsevier.)

where v = u̇1 − Vdr and Ck2 = βCk1 with β being a positive parameter.
As shown in [110, 113] the system can exhibit a plethora of different types

of stick-slip periodic and aperiodic motions. However, the transitions between
the different types of such oscillations are not well understood as yet. Many of
the periodic motions observed involve higher-order sliding, which in this case
refers to the situation when both masses stick to the driving belt.
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Further applications and extensions

The aim of this chapter is to present some further examples drawn from a
number of applications and experiments, which illustrate the preceding anal-
ysis, and also briefly introduce further extensions to the theory that go beyond
the detailed scope of this book.

We begin in Section 9.1 by presenting the study of an experimental impact
oscillator and by comparing the results with analytical calculations, building
on the treatment of case study I from the Chapter 1. The results serve to illus-
trate the delicate effects of noise and parameter uncertainty on the dynamics
of experimental non-smooth systems. This leads, in Secs. 9.2 and 9.3, to a dis-
cussion of two models, motivated by applications, for the rattling of gears and
for a force-limited hydraulic damper. Through the former example, we discuss
how the global behavior of a compliant system (for which grazing bifurcations
lead to a Poincaré mapwith a (3/2)-type singularity) can give very similar
results to an impacting model of the same system. Also, we illustrate how to
derive analytically necessary conditions of existence of the periodic solutions
and their bifurcations. The latter example is used to motivate a preliminary
treatment of the dynamics associated with the interaction between an invari-
ant torus of a smooth flow and a discontinuity surface, extending the analysis
for limit cycles presented in Chapters 6 and 7. Finally, we consider the global
dynamics of friction oscillators, where we can develop an understanding of
the whole of parameter space by unfolding various possible codimension-two
discontinuity-induced bifurcations.

9.1 Experimental impact oscillators: noise and
parameter sensitivity

In case study I on the impact oscillator in Chapter 1, we showed data taken
from laser Doppler measurements of a carefully constructed experimental im-
pact oscillator comprising a massive, stiff and lightly damped beam striking
a rigid obstacle, together with numerical simulation results at corresponding
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parameter values of a simple model, from the work of Popp et. al. [208]. There
is generally good agreement between theory and experiment both in the phase
space representation of (periodic and chaotic) attractors (cf. Figs. 1.5 and
1.6) and also in the one-parameter bifurcation diagrams [cf. Fig. 1.12(a) and
(b)]. Nevertheless, we notice some important distinctions between the dynam-
ics of the single-degree-of-freedom impact oscillator model (1.1). Most notably,
immediately after each impact there is apparent high-frequency noise in the
experimental plots, which quickly damps away.

9.1.1 Noise

If we consider again the experimental results from the impact oscillator in
Chapter 1, reproduced here as Fig. 9.1, we see that the noise in the exper-

v vv

u u u

(a) (b) (c)

v v v

uuu

(a) (b) (c)

Fig. 9.1. Top: Phase space projection of an impact oscillator (see Chapter 1 for
details) for three different input frequencies. Bottom: The corresponding results
from the experimental system.

imental phase potraits comprises a fairly regular transient higher-frequency
oscillation superimposed on the main attractor. This can be understood from
the fact that the stiff beam in the physical impacting system can oscillate
in many different modes. Whilst these are in general highly damped (apart
from the principal mode), the impact itself excites higher-order modes. Thus,
rather than modeling the rigid beam system by a single-degree-of-freedom
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model, we should more realistically take a higher-dimensional model from the
discretization of a cantilevered beam (as in Example 6.3). This in turn leads
to a higher-dimensional impact law where energy is transferred at impact
from the fundamental mode to higher modes. However, the experiment was
specifically constructed so that these higher-order modes were highly damped.
Thus when the trajectory next returns to the impacting surface, the effect on
the overall dynamics due to the higher-order modes is negligible (see Fig. 1.5
where the higher-frequency motion created for u̇ > 0 is virtually undetectable
for u̇ < 0). Thus, these high-dimensional effects can be well represented by
using a single degree-of-freedom model by adjusting the effective coefficient of
restitution to account for the energy loss from the fundamental model. This
approximation is a good one provided that impacts are well separated so that
transient high frequency motion has a chance to decay. It is likely to be less
accurate when impacts are close together.

These observations serve to illustrate two points. First, that ‘coefficients
of restitution’ are typically not just a function of the local properties of the
two materials in contact at the moment of impact. Rather they are a property
of the ability of the material to dissipate the shock waves created at impact.
We know this from everyday life. A drumstick hitting a free symbol has a
completely different dynamics from the same stick hitting the same symbol
that is being held. In the former case, the energy is dissipated through largely
undamped sound waves in the symbol. In the latter, these same waves are
felt as rapidly damped vibrations in the hand and arm of the person hold-
ing the symbol and we hear almost nothing. In the case of a more flexible
cantilever beam (see for example the discussion in [31]), significant energy is
imparted to the higher-frequency modes and these modes decay much more
slowly than the case above. This leads to very significant energy loss from
the primary mode and to model the dynamics, in terms of a single-degree-of-
freedom impact oscillator, a low value of the coefficient of restitution, r, must
be taken. For example, in [31] r was set equal to 0.2. In this case, though,
the single-degree-of-freedom model did not compare particularly well with the
experimental results. This simple discussion immediately shows us that any
consideration of the nature of impacting for a general system is going to be
difficult. We have in this book deliberately kept away from the delicate issues
associated with tribology or the precise mechanism of interaction between two
impacting bodies. Cases involving either multiple contacting bodies (such as
the Newton’s cradle toy) or impacts in the presence of friction (as in the so-
called Painlevé paradox [213]) are beyond the scope of what we cover here.
More information is given in the books [219, 38, 39], see also the paper [46] for
the first steps in bifurcation analysis in such more complex hybrid systems.

The second point is that noise clearly plays a key role in non-smooth sys-
tems. The theory of bifurcations in the presence of noise even for smooth
systems is not complete [6]. What is clear is that noise can delay bifurca-
tions, unfold bifurcations or smear out bifurcation diagrams [11]. A few results
have been published recently on the effect of noise on discontinuity-induced
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bifurcations. For example [123] consider the effect of noise on the bifurca-
tion diagram in DC–DC converters (case study V in Chapter 1). It seems
that noise can have a far more fundamental role in non-smooth systems than
in smooth ones. A possible explanation for this phenomenon is that a small
amount of noise added to a trajectory close to a discontinuity surface could
cause it to intersect the surface, with a consequent major effect on its result-
ing dynamics. Indeed, there is evidence to suggest that noise can effectively
smooth out the bifurcation diagram and that even small amounts of noise can
cause large qualitative details in the fine structure of bifurcation diagrams. A
careful stochastic analysis of the effects of noise on DIBs is a non-trivial task
and is certainly beyond the scope of this book. However, the general issue
of (deterministic) smoothing of non-smooth systems is a ripe topic to study
(see for example [136] which considers how a period-adding cascade can arise
from a period-doubling cascade in a smoothed-out version of the square-root
map). Such analysis suggests that the fine detail of whether the local disconti-
nuity mapping has an O(3/2) or a square-root singularity is not as important
as the global dynamics caused by the grazing. We already saw examples of
this in Chapters 4, 7 and 8 where grazing bifurcations whose discontinuity
mappings show a jump that is higher order than linear and hence do not
destroy or change the stability of the bifurcating orbit instantly, nevertheless
cause a catastrophic change at a nearby parameter value. We shall return to
this issue in Sec. 9.2 below.

First though let us consider a direct experimental illustration of grazing
in an impacting system.

9.1.2 An impacting pendulum: experimental grazing bifurcations

The experimental work of Popp et. al [208] described above amply demon-
strates many of the predicted features of impact oscillator dynamics exper-
imentally, but does not contain a simple primary grazing bifurcation where
a non-impacting orbit first starts to impact. In order to engineer just such
an event, Piiroinen et. al. [220] considered experimental results for a forced
pendulum system run in a reduced gravity environment, based on the earlier
design presented in [26].

A simple rigid-arm pendulum that strikes a vertical impact surface is
an easily realized single-degree-of-freedom impact oscillator. By horizontally
shaking the supporting pivot of the pendulum a variety of dynamic behavior
can be observed. However, with the impact barrier located at the static equi-
librium position (see Fig. 9.2), the velocity of impact tends to be relatively
high and thus grazing bifurcations of the fundamental period-one (i.e. with the
same period as the forcing) do not typically occur at achievable frequencies. In
[220, 26] an effective lowering of gravity was achieved by inclining the angle of
the plane in which the pendulum is free to move. Then, if the impact surface
is placed sufficiently far from static equilibrium and the forcing amplitude is
relatively low, impacts will not take place. For intermediate angles of impact,
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as the forcing frequency is gradually increased towards the first resonant fre-
quency, a critical value is reached at which the steady periodic response first
makes contact with the obstacle.

θ θ^

m

L

Θ

g

d = A sin(  t)ω

Front view Side view

Fig. 9.2. The pendulum/impact barrier assembly; see [220] for dimensions and
parameter details. (Reprinted from [220] with permission from Springer-Verlag.)

The experimental configuration used is shown in Fig. 9.2. The pendulum is
constructed using a relatively light aluminum arm of length 305 mm and a steel
mass of diameter 25.4 mm attached at the end. The pivot of the pendulum
consists of low-friction bearings, and a rotational potentiometer measures the
angle θ(t) to a relatively high degree of accuracy. The assembly is mounted
on a shaking table that imparts a harmonic base displacement and is inclined
at Θ = 76.2◦ from the vertical (giving an effective gravitational constant
ge = 0.24g). The angle of contact with the impact barrier ̂θ and the forcing
frequency ω are used as the primary control parameters: The former was fixed
at discrete values at intervals of ̂θ = 10◦ and the latter was varied statically
by small amounts.

A crucial issue in modeling many mechanical systems is the estimation of
the amount of damping. Damping in this system arises through energy loss
at impact and also between impacts through Coulomb friction in the bearing
and viscous air drag. In order to estimate the overall damping both between
impacts and at impact, a simple logarithmic decrement method was used,
taking ̂θ = 0 and with no external forcing. Successive peak amplitudes Ak,
k = 1, 2, . . ., were recorded, and an overall damping factor D was calculated
by the formula

D =
1
4π

ln
(

Ak

Ak+1

)

(9.1)

giving a measured value for D = 0.07, that is, 7% of critical damping, which
includes both an effect from impacts and from other sources.
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Figures 9.3 and 9.4 summarize, for different values of ̂θ, the response of the
pendulum when the forcing frequency is gradually increased through the range
of primary resonance. The forcing frequency is expressed in terms of the ratio
η of the forcing frequency to that of the natural frequency of an impacting
pendulum with impact at θ = 0. In this case the primary resonance (in the
absence of impact) occurs when η = 1/2.

For each value of ̂θ ≤ 40◦, a critical forcing frequency ηc(̂θ) slightly less
than η = 1/2 was found such that for η < ηc the attracting motion is a period-
one limit cycle that does not impact. At η = ηc this limit cycle just grazes
with the obstacle, and impacting motion is found for η > ηc. We therefore
might expect to see behavior resembling that presented in Chapter 6 (see also
Chapter 4) in the unfolding of the grazing bifurcation. For η close to, and
greater than ηc, we observe a complex sequence of chaotic and/or periodic
motions until eventually, for large enough η, the motion settles back to period-
one non-impacting motion (except for ̂θ = 10◦ in which the impacting motion
persists up to large η). This final bifurcation is also a grazing event. For
̂θ ≥ 50◦ it was found that the pendulum amplitude is always less than the
barrier angle θ(t) < ̂θ and hence no impacting motion takes place.

θ(p)

(a)0.7

0
0.33 η 0.38

θ(p)

(b)0.7

0
0.39 0.46η

θ(p)

(c)0.7

0
0.42 0.48η

θ(p)

(d)0.7

0
0.42 η 0.5

Fig. 9.3. Experimental bifurcation diagrams in which the response is sampled once
during a forcing cycle (at an arbitrary but consistent phase). (a) ̂θ = 10◦, (b)
̂θ = 20◦, (c) ̂θ = 30◦, (d) ̂θ = 40◦. (Reprinted from [220] with permission from
Springer-Verlag.)
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Note that ηc increases with ̂θ and also the size of the window in which
impacting motion occurs shrinks. We conjecture that there is a point for some
̂θ value between 40◦ and 50◦ at which the two grazing bifurcations come
together, thus destroying entirely the window of complex dynamics.

Now consider some of the features of the bifurcation diagrams in Fig. 9.3.
For each value of ̂θ we find that the initial grazing bifurcation causes a sig-
nificant change of the behavior of the system. In Fig. 9.3(b), when ̂θ = 20◦

the stable period-one orbit jumps immediately to a stable period-three orbit
that eventually becomes chaotic as η increases. This is similar to Fig. 4.15 of
Chapter 4, in which we see the creation of a period-three maximal orbit. In
contrast, if we look at Fig. 9.3(d) when ̂θ = 40◦ there appears to be more
complex behavior at the bifurcation with some evidence for chaos and period-
adding. Time-series data extracted from the ensuing dynamics are shown in
Fig. 9.4(a). However for each value of ̂θ there is also at least one significant
window of periodic motion, the first of which is: period-two for ̂θ = 10◦ (for
0.35 < η < 0.36); period-three for ̂θ = 20◦ (0.406 < η < 0.42); period-four for
̂θ = 30◦ (0.44 < η < 0.45); and period-five for ̂θ = 40◦ [around η = 0.45, see
Fig. 9.3(c)].

An explanation of this observed period-adding-like behavior, is that we
see in each case a stable maximal periodic orbit created as an unstable orbit
at the grazing bifurcation, in the manner described in Sec. 4.3 in Chapter 4,
which has then restabilized. The increase of ̂θ is equivalent to moving through
the diagram presented in Figure 4.15 so that we see a progressive increase in
the period of the observed maximal orbit.

A dimensionless model for the motion for the pendulum is given by

θ̈ +
2β
η
θ̇ +

1
4η2

sin(θ) = α cos(θ) sin(t) θ > ̂θ. (9.2)

Here α = 0.2258 is the constant forcing amplitude, the forcing frequency
is scaled to unity and the natural frequency is 1/2η of the undamped non-
impacting pendulum, and β is the damping ratio in the absence of energy loss
at impact. At θ = ̂θ we assume that there is simple impact law given by

θ̇ �→ −rθ̇, (9.3)

where 0 ≤ r ≤ 1 is the coefficient of restitution. A key issue is finding values
of the parameters β and r consistent with the measured value of D estimated
according to (9.1).

A numerical measure for D was found by computing the decrease in ampli-
tude of the model system over 10 peaks of the unforced system, see Fig. 9.5(a).
This experiment was repeated for different values of r and β to find a curve in
the (r, β)-plane that corresponds to D = 0.07 [Fig. 9.5(b)]. A realistic choice
of r for steel on steel contact lies somewhere between 0.5 and 0.95 (see for
example [208]), depending on the geometry, and the consequent possibilities
for the spread of acoustic waves. A value of r = 0.8 corresponds to a linear
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Fig. 9.4. Sample experimental time series and phase potrait projections. (a) and

(b) ̂θ = 10◦, η = 0.35; (c) and (d) ̂θ = 40◦, η = 0.45. (Reprinted from [220] with
permission from Springer-Verlag.)
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Fig. 9.5. (a) Free decay for the impacting pendulum with no forcing. (b) The
relation between r and β to get a damping ratio that is 7% of critical. See text for
significance of labeled points. (Reprinted from [220] with permission from Springer-
Verlag.)
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damping coefficient β of 0.015, and r = 0.5 to β = 0.05. One way of finally
fitting was to use the data in Fig. 9.3(d) for ̂θ = 40◦, to match the value of
ηc for the first grazing bifurcation. This results in the values of r = 0.8 and
β = 0.05 marked as point B on the curve in Fig. 9.5(b), which we shall now
use.

With these values we may now look at some numerical simulations of the
system and compare these with the experimental results. A series of these for
a range of values of ̂θ is presented in Fig. 9.6.
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Fig. 9.6. Bifurcation diagrams under variation of η and where (a) ̂θ = 10◦, (b)
̂θ = 20◦, (c) ̂θ = 30◦, and (d) ̂θ = 40◦ obtained using direct numerical simulation.
(Reprinted from [220] with permission from Springer-Verlag.)

A close-up of one of these figures is given in Fig. 9.7(a), which depicts a
numerically simulated bifurcation diagram of (9.2) using a Poincaré section at
θ̇ = 0 (θ̈ < 0). We can see that at η ≈ 0.44 the behavior changes at a grazing
bifurcation followed by a reversed period-adding cascade interspersed with
chaos. The correspondence with the experimental results for the same value
of ̂θ given in Figure 9.3(d) is good. In the numerical calculations we see the
expected onset of the grazing bifurcation followed by chaos with a reversed
period-adding cascade (the period of the periodic windows decreases by one
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for successive windows with increasing η). Eventually as η increases there is
a second grazing bifurcation that takes the motion back to single-impact-per-
period motion.

(a) (b)

Fig. 9.7. Bifurcation diagram of the forced impacting pendulum under variation of η
and where ̂θ = 40◦ using (a) the direct numerical simulation and (b) the discontinuity
mapping approach (notice the difference in the axis scaling). (Reprinted from [220]
with permission from Springer-Verlag.)

When ̂θ < 40◦ the numerical results indicate that there is a transition from
the non-impacting orbit to a (maximal) periodic orbit. This agrees qualita-
tively with the experimental results, although the quantitative correspondence
between the experimental and numerical results is less good for smaller val-
ues of ̂θ. For example, whilst we do see the creation of a maximal periodic
orbit when ̂θ = 20◦, the period differs (it is period-two in the numerical sim-
ulation and period-three in the experiments). Nevertheless, we see the same
broad features; there is a first grazing bifurcation from non-impacting period-
one periodic motion to impacting chaotic and/or periodic motion. As in the
experimental results, the period of the first appreciable periodic window in-
creases with increasing ̂θ; in this case period-one for 10◦, two for 20◦, three
for 30◦ and four (actually, briefly, five) for 40◦. Also, for all cases other than
̂θ = 10◦, there is a second grazing bifurcation for higher η that returns the
system to non-impacting motion.

To analyze the observed bifurcation we apply the discontinuity mapping
approach to calculate the ZDM for this system using the methods from
Chapter 6. Specifically, writing the system in first-order form for a variable
x(t) = (x1(t), x2(t), x3(t)) with x1 = θ, x2 = θ̇ and x3 = t, we get

ẋ1 = x2,

ẋ2 = α cos(x1) sin(x3) −
2β
η
x2 −

1
4η2

sin(x1), (9.4)

ẋ3 = 1,
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with impact occurring when H(x) = ̂θ−x1 = 0. Hence we find, in the notation
of Theorem 6.2, that Hx = (1, 0, 0)T , W = (0,−(1 + r), 0)T , y = x2 and a is
ẋ2 evaluated at the impact time x3 = ti, x1 = ̂θ and x2 = 0. Thus we get a
local discontinuity mapping

x �→

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x, if x1 ≤ ̂θ,

x+

⎛

⎝

0
1 + r

0

⎞

⎠

√

2(x1 − ̂θ)a(x) +O(x1), if x1 > ̂θ,
(9.5)

where the acceleration at impact is given by

a(x) = α cos(̂θ) sin(ti) −
2β
η
θ̇ − 1

4η2
sin(̂θ).

Fig. 9.7(b) shows the result of using the discontinuity map when ̂θ = 40◦

combined with a numerical solution of the ordinary differential equations (9.4)
to obtain the Poincaré map from the Poincaré section x2 = 0, ẋ2 > 0 to itself,
close to impact, at which point the restitution law is replaced by the mapping
9.5. The similarity between the direct numerical calculations and those given
by applying the discontinuity mapping is clear, at least for η in the vicinity
of the grazing impact.

For a more complete analysis we must calculate the matrix A correspond-
ing to the linearization of the Poincaré map about the periodic grazing orbit,
and its associated eigenvalues λ1,2. For ̂θ = 20◦, λ1,2 = −0.0066±0.4668i. For
̂θ = 40◦, λ1,2 = 0.4646 ± 0.2137i, and for slightly larger ̂θ the eigenvalues be-
come real. The analysis presented in Chapter 4 then implies that for ̂θ < 40◦

we expect to see a jump to a (maximal) periodic orbit at grazing, whereas for
slightly larger ̂θ we expect to see chaotic behavior interspersed with period-
adding as we have a real leading eigenvalue with 1/4 < λ1 < 2/3.

In Fig. 9.8(b) a delay plot θn+1 against θn is depicted using the global
discontinuity map evaluated at η = 0.4458. This gives a representation of
the chaotic attractor. The square-root term in the local map (9.5) is clearly
visible as the almost vertical lines together with the other ‘one-dimensional’
sets comprising the attractor. Similar mappings were also obtained both nu-
merically and experimentally by Fedriksson et. al. [105] for an impacting pipe
conveying fluid.

9.1.3 Parameter uncertainty

Clearly although each of the experiments, the numerical calculations and the
theory show a period-adding cascade for the impacting pendulum when ̂θ =
40◦, the qualitative agreement between experiments and theory is nowhere
near as good as that obtained for the impacting beam experiment we reviewed
in Sec. 9.1.1, especially for smaller values of ̂θ. One reason for this could be the
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Fig. 9.8. Delay plots for the impacting pendulum near grazing using (a) the dis-
continuity map at section h(x) = x3 = 0 and (b) the direct numerical simulation.
(Reprinted from [220] with permission from Springer-Verlag.)

sensitivity to noise of the fundamental grazing bifurcation, as we have already
intimated. However, we also show here that uncertainty in the parameters can
also cause huge variability in what is observed. Numerical results in [220] show
that both the location of ηc and the eigenvalues of the linearization around
the corresponding grazing periodic orbits are highly sensitive to damping. In
Fig. 4.14 of Chapter 4, it is clear that small changes in the values of the
eigenvalues, and hence of a1 and a2 (in the notation of that chapter), can lead
to large changes in the period of the observed maximal orbit. Thus it is not
surprising that the results when ̂θ is small (in particular the period of the
observed orbit) are very sensitive to small changes in the parameters of the
system. When ̂θ takes larger values, and the eigenvalues of the linearization
are real, we expect to see less sensitivity in the results.

To examine the sensitivity, the authors in [220] varied the parameters β
and r along the curve in Fig. 9.5(b) and found no significant difference in the
qualitative picture of the bifurcation diagrams, but huge quantitative differ-
ences. Generally speaking, cases with smaller β (and hence r closer to unity)
have significantly wider intervals of chaos and also wider, more appreciable
windows of the higher-period orbits, which seems closer to the experimental
data. However, such values tend to greatly overestimate the maximum value
̂θ for grazing. There might be a number of reasons for this other than uncer-
tainty in the damping and restitution parameters, such as vibrations in the
experimental setup, errors in the parameter measurements, or wrong assump-
tions in the mathematical modeling (for example damping may enter through
a nonlinear velocity-dependent term due to Coulomb friction in the pivot).

To highlight this uncertainty further, we consider a lower value of forc-
ing amplitude 0.71α, taking the coefficient of restitution r = 0.4707 and the
damping coefficient β = 0.01 fixed [point B in Fig. 9.5(b)]. One can argue
that this is effectively similar to increasing the overall damping in the struc-
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ture, since a decrease of either r or β has the effect of lowering the am-
plitude of the resonance peak. The resulting bifurcation diagrams under η
variation for ̂θ = 10◦, 20◦, 30◦, 40◦ are shown in Figs. 9.9(a)–(d), respectively.
If we now compare these results with the experimental bifurcation diagrams
in Figs. 9.3(a)–(d) the match is better than that presented in Figs. 9.6(a)–(d)
with this perturbed amplitude especially for ̂θ = 10◦ and 40◦.
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Fig. 9.9. Changes in existence and stability of the forced impacting pendulum under
variation of η and where ̂θ = 10◦ (a), ̂θ = 20◦ (b), ̂θ = 30◦ (c) and ̂θ = 40◦ (d). The
driving frequency is 0.71α, the coefficient of restitution r = 0.4707 and the damping
coefficient β = 0.01. (Reprinted from [220] with permission from Springer-Verlag.)

Clearly much more work needs to be done to understand the effects of
parameter uncertainty and noise on the nature of the bifurcations close to
grazing.
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9.2 Rattling gear teeth: the similarity of impacting and
piecewise-smooth systems

This section is concerned with backlash, another piecewise-smooth nonlinear-
ity common to a wide range of applications. In particular, we investigate the
dynamics of lightly loaded meshing gears in the large stiffness limit. Such
systems have a tendency to rattle unpredictably with different levels and fre-
quencies of noise [154, 274, 61] because of gears moving through their back-
lash. The key example is that of the unloaded gears in an automotive manual
transmission system [61].

In the literature, systems with backlash have been mostly studied by con-
sidering a piecewise-linear model of the nonlinearity (see Fig. 9.11). Natsiavas
[195] showed how to construct solutions by matching trajectory sections to-
gether and solving a single transcendental equation. It has also been shown
that backlash systems can exhibit complicated dynamics. The occurrence of
chaotic behavior in a backlash system was discussed by Mahfouz & Badrakhan
[186] mainly through numerical simulations. The possible bifurcations were ex-
amined, again numerically, in more detail in by Kleczka et. al. [156] and by
Wiercigroch [266], and bifurcation scenarios leading to chaotic behavior were
further investigated numerically by Luo & Menon in [182].

Other research has also analyzed the dynamics of gear models that contain
a time-varying parametric stiffness term to model the changes in the number
of teeth in contact. These models are typically solved using harmonic balance
methods or other approximate strategies [34, 147, 149, 249, 250, 262].

An alternative modeling approach is that of considering the limit of infinite
backlash stiffness. In this case, for example, solutions that impact only one
side of their backlash are equivalent to the dynamics of a ball bouncing on
a massive oscillating table (see [236] and, for example, [181] and references
therein). More generally, the dynamics of a system with backlash, under this
modeling assumption, becomes directly related to the motion of a rigid block
that can impact walls placed symmetrically about its rest position [133]. This
system is affected by impacting events and is characterized by the presence
of three discontinuity boundaries in phase space. For an exhaustive review
of these results as well as those concerning impact oscillators and impact
dampers we refer to the book by Brogliato [38].

Experiments demonstrating the validity of simple backlash models are
described by Wiercigroch & Sin in [270]. However, there is currently no full
analytical explanation of the mechanisms leading to the onset of bifurcations
and chaos in backlash systems. Here, we focus on a simple model of a gear
pair. Specifically, the system we study is a single-degree-of-freedom oscillator
with a backlash nonlinearity. The aim is to derive analytical conditions for
the existence and stability of several families of periodic rattling solutions
and to study their bifurcations. In so doing, we wish to compare the results
obtained by using (i) an impacting model of backlash with (ii) those derived
for a piecewise-linear backlash model. We show that the results obtained using
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these two different modeling approaches are the same to leading order (further
illustrating the calculation made in Chapter 1 for the bi-linear oscillator with
large stiffness ratio).

An interesting feature of the system we investigate is the coexistence of
several different attractors so that, even when the parameters are set for silent
operation, different rattling periodic solutions might coexist. To further inves-
tigate this issue, two-parameter bifurcation diagrams can be derived analyt-
ically and validated through numerical simulations. It is shown that systems
with backlash can exhibit bifurcations such as cyclic-folds or period-doubling
(also observed in smooth systems) in addition to discontinuity-induced bifur-
cations such as grazing events. More details of the analysis can be found in
the paper by Halse et. al. [126].

9.2.1 Equations of motion

F

R

R 2β

θ1

θ2κ

eccentric mounting

Fig. 9.10. Basic gear model with backlash.

We consider a simple model of two meshing gears, one driven by an os-
cillating torque F and the other not driven. We assume that the gears have
the same moment of intertia I, radius R and linear viscous friction coefficient
C. The rotational displacement of the driven gear is described by θ1(τ) and
the rotational displacement of the free gear by θ2(τ) (see Fig. 9.10). Resolving
moments, the equations of motion of the gears are thus

Iθ̈1 + Cθ̇1 +RΨ(θ1, θ2) = F (τ), (9.6)
Iθ̈2 + Cθ̇2 −RΨ(θ2, θ2) = 0. (9.7)

Here Ψ is the interaction force between the gears given by

Ψ(θ1, θ2) = κB(θ1 − θ2, β),
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where B is the backlash function

B(u, β) =

⎧

⎨

⎩

u− β, u > +β,
0, |u| < β,

u+ β, u < −β.
(9.8)

We note that if the gears are turning at an approximately constant speed,
then the mean forcing scales with the dissipation. To see this, let ¯̇

θ1,
¯̇
θ2, Ψ̄

and F̄ denote the average values of θ̇1, θ̇2, Ψ and F (t), and observe that

C

I
¯̇
θ1 +

R

I
Ψ̄ =

F̄

I
,

C

I
¯̇
θ2 −

R

I
Ψ̄ = 0.

If we add these two equations and assume that the average rotational speed
is ¯̇
θ1 = ¯̇

θ2 = 2 πΩ, we have
F̄ = 4πCΩ.

Now, let u(τ) = θ1(τ) − θ2(τ), then from (9.6) and (9.7), we obtain

ü+
C

I
u̇+

2Rκ
I

B(u, β) =
F (τ)
I

.

We assume that the periodic forcing can be represented by a small amplitude
sinusoidal offset from F̄ and with a frequency of once per rotation, i.e.

F (τ) = 4πCΩ + γ cos(2πΩτ).

We define a dimensionless time t by t = Ωτ . Then, if we denote differentiation
with respect to t by a prime, we have

u′′ +
C

IΩ
u′ +

2Rκ
IΩ2

B(u, β) =
4πC
IΩ

+
γ

IΩ2
cos(2πt).

The rotational co-ordinates (angles) are already dimensionless, so therefore
the coefficients are dimensionless. We define the new non-dimensional param-
eters

δ =
C

IΩ
, K =

Rκ

Ω2I
, ε =

γ

IΩ2
,

and hence
u′′ + δu′ + 2KB(u, β) = 4πδ + ε cos(2πt). (9.9)

Note that here we have represented the forcing term as an external source, as
might come from an automotive engine. A similar equation can be derived if we
assume an alternative source of periodic excitation; for example, eccentricity
in the mountings of the two gears (see [274]).

The nonlinearity arises because the motion u(t) will typically not be con-
fined to any one of the regions for all time, but will swap whenever u passes
through the values ±β.
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For typical machines, the stiffness K is very large, and so we can also think
of taking an impacting model of backlash [limK→∞B(u, β,K)] in which the
system states are reset by an instantaneous impact condition applied whenever
u = ±β. In what follows we will model the contact in both ways, as shown in
Fig. 9.11.

limK→∞ B(u, β, K) B(u, β, K), K < ∞

−β −ββ β uu

impacting contact model PWL contact model

Fig. 9.11. Backlash models.

First, note that geared systems should be designed to operate so that the
gear teeth remain in contact for all time, with no rattle. It is straightforward
to derive a condition for such a solution to exist [126]. That is, we must have

ε <
2πδ
K

√

(2K − 4π2)2 + 4π2δ2. (9.10)

In the limit of large stiffness (K → ∞), the condition for silent operation
reduces to

ε < 4πδ. (9.11)

There is a range of anecdotal evidence to suggest that satisfying this bound
in real geared systems is a major challenge. However, choosing parameters such
that (9.10) is satisfied is not enough to guarantee the desired silent operation;
stable rattling solutions may also coexist. Throughout we suppose that (9.11)
holds as this simplifies the subsequent analysis considerably.

9.2.2 An illustrative case

To illustrate the similarity between results obtained using the impacting model
and those obtained using a piecewise-linear approximation of backlash, we
investigate the existence of a particular type of solution using both models.
Specifically, we choose to study those solutions that contact only the boundary
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u = β. Such solutions will be labeled as P (m, 1, 0) solutions to indicate that
they are m-periodic, with one crossing (or impact) on one side of the backlash
and no crossing on the other. (For more details and the analysis of other types
of solutions, see [126].)

We shall show that the solutions for both kinds of model have the same
leading-order behavior, and present two-parameter (δ, ε) bifurcation diagrams.
These results are shown in Figs. 9.14 and 9.15. In fact, the assumption (9.11)
limits the study to a triangular region of parameter space ε < 4πδ, so through-
out we have changed our x-axis co-ordinate as shown in Fig. 9.13.

It is of particular interest that we appear to have codimension-two bifurca-
tion points, i.e. points where fold bifurcations and grazing bifurcations occur
simultaneously, i.e. a smooth and a discontinuity-induced bifurcation occur
together. We shall return to a discussion of possible kinds of codimension-two
DIBs in Sec. 9.4 below.

9.2.3 Using an impacting contact model

We consider the existence and stability of the orbits of interest with the im-
pacting contact model assumed to be perfectly elastic (r = 1). We then con-
sider the classical bifurcations that may occur.

p1 p3u

t0

β

−β

φ φ + m

(u, u′, t) = (β,−v, φ)
(β, v, φ + m)

Fig. 9.12. Notation for the P (m, 1, 0) solution with the impacting contact model.

Here we should point out that we can only have P (m, 1, 0) solutions that
contact the boundary at u = β. We cannot have solutions that only impact
the boundary u(t) = −β as this would violate assumption (9.11). Therefore
we consider the construction of solutions where the period m ∈ N.

Our first step is to construct the unknown part of our solutions by solv-
ing (9.9). With reference to Fig. 9.12, we construct the solution such that,
immediately after impact, we have

u(φ) = β,

u′(φ) = −V,
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for some unknown initial time φ and velocity −V . The periodicity conditions
than imply that immediately before impact

u(m+ φ) = β,

u′(m+ φ) = V.

Then, solving these equations, we obtain

β = 4πφ− ε

2π
√
δ2 + 4π2

cos
[

2πφ+ arctan
(

δ

2π

)]

+ c1 + c2e
−δφ,

−V = 4π +
ε√

δ2 + 4π2
cos

[

2πφ− arctan
(

2π
δ

)]

− c2δe
−δφ, (9.12)

β = 4π(φ+m) − ε

2π
√
δ2 + 4π2

cos
[

2πφ+ arctan
(

δ

2π

)]

+ c1 + c2e
−δ(φ+m),

V = 4π +
ε√

δ2 + 4π2
cos

[

2πφ− arctan
(

2π
δ

)]

− c2δe
−δ(φ+m), (9.13)

where c1 and c2 are the undetermined integration constants. Equating the two
equations for β we have

0 = −4πm+ c2e
−δφ(1 − e−δm),

and using (9.13) and (9.12), we obtain

−2V = −c2δe−δφ(1 − e−δm).

Hence, we find that, for the orbit to exist, we must have

V = 2πδm, (9.14)

c2 =
4πmeδφ

1 − e−δm
. (9.15)

Substituting these values for v and c2 into (9.13) and solving for φ, we have

2πφ = arcsin

[√
δ2 + 4π2

ε

(

4πmδe−δm

1 − e−δm
+ 2πδm− 4π

)

)

− arctan
(

δ

2π

]

.

(9.16)
There are two admissible solutions to (9.16). We can expand these solutions

in terms of our small parameters,

φ =

{

m2πδ2

3ε − δ
4π2 +O(δ3), in-phase solution,

1
2 − m2πδ2

3ε + δ
4π2 +O(δ3), out-of-phase solution.

(9.17)

Note that these solutions cannot exist if the argument of the arcsin function
in (9.16) is greater than unity. Thus, expanding the argument of the arcsin in
terms of the small parameters δ and ε, we find



428 9 Further applications and extensions

√
δ2 + 4π2

ε

(

4mπδe−mδ

1 − e−mδ
+ 2mπδ − 4π

)

=
2m2π2δ2

3ε
+O(δ2).

For this quantity to be less than one, we require to leading order,

ε >
2π2m2δ2

3
+O(δ3). (9.18)

We also must consider whether the trajectory has the correct itinerary,
so that it does not hit the boundary at u = −β. To check this we must
find the minimum displacement. Again, we can only find this minimum point
approximately; we first find the point at which the velocity is zero, i.e. ̂t such
that u′(̂t) = 0. We try a power series approximation of the form

̂t = φ+
m

2
+ ̂t0 + ̂t1δ + ̂t2δ

2 + . . . ,

and we solve for the coefficients ̂ti by comparing terms of O(δk) in turn.
We then substitute this series expression for ̂t into our ODE solution x(t),
and expand this as a series as well to find the minimum displacement of the
candidate periodic orbit x̂ = x(̂t).

After some algebraic manipulation, we find that, for the in-phase solution
[φ = O(δ)] not to contact the lower boundary, we require

β >

{

m2πδ
4 + ε

4π2 −O(δ2), if m odd,
m2πδ

4 +O(δ2), if m even,
(9.19)

and for the out-of-phase solution [φ = 1
2 + O(δ)] not to contact the lower

boundary, we require

β >

{

m2πδ
4 + ε

4π2 +O(δ2), if m odd,
m2πδ

4 +O(δ2), if m even.
(9.20)

To assess stability, we need to consider the eigenvalues of the matrix A1 :=
Q(φ+m, 2πmδ)Φ1(m) obtained by composing the system flow Φ1(m) with an
appropriately derived, transverse, discontinuity map Q (for the sake of brevity
we omit such derivation here),

A1 =
[

−1 1
δ (e−δm − 1)

4
m + ε

πmδ cos(2πφ) −1
δ (e−δm − 1)

(

4
m + ε

πmδ cos(2πφ)
)

− e−δm

]

,

(9.21)
where φ is given by (9.16).

The eigenvalues of A1 are the Floquet multipliers of the orbit. For stability
these multipliers must be within the unit circle. The bifurcations that may
occur as these eigenvalues cross the unit circle are considered in the next
section. For the in-phase solution [φ = O(δ)] found above, we find the leading-
order term of the Floquet multipliers to be
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λ1,2 = 1 +
ε

2πδ
± 1

2π

√

ε

δ2
(ε+ 4πδ) +O(δ),

of which one is outside the unit circle for 4πδ > ε. For the out-of-phase
[φ = 1

2 +O(δ)] solution the Floquet multipliers are

λ1,2 =
(

1 − mδ

2

)

f1,2 +O(δ2),

where

f1,2 = 1 − ε

2πδ
± i

2π

√

ε

δ2
(4πδ − ε),

|f1,2| = 1.

Therefore, |λ1,2| ≈ 1 − mδ
2 , and hence this solution is stable for 4πδ > ε and

ε ∼ δ.

δ

εε

4πδ − ε

ε = 4πδ

Fig. 9.13. Transformation of parameter space for visualization.

Now let us turn to possible bifurcations in this model. At a smooth local
bifurcation point we have at least one Floquet multiplier on the unit circle. We
denote the two Floquet multipliers as λ1 and λ2. There are three possibilities
for a bifurcation.

1. Complex conjugate Floquet multipliers on the unit circle: λ1 = eiθ, λ2 =
e−iθ. This cannot occur for δ > 0 as we require λ1λ2 = 1 = e−δm [the
product of the eigenvalues of A1 is det(A1)]. This implies that there are no
secondary Hopf or Neimark–Sacker bifurcations in the region of interest.

2. A Floquet multiplier on the unit circle on the negative real axis: λ1 = −1
(and therefore λ2 = −e−δm). We can then use the fact that trA1 = λ1+λ2,
giving

−1 − 1
δ
(e−δm − 1)

(

4
m

+
ε

πmδ
cos(2πφ)

)

+ e−δm = −1 − e−δm,

which reduces to the condition
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4πδ − ε

ε

stable solution grazing

unstable solution grazing

fold bifurcation

16β
m2

ε > π3m2δ − 4π2β

ε < 4π2β − π3m2δ

ε > 2π2m2δ2/3

unstable

stable and unstable

Fig. 9.14. Sketch of the bifurcations of the P (m, 1, 0) solutions, with m odd. If we
follow the dash-dot line we have a sequence of bifurcations: a fold bifurcation where
the unstable and stable solutions are created, a grazing bifurcation where the stable
solution impacts the boundary at x = −β, and finally a grazing bifurcation where
the unstable solution impacts the boundary at x = −β.

saddle

4πδ − ε

ε

stable and unstable solution grazing

saddle-node bifurcation

16β
m2

δ < 4β
m2π

ε > 2π2m2δ2

3stable and unstable

Fig. 9.15. Sketch of bifurcations of P (m, 1, 0) solutions, m even. As we follow the
dash-dotted line we have a saddle-node bifurcation where the unstable and stable
solutions are born, and then a simultaneous (to O(δ2)) grazing of the opposing
boundary x = −β.

cos(2πφ) =
−4πδ
ε

.

This equation can only have solutions for ε > 4πδ, which is outside the
region of interest, and consequently period-doubling does not occur.

3. A Floquet multiplier on the unit circle on the positive real axis: λ1 = +1
(and therefore λ2 = e−δm), corresponding to period-doubling bifurcations.
Again we use the tr(A1) = λ1 + λ2 condition to find

cos(2πφ) =
−2πδ(δm− 2 + e−δm(δm+ 2))

ε(e−δm − 1)
. (9.22)
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We can substitute the expression (9.16) for φ into (9.22) to find the exact
location of the bifurcation in the ε−δ plane. To leading order this location
is given by

ε =
2π2m2δ2

3
+O(δ4). (9.23)

An eigenvalue at +1 implies that we are at a transcritical, cyclic fold
or symmetry-breaking bifurcation. The solution is not symmetric so we
can eliminate the possibility of symmetry-breaking. The solutions (in this
form) cannot exist past the bifurcation point [see (9.18)] so we cannot have
a transcritical bifurcation. Therefore we have a cyclic-fold bifurcation,
where unstable and stable solutions meet and disappear.

In addition to the smooth bifurcations highlighted above, backlash os-
cillators, can also undergo discontinuity-induced bifurcations associated with
tangential intersections of the system trajectory with the backlash boundaries
defined by |u| = β. The orbits under investigation can only graze the bound-
ary at u = −β. It is clear that the locus of grazing bifurcations is the same as
the locus of the conditions for the existence of these solutions derived above.

We present these findings on two-parameter bifurcation diagrams in Figs. 9.14
and 9.15 obtained by using the conditions of existence that correspond to
grazing orbits and also the changes in stability that correspond to the smooth
bifurcations described above. We see many coexisting stable impacting solu-
tions. Provided that 4πδ − ε < 16β, we increase ε from zero while keeping
4πδ − ε constant (following the dash/dotted lines in Figs. 9.14 and 9.15), we
first see a cyclic fold bifurcation that simultaneously gives birth to a pair
of solutions that hits y = β once per period, one stable and one unstable.
Increasing ε by an order of magnitude then destroys the solutions through
grazing bifurcations. We now turn our attention to the effects of the large
finite (rather than infinite) torsional stiffness K.

9.2.4 Using a piecewise-linear contact model

One of the aims of this section is to compare the results obtained by using
an impacting model of backlash against those derived using a piecewise-linear
contact model. To address this issue, we now consider again solutions of type
P (m, 1, 0) but analyze their existence using the piecewise-linear contact model
for the backlash nonlinearity.

When the piecewise-linear model is used, the orbit of interest has the form
sketched in Fig. 9.16. We see that, now, the solution spends some finite time
σ in the region u > β where B(u, β) = u− β. To give conditions of existence
of such a solution, we proceed as follows.

We write our parameters in terms of the single small parameter δ,

p =

⎡

⎢

⎢

⎣

δ
ε
β
K

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

δ
ε1δ
β1δ

K−2/δ
2

⎤

⎥

⎥

⎦

. (9.24)
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p1
p2

x

t0

β

−β

φ φ + σ φ + m

(u, u′, t) = (β, va, φ)

(β,−vb, φ + σ)
(β, va, φ + m)

Fig. 9.16. Notation for the P (m, 1, 0) solution with the piecewise-linear contact
model.

We then have to find the unknowns y = [va, vb, φ, σ]T , which characterize the
solution of interest. To this aim, we write such unknown variables as a series
in the small parameter δ,

y =

⎡

⎢

⎢

⎣

va0

vb0

φ0

σ0

⎤

⎥

⎥

⎦

+

⎡

⎢

⎢

⎣

va1

vb1

φ1

σ1

⎤

⎥

⎥

⎦

δ +

⎡

⎢

⎢

⎣

va2

vb2

φ2

σ2

⎤

⎥

⎥

⎦

δ2 + . . . . (9.25)

We can then find y by solving the set of four equations obtained by consid-
ering the matching conditions on each section of the trajectory, ‘gluing’ each
section to the next to form the solution under investigation. Each of these
equations is derived from the solutions of our linear ODEs for displacement
and velocity. In particular, considering the sketch diagram in Fig. 9.16, the
first equations are from the solution of the ODE for u > β,

u′′ + δu′ + 2K(u− β) = 4πδ + ε cos(2πt),

with initial conditions u(φ) = β, u′(φ) = va. We then have two matching
conditions to glue the trajectory segments together at time t = φ+σ, namely

u(φ+ σ) = β, (9.26)
u′(φ+ σ) = −vb. (9.27)

A similar technique generates the second pair of equations. First the ODE
in the freeplay region is solved with initial conditions u(φ+σ) = β, u′(φ+σ) =
−vb, and then we apply the matching conditions

u(φ+m) = β, (9.28)
u′(φ+m) = va. (9.29)

The four equations (9.26), (9.27), (9.28) and (9.29) now form a system of
equations for the unknowns y = (φ, σ, va, vb)T . We substitute (9.24) and (9.25)
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(with the additional assumption that, to leading order, the trajectory in the
region x > β is a sinusoid, which implies that σ = π/

√
2K+σ2δ

2) and expand
in terms of our remaining small parameter δ. This enables us to find solutions
for each set of coefficients in turn.

In summary we have two sets of solutions (dependent on the original pa-
rameters δ, ε, β and K). Namely, to O(δ3) we have, for the in-phase solution
φ0 = 0,

va = 2πmδ − π(4πδ + ε)
2
√

2K
+O(δ3), (9.30)

vb = 2πmδ − π(4πδ + ε)
2
√

2K
+O(δ3), (9.31)

φ =
(

− π

2
√

2K
+
πm2δ2

3ε
− δ

4π2

)

+
(

− π2mδ2

2ε
√

2K
− 1
mK

− ε

4πmKδ

)

+O(δ3),

σ =
π√
2K

+
4πδ + ε

2πmKδ
+O(δ3), (9.32)

and for the out-of-phase solution φ0 = 1/2,

va = 2πmδ − π(4πδ − ε)
2
√

2K
+O(δ3), (9.33)

vb = 2πmδ − π(4πδ − ε)
2
√

2K
+O(δ3), (9.34)

φ =
1
2

+
(

− π

2
√

2K
− πm2δ2

3ε
− δ

4π2

)

+
(

π2mδ2

2ε
√

2K
− 1
mK

+
ε

4πmKδ

)

+O(δ3),

σ =
π√
2K

+
4πδ − ε

2πmKδ
+O(δ3). (9.35)

Examining these expressions we see that, at first, they might appear very
different to the corresponding conditions of existence of the same orbit, given
by (9.14) and (9.17), computed when an impacting model of backlash is con-
sidered. As we will not show, the two set of conditions are actually identical
to leading order.

First, note that we have

va − vb = O(δ3),

so to O(δ3) the impacting model with coefficient of restitution equal to one is
appropriate. Furthermore, as K → ∞, we find

va, vb → 2πδm = v̂,

where v̂ is the impact velocity predicted by the impacting contact model
(9.16). Moreover, the impact times predicted by the two models also match.
Indeed, the ‘mid-impact’ time φ + σ/2 is equal, to order δ2, to that given
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by the impacting model (9.16) for both the in- and out-of-phase solutions.
Additionally, as K → ∞, σ → 0, as we might expect.

Thus, the necessary conditions for the existence of these solutions in the
impacting and piecewise-linear contact models are identical, to leading order,
as are the solutions themselves. We now have to check a posteriori whether
the solution has the correct itinerary, that is, whether each of the trajectory
sections remain in the assumed region of phase-space: namely u(t) > −β. It
may be shown that the condition for this to hold is again the same to leading
order as that found with the impacting contact model.

When the piecewise-linear contact model is used, stability of solutions
is given by the eigenvalues of the matrix A2 := Φ1(m − σ)Φ2(σ). Finding
expansions for the eigenvalues is cumbersome; upon numerical investigation of
the formula for the eigenvalues, it is possible to show that, as in the impacting
case, we have a stable out-of-phase solution and an unstable in-phase solution
(see [126] for more details). Turning now to possible DIBs in the piecewise-
linear contact mode, analytical calculations given in [126] show that grazing
bifurcations occur on exactly the same parameter set (to leading order) as for
the impacting model.

Thus, to leading order in the small parameter δ, the piecewise-linear finite
stiffness model of backlash produces the same bifurcations, both smooth and
discontinuity-induced, as the impacting model, in the case of solutions im-
pacting only on one boundary. The same can be proved for more complicated
family of orbits as, for instance, those with impacts on both sides of the lash
[126].

Using the derivation presented so far, it is possible to derive complete bi-
furcation diagrams for the orbits of interest. These diagrams can then be val-
idated numerically using appropriate continuation methods. It can be shown
that, in general, several stable solutions can coexist for the same parameter
values. For example, Fig. 9.17 shows some of the coexisting solutions obtained
by integrating (9.9) with the piecewise-linear contact model of the backlash
nonlinearity.

9.3 A hydraulic damper: non-smooth invariant tori

We now turn to an application of the analysis of DIBs to the industrially
motivated problem of explaining the complex dynamics of a fully parametric
model of a hydraulic damper. Such devices are used in many diverse engi-
neering applications such as in earthquake-resistant buildings [140] and car
shock-absorbers [261]. Figure 9.18(a) illustrates a particular design that in-
corporates a symmetric pair of ‘blow-off’ relief valves that are intended to
allow high-velocity motion but to provide high damping at low velocities
[Fig. 9.18(b)]. A model for such a situation was derived in Eyres et. al. [92]
based on the earlier work by Surace et. al. [244, 245]. Here we describe the
results of embedding such a model in a simple closed-loop spring-mass system,
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Fig. 9.17. Numerical integration of the differential equation showing coexisting
stable P (m, 1, 0) and P (m, 1, 1) solutions for 1 ≤ m ≤ 3 with the piecewise-linear
contact model, δ = 0.5 × 10−4, ε = 10−4, β = 6 × 10−4, K = 108. These solutions
all coexist with the permanent contact solution, a sinusoid of amplitude ε/(2K)
centered at x = β + 2πδ/K.

as in Fig. 9.18(c), subject to harmonic forcing. Further details can be found
in the bifurcation study given in [93].
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Fig. 9.18. (a) Sketch of the hydraulic damper with relief valves. (b) The desired
pressure-velocity characteristic. (c) The damper embedded in a simple closed-loop
system. (Reprinted from [92] with permission from Springer-Verlag.)
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9.3.1 The model

The positions Vi(t) of the two relief valves and the pressure difference P (t)
between the two main chambers can be described by the following second-
order system [92]:

V̈1 =

⎧

⎨

⎩

K1 − (δ1V̇1 + k1V1)/mv1, if V1 < 0,
K1, if V1 = 0 and Av1ΔK1 < 0,
0, otherwise,

(9.36)

V̈2 =

⎧

⎨

⎩

K2 − (δ2V̇ + k2V2)/mv2, if V2 > 0,
K2, if V2 = 0 and K2 > 0,
0, otherwise,

(9.37)

Ṗ =
1 + ζ

ζβV

[

AQ̇− sign(P )h

(

−D1 +
√

D2
1 + 4D2|P |

2D2
+R

√

|P |
)]

, (9.38)

where
Ki(P ) = AviP − kiVci, i = 1, 2,

R(V1, V2, t) = Cpo

(

γ(Ξ1 +Ξ2)2

1 + γ(Ξ1 +Ξ2)

)

πdvsin(α)
√

2
ρ
,

and

Ξ1 =
{

−V1, if V1 < 0,
0, otherwise, Ξ2 =

{

V2, if V2 > 0,
0, otherwise. (9.39)

Here, A is the cross-sectional area of the main valve, Avi is the area of blow-off
valve i, ζ is the proportional volume of chamber 1 compared with chamber
2, β is the compressibility constant of the fluid in the damper and V is the
average volume of chamber 1. Taking right to left as the positive displacement
direction, the sign convention is that valve 1 will be open when the displace-
ment V1 < 0 is negative (9.39), whereas V2 > 0 indicates that valve 2 is open.
The losses due to a given valve deflection are characterized by an initial slope
proportional to γ and maximum loss for the valve fully open equal to Cpo.
The equation of motion for valve i is defined by the mass of the valve mvi,
spring stiffness ki and damping term δi. The parameter R is a measure of the
magnitude of flow going through the valve and is strictly positive for values of
valve half angle α < π

2 . The direction of flow is considered in (9.38) through
the term sign(P ). The constants D1 and D2 represent the linear and quadratic
head losses due to the fluid flow through the orifice and are a function of the
piston and orifice geometry, fluid viscosity and density ρ.

The constant Vci
represents the precompression of the springs in relief

valve i given by

Vci
=
PcritAv

k
, i = 1, 2, (9.40)
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where Pcrit is the critical pressure for blow off, see Fig. 9.18(b). At impact
Vi = 0 we assume a highly dissipative impact law with zero coefficient of
restitution so that

V̇i(t+) = 0. (9.41)

This law is a good approximation for systems where a light structure impacts
with a spatially extended object that can easily dissipate sound, e.g. in the
clanging of church bells [33]. Here, we additionally have the impact occurring
within a viscous fluid, which makes significant rebound unlikely.

The simple equation for the displacement Q(t) of the closed-loop system
can be written as

MQ̈+KQ+AP = σ sin(ωt) (9.42)

where σ and ω are the amplitude and frequency of the harmonic forcing.
Assuming the chambers are of equal volume so ζ = 1 and we have sym-
metric springs so Av1 = Av2, δ1 = δ2, k1 = k2 and mv1 = mv2 we can
non-dimensionalize by setting

X1 = V1, X3 = V2, Q1 = Q, p = P
Pcrit

,

X2 = V̇ , X4 = V̇ , Q2 = Q̇,
(9.43)

and writing (9.38)–(9.42) as a system of first-order equations:

Q̇1 = Q2,

Q̇2 = C1 sin(ωt) − C2Q1 − C3p,

Ẋ1 = X2,

Ẋ2 =

⎧

⎨

⎩

C4p− C5X2 − C6X1 − C7, if X1 < 0,
C4p− C7, if X1 = 0 and C4p− C7 < 0,
0, otherwise,

Ẋ3 = X4, (9.44)

Ẋ4 =

⎧

⎨

⎩

C4p− C5X4 − C6X3 + C7, if X3 > 0,
C4p+ C7, if X3 = 0 and C4p+ C7 > 0,
0, otherwise,

ṗ =
{

C8Q2 − sign(p)
(

C9 +
√

C2
9 + C10|p| + r

√

|p|
)

,

where

r(X1,X3, t) = C11

(

(−X1Θ(−X1) +X2Θ(X2))2

1 + C12(−X1Θ(−X1) +X2Θ(X2))

)

(9.45)

and Θ is the Heaviside step function. The constants C1 − C12 are defined
in Table 9.1, which are indicative of a macro-scale device, and the impact
law (9.41) is used for the valve/valve seat impact. The impact surfaces are
Σ1 := {X1 = 0} and Σ2 := {X3 = 0}.
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Table 9.1. Parameter values used for simulations of the damper model (9.44)

Parameter Physical meaning Value

C1
σ
M

4 × 104

C2
K
M

4 × 106

C3

APcrit
M

2 × 102

C4

AvPcrit
mv

1.98 × 104

C5
δ

mv
5 × 103

C6
k

mv
2 × 107

C7
Vc
mv

1.96 × 104

C8
(1+ζ)A

ζβV Pcrit
4.21 × 105

C9 − (1+ζ)D1
ζβV Pcrit2D2

−1.66 × 104

C10
(1+ζ)2

√
Pcrit

(ζβV Pcrit)2D2
2.89 × 103

C11
(1+ζ)Cpoγπdv sin(α)

√
2

ζβV
√

Pcrit
√

ρ
1.31 × 1014

C12 γ 4 × 105

Impacting systems with zero coefficient of restitution have the property
that they can stick immediately without chatter. An analysis of a single-
degree-of-freedom system with a zero coefficient of restitution law was given in
the work of Shaw and Holmes [238]. It was shown there that such systems can
have complex dynamics, arising as we might expect, from grazing bifurcations.
The bifurcation diagram in Fig. 9.19 for the hydraulic damper shows that
extremely rich chaotic dynamics can also arise in this system for sufficiently
high forcing frequencies (which we should stress are well beyond the range
likely to be encountered in most everyday applications of hydraulic dampers).

We will now attempt to explain some features of the observed dynamics
through the analysis of the associated grazing bifurcations.

9.3.2 Grazing bifurcations

We first note that there are several kinds of discontinuity in the model. Using
the notation from Chapter 2, the degree of smoothness of the flow is equal to
2, whenever the pressure reaches the critical value for the values to open (i.e.
when the Heaviside function in r is switched on or off). In contrast, there is
an impact, corresponding to a degree of smoothness equal to 0, whenever the
valve impacts with the valve seat. We shall focus on the dynamics caused by
grazing bifurcations happening with respect to the latter discontinuity surface.
Figure 9.20 depicts the geometry of phase space close to such an event. For
definiteness we suppose the second valve undergoes the grazing. Owing to the
symmetry between the second and third set of equations in (9.44), similar
considerations apply to the first valve.



9.3 A hydraulic damper: non-smooth invariant tori 439

0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−10

−5

0

5

x 10
−4

Forcing freq, ω

Q
1

A 

B 

C 
D 

Fig. 9.19. Numerically computed bifurcation diagram showing mass displacement
versus forcing frequency at the Poincaré section Q2 = 0. Labels A–D illustrate
different dynamical regimes. At A (and all frequency values less than this) stable,
symmetric period-one motion is observed for which both valves open. Region B cor-
responds to symmetry-broken period-one motion, where one valve opens for longer
than the other. In region C there is chaotic dynamics and in D stable period-three
asymmetric motion. (Reprinted from [93] with permission from SIAM. Copyright
(c)2005 Society for Industrial and Applied Mathematics. )
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Fig. 9.20. Sketch of the possible dynamics close to a grazing of valve 2, projected
onto the directions associated with X3, X4 and W = p − C7/C4. Solid lines corre-
spond to trajectory segments, and dashed lines to the impact map. Here trajectory
segments T1 and T4 correspond to impacting and sticking behavior, and both end
up rebounding along segment R1. Trajectory T2 impacts in the non-sticking region
and rebounds along R3. Trajectory T4 −−R2 represents a grazing trajectory of the
kind we analyze here. (Reprinted from [93] with permission from SIAM. Copyright
(c)2005 Society for Industrial and Applied Mathematics. )
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Fig. 9.21. (a) Numerical continuation results unfolding the first few bifurcations of
the symmetry-broken solutions that emerge from the main stable period branch A1.
Here SB refers to a symmetry-breaking pitchfork, F to a fold and G to a grazing
bifurcation point. Only branches A1, A3 and A6 are stable. (b) Trajectory corre-
sponding to grazing of valve 1 for branch A5 at the point G. Note that x3 is zero
throughout this solution as valve 2 never opens. (Reprinted from [93] with permission
from SIAM. Copyright (c)2005 Society for Industrial and Applied Mathematics.)

A bifurcation diagram close to the onset of observed chaotic motion is pre-
sented in Fig. 9.21, where the path following technique described in Chapter 2
is used to perform the computations. In fact, this bifurcation diagram is part
of an increasingly complex bifurcation diagram of the simplest few periodic
orbits for higher ω-values, which involves period-doubling bifurcations, fur-
ther grazings, Neimark–Sacker bifurcations, quasi-periodic motion and a wide
parameter interval of period-three motion. Further details of the dynamics are
presented in [93].

Let us focus on explaining the onset of chaos near to the grazing bifurcation
of the period-one limit cycle at ω = 8116.1. In order to construct a PDM
associated with the flow, the Poincaré section Π containing the grazing point
(for valve 2) is taken to be

Π := {(Q1, Q2,X1,X2,X3,X4, p) : X4 = 0} .

The numerical continuation algorithm used in [93] enabled the authors
to compute the linearized Poincaré mapof the orbits on branches A4 and
A5. They found that branch A4 has one real positive eigenvalue larger than
unity which increases exponentially in magnitude as the solution approaches
the grazing point. On the other hand, branch A5 has two complex conju-
gate eigenvalues outside the unit circle that remain bounded as the solution
approaches the grazing point.

Moreover, this can be predicted by applying the bifurcation analysis of
Chapter 4, Sec. 4.3. In particular, we find, in the notation of that theory,
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N1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.0467 4.4042 × 10−4 0.3208 8.889 × 10−6 0.0015 −9.315 × 10−8 −0.0155
−1861 0.0931 −377.25 −0.0059 −76.58 −0.0124 8.807

−0.9529 3.677 × 10−4 −1.2709 −2.180 × 10−5 −0.0155 1.558 × 10−5 0.0220
−7050 −11.6379 56164 0.9760 7897 1.1580 −1233
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0.6160 −0.0027 11.15 1.95 × 10−4 1.2554 1.27 × 10−4 −0.2081

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

E =
[

0 0 1278.1 0 0 0 0
]T
,

CT =
[

0 0 1 0 0 0 0
]

,

M =
[

39392 5.3954 × 107 36804 1.4788 × 108 0 0 −56776
]T
.

From this we can calculate directly that the only physically possible bifurca-
tion scenario is a, ab �→ ∅ according to the notation introduced in Chapter 3.
Specifically, there is an unstable period-two solution ab that exists on the
same side of the bifurcation together with the non-impacting unstable orbit
a.

In this example then, grazing is not directly responsible for the onset of
stable chaotic motion. However, clearly we can construct a chaotic repeller
close to the grazing bifurcation point, and it seems that this set becomes
stable due to other features present in the dynamics. In particular the onset
of chaos in the Monte Carlo bifurcation diagrams appears to be close to the
fold F in Fig. 9.21 where branch A3 becomes unstable. Presumably at or near
such a point the chaotic repeller becomes stable by some form of boundary
crisis.

Also, clearly many features of the chaotic attractor vary as we pass the
region C in Fig. 9.19. As argued in [93] grazing bifurcations of higher-period
limit cycles play a role in organizing these qualitative changes of attractor.
For example, we are about to see the chaotic attractor associated with a
period-nine orbit that is close to grazing.

Fig. 9.22 depicts the observed attractor as ω varies, depicted via a plot of
one variable against its first iterate under a simple Poincaré map. An interest-
ing feature is that for higher forcing frequencies within this parameter interval
of complex motion, there appears to be two-frequency motion associated with
motion on an invariant torus. For example, the attractor in panels (k) and
(l) of Fig. 9.22 appears to be topological equivalent to a circle. This would
correspond to an invariant torus in the flow.

9.3.3 A grazing bifurcation analysis for invariant tori

In Chapter 2 we stated that motion on an invariant torus in smooth dynamical
systems can either be phase locked onto a periodic orbit, or can be genuinely
quasi-periodic. However, for non-smooth systems it seems that things are more
complicated. For example, panel (i) of Fig. 9.22 is a good example. Here there
appears to be a chaotic attractor that is close to a phase-locked period-nine
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Fig. 9.22. Representations of observed attractor for a series of forcing frequencies ω
as (a) 8228.7, (b) 8318.2, (c) 8407.6, (d) 8497.1, (e) 8586.5, (f) 8675.9, (g) 8764, (h)
8854.8, (i) 8944.3, (j) 9033.7 (k) 9123.2, (l) 9212.6. See [93] for details of Poincaré
section used. In the first three plots, a circle has been drawn around the single fixed
point of the map for ease of viewing. The values on the x- and y-axes are multiplied
by the factor 10−4, which is not indicated in the figure for ease of viewing. (Reprinted
from [93] with permission from SIAM. Copyright (c)2005 Society for Industrial and
Applied Mathematics.)

solution. Fig. 9.23 shows a delay plot of the ninth iterate of the Poincaré map,
where we see that the attractor approximately aligns along the Xn+9 = Xn

line. However the shape of the attractor approaches that of a square-root
mapping associated with the grazing bifurcation analyzed in Chapter 6. Also,
the dynamics of panels (d)–(h) also appear to lie on ‘fat tori’. This is suggestive
that, as ω decreases, an invariant torus has become unstable in some kind of
non-smooth bifurcation, creating a nearby chaotic attractor.
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Fig. 9.23. Delay plots of the ninth iterate Poincaré mapcorresponding to section Σ
for ω =9212. The co-ordinate α used is the angle associated with the vector X1, X3.
The line y = x is drawn for reference. (Reprinted from [93] with permission from
SIAM. Copyright (c)2005 Society for Industrial and Applied Mathematics.)

A complete analysis of grazing bifurcations of invariant tori in impacting
systems is not known and certainly goes beyond the scope of this book. A
preliminary analysis has however been carried out by Dankowicz et. al. in
[65], which we shall summarize briefly now.

Consider a smooth vector field

ẋ = F (x)

whose dynamics contains a smooth invariant torus T , which is strongly at-
tracting and normally hyperbolic, that is the speed of attraction onto the
torus is greater than the time constants associated with the dynamics on the
torus (see, e.g. [272]). We suppose that the torus can be parameterized by
two angle co-ordinates α, β ∈ [0, 2π) and that at a parameter value μ = 0 the
torus grazes with a discontinuity surface Σ : {H(x) = 0} at which an impact
map of the form

x→ Rx = x+ w(x)Hx(x)

applies. Let us suppose without loss of generality that the point of tangency
is given in the local co-ordinates on the torus by (α, β) = (0, 0), and sup-
pose further that for μ < 0 there is no intersection between T and Σ locally.
For μ > 0, however, we assume that, if the effect of impact with Σ were
ignored, the invariant torus penetrates Σ by a distance (measured in the or-
thogonal direction to the torus) proportional to μ. Now, we will make the
strong assumption that the dynamics away from a neighborhood of this in-
tersection region is sufficiently attracting in the directions off the torus that
the flow around the torus will bring any points mapped under R back into an
infinitesimal neighborhood of T when they return to a neighborhood of Σ.
Hence, we shall approximate the entire dynamics using the torus co-ordinates
(α, β). See Fig. 9.24



444 9 Further applications and extensions

$\Sigma$

$\Gamma$

$T$T

Σ

Γ

Fig. 9.24. The geometry of the intersection Γ between the discontinuity surface Σ
and the invariant torus T .

For μ small and positive, the intersection between Σ and T will in general
be elliptical. Let Γ denote this set of points, and let us suppose that the co-
ordinate directions α and β have been chosen such that they align with the
principle axes of this ellipse:

Γ := {α, β :
α2

a2
+
β2

b2
= μ2} (9.46)

for some positive constants a and b. Now, in general there will be two points

γ±0 = (α±
0 , β

±
0 )

at which the vector field on the torus for μ > 0 is tangent to Σ. These two
points divide the ellipse into two line segments

Γ+ = Γ ∪Σ+, Γ− = Γ ∪Σ−,

where Σ± are as defined in Chapter 6. Now, γ±0 lie on the grazing set G within
Σ defined by HxF = 0. Locally, we can approximate G by a straight line on
Σ. Under variation of μ, such a straight line will intersect Γ in a straight line
through the origin (plus cubic correction) in the torus co-ordinates (α, β), see
Fig. 9.25. In what follows we wish only to derive the leading-order expres-
sion for the discontinuity map associated with the torus grazing, so we shall
approximate this set by a straight line that passes through the origin

Γ0 := {α, β : α = kβ}, for some k ∈ R. (9.47)

Here, we make the generic assumption that k is finite.
We now wish to study what happens to points in T that intersect Σ in

forward time along Γ+. The analysis is purely geometric and is carried out in
the torus co-ordinates. The two additional pieces of information we need are
an approximation to the flow F and the impact map R near Γ .

Consider first the direction of F at the points γ±0 . Here, the flow is tangent
both to the torus and to Σ. But, by definition the set Γ is everywhere tangent
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to both T and Σ. Hence if we do not assume that Γ and Σ have two directions
in common at γ±0 (which would be highly non-generic) we have that the flow
at γ±0 must be in the direction tangent to Γ . That is, in torus co-ordinates,

dα̇

dβ̇
=
dα

dβ
= −k b

2

a2
,

which can be reasoned by implicit differentiation of the definition of the ellipse
Γ . Locally, we shall assume that the flow can be approximated by its leading-
order term, so that in (α, β) co-ordinates we have

F ∝ (1, kb2/a2).

For definiteness, let us assume that this constant of proportionality is positive
(see Fig. 9.25). That is, flow occurs along straight lines

(α(t), β(t)) = (α0 + t, β0 + tkb2/a2), (9.48)

where t is a scaling of the true time.

β Γ0

F

F

α

R

Γ+

(α0, 0)
(α3, 0)

(α2, β2)

α−

γ−
0

γ+
0

Π

(α1, β1)

Γ−

Fig. 9.25. Derivation of the PDM close to a grazing bifurcation of an invariant
torus. Under the mapping, the point α0 ∈ Π is mapped to α3.

Let us now consider the reset map R. Now, by definition, Γ0 corresponds
to the grazing line HxF = 0. Therefore, the leading-order form of the discon-
tinuity mapping R must take the form

R :
(

α
β

)

�→
(

α
β

)

+
(

w1

w2

)

[α− kβ],

for constants w1 and w2.
We shall construct a PDM by taking a Poincaré section

Π : β = 0.
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The construction is illustrated in Fig. 9.25. We consider a general point
(α0, 0) ∈ Π, which is the forward image under F of a point in Γ+. For this
to be the case we must have that α− < α < α+, where α± are the images
under the flow of the points γ±0 . Specifically, solving (9.46) and (9.47) for the
co-ordinates of γ±0 , and evolving using (9.48) until β = 0, we obtain

α± = ± a

kb

√

μ(1 + k2b2).

To calculate the PDM we first evolve such a point (α0, 0) (back) under the
flow through t = δ to a point (α1, β1) ∈ Γ+

(α1, β1) =
(

α0δ,−k
a2

b2
δ

)

, (9.49)

where
α2

a2
+
β2

b2
= μ. (9.50)

Second, we apply the discontinuity map to obtain
(

α2

β2

)

�→
(

1 + w1 −kw1

w2 1 − kw2

)

. (9.51)

Finally we evolve this through time t = Δ under the flow to a point on Π
again

(α3, 0) =
(

α2 +Δ,β2 − k
a2

b2

)

. (9.52)

Now, in order to solve for α3 as a function of α0, we shall substitute ev-
erything into the only nonlinear equation, (9.50). Using (9.49) we can express
α1 and β1 in terms of α0 and δ. It remains to find an expression for δ. From
(9.52) we can eliminate Δ and express β2 in terms of α3 and α2. From (9.51)
we then get two equations for α2, which we can use to express δ in terms of
α0 and α3. The final result is

c1(α3 − α0)2 + c2α
2
0 = μ,

where c1 and c2 are positive constants given by

c1 =
b4k2

(b2kw1 + a2w2)2(a2 + k2b2)
, c2 =

b2k2

a2(a2 + k2b2)
.

From our assumption about the direction of the flow, we get that α3 < α0

and hence the leading-order expression for the PDM is

PPDM : α �→
{

α, c2α
2 > μ,

α−
√

μ−c2α2

c1
c2α

2 < μ,
(9.53)
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where c1 and c2 are given above. Note the characteristic square-root form of
this mapping, as we saw for grazing bifurcations of periodic orbits in impacting
systems.

In order to understand the dynamical implications of such a map, we need
to compose it with another Poincaré mapthat describes the dynamics of the
non-impacting torus. A suitable way to do that is via a circle map Pπ that
evolves the global Poincaré section Π : {α, β : 0 ≤ α < 2π, β = 0} to itself.

The simplest possible case is that Pπ describes quasi-periodic motion,
which we approximate by a rigid rotation

Pπ : α �→ α+ 2πη mod 2π,

where η is the rotation number on the torus (see remark 1 below). The com-
position of this map with the above discontinuity mapping will then approxi-
mately describe the complete dynamics for μ > 0. Thus we get

PN = PPDM ◦ Pπ : α �→ α−
√

max
{

μ− c2α2

c1
, 0

}

+ 2πη mod 2π. (9.54)

We suppose that η is close to a rational number p/q and consider the qth
iterate of the map. For simplicity consider the case where q is small (mod
2π). If the penetration μ is large enough, the small semi-elliptical ‘boil’ on the
unperturbed map crosses the 45◦ fixed-point line and creates a stable and an
unstable fixed point. Because of the shape of the boil, under increasing pene-
tration, the stable fixed point rapidly becomes unstable via a period-doubling
bifurcation and eventually chaotic dynamics occurs. Also, small perturbations
to the map can case the square-root part of the map to cross the 45◦ line which
creates a grazing bifurcation.

There is much more that can be said about possible dynamics of circle
maps composed with discontinuity mappings of the form (9.53). More details
and also a example model system is given in [65]. We confine ourselves to a
few remarks

Remarks

1. Note that the map (9.54) is continuous, despite having a square root
singularity, but it is not invertible. So Theorem 2.1 presented in Chapter 2
for continuous circle maps, does not apply. In fact, the existence of chaotic
dynamics leads to an interval of different rotation numbers for the map.

2. In contrast to the case periodic orbits for which grazing is a codimension-
one event and nearby periodic attractors intersect the transversally, we
find here that under variation of μ, points of grazing between T and Σ
persist. That is, after the bifurcation, there remain trajectories on the
torus that graze with the discontinuity surface. Hence since we might
expect to find mode locking to attracting periodic orbits on the torus as
we vary μ, we might find many separate grazing bifurcations of periodic
orbits occurring in the neighborhood of the original grazing of the torus.
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3. A similar general analysis for the grazing of invariant tori for piecewise-
smooth flows with degree of smoothness 1 or greater is currently unknown.
However, we note that results exist for torus bifurcations in more com-
plex systems of DC–DC converters than the one analyzed in case study
V in Chapter 1. See for example the intricate numerically constructed
bifurcation diagrams in the work of Mosekilde et. al. [193].

9.4 Two-parameter sliding bifurcations in friction
oscillators

Throughout this book we have focused on discontinuity-induced bifurcations
that are unique to non-smooth systems. We have shown how these underlie
sudden transitions between attractors, in particular the onset of chaotic dy-
namics. Through discontinuity mappings we have established a technique for
analyzing DIBs of simple invariant sets such as equilibria, limit cycles and
tori. However, so far our focus has been mainly on codimension-one events.
Yet we know from smooth systems that codimension-two events play an im-
portant role as organizing centers for the dynamics in a parameter plane. The
same must also be true of codimension-two DIBs. However, even if we re-
strict just to limit cycle bifurcations and only allow local bifurcations in the
sense that they can be unfolded purely in terms of Poincaré maps defined in a
neighborhood of grazing points, there remain many possible cases to consider.
We cannot hope to be exhaustive here. In the review paper [161] an attempt
is made to provide a framework for the classification of such codimension-
two bifurcations (in each case giving examples for either hybrid, Filippov or
continuous systems):

Type I: Degenerate grazing point. This is a point for which there is a
degeneracy of one of the analytical conditions determining the properties
of the vector fields local to the grazing event. A simple example of this
would be a grazing impact with zero acceleration a(x) leading to a break-
down in the local formulae for the ZDM and PDM. This is analogous
to degenerate normal form coefficients for smooth bifurcations. Geomet-
rically, this may often be regarded as the non-transverse intersection or
non-quadratic tangency of the limit cycle with an appropriate set such
as Σ, or ̂Σ−, or the failure of an assumption about the lack of sliding or
chattering. This is likely to influence the leading order term of the normal
form map derived via the discontinuity mapping. In the analysis of chatter
presented in Chapter 6 we saw many examples of such degenerate grazing
points. These were manifested as singular points (such as end points) on
the projection of the discontinuity set onto the Poincaré surface and, as
we saw, played an important role in the understanding of chattering and
related behavior.
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Type II: Grazing of degenerate cycles. These are bifurcations where the
linear part of the Poincaré map around the trajectory, not taking account
of impact, contains a degeneracy. The most obvious case is that the critical
cycle is non-hyperbolic. Thus this scenario can be seen as a combination of
a smooth and a non-smooth bifurcation occurring at the same parameter
values. Another, more subtle possibilities is that the coefficients of this
Poincaré maparound the cycle are such that, when composed with the
local discontinuity map, they lead to a degeneracy in one of the dynamical
consequences. An example would be a transition between a period-adding
and a birth of chaos scenario in the unfolding of the square-root map
associated with grazing in hybrid systems that was analyzed in Chapter
6.

Type III: Simultaneous occurrence of two grazings at two different
points along the critical orbit. The possibilities here are large. Each of
the codimension-one bifurcations outlined in the previous Chapters could
occur along lines in a parameter plane. Independently, at another point
along the critical periodic orbit, a second grazing event could occur. This
would then form the intersection point in two-parameter space between
these two lines of independent codimension-two bifurcations. However, in
an unfolding one might well find that other bifurcation curves necessarily
emerge from such a codimension-two point.

In order to illustrate this classification, we provide here an example of
each occurring in the context of sliding bifurcations in the simple dry friction
oscillator models similar to that in case study IV.

9.4.1 A degenerate crossing-sliding bifurcation

In [160], Kowalczyk & di Bernardo consider a version of the dry friction os-
cillator given by

ü+ u = sin(ωt) −A sign(u̇). (9.55)

Here u is the position of an oscillating mass while ω and A represent the fre-
quency of an external forcing and the amplitude of the friction characteristic
respectively. Consider a region of parameter space where a stable, symmetric
periodic orbit of period 2π

ω exists, as depicted in Fig. 9.26(a). Under varia-
tion of A, such an orbit is found to undergo a crossing-sliding bifurcation at
A = 0.6656 for ω = 2/3. It can be checked [160] that at this point all the con-
ditions introduced in Chapter 8 for the crossing-sliding bifurcation to occur
are satisfied. For A-values beyond the bifurcation point, the orbit acquires a
segment of sliding motion giving rise to the orbit depicted in Fig. 9.26(b).

The above bifurcation is just one point on the analytical curve given by

A = ω2 sin
[

arctan
(

ω sin(πω−1)
1 + cos(πω−1)

)

+ π

]

1
ω2 − 1

for ω ∈ (0.5, ∞), ω �= 1.
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Fig. 9.26. (a) A simple symmetric periodic orbit of (9.55) for ω = 2/3 with two
transversal crossings of the switching surface per period just ‘before’ the crossing-
sliding bifurcation, and (b) the same orbit just after the bifurcation. The crossing-
sliding for this ω-value occurs for F = 0.6656. (Reprinted from [161] with permission
from Elsevier.)

at which a branch of crossing-slidings occur for this symmetric limit cycle.
In [162], the limit cycles on this curve in the parameter plane were followed
using numerical continuation. In particular, it was found that the branch does
indeed terminate as ω → 0.5+, (A → 1/3). It was then shown in [160] that
the termination is caused by a failure in the non-degeneracy condition of the
crossing-sliding, hence a type-I codimension-two DIB. Moreover, inevitably
at such a bifurcation point (provided a further non-degeneracy condition is
satisfied, which it is for this example), two additional curves of codimension-
one sliding bifurcations must emerge, as we shall now explain.

Recall from Chapter 8 the defining conditions (8.7) and (8.8) for a crossing-
sliding bifurcation. The additional condition defining the codimension-two
point is the failure of the non-degeneracy condition (8.11), which yields

HxF1xF1 = 0. (9.56)

From a geometric viewpoint, this means that now the outgoing flow at the
bifurcation point is parallel to the boundary of the sliding region. Hence, in
order for the trajectory to leave the switching manifold, the vector field F1

should exhibit a local maximum with respect to ∂ ̂Σ−. Thus, a non-degeneracy
condition for this codimension-two event can be written as

d3(H(Φ1(x, t)))
dt3

∣

∣

∣

∣

t=0

= Hx(F1x)2F1 > 0. (9.57)

The key to understanding the dynamics in a neighborhood of such a
codimension-two sliding bifurcation is to understand the topology of the graz-
ing set ∂Σ close to the point where the degenerate limit cycle intersects it.
The situation is depicted in Fig. 9.27. Here, there is a degenerate point along
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the grazing line that bounds the region of sliding. Three different qualitative
behaviors can then be identified corresponding to different regions of initial
conditions on the switching manifold Σ:

R1

R3

R2

Cγ

Cβ

Cα

G1

G2

Σ ̂Σ

A

T1

T2

T3T0

Fig. 9.27. Phase space topology around the codimension-two degenerate crossing-
sliding point. Trajectory labeled as T0 denotes part of the critical limit cycle in-
teracting with the boundary of the sliding set in the codimension-two scenario.
Perturbations applied to the critical cycle result in possible limit cycles rooted in
regions R1, R2 or R3. This is schematically depicted by trajectories T1, T2 and T3

(rooted correspondingly in R1, R2 and R3 regions), which differ from T0 by the
number of segments which form part of a limit cycle locally to the codimension-two
point. (Reprinted from [160] with permission from Elsevier.)

1. Trajectories starting from region R1 leave the switching manifold towards
region G1.

2. Trajectories starting from region R2 still leave the switching surface to-
wards G1 but, after some finite time, hit the switching manifold again
within the sliding region ̂Σ. Then, they evolve according to the sliding flow
until crossing the boundary ∂ ̂Σ−, where they finally leave the switching
manifold (see trajectory T2 in Fig. 9.27).

3. Trajectories rooted in region R3 will evolve according to the sliding flow
until ∂ ̂Σ− is reached (see trajectory T3 in Fig. 9.27). Then, they will leave
the switching manifold towards G1.

Fig. 9.28 shows the corresponding partitioning of the switching manifold
for the example (9.55). The corresponding trajectories are shown in Fig. 9.29.

It is possible in principle to use the theory of discontinuity mappings as
introduced in Chapter 8 to the situation where a limit cycle passes through
the degenerate point on the grazing line. We do not present such an analysis
here but present the results schematically in Fig. 9.30 with more details in
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Fig. 9.28. Numerically evaluated boundaries corresponding to the theoretical curves
in Fig. 9.27. (Reprinted from [160] with permission from Elsevier.)
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Fig. 9.29. Qualitatively different trajectories around the codimension-two node
starting from regions R1, R2 and R3. Time series representing the velocity co-
ordinate of the trajectories starting in every of the three regions are shown in each
of the panels. Each panel is labeled with the letter indicating the starting point
in phase space as shown in Fig. 9.28. (Reprinted from [160] with permission from
Elsevier.)



9.4 Two-parameter sliding bifurcations in friction oscillators 453

[160]. In particular note that curves of switching-sliding and grazing-sliding
bifurcations are an inevitable consequence of the codimension-two crossing-
sliding bifurcation. The corresponding curves for the friction oscillator are

μ1

BCS

BSS

BGS

μ2

Fig. 9.30. Qualitative representation of the theoretical unfolding of the
codimension-two degenerate crossing-sliding bifurcation. (Reprinted from [160] with
permission from Elsevier.)

presented in Fig. 9.31.
Note that this whole bifurcation scenario, in the specific example of in-

terest, does not cause any change in the existence of limit cycles, nor their
stability. In fact all the orbits computed are stable.

9.4.2 Fold bifurcations of grazing-sliding limit cycles

Let us now turn to an example of a Type-II codimension-two bifurcation point
in a friction oscillator that does lead to a qualitative change in the system
dynamics.

We consider the dry friction oscillator with slightly more complex friction
law studied as case study IV in Chapter 1:

ü+ u = f(1 − u̇) +A cos(νt), (9.58)

where
f(z) = α0sgnz − α1z + α2z

3. (9.59)
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Fig. 9.31. Numerically computed two-parameter bifurcation diagram of the friction
oscillator near the degenerate crossing-sliding bifurcation. (Reprinted from [161] with
permission from Elsevier.)
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Fig. 9.32. One-parameter bifurcation diagrams for (9.58), (9.59) with (a) α4 = 0.7
and (b) α4 = 0.4 obtained by direct numerical simulation (a dashed line denotes an
unstable orbit found using numerical continuation).

A branch of period-one orbits (i.e. having the same period T = 2π
ω as the

drive) undergoing grazing-sliding bifurcations has been detected for α1 = α2 =
1.5, α3 = 0.45 and for a range of ω and α4 values. Figure 9.32 illustrates two
different one-parameter scenarios with varying ω. In panel (a), for α4 = 0.7,
we see that upon increasing ω, a stable period-one orbit that incorporates a
sliding segment is destroyed at the grazing-sliding point. On the other side of
the bifurcation there exists an unstable orbit with the same period that does
not slide. This coexists with a chaotic attractor. In contrast for α4 = 0.4 [panel
(b)] two unstable period-one orbits, one with a sliding segment and the other
without, are created as ω is increased, accompanied by the birth of a chaotic
attractor. At a higher ω-value there is a fold bifurcation where the unstable
sliding orbit coalesces with a stable sliding orbit. This stable orbit can then
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be traced with decreasing ω. Thus, for ω-values between the grazing-sliding
and the fold we have bi-stability between a chaotic attractor and a period-one
orbit.

From these numerical calculations we conclude that there should exist a
curve of fold bifurcations connecting to the curve of grazings at a codimension-
two point. A numerically computed two-parameter bifurcation diagram shows
that the branch of fold bifurcations joins the curve of grazing bifurcations tan-
gentially, at the codimension-two point (α4, ω) = (0.5199, 1.1136). The grazing
point on the limit cycle is (y, ẏ, ωt) = (1.3309, 1, 1.9020)T . From which values,
together with evaluation of various derivatives of the vector field, it can be ver-
ified that the defining and non-degeneracy conditions for the grazing-sliding
bifurcation (8.7), (8.8) and (8.11) from Chapter 8 are satisfied at the grazing
point. However, what defines the codimension-two point is a degeneracy in the
linearization around the critical limit cycle. We cannot directly use linear the-
ory to determine the stability of the grazing cycle, as any Poincaré mapping
will be non-differentiable at the corresponding fixed point, but if we consider
the grazing cycle as having no sliding segment, the non-trivial eigenvalues of
the cycle do not lie on the unit circle and their numerical values are −5.2652
and −0.0151. However, if we consider the cycle as having one zero-length slid-
ing segment the non-trivial eigenvalues are found to be 1 and 0. Thus one
could say the sliding version of the grazing cycle is non-hyperbolic, and this
opens up the possibility of having several different cycles with a short sliding
segment as parameters are varied.

In Nordmark & Kowalczyk [202] analyze such non-hyperbolic grazing-
sliding events using discontinuity mappings. The inevitability of the fold em-
anating from the codimension-two point is predicted, as are the asymptotics
of the fold curve. Note that the bifurcation has an immediate effect in that
the creation of a region of bi-stability between the chaotic attractor and a
stable sliding limit cycle [202]. It was also found that the codimension-two
point also has an indirect consequence for yet lower values of α4. Specifically,
Fig. 9.33 shows the one-parameter bifurcation diagram for α = 0.3. Here the
chaotic attractor is not created immediately at the grazing bifurcation point
upon increasing ω. Instead the chaotic attractor existing for large ω is de-
stroyed upon decreasing ω by collision with the unstable sliding orbit. This
boundary-crisis bifurcation destroys the chaotic attractor and leads to a short
ω-interval where the stable sliding limit cycle is the only attractor.

9.4.3 Two simultaneous grazings

We return to the simple friction oscillator example (9.55) to show an example
of a type-III codimension-two discontinuity-induced bifurcation. Specifically,
a codimension-two situation was identified by Feigin [98] where adding-sliding
and grazing-sliding occur at two distinct points along a limit cycle. In later
work, Kowalczyk et. al. [160], [161] analyzed such a codimension-two bifur-
cation point has been located at ω−1 = 7.76990, A = 0.299984, with the
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Fig. 9.33. bifurcation diagram via direct numerical simulation with varying ω for
α4 = 0.3. Panel (b) shows a zoom of the boxed area of panel (a)

grazing-sliding occurring at u = 0.100044137, u̇ = 0, ωt = 0.411547546 and
the adding-sliding at u = 0.700016, u̇ = 0, ωt = π

2 . The period of the bifur-

cating orbit is equal to T = 2π
ω = 15.53980π.

The time series of the components of the orbit exhibiting the above adding-
sliding and grazing-sliding bifurcation scenarios, are depicted in Fig. 9.34.
Projection of the position component onto the switching manifold Σ, in panel
(a) allows us to easily spot the instant of adding-sliding; whereas observing
the velocity component, panel (b), captures the grazing-sliding interaction.
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Fig. 9.34. Time series of (a) the position component of the system (9.55) (b) the
velocity component for ω−1 = 7.76990, F = 0.299984. (Reprinted from [161] with
permission from Elsevier.)

Variation of the bifurcation parameters A and ω will cause the trajectory
to cross the grazing-sliding and the adding-sliding boundaries in the two-
parameter space. Depending on the character of the ZDM map that captures
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the dynamics of the system, a limit cycle undergoing a grazing-sliding scenario
might be destroyed. Therefore, generically at the codimension-two point under
consideration a branch of adding-sliding bifurcations should terminate at the
codimension-two point. However, in our dry-friction oscillator example such
a situation does not occur and a stable orbit exists in all regions around the
codimension-two point. bifurcation diagrams depicting branches of grazing
and adding-sliding which cross at the codimension-two point are presented in
Fig. 9.35.
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Fig. 9.35. Two-parameter bifurcation diagram around the codimension-two node.
Bγ denotes a branch of grazing-sliding and Bδ a branch of adding-sliding bifurcations
that cross at the codimension-two point. (Reprinted from [161] with permission from
Elsevier.)

A limit cycle near the codimension-two point is depicted in Fig. 9.1. Vari-
ation of any of the two bifurcation parameters might lead the orbit to cross
the bifurcation boundaries Bδ or Bγ (which denote respectively adding-sliding
and grazing-sliding bifurcations) and hence become topologically distinct limit
cycles from the point of view of discontinuity-induced bifurcation introduced
in Chapter 2. For example, Fig. 9.36 depicts two orbits to the right of the
curve Bδ, i.e. ‘after’ the adding-sliding bifurcation takes place. Additional
non-sliding segments, which form small lobes in the phase plots of the limit
cycles, are clearly visible. Although the topology of all of these limit cycles
changes, in this example it is found that each of these orbits is an attractor of
the system, so as in Sec. 9.4.1 this codimension-two point does not represent
a bifurcation in the sense of a change in system attractor.

Clearly, there are many possibilities for two-parameter discontinuity-
induced bifurcations in piecewise-smooth systems, and even the enumera-
tion of all possibilities remains a considerable research challenge. It is then



458 9 Further applications and extensions

−0.8 −0.4 0 0.4 0.8

−0.2

0

0.2

−0.8 −0.4 0 0.4 0.8

−0.2

0

0.2

(a) (b)

x1

x2
x2

x1

Fig. 9.36. (a) A limit cycle for ω−1 = 8.2 and F = 0.34 corresponding to asterisk
‘3’ in Fig. 9.35 and (b) a limit cycle for ω−1 = 8.4 and F = 0.34 corresponding to
asterisk ‘4’ in Fig. 9.35. (Reprinted from [161] with permission from Elsevier.)

necessary to provide an unfolding of the dynamics close to such points, in-
cluding identifying which curves of codimension-one bifurcations necessar-
ily emanate from the codimension-two point. Then, uniquely for piecewise-
smooth systems, there may be dynamical events that do not occur directly at
the critical parameter value, but occur at nearby parameter values due to a
rapid change in higher-derivatives of the Poincaré map(as we saw in Example
7.5). Clearly such phenomena are likely to be affected by the presence of a
codimension-two singularity. An evaluation of which of these codimension-
two events are ‘important’ is likely to be influenced by what is observed in
applications.
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G. C. Goodwin, and P. R. Kumar, editors, Adaptive Control, Filtering, and
Signal Processing, volume 74 of IMA Volumes in Mathematics and its Appli-
cations, pages 1–25. Springer-Verlag, 1995.



460 References

14. V. Avrutin and M. Schanz. On the scaling properties of the period-increment
scenario in dynamical systems. Chaos, Solitons & Fractals, 11:1949–1955, 2000.

15. V. Avrutin and M. Schanz. Border-collision period doubling scenario. Physical
Review E, 70:020101, 2004.

16. V. Avrutin and M. Schanz. Period-doubling scenario without flip bifurcations
in a one-dimensional map. International Journal of Bifurcations and Chaos,
15:1267–1284, 2005.

17. V. Avrutin and M. Schanz. On multi-parametric bifurcations in a scalar
piecewise-linear map. Nonlinearity, 19:1875–1906, 2006.

18. B. Azejczyk, T. Kapitaniak, J. Wojewoda, and R. Barron. Experimental-
observation of intermittent chaos in a mechanical system with impacts. J.
Sound Vib., 178:272–275, 1994.

19. V. I. Babitskii. Theory of Vibroimpact Systems. Approximate methods. Nauka,
Moscow, 1978.

20. V.I. Babitsky and A.M. Veprik. Universal bumpered vibration isolator for
severe environment. J. Sound Vib., 218:269–292, 1998.

21. S. Banerjee and C. Grebogi. Border collision bifurcations in two-dimensional
piecewise smooth maps. Physical Review E, 59:4052–4061, 1999.

22. S. Banerjee, P. Ranjan, and C. Grebogi. Bifurcations in two-dimensional piece-
wise smooth mapsTheory and applications in switching circuits. IEEE Trans-
actions on Circuits and Systems I, 47(5):633–643, May 2000.

23. S. Banerjee, J. York, and C. Grebogi. Robust Chaos. Physical Review E,
59:4052–4061, 1999.

24. S. Banerjee, J. A Yorke, and C. Grebogi. Robust Chaos. Physical Review
Letters, 80:3049–3052, 1998.

25. N.N. Bautin and E.A. Leontovich. Methods and Techniques for Qualitative
Analysis of Dynamical Systems on the Plane. Nauka, Moscow, 1976. [in Rus-
sian].

26. P V Bayly and L N Virgin. An experimental study of an impacting pendulum.
Journal of Sound and Vibration, 164(2):364–374, 1993.

27. L. Benadero, A. El Aroudi, G. Olivar, E. Toribio, and E. Gomez. Two-
dimensional bifurcation diagrams. Background pattern of fundamental DC-DC
converters with PWM control. International Journal of Bifurcation and Chaos,
13(2):427–451, February 2003.

28. S. Bennett. A history of control engineering 1930 -1955. IEE London, U.K,
1993.

29. A. Berghuvud and A. Stensson. Consequences of Nonlinear Characteristics of
a Secondary Suspension in a Three-Piece Freight Car Bogie. Vehicle System
Dynamics, 36:37–55, 2001.

30. S.R. Bishop. Impact oscillators. Phil. Trans. Roy. Soc. A, 347:347–351, 1994.
31. S.R. Bishop, M.G. Thompson, and S. Foale. Prediction of period-1 impacts in

a driven beam. Proc. Roy. Soc. Lond. A, 452:2579–2592, 1996.
32. S. Blackmore, K. Salmon, J. Vogwell, I. G. Turner, and S. R. Brown. Devel-

opment of a test to measure the impact properties of coated tablets. Journal
of Pharmacy and Pharmacology, 56:133, 2004.

33. A. Blakeborough. An analytical response of church bells to earthquake excita-
tion. Journal of Earthquake Engineering, 5(1):69–92, January 2001.

34. G. Blankenship and A. Kahraman. Steady State Forced Response of a Me-
chanical Oscillator with Combined Parameter Excitation and Clearance Non-
linearity. Journal of Sound and Vibration, 185(5):743–765, 1995.



References 461

35. B. Blazejczyk-Okolewska, K. Czolczynski, and J. Kapitaniak, T. Wojewoda.
Chaotic Mechanics in Systems with Impacts and Friction. World Scientific,
Singapore, 1999.

36. V.D. Blondel and J.N. Tsitsiklis. Complexity of stability and controllability of
elementary hybrid systems. Automatica, 35(3):479–490, 1999.

37. P. C. Bressloff and J. Stark. Neuronal dynamics based on discontinuous circle
maps. Physics Letters A, 150:87–195, 1990.

38. B. Brogliato. Nonsmooth Mechanics – Models, Dynamics and Control.
Springer–Verlag, New York, 1999.

39. B. Brogliato. Impacts in Mechanical Systems – Analysis and Modelling.
Springer–Verlag, New York, 2000. Lecture Notes in Physics, Volume 551.

40. B. Brogliato. Some perspectives on the analysis and control of complimentarity
systems. IEEE Transactions Automatic Control, 48:918–935, 2003.

41. B. Brogliato, A.A. ten Dam, L. Paoli, F. Génot, and M. Abadie. Numerical
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