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A combination approach 
of pseudotime analysis 
and mathematical modeling 
for understanding drug‑resistant 
mechanisms
Shigeyuki Magi1,2,3*, Sewon Ki2, Masao Ukai4, Elisa Domínguez‑Hüttinger5, 
Atsuhiko T Naito3, Yutaka Suzuki6 & Mariko Okada1,2,4,7*

Cancer cells acquire drug resistance through the following stages: nonresistant, pre-resistant, and 
resistant. Although the molecular mechanism of drug resistance is well investigated, the process of 
drug resistance acquisition remains largely unknown. Here we elucidate the molecular mechanisms 
underlying the process of drug resistance acquisition by sequential analysis of gene expression 
patterns in tamoxifen-treated breast cancer cells. Single-cell RNA-sequencing indicates that 
tamoxifen-resistant cells can be subgrouped into two, one showing altered gene expression related 
to metabolic regulation and another showing high expression levels of adhesion-related molecules 
and histone-modifying enzymes. Pseudotime analysis showed a cell transition trajectory to the two 
resistant subgroups that stem from a shared pre-resistant state. An ordinary differential equation 
model based on the trajectory fitted well with the experimental results of cell growth. Based on the 
established model, it was predicted and experimentally validated that inhibition of transition to both 
resistant subtypes would prevent the appearance of tamoxifen resistance.

Estrogen receptor (ER) is a hormone-dependent transcription factor that plays an important role in many physi-
ological processes, including reproductive development, bone homeostasis, and cardiovascular remodeling. ER 
is also closely associated with breast cancer development1,2. Approximately 75% of all breast cancer cases are 
categorized into ER-positive luminal subtypes3 and initially treated using an ER antagonist, tamoxifen (TAM). 
Unfortunately, around 40% of TAM-responsive tumors progress to resistant and metastatic tumors after long-
term treatment4. The molecular mechanisms by which those tumors exhibit TAM resistance, have been shown 
to involve alterations in the estrogen–ER interaction-dependent gene expression5, cholesterol pathway6, and 
histone demethylase activity (which regulates cellular transcriptomic heterogeneity)7 resulting in hyperactiva-
tion of alternative signaling pathways including ErbB receptors8,9, ERK1/210, PI3K11–13, and NF-κB signaling14. 
However, little is known about the dynamic process of TAM resistance acquisition, i.e., when or how the factors 
involved in resistance acquisition are altered, because most of the previous studies focused on the end-point 
comparison between resistant and nonresistant states.

Previously, we analyzed the changes in gene expression of TAM-treated MCF-7 cells, a human ER-positive 
breast cancer cell line, by bulk RNA-sequencing (RNA-seq) and reported several molecular changes that preceded 
full acquisition of TAM resistance15. However, our analysis might have overlooked the involvement of intracel-
lular heterogeneity in the process of TAM resistance acquisition. In luminal breast cancer patients, single-cell 
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transcriptome and epigenomic surveys revealed that non-genomic cell-to-cell variability generates phenotypic 
heterogeneity16. Therefore, understanding the process of TAM resistance acquisition at a single-cell resolution 
may be important to fully understand the process of TAM resistance acquisition and develop strategies for 
preventing cancer recurrence.

In this study, we sequentially analyzed transcriptomic profiles in MCF-7 cells treated with TAM by single-cell 
RNA-seq. We report that TAM-resistant cells can be subgrouped into two subgroups, one showing altered gene 
expression related to metabolic regulation and the other showing high expression of genes encoding adhesion 
molecules and histone-modifying enzymes. Pseudotime analysis of single-cell RNA-seq data revealed a cell 
transition trajectory to the two resistant subpopulations that stem from a shared pre-resistant state. An ordinary 
differential equation model based on the cell trajectory fitted well with the experimental results of cell growth. 
Finally, we experimantally validated our model prediction that the conbinatorial inhibition of two important 
molecules for each resistant subgroup could repress the growth of resistant cells.

Results
Time‑series transcriptome profiles of MCF‑7 cells during continuous TAM treatment.  We 
first investigated the effect of continuous TAM treatment on human breast cancer MCF-7 cells, whose growth 
depends on ER signaling (Fig. 1a). Treatment with 1 µM TAM initially inhibited cell growth (Fig. 1b) through 
decreasing the number of cells in S phase whereas increasing that in G1 phase (Fig. 1c,d), suggesting that TAM 
treatment induced G1 arrest. The growth of cells was almost completely inhibited until week 5 (W5) but recov-
ered thereafter (Fig. 1b). The cell cycle of TAM-treated cells was also dysregulated until W5 but became compa-

Figure 1.   Functional analysis of gene expression patterns in human breast adenocarcinoma MCF-7 cells 
during the TAM resistance acquisition process. (a) Schematic overview of the experimental procedure. Each 
treatment was replicated five times. (b) Growth rate of TAM-treated and control (Ctrl) cells. Data represent 
mean ± standard error (SE, n = 3). (c,d) Ratio of S (c) and G1 (d) phase in TAM-treated and Ctrl cells. Data 
represent mean ± SE (n = 3 in week 1 to week 6, n = 2 in week 7 to week10). From (b) to (d), the data points are 
slightly shifted in the x-axis direction to improve the visibility and prevent overlapping of the Ctrl and TAM 
graphs, and p-values were calculated using two-tailed Welch’s test. (e,f) Cluster analysis of the z-scores of log2 
fold change (log2FC) values by time points (e) and by genes (f). The bottom line graphs in (f) showed individual 
(orange) or median (red) of gene expression patterns. (g,h) Heatmaps of enrichment analysis data. The top five 
significant terms in the Reactome pathway database (g) and KEGG pathway database (h) in each cluster are 
presented.
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rable to control cells after week 6 (W6) (Fig. 1c,d). These results showed the process by which the cells survived 
and restored their growth potential in the absence of ER signaling.

We next analyzed the bulk RNA-seq data of TAM-treated MCF-7 cells to identify the difference in the gene 
regulatory network from parental cells. Previously, we performed time-course bulk RNA-seq analysis of TAM-
treated MCF-7 cells and non-treated MCF-7 cells, and identified gene sets that play critical role at the “tipping” 
point of resistance acquisition15. In this study, we re-analyzed the dataset in order to focus on time-dependent 
changes in the expression of each gene, correcting for the effect of the difference in library preparation processes 
between samples (“Methods” and Supplementary Fig. S1). A total of approximately 6000 differentially expressed 
genes (DEGs) were identified between TAM-treated and control cells, of which approximately 3000 were up-
regulated (Supplementary Fig. S2).

Gene expression in TAM-treated cells was normalized to control cells at each time point, and log2 fold change 
(log2FC) values were calculated. The log2FC values of all genes at week 0 were set as a theoretical value of zero. 
We then obtained time-course patterns of the log2FC values of 6982 DEGs at 13 time points and analyzed the 
similarity of the log2FC values of all DEGs in each week using cluster analysis (Fig. 1e). The expression patterns 
of DEGs at each time point were classified into four stages; week 0 (W0), from week 1 (W1) to week 4 (W4), W5 
to week 8 (W8), and week 9 (W9) to week 12 (W12). The Pearson’s correlation distance from a previous week 
was the largest at W5, which preceded the recovery of cell growth (Supplementary Fig. S3). In addition, the 
distance at W1 to W9 was larger than that at week 10 (W10) to W12, indicating that DEG expression patterns 
became stable at the later stage.

We then investigated the relationships between dynamic gene expression patterns and gene functions by 
evaluating the similarity of the time-course patterns among all DEGs. Cluster analysis of the z-score of log2FC 
values revealed six groups of genes with distinct expression patterns: cluster A, rapidly decreasing expression; 
cluster B, initially down-regulated and recovered at W5; cluster C, rapidly increasing before cell growth rate 
recovery; cluster D, a gradual increase in expression concomitant with growth rate recovery; cluster E, initially 
up-regulated and then down-regulated; and cluster F, gradually decreasing (Fig. 1f and Supplementary Table S1). 
The enrichment analysis of each group was carried out using the Reactome pathway (Fig. 1g) and KEGG (Fig. 1h) 
databases17. Cluster A (rapidly decreasing expression pattern) was enriched in genes related to both receptor 
tyrosine kinase signaling and fatty acid metabolism. Genes in cluster C (rapid up-regulation) were related to 
TGFβ signaling or extracellular matrix–receptor interaction, such as TGFB2, SMAD3, and MMP9, or encoded 
collagen or laminin proteins. This implies that the reorganization of the gene network regulating epithelial–mes-
enchymal transition or extracellular matrix secretion, both of which contribute to cancer malignancy, occurred 
before cell growth recovery in the TAM-treated condition. Genes related to ribosomes were also enriched in 
cluster C, indicating that ribosomal biogenesis may be up-regulated during continuous TAM treatment. On the 
other hand, cluster D, in which gene expression level increased gradually, was enriched in genes functioning 
in the thyroid hormone signaling pathway, HIF1 pathway, and glycolytic process, and downstream signaling 
of RAS, among others. These data show that a Warburg-like effect co-occurs with TAM resistance acquisition. 
Genes in cluster B showed a non-monotinic dynamic expression pattern characterized by a transient decline 
from week 1 to week 4, followed by recovery to the basal level. This trend was similar to the growth rate pattern 
observed in the TAM-treated condition. Cluster B contained numerous genes involved in cell cycle regulation 
such as CCND1 and E2F1, and DNA replication such as RAD51, DNA damage (DNA repair, transcriptional 
regulation of TP53, and base excision repair), RNA metabolism, kinesins, beta-catenin degradation, generic 
transcription pathways, and the Fanconi anemia pathway. Genes in cluster E were up-regulated only when cell 
growth was effectively inhibited by TAM; this pattern was opposite to that observed in cluster B. Cluster E was 
enriched in genes involved in interferon signaling, FoxO signaling, autophagy, as well as transcription pathways, 
exytocin signaling pathways, and the MAPK signaling pathway. The interferon and FoxO signaling pathways 
exhibit anti-survival functions in cancer cells exposed to anti-cancer agents18, whereas autophagy contributes 
to cell survival under normal conditions19, suggesting that genes in cluster E reflect both antitumor as well as 
adaptation mechanisms triggered by the TAM treatment. Cluster F was the largest dynamic cluster containing 
2088 genes and was characterized by a consistent decrease in gene expression. Enrichment analysis showed that 
cluster F contained genes related to multiple cellular functions including energy metabolism, growth hormone 
synthesis, Rho GTPase (Rap1) signaling, and crucially, the estrogen signaling pathway, suggesting that TAM 
treatment inhibits the estrogen-dependent gene expression mechanism, and TAM resistance observed in our 
experiment may be supported by an estrogen/ER-independent mechanism.

Single‑cell RNA‑seq analysis of MCF‑7 cells under continuous TAM treatment.  Because cell-to-
cell heterogeneity of phenotypic features is a key mechanism of drug resistance20, we investigated TAM-induced 
changes in gene expression profiles at a single-cell level. On the basis of the results of the cell growth assay and 
bulk RNA-seq data, we focused on four time points: W0 (just before starting TAM treatment), week 3 (W3, at the 
beginning of the complete cell growth inhibition period), W6 (at the end of the complete cell growth inhibition 
period), and W9 (at the acquisition of TAM resistance) (Fig. 2a). RNA-seq analysis of 1,108 single cells yielded 
577 high-quality single-cell gene expressions (Fig.  2a and Methods section). Averaged single-cell expression 
profiles were correlated with bulk expression despite the zero-inflated distribution (Supplementary Fig. S4). The 
Pearson correlation coefficient of 11,413 gene expression values between individual cells increased at W3, then 
gradually decreased at W6 and W9 (Fig. 2b). This changing pattern of correlation coefficient might suggest the 
selection of cells that can survive the TAM treatment and subsequently transition into multiple stable states.

To visualize cell-to-cell diversity in detail, we conducted uniform manifold approximation and projection 
(UMAP), one of the standard methods of dimensional reduction. Before drawing the UMAP plot, we calculated 
the probability score of cell cycle progression in each cell using Seurat 3 software21 to correct for the bias caused 
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by the difference in the cell cycle stage (Fig. 2c). All cells were mapped on a three-dimensional UMAP plot and 
projected in two dimensions (Fig. 2d–f, and Supplementary Fig. S5). Single-cell data were roughly divided into 
two groups: W0 and the others (W3, W6, and W9). Cells were widely distributed in space at W3 and W6 but were 
localized in two separate regions at W9. These cells could be clustered into six subpopulations in the UMAP plot 
(Fig. 2f). Cells in subgroups 1 and 6 belonged to the W0 group, and these cells were strongly diminished by W3. 
By contrast, cells in subgroups 2 and 3 newly emerged at W3 and prevailed in those clusters until W6. Finally, 
at W9, these cells were split into two groups: one containing subgroup 4, and the other containing subgroup 5.

Subgroup‑specific gene modules and their functions.  We first investigated marker genes in each 
subgroup. The top five genes showing the highest specificity scores were selected in each subgroup (Supplemen-
tary Fig. S6a). Subgroups 1 and 6 were the major groups at W0, and marker genes in these subgroups included 
typical ER pathway target genes such as AREG22 and GREB123. This result showed that the transcriptional activ-
ity of ER for typical target genes was down-regulated in the other subgroups. Comparing with the marker genes 
in subgroups 1 and 6, the expression level of marker genes in other subgroups, especially that in subgroup 2, 
does not clearly distinguish the cells into the subgroups. Interestingly, almost all marker genes of subgroups 4 

Figure 2.   Single-cell RNA-seq analysis of TAM-resistant MCF-7 cells. (a) Schematic overview of the 
experimental procedure of single-cell RNA-seq. (b) Boxplot showing the distribution of the correlation 
coefficients of single-cell gene counting among cells at each time point. The median values are presented in 
red. The q-values were calculated using Wilcoxon rank-sum test. (c) Percentage of cells at different cell cycle 
stages at each time point. (d–f) Visualization of single-cell transcriptome data by UMAP. Single-cell data space 
was reduced to three dimensions, and the distribution of data was visualized using the first two dimensions. 
Cells were colored by estimated cell cycle stage (d), week (e), and subgroups (f). (g) Complex heatmap of cell 
subpopulation, co-regulated gene modules, and enriched functions. Top left heatmap presents the frequency of 
subgroups at each time point shown in (f). Top right heatmap presents the relative expression level of each gene 
module in each cluster. Bottom heatmap presents the enrichment terms in each gene module.
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and 5 also showed high expression in subgroup 3, suggesting that the pre-resistant subgroup 3 could potentially 
mature into distinct resistant subgroups by rewiring the genetic network.

Next, we analyzed the genetic modules specifically expressed in each subgroup or each week (Fig. 2g, Sup-
plementary Fig. S6b, and Supplementary Table S2). Subgroups 1 and 6 contained highly expressed gene modules 
j, k, and l, which are enriched in ESR-mediated signaling, unfolded protein response, and amino acid and nucleo-
tide metabolism. On the other hand, the gene expression of module a was particularly low for these subgroups. 
Subgroups 2 and 3 were the major subpopulations in W3 and W6. Both these subgroups showed high expression 
levels of genes in module a, some of which are involved in interferon signaling, TGFβ signaling, and tight junc-
tions. These enriched terms showed a strong resemblance to the early responsive cluster C in the bulk RNA-seq 
experiment (Fig. 1g,h). Subgroup 4, whose population was increased at W9, showed high expression levels of 
genes in modules g, h, and i, as shown in the heatmap. These genes encoded cell adhesion-related molecules such 
as integrin β4 (ITGB4), laminin β2 (LAMB2), and zyxin (ZYX), and some genes were involved in ROCK activa-
tion mechanisms. These modules also include several terms related to signal transduction, such as the VEGF 
pathway and thyroid hormone signaling. In addition, some chromatin remodeling enzymes and lysine-specific 
histone demethylases were included in module h. These results indicate that TAM-resistant cells in subgroup 4 
showed higher activities of cell adhesion and migration, with an altered signaling pathway and epigenetic status. 
Subgroup 5, which represents another major population during W9, contained highly expressed genes in modules 
b, c, d, and e compared to that of subgroup 4. This result indicates that genes related to innate immune responses, 
oxidative phosphorylation, and translation are highly expressed in the cells in subgroup 5. In addition, module 
c contained genes related to carbon metabolism, especially the glycolysis/glycogenesis pathway, suggesting that 
cells in subgroup 5 exhibit unique metabolic adaptation to TAM-induced stress. Based on the aforementioned 
results, we found that TAM-resistant ER-positive breast cancer cells obtained from the same parental cell line 
could be divided into two types, one of which acquired the re-wired metabolic network (subgroup 5) and another 
acquired high expression levels of adhesion molecules with changing epigenetic status (subgroup 4).

Trajectory analysis of TAM resistance.  To confirm the cell transition trajectory into two different types 
of resistant subgroups, we conducted pseudotime analysis (Fig. 3a–c). The pseudotime of each cell calculated 

Figure 3.   Trajectory analysis of the TAM resistance acquisition process. (a–c) Single-cell trajectory during the 
continuous TAM treatment. Graphs were colored by clusters (a), weeks (b), and pseudotime (c). Numbered 
circles in white and black indicate a root node and estimated branch nodes in the trajectory, respectively. (d,e) 
Violin plots showing the distribution of pseudotime in each week (d) and subgroup (e). The q-values in (d) are 
calculated using Wilcoxon rank-sum test. (f) Expression score of up-regulated genes in subgroup 4 (left) and 
subgroup 5 (right), considering the cell trajectory. (g) Upstream factor analysis of up-regulated genes displayed 
in (f). Top 10 q-value data are presented. Color represents subtypes of breast cancers: yellow, MCF-7 cells; green, 
triple-negative breast cancer (TNBC). (h) Time-series bulk gene expression patterns listed in (g). NELFE was 
not detected in bulk RNA-seq.
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from the gene expression data was correlated with the sampling time after starting the continuous TAM treat-
ment (Fig. 3d). The pseudotime of cells in subgroup 4 was higher than that of cells in subgroup 5, suggesting that 
cells in subgroup 4, showing high expression of epigenetic modulators, are more divergent from parental cells 
than cells in subgroup 5 (Fig. 3e). To indetify important molecules involved in the emergence of subgroups 4 
and 5, we analyzed DEGs along the estimated cell trajectory. A total of 273 and 79 genes were detected as highly 
expressed genes in subgroups 4 and 5, respectively (Fig. 3f, Supplementary Tables S3 and S4). Then, we inves-
tigated the transcriptional regulators of the highly expressed genes in subgroup 4 and 5 using the ChIP-Atlas 
database24, which covers approximately all public ChIP-seq data (Fig. 3g), and verified the expression patterns 
of genes based on our analysis (Fig. 3h and Supplementary Fig. S7). The detected genes and expression patterns 
in bulk (Fig. 3h) and single-cell RNA-seq (Supplementary Fig. S7) were not completely correlated. These differ-
ences may be attributed to technical reasons, including the difference in sequencing protocols, depth per sample, 
and the lack of non-treatment control conditions in each week for single-cell data.

Prediction of proteins that bind near the transcriptional start site of DEGs in the trajectory to subgroup 4 
showed that only 4 of the top 10 factors represented ChIP-seq data from MCF-7 cells, and most of the others 
were obtained from the triple-negative breast cancer (TNBC) cell line (Fig. 3g, left, shown in green). These results 
also suggest that most up-regulated genes in subgroup 4 are controlled by bromodomain-containing proteins, 
BRD4 and BRD2, which recognize acetylated histones and act as super enhancers25,26. In addition, our results 
also suggest the possible involvement of oncogenic transcription factors SMAD3 and ERG in the trajectory to 
subgroup 4. RNA expression levels of SMAD3 and ERG were up-regulated before W4 in bulk RNA-seq data 
(Fig. 3h, top and middle) and related molecular terminology (“Signaling by TGF-beta receptor complex” and 
“MAPK singaling pathway”) were detected in cluster C and E in bulk RNA-seq data, respectively (Fig. 1g,h). For 
single-cell data, the expression levels of BRD2, BRD4, and SMAD3 increased after TAM treatment (Supplemen-
tary Fig. S7). These results indicate that cells in subgroup 4 have different statuses due to epigenetic alteration, 
which is clearly distinct from that of parent MCF-7 cells; this result was consistent with the enrichment analysis 
of specific gene modules (Fig. 2g).

In subgroup 5, 7 of the top 10 factors were obtained from ER-positive breast cancer or normal cells (Fig. 3g, 
right), suggesting that subgroup 5 retained the transcriptional network of parental MCF-7 cells. ChIP-seq data 
from anti-WDR5 antibody showed the best q-value and fold enrichment score. Although the expression pro-
files of WDR5 were not consistent between bulk and single-cell RNA-seq data (Fig. 3h, bottom, Supplementary 
Fig. S7), various binding molecules of WDR5, such as methylated histone H3 lysine 4 or MYC27, might regulate 
genes related to subgroup 5. Moreover, MYC was detected as a candidate estimated from ChIP-Atlas database for 
the upstream regulating of increased genes in subgroup 5. Among other candidate genes, BRD4, TAF1, and PML 
were up-regulated after TAM treatment in both bulk and single-cell data. These data indicate that MYC, TAF1, 
and PML may contribute to one of the emerging TAM-resistant subpopulations. Taken together, our analysis 
revealed key molecular candidates that drive two different TAM-resistant subgroups.

Mathematical modeling of the TAM resistance acquisition process.  We constructed a phenom-
enological mathematical model that reproduces the population-level dynamics of TAM resistance, based on 
cell trajectories obtained using pseudotime analysis, to estimate the relative contribution of TAM-mediated cell 
growth- and differentiation to the acquisition of resistance (Fig. 4a). This model comprises cell transformation 
among four major cell subpopulations as estimated by single-cell gene expression profiles: cells initially sensitive 
to TAM (XS, subgroups 1 and 6 in Fig. 3a), pre-resistant cells (XP, subgroups 2 and 3), resistant cells showing 
altered expression of metabolism-related genes (XR1, subgroup 5), and resistant cells with highly adhesive phe-
notype with changing epigenetics (XR2, subgroup 4). The state transitions between the four subpopulations were 
assumed to follow the graph structure estimated by pseudotime analysis (Fig. 3c): XS cells change to XP in the 
presence of TAM, and cells in XP change to the two resistant states XR1 and XR2. The model also enables cell tran-
sitions in the reverse direction. In addition, we assumed that continuous TAM treatment accelerates the rate of 
forward cell transition rate in response to a cumulative history of TAM treatment and describe this acceleration 
as a sigmoid function of the integral of TAM. This assumption is based on previous findings that cell state transi-
tions require the accumulation of genetic or epigenetic changes, which from the tipping point of resistance15. We 
explicitly considered extrinsic noise-mediated cell-to-cell variability by fitting 20 independent model parameter 
sets to two experimental time-course datasets describing cell proliferation and differentiation dynamics using 
the BioMASS computational framework28. Specifically, our model reproduced the experimentally observed 
dynamic distributions of both total cell growth rate in the presence of TAM (Fig. 1b) and the four different cell 
subpopulation proportions (Fig. 2g, heatmap in green) simultaneously (Fig. 4b,c, and Supplementary Fig. S8a).

We found two remarkable features of the well-fitting parameter distributions. First, the growth rate of subpop-
ulation XR2 (rate constant of reaction v12) was significantly greater than that of XR1 (v9) (Supplementary Fig. S8b). 
This finding is consistent with the result that the subpopulation of XR2 expressed some cell division-related genes 
(Fig. 2g). Second, the parameter determining the steepness of the rection rate mediating the acquisition of TAM 
resistance was greater for v10 than that for at in v7 (Supplementary Fig. S8c). This implies that the cell transition 
from XP to XR2 is more sensitive to cumulative TAM exposure time, which may be caused by the accumulation of 
epigenetic alterations. The finding is substantiated by the results of single-cell RNA-seq analysis, which showed 
that the genetic feature of XR2 displayed high expression levels of chromatin-modifying enzymes (Fig. 2g), and 
pseudotime analysis, in which XR2 was the most differentiated subtype compared with other subtypes (Fig. 3e). 
These results indicate that parameter inference using our phenomenological model, which is based on cell popu-
lation dynamics, can help to successfully pinpoint underlying mechanisms (differential subpopulation-specific 
rates) which are consistent with empirical observations.
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Using the fitted parameter sets (Supplementary Table S5) as nominal values, we then performed local sensi-
tivity analysis to examine how much a given change in each single reaction affects the mean-over-time growth 
rate after the 3rd week (Fig. 4d). The results indicated that v12, the growth rate of XR2, was the most critical 
factor affecting the mean-over-time growth rate. On the contrary, neither the reverse transition from resistant 
cell types to XP (or from XP to XS) nor cell death caused by TAM was found to significantly affect the growth 
rate. Finally, we examined the effect of combination inhibition on two key biological processes, cell growth and 
forward state transition to two different subtypes, on TAM-resistant cell growth (Fig. 4e). The simulation results 
show that the mean-over-time growth rate was lower when the two parameters related to both subgroups were 
inhibited than when only the parameter related to one subgroup was inhibited. Additionally, combined inhibi-
tion of cell growth rate of both resistant subtypes inhibited growth rate < 1 at broader inhibitory ranges than the 
other intervention pairs (Fig. 4e, blue line). However, under the conditions in which the growth of one resistant 
subtype is repressed, complete inhibition of transition to another resistant subtype showed stronger regression 
than complete cell growth inhibition of the same subtype with statistical significance (Fig. 4e, comparison of the 
gray box). We cannot determine whether the difference is biologically significant, but the result may indicate 
that inhibition of cell state transition by, for example, epigenetic inhibitors, has the potential to be more effective 
than targeting the growth of the resistant subpopulation alone.

Inhibition of molecules mediating the generation of two resistant subpopulations induces 
regression in the pre‑resistant stage.  Finally, we experimentally confirmed the hypothesis derived 
from pseudotime analysis and mathematical modeling that simultaneous intervention for the proliferation or 
transitions in subgroup 4, which undergoes epigenetic alterations via chromatin modification, and subgroup 5, 
wherein PML acts as an upstream regulator by effectively inhibiting the growth of the resistant cell population. 
Histone demethylase KDM5B is a candidate epigenetic modulator for subgroup 4, which reportedly modulates 
resistance to endocrine therapies by increasing transcriptional heterogeneity7. The combination of KDM5 inhi-
bition and PML knockdown suppressed the cell growth of TAM-treated cells (W3, W6, and W9) but not that 

Figure 4.   Ordinary differential equation-based model of the TAM resistance acquisition process. (a) 
Illustration of the model scheme. (b,c) Time-series analysis of changes in cell growth rate (b) and ratio of each 
subpopulation (c). Points: experimental data; error bars: standard deviation (SD) of experimental data; solid 
lines: averaged in silico simulation of 20 sets of parameters; shaded areas: SD of simulations. (d) Results of 
sensitivity analysis of the mean growth rate from week 3 (W3) to week 10 (W10) at each reaction; v1–v12. Error 
bars represent the SD of simulations with 20 set parameters. The p-value was calculated using Wilcoxon signed-
rank test. (e) Heatmap of the mean growth rate of TAM-treated cells from W3 to W10, with different inhibitory 
intensity of growth rate of XR1 or XR2 and cell transition to XR1 or XR2. The X- and Y-axes indicate the remaining 
reaction rate (i.e., 1.0 means 0% inhibition, and 0.0 means 100% inhibition). Data represent the mean of 
simulations with 20 set parameters. Blue lines represent a border dividing mean growth rate of less than or equal 
to 1. Gray boxes indicate where conditions were compared in the main text and show q-values < 0.05.
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of cells not treated with TAM (W0) (Fig. 5). Particularly in W3 and W6, the combination inhibition was prone 
to suppress the cell growth more than PML knockdown or KDM5 inhibitor treatment alone. In addition, the 
growth inhibition in W3, the timing when the cell growth was completely inhibited by TAM (Fig. 1b), indicates 
that combined inhibition induces a decrease in cell numbers. Together, these results demonstrate that the inhibi-
tion of molecules important for resistant cell subgroups could induce regression before complete acquisition of 
TAM resistance.

Discussion
In this study, we analyzed transcriptional changes in MCF-7 cells during continuous TAM treatment using both 
bulk and single-cell RNA-seq. The results of bulk RNA-seq analysis revealed several time-course patterns of 
gene expression during the continuous TAM treatment. A subset of genes, including clusters B and E, showed 
low or high expression immediately before acquiring the growing ability in the presence of TAM, respectively. 
It is reasonable to speculate that the recovery of gene expression levels in cluster B is accompanied by the recov-
ery of growth rate because these genes included positive cell cycle regulators. The expression levels of these 
genes may be regulated by E2F families, suggesting that the growth of TAM-resistant cells also depends on the 
CDK4–E2F cell cycle machinery, supporting the effect of the CDK4/6 inhibitor on ER cells29. Combined with 
the expression pattern of ESR1, our results implied that the expression levels of E2F gene families are maintained 
by estrogen–ESR1-dependent signaling in the absence of TAM; however, this was superseded by other signaling 
pathways, such as central carbon metabolism-related HIF1 machinery, in TAM-resistant cells (Fig. 1g).

On the other hand, the significance in cluster E is rather difficult to interpret. Some groups have previously 
reported that interferon regulatory factor-1 (IRF1) is critical for TAM-mediated apoptosis, and its related path-
way is also up-regulated in TAM-treated cells30. IRF1 was shown to induce apoptosis in breast cancer cells31. 
However, another group showed that interferon-responsive genes are up-regulated in both TAM-resistant and 
radioresistant MCF-7 cells and contribute to cross resistance32. These previous reports imply that the bilateral 
function of interferon signaling may accelerate the adaptation of cancer cells to the TAM-treated condition by 
increasing cell-to-cell variability (Fig. 2b). Non-genetic cell-to-cell variability, believed as a major contributor 
to the production of outlier cells and can adapt to severe conditions33,34, could play an important role in the 
acquisition of TAM resistance under our experimental conditions because few genes were mutated at the time 
when genes in cluster E were up-regulated15 (Fig. 1f). Previous studies show contradictory results on the relation-
ship between chemosensitivity and FoxO-autophagy signaling. It has been reported that 4-hydroxytamoxifen 
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Figure 5.   Experimental validation. (a) Effect of PML knockdown and KDM5 inhibitor GSK467 on the relative 
cell number of TAM-treated cells measured using MTT assay at each time point. siCtrl and siRNA indicate 
conditions in non-targeting siRNA-treated and those in siRNA targeting PML-treated, respectively. The data 
represent mean ± SE (n = 4). q-values were calculated using two-tailed Welch’s test. (b) Protein expression levels 
of PML in each condition. β-actin presented as a loading control. Whole membrane images are presented in 
Supplementary Fig. S9.
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induces autophagic cell death35,36; however, another group reported that inhibition of autophagy restored the 
responsiveness to anti-estrogen therapy. In our single-cell RNA-seq analysis, cells in subgroup 4 showed high 
expression levels of autophagy-related genes (Supplementary Fig. S6b). Our results suggest the possibility that 
the modulation of autophagy and interferon signaling in early phases of endocrine therapy prevents the transi-
tion of cells to resistant types.

Several studies showed that TAM is localized to mitochondria and endoplasmic reticulum and shows non-
genomic toxicity by inhibiting the electron transport chain complexes37,38. Some results in our transcriptomic 
analysis can be explained by such estrogen-independent mode of action of TAM. The overrepresentation of genes 
related to translation in cluster C and that of genes involved in the detoxification of reactive oxygen species, 
which are mainly produced in mitochondria, in cluster D (Fig. 1g,h) can be interpreted as a protective response 
for the dysfunction of these organelles. High expression levels of ribosomal and mitochondrial genes (modules 
d and e) were also detected in TAM-resistant subgroup 5 by single-cell RNA-seq analysis (Fig. 2g). Another 
phenomenon related to mitochondrial dysfunction was the up-regulation of glycolytic pathway enzymes induced 
by the HIF1 signaling pathway (Fig. 1h), which was coincident with the growth ability of cells in the presence 
of TAM (Fig. 1b). We detected the overexpression of genes encoding glycolytic and gluconeogenetic enzymes 
in subgroups 3 and 5. Indeed, MYC, which drives a gene expression of ribosomal proteins39, hexokinase 2, and 
lactate dehydrogenase40 was increased during the time-course, and was predicted as one of the main regulators 
of resistant subgroup 5 (Fig. 3g). These results suggest that subgroup 5 genes overcome the non-genomic toxicity 
of TAM by up-regulating the ribosomal and mitochondrial functions via HIF1 or MYC activity.

Our single-cell RNA-seq analysis suggested the existence of two different resistant subpopulations and the role 
of important molecules in the emergence of each resistant subpopulation. Subgroup 5 was predicted to be initi-
ated by the activity of TAF1 and PML molecules, in addition to MYC (Fig. 3g). Interestingly, the second bromo-
domain-specific inhibitor of TAF1 represses MYC expression, and its effect is synergistic to the BRD4 inhibitor41. 
On the basis of the results of this and previous studies, we infer that the differentiation of pre-resistant cells to 
resistant subgroup 5 requires TAF1 and BRD4 activity for up-regulating MYC gene expression. PML is believed to 
possess tumor-suppressing activity by controlling the cell cycle and apoptosis42; however, recent studies revealed 
that PML is overexpressed and promotes metastasis, especially in TNBC43,44. This bimodal character of PML was 
also detected in our experiments; PML knockdown decreased cell growth in TAM-treated cells but increased it 
in cells without TAM treatment (Fig. 5). Although the overexpression of PML in luminal types is uncommon, 
silencing PML functions elicits not only growth suppression in TNBC45 but also oncosphere formation, a readout 
of self-renewal potential, in PML-overexpressing luminal type breast cancers46. In addition, PML overexpression 
in MCF-10A cells promotes fatty acid oxidation and ATP production via the tricarboxylic acid cycle44. Taken 
together, these results suggest that TAM-resistant cells in subgroup 5 are similar to proliferative cancer stem cells, 
which exhibit self-renewal potential and rely on both oxidative phosphorylation and glycolytic metabolism47. 
The second resistant subgroup (subgroup 4) showed high expression levels of prostate cancer-related genes and 
chromatin-modifying enzymes (Fig. 2g and Supplementary Fig. S6b, module h). Some of the TAM-resistant 
specimens showed the overexpression of androgen receptor (AR), and exogenously AR-overexpressed MCF-7 
cells resistant to TAM-induced growth inhibition48. This study is consistent with our results that one resistant 
subpopulation acquired new TAM-resistant features by AR signaling and histone-modifying enzymes.

In summary, our time-series single-cell sampling and multidimensional data analysis highlighted that the 
acquisition of drug resistance relies on heterogeneity and emphasized the importance of multiple molecules 
in phenotype transitions. Our approach reproduces the characteristics of the emergence of TAM-resistant cell 
populations by proposing a mathematical model of subpopulation dynamics based on cell trajectories obtained 
by single-cell analysis. Further, analysis of our phenomenological model allowed us to pinpoint key mechanisms 
differentiating the two TAM-resistant subpopulations (differential proliferation rates) and to devise combina-
torial intervention strategies that effectively halt the progression to resistant states. Moreover, we empirically 
confirmed these two model predictions in our bulk dynamic gene expression data set by the double inhibition 
of two molecular mediators of TAM resistance acquisition.

The combination of enrichment (Fig. 3g) and sensitivity analyses (Fig. 4d) would enable the prediction of 
target subpopulations and important molecules for tumor growth inhibition and aid in prioritizing the predicted 
molecular targets. However, there are some limitations to our research. First, the model does not completely 
reproduce the in vivo environment of breast cancer because all experimental data in this study were obtained 
from two-dimensional cell culture experiments. In a three-dimensional in vivo environment, cell growth is 
spatially restricted and cell-to-cell communication within the microenvironment must also be considered. To 
understand the mechanism of TAM resistance in vivo, it will be necessary to combine our approach with mod-
eling studies of spatially constrained three-dimensional cancer cell growth in breast ducts49 and maintenance 
of cancer cells in their niche50. Second, the generalizability of our findings is unclear because the single-cell 
sequencing data correspond to a single experimental condition using MCF-7 cells and TAM simultaneously. 
Validation experiments with KDM5 inhibitor and PML knockdown (Fig. 5) suggest that the two resistant states 
we observed are reproducible, but our results do not preclude the existence of other resistant subpopulations. In 
addition, data analysis using multiple cell line experiments or patient-derived samples is necessary to discuss the 
similarities and diversity of resistance acquisition processes in breast cancer. Accordingly, our approach combin-
ing scRNA-seq with mathematical modeling should be extended to address other data derived from different 
backgrounds, such as different concentrations of estrogenic compounds to account for pre/menopausal status51 
and various breast cancer cells to account for the diversity of genetic mutations. Future studies also should address 
drug-independent fluctuation of subpopulations. Despite these issues, the combination of single-cell RNA-seq 
analysis of cancer cells with mathematical modeling could contribute to the understanding of the process of drug 
resistance acquisition and to designing novel treatment strategies.



10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:18511  | https://doi.org/10.1038/s41598-021-97887-z

www.nature.com/scientificreports/

Methods
Cell culture.  Human breast adenocarcinoma MCF-7 cells were cultured in Dulbecco’s modified Eagle’s 
medium supplemented with 10% fetal bovine serum and antibiotics, as described previously15.

Cell growth assay.  Approximately 1 × 106 MCF-7 cells were seeded in a 100-mm dish containing 10 mL 
of culture medium supplemented with or without 1 µM TAM. After a week, cells were detached and collected 
with trypsinization, and the concentration of the cell suspension was measured using a hemocytometer. The cell 
growth rate per week was calculated by dividing 1 × 106 with the total number of cells in each cell suspension.

Cell cycle analysis by flow cytometry.  MCF-7 cells were trypsinized, washed with phosphate-buffered 
saline (PBS), and fixed with 80% ethanol. Subsequently, the fixed cells were washed with PBS and stained with PI 
staining solution (BD bioscience, CA, U.S.A.) for 15 min. The PI-stained cells were subjected to flow cytometry 
using the FACSCanto II Flow Cytometer (BD bioscience), and the number of cells at each cell cycle stage was 
analyzed using the FlowJo 7.6.5 software.

Gene silencing with siRNA.  Gene silencing in MCF-7 cells performed by reverse transfection of 30 nM 
of SMARTpool ON-TARGETplus siRNA (Horizon Discovery, UK), targeting PML (L-006547-00) and Non-
targeting Pool (D-001810-10) in 96-well-plates, as described previously52.

MTT assay.  Cells were seeded at 3 × 104 cells per 96-well-plate with reverse transfection of siRNA. After over-
night incubation, cells were treated with compounds at indicated concentration. After 96 h, cells were treated 
with 0.5 mg/ml of MTT, and incubated for 4 h. Then, the medium was completely removed, and the insoluble 
formazan was resuspended with 100 µl of DMSO. Finally, absorbance at 570 nm (objective) and 650 nm (refer-
ence) was measured using a microplate reader.

Western blotting.  Cells were collected and lysed with RIPA buffer (50 mM Tris–HCl pH 7.4, 150 mM 
NaCl, 1% NP-40, 0.1% w/v SDS, and 0.5% w/v sodium deoxycolate) containing both protease inhibitors and 
a phosphatase inhibitor cocktail (Nacalai Tesuque, Japan). The lysates were centrifuged and supernatants were 
recovered. After determining the protein concentration in each lysate, and boiling in a quarter volume of load-
ing buffer (125 mM Tris–HCl pH 6.8, 25% v/v glycerol, 5% SDS, 0.25% w/v bromophenol blue, and 5% v/v 
2-mercaptoethanol), samples were then electrophoresed in a polyacrylamide gel. Proteins were transferred onto 
a PVDF membrane, and immunoblotted. Antibodies employed for immunoblotting were anti-PML antibody 
(ab72137, Abcam, UK) and (sc-47778, Santa Cruz Biotechnology, TX, U.S.A.).

Bulk RNA‑seq analysis of TAM‑resistant cells.  Bulk RNA-seq data of MCF-7 cells have been pub-
lished previously15. Briefly, RNA was extracted from MCF-7 cells treated with or without 1  µM TAM using 
QIAshredder (QIAGEN, Netherlands) and RNeasy Mini Kit (QIAGEN) every week up to 12 weeks, and then 
used for RNA-seq analysis. Different sequencing methods were used, which resulted in either 100-bp paired-
end reads or 36-bp single-end reads (Supplementary Fig. S1). To remove the influence of different sequencing 
methods, we used only the first 36 bp of the first single-end read of paired-end data. After removing adaptor 
sequences and checking sequence quality using Trim Galore (https://​github.​com/​Felix​Krueg​er/​TrimG​alore/​
tree/0.​6.7), the reads were aligned to the human reference genome (version GRCh38), and the read number 
counted by featureCounts53 without multi-mapping and multi-overlapping. The expression level of each gene 
was quantified as transcripts per million (TPM). TPM data of each sample were used for PCA to analyze the 
variability and reproducibility of the data (Supplementary Fig. S1). Comparing gene expression profiles between 
TAM-treated and control condition at each time point, DESeq254 were used for calculating fold change (FC). 
In order to reduce data dimensions, genes which did not show significant changes (determined by the follow-
ing cutoff: q-value < 0.001 and |log2FC| > 0.5) at least three time point were filtered out for further analysis. As 
a consequence, 6982 genes were used for cluster analysis. Then, the log2FC values of all genes at W0 were set 
as a theoretical zero value. Hierarchical clustering of z-score of log2FC values (13 time points) in those genes 
was performed by using the method of Ward’s linkage based on the Pearson’s correlation distance (1 − Pearson’s 
correlation coefficient).

Enrichment analyses.  All enrichment analyses except Fig.  3g were carried out using the Targetmine 
platform55. Redundant enrichment terms, shared by > 70% of the genes of interest, were removed from the 
results, and the term with the lowest q-value was retained. The enrichment analysis of upstream transcriptional 
regulators (Fig. 3g) was performed using the ChIP-Atlas database (https://​chip-​atlas.​org)24 under the following 
settings: antigen class, “TFs and others” and cell type class, “Breast.”

Single‑cell RNA‑seq analysis of TAM‑resistant cells.  Single-cell RNA-seq in this study was per-
formed in single replicate. Single cells were separated using the ICELL-8 system (Takara Bio, Shiga, Japan). 
MCF-7 cells treated with or without continuous TAM were trypsinized and collected following dilution with 
the culture medium. The cells were then washed twice with cold PBS and stained with Hechest33342 (5 µg/mL) 
and PI (1 µg/mL) for 15 min. After staining, the cells were diluted to a concentration of 20,000 cells/mL and 
loaded into the ICELL-8 single-cell system. Then, cDNA was prepared using 3′DE reagents (Takara Bio), accord-
ing to the manufacturer’s instructions, and subjected to 100-bp paired-end sequencing on the Illumina HiSeq 
3000 platform (Illumina, CA, U.S.A.). Mapping of sequence reads to the human reference genome sequence 
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and counting genes were carried out using the mappa and hanta software (Takara Bio). The gene count data of 
individual cells were cleaned using the Seurat 3 software21. A series of quality controls were implemented. First, 
any gene expressed in < 5 cells at < 5 counts per million was removed. Cells with < 1500 detected genes and > 25% 
mitochondrial genes were filtered out. After filtering, the count data matrix consisting of 11,413 genes and 186, 
189, 118, and 84 cells at weeks 0, 3, 6, and 9, respectively, was obtained. Next, any bias due to differences in the 
cell cycle stage was removed using the function CellCycleScoring and cell cycle gene set, and the effect of cell 
cycle phases on gene expression data was regressed. The data were imported into the Monocle 3 software56, and 
the data dimensions were reduced to three with UMAP. Then, cells were categorized into multiple classes. Gene 
module and pseudotime analyses were carried out using the Monocle 3 software, according to the developer’s 
instructions (https://​cole-​trapn​ell-​lab.​github.​io/​monoc​le3/). Marker genes in each subgroup were calculated 
with the “top_markers” function (Supplementary Fig. S6). The pseudotime of each cell was calculated on the 
basis of the relative distance from open circle #1 (set as pseudotime = 0) (Fig. 3c). DEGs along with an estimated 
cell trajectory were calculated by applying the “graph_test” and “find_gene_modules” functions to cell subsets 
of groups 2, 3, 4, and 5 (Fig. 3f).

Mathematical simulation.  The mathematical model comprised 12 ordinary differential equations with 
19 parameters. In this model, cell growth was assumed to follow logarithmic growth, and cell state transitions 
were assumed to follow the trajectory predicted by pseudotime analysis (Fig. 4a). Details of the equations are 
summarized in Supplementary Table S5. Mathematical simulation and parameter search were performed using 
the BioMASS platform28. During the parameter search process, we attempted to minimize the weighted sum of 
squared percentage errors (wSSPE):

where wSSPE is an objective function; n is the number of obtained data points to be fitted such as growth rate and 
rate of subpopulation at each time point and treatment; xsim,i and xexp,i are the ith simulation and experimental 
data, respectively. Importantly, “weighted” SSPE (calculated by adding 0.1 to the denominator of objective func-
tion) was used instead of normal SSPE to achieve two purposes simultaneously: escaping division by zero and 
fitting the simulation results to two experimental datasets with different range limits. In this study, a total of 38 
(n = 38) data points, with 11 from growth rate of TAM-treated cells (W0–W11), 11 from parental cells, and 16 
from the ratio of four subgroups in four time points (W0, W3, W6, and W9) were analyzed. Note that growth 
rate data in parental cells do not constrain parameters working in TAM-treated conditions and the degree of 
freedom of the subpopulation rate at each time point is 3. Therefore, the parameters in the model are practically 
constrained by 23 data points.

Sensitivity analysis.  The single parameter sensitivity of each reaction is defined as follows:

where vi is the ith reaction; v is a reaction vector (v = v1, v2, …); and q(v) is a target function. q(v) we considered 
in this study is the mean-over-time growth rate after W3 described below:

where t denotes the time (week), Xtotal(t) means the whole cell number at the time t. The sensitivity of each reac-
tion was calculated with 1% increase in the reaction rate using the BioMASS platform28.

Statistics and reproducibility.  The number of replicates were as follows: Bulk RNA-seq, 5; single-cell 
RNA-seq, 1; and cell growth and cell cycle experiment, 2 or more than 2 (depending on experiments and 
described in the corresponding figure legend). The statistical comparisons between two samples in cell-biolog-
ical experiments observing the representative value of a cell population, i.e., growth assay, cell cycle assay, and 
MTT assay, were performed using independent two-tailed Welch’s test. Those from single-cell data not show-
ing Gaussian distributions were comapred using Wilcoxon rank-sum test. The comparison between simulation 
parameters were performed using Wilcoxon signed-rank test. For multiple test correction, the Benjamini–Hoch-
berg method was used and adjusted p-values were presented as q-values.

Data availability
The raw bulk RNA-seq and single-cell RNA-seq data are deposited in the DNA Data Bank of Japan (DDBJ) and 
available under the accession numbers DRA004349 and DRA009126, respectively.
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